CEIG’09, San Sebastidn, Sept. 9-11 (2009)
C. Andgjar and J. LLuch (Editors)

Realtime Dense Stereo Matching with Dynamic Programming
in CUDA

John Congotel’z, Javier Barandiaran?® Idigo Barandiaranz, Oscar Ruiz!

I'EAFIT University, CAD/CAM/CAE Laboratory, Medellin - Colombia
2VICOMTech Research Center, San Sebastian - Spain

Abstract

Real-time depth extraction from stereo images is an important process in computer vision. This paper proposes
a new implementation of the dynamic programming algorithm to calculate dense depth maps using the CUDA
architecture achieving real-time performance with consumer graphics cards. We compare the running time of the
algorithm against CPU implementation and demonstrate the scalability property of the algorithm by testing it on

different graphics cards.

Categories and Subject Descriptors (according to ACM CCS): ARTIFICIAL INTELLIGENCE [Computing Method-
ologies]: 1.2.10—Vision and Scene Understanding3D/stereo scene analysis

1. Introduction

Dense depth map calculation is a common problem in com-
puter vision that tries to recover three-dimensional informa-
tion from two-dimensional images. This problem has been
widely studied and diverse approaches to solve it have been
proposed [WZ08] [KSKO06]. Furthermore, the problem had
been tracked since 2002 by Scharstein and Szeliski [SS02]
who had also defined a taxonomy for stereo vision algo-
rithms dividing them into local, global and scan-line, or
semi-global methods. Depth map calculation is very useful
in the area of robotics, 3D scene reconstruction, and in the
emerging field of 3D television.

Real-time (RT) and near real-time algorithms to gener-
ate depth maps have improved substantially in recent years
due to the following two factors. First, research in the
field has developed new algorithms which reduce the com-
plexity of calculations and the increase in computational
power required by the CPU. Nowadays, these advances have
been more dramatic with Graphic Processing Unit (GPU)
[OJL*07]. New technologies such as Compute Unified De-
vice Architecture (CUDA) opens a new promising field of
work for these kind of problems. Recently, much of the re-
search has been carried out on the implementation of differ-
ent depth estimation algorithms in GPU.

Local methods are more straightforward to implement us-
ing GPU. These methods were measured and compared by

(© The Eurographics Association 2009.

Figure 1: Calculated Matrix M9g of the cones model, and
the solution obtained with the DP algorithm

Gong [GYWGO07] and Tombari [TMDSAO8]. Also global
methods were implemented in GPU, as shown by Gibson
[GMO8] and Yang [YWY ™ 06]. The highest quality results
are achieved by using methods based on Belief Propagation
(BP) [KSKO06]. However, these methods are computationally
intensive. Methodologies that shows a good balance between
velocity and quality are algorithms that use a combination of
a local method, dynamic programming and a postprocessing
step, as showed by Wang [WLG*06]. Our proposal is based
mainly on this work.



J. Congote, J. Barandiaran, 1. Barandiaran, O. Ruiz / RT Dense Stereo Matching with DP in CUDA

Dynamic Programming (DP) has been a difficult prob-
lem to be solved by using parallel architectures, as shown
by Galil [GP91]. A useful practical implementation of the
DP algorithm for depth map calculation has been attempted
in the past by Gong [GYO05] without achieving signif-
icant improvements over comparative CPU implementa-
tions.Recently, some implementations of similar (DP) algo-
rithms have been implemented in GPU, Manavski [MV08],
obtaining good results.

The contribution of this paper is the implementation of
the DP algorithm in GPU using the Nvidia CUDA architec-
ture. For benchmarking we use a comparable CPU imple-
mentation as a baseline and measure the scalability of the
GPU implementation across multiple GPU configurations.
The results prove that the algorithm can be successfully im-
plemented on inexpensive consumer graphics cards, obtain-
ing real time performance,

The paper is structured as follows: The basics of the
Nvidia CUDA architecture shall be described in section (2).
The original algorithm for the calculation of the dense depth
map is explained in section (3). The parallelisation method-
ology applied in this paper is detailed in section (4). The
results of the quality of the algorithm and a comparison of
running times for each configuration are shown in section
(5). Finally, some conclusions are presented in section (6).

2. CUDA

Graphics processor is a new processing unit that is present in
any personal computer nowadays. These processors are op-
timised for parallel processing and have represented a major
step in 2D and 3D graphics generation and visualization. The
evolution of this kind of hardware in recent years has opened
new possibilities for complex computations that were re-
stricted in the past because of the excessive time required
for execution of some algorithms making them impractical.
General Purpose computation on GPUs (GPGPU) is a new
programming paradigm which generates new kinds of algo-
rithms that can be processed in the graphics units via new
frameworks such as CUDA from Nvidia. This framework
provides a new subset of C written primitives for parallel
computation.

CUDA framework allows the execution of parallel threads
which are grouped in blocks. Each thread has access not only
to a global memory but also to some other faster memory
spaces such as texture, shared or cache memory, which can
be used to improve the running time of the algorithm. These
features give the possibility of an effective implementation
of the DP algorithm in the GPU. This work was a challeng-
ing undertaking as explained by Gong [GY05].

3. Dynamic Programming

Dense depth map calculation is a process (See figure 2),
in which, given two images [; and I each pixel of [; is

matched to a pixel in /. In our case the match can be ex-
pressed as a displacement for each pixel p(x,y) € I; to a
pixel g(x’,y’) € I. Images need to be previously rectified
so that the epipolar lines of the images are coincident with
the scan-lines. In a rectified image each pixel from the /;
could have their match in the same line in the /- and vicev-
ersa. Therefore, a pixel match between I and /; only differs
in a horizontal displacement, d = x —x’. In stereo techniques
this displacement is known as disparity. The output of any
dense stereo algorithm is an structure known as disparity
map where for each pixel in /; we have a disparity value d.

The problem of dense depth map estimation is NP-hard.
Approximations used to solve it is by generating a cost func-
tion for the estimation. This cost function is defined per pixel
and the differences between the neighbouring pixels could
also be used. The cost per pixel is normally calculated by an
aggregation cost function such as SAD defined in equation
(1) as the sum of the absolute differences of the matched
pixels colour in RGB. The problem of selecting optimal
matches between pixels is solved by DP. The DP approach
returns an optimal match for each scan line of the images.
but the differences between scan lines is a typical problem
with this method.

SAD(x.d) = ABS(py (x), — gy(x+d),)

+ABS(py(x)g —qy(x+d)g) +ABS(py(x), —qy(x+d)yp)
(D

DP algorithm for disparity map computation works as fol-
lows: For each line y in both images /; and I a cost matrix
M, is created with dimensions W X Dyqx where W and H
is the width and height of the images. Dy is the maximum
disparity dependant on the separation between cameras and
minimum and maximum distances allowed. In a first step,
this matrix M, is filled with the cost corresponding to assign
the disparity d for the pixels p(x,y) and g(x+d,y) when
x+d < W. The cost matrix M}, is calculated with the equa-
tion (2) where the values of A are assigned emipirically and
represent the penalty of the change in the disparity value be-
tween neighboring pixels. In our test, we used a value of 5.
The aggregation cost SAD is calculated between two pixels
with the equation (1) where py and gy are the values of Red-
Green-Blue (RGB) colour of the pixels in the processed scan
line y. A graphical representation of the cost matrix can be
seen in the figure 1.

My (x,d) = SAD(x,d) + MIN(A+ M, (x—1,d — 1),
Mh(xflvd)a}\'+Mh(xvd+1)) 2
The disparity for each pixel of the scanline, is calcu-
lated by a back tracking process, starting in the position

M(W,Dyay) and following the minimum cost path, assign-

(© The Eurographics Association 2009.



J. Congote, J. Barandiaran, 1. Barandiaran, O. Ruiz / RT Dense Stereo Matching with DP in CUDA

(a) Right image

(b) Ground Truth

(c) Calculated Disparity

Figure 2: Depthmap calculation for teddy image of Middlebury stereo vision data set. the calculated disparity was done using

our algorithm and a median filter as a posprocessing step.

ing the disparity value d corresponding to the last position
of the path in each dimension of W.

4. Parallel DP

Our proposed parallelisation method of DP algorithm was
based a parallelisation pattern of the matrix Mj,. The pattern
defines the parallel steps which can be executed simultane-
ously by a block of a several threads. The number of threads
in each block changes dynamically in the execution of the al-
gorithm. This number is managed by the architecture, along
with the global, shared memory and synchronization func-
tions.

The presented algorithm 1 uses a block of threads to cal-
culate the cost matrix Mj,. The size of the block of threads is
(1 x BX), being BX a number between 1 and %. In each
iteration the threads select an available cell to calculate the
cost function. A cell is defined as available if it has had all
of their required values already computed. The position of
the cell is calculated in the variables ¢ and d (see algorithm
1). For each cell (c,d), that is different for each thread, the
minimum value of the neighbours (¢ — 1,d + 1), (¢ — 1,d),
(c,d — 1) is calculated in 7. Then the current cell (c,d) is
updated with the value of the aggregation cost function be-
tween the pixels p(c,h) and g(c +d,h) of the images I; and
I and the minimum value of the neighbours ¢.

The back tracking step is processed after filling the matrix
Mj,. The Calculation of the path for each scanline is carried
out in parallel.

5. Results

We compared the results obtained with the proposed algo-
rithm implemented in several GPUs against the same imple-
mentation on several CPU (see 3) The GPU version of the
algorithm improves the running time of the algorithm with

(© The Eurographics Association 2009.

modern graphics cards. Results demostrates that the evolu-
tion of the running time of the algorithm between various
types of CPU did not generate a substantial difference, but
the evolution of the GPU implementation shows a signifi-
cant improvement in the running time of the algorithm.

The images used in the benchmark are the middlebury im-
ages of tsukuba, cones, venus and teddy [SS03]. The time
presented is the average running time of the same algorithm
in 10 test cycles eliminating the extreme data, and the DP
algorithm was ran 10 times every test cycle. Running the al-
gorithm several times with the same data was done with the
objective of discarding measurement error due to race con-
ditions in the computer and the precision problems with the
PC clock. The quality of the disparity estimation results of
are the same of the dynamic programming implementation
in CPU which were studied in [SS02].

6. Conclusion

We have presented a parallel implementation for a DP al-
gorithm that takes benefits from the GPGPU computing
model. Our implementation shows a high scalability running
on CUDA maximising the performance of modern GPUs.
These allows us to implement real-time stereo methods with
increasing resolution and precision.

7. Acknowledgements

This work has been partially supported by the Spanish Ad-
ministration agency CDTI, under project CENIT-VISION
2007-1007. CAD/CAM/CAE Laboratory - EAFIT Univer-
sity and the Colombian Council for Science and Technology
— COLCIENCIAS -.



J. Congote, J. Barandiaran, 1. Barandiaran, O. Ruiz / RT Dense Stereo Matching with DP in CUDA

Input: 7,,[;,W ,H ,Dpax
Output: M},

h < blockIdx.x

Jj < threadldx.y

. W -Dyax __ blockDim.y
fori — 0 to WDiIﬂy JrDmax I — do

c— j+ (blockDim.y- %)

d— (i—2j) mod Dpax

t «— +o0

if (c—=1>0)A(c—1<W) then

if (d4+1>0)A(d+1 < Dpax) then
| t<— A+min(z,S[d+1])

end

if (d > 0) A (d < Dmax) then

| t < min(z,S[d])

end

end

if (¢ >0)A(c < W) then

if (d—12>0)A(d—1 < Dmax) then
| ¢+ A+min(s,S[d—1])

end
end
if t = +o0 then
Il t<—0
end
if (c>0)A(c<W)A(d>0)A(d < Dmax) then
S[d] —
AggregationFunc (c¢,h,d, I}, I,,W.H) +t
Mple,d] = S|d]
end
syncthreads ()
end
return M,

Algorithm 1: CUDA implementation of the DP algo-
rithm, the number of running threads in the algorithm
must be lower than the half of the Djqx value.

References

[GMO8] GIBSON J., MARQUES O.: Stereo depth with a uni-
fied architecture gpu. Computer Vision and Pattern Recognition
Workshops, 2008. CVPRW ’08. IEEE Computer Society Confer-
ence on (June 2008), 1-6.

[GP91] GALIL Z., PARK C. K.: Parallel dynamic programming.
Tech. rep., Department of Computer Science Columbia Univer-
sity, 1991.

[GY05] GONG M., YANG Y.-H.: Near real-time reliable stereo
matching using programmable graphics hardware. In CVPR "05:
Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Vol-
ume 1 (Washington, DC, USA, 2005), IEEE Computer Society,
pp. 924-931.

[GYWGO07] GONG M., YANG R., WANG L., GONG M.: A per-
formance study on different cost aggregation approaches used in

real-time stereo matching. Int. J. Comput. Vision 75, 2 (2007),
283-296.

[KSK06] KLAUS A., SORMANN M., KARNER K.: Segment-
based stereo matching using belief propagation and a self-

Dense depth map with dynamic programming

8500GT - E6400

8500GT - E4500

8600GT - E6320

9600GT - E8400

Computer Configuration

i

9800GTX+- E2180

0 50 100 150 200 250 300 350
Running Time (ms.)
Miteddy CPU Miteddy GPU

Figure 3: Running time of the DP algorithm in different
CPU and GPU configurations. The difference between the
two 8500GT graphic card is because the different clock rates
of the cards.

adapting dissimilarity measure. Pattern Recognition, 2006. ICPR
2006. 18th International Conference on 3 (0-0 2006), 15-18.

[MV08] MANAVSKI S., VALLE G.: Cuda compatible gpu cards
as efficient hardware accelerators for smith-waterman sequence
alignment. BMC Bioinformatics 9, Suppl 2 (2008).

[OJL*07] OWENS, JOHN D., LUEBKE, DAVID, GOVINDARAJU,
NAGA, HARRIS, MARK, KRUGER, JENS, LEFOHN, AARON E.,
PURCELL, TIMOTHY J.: A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum 26, 1
(March 2007), 80-113.

[SS02] SCHARSTEIN D., SZELISKI R.: A taxonomy and evalu-
ation of dense two-frame stereo correspondence algorithms. In-
ternational Journal of Computer Vision 47 (2002), 7-42.

[SS03] SCHARSTEIN D., SZELISKI R.: High-accuracy stereo
depth maps using structured light. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition 1 (June
2003), 195-202.

[TMDSA08] ToMBARI F., MATTOCCIA S., DI STEFANO L.,
ADDIMANDA E.: Classification and evaluation of cost aggrega-
tion methods for stereo correspondence. Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
(June 2008), 1-8.

[WLG*06] WANG L., L1A0 M., GONG M., YANG R., NISTER
D.: High-quality real-time stereo using adaptive cost aggregation
and dynamic programming. In 3DPVT ’06: Proceedings of the
Third International Symposium on 3D Data Processing, Visual-
ization, and Transmission (3DPVT’06) (Washington, DC, USA,
2006), IEEE Computer Society, pp. 798-805.

[WZ08] WANG Z.-F., ZHENG Z.-G.: A region based stereo
matching algorithm using cooperative optimization. Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con-
ference on (June 2008), 1-8.

[YWY™*06] YANG Q., WANG L., YANGR., WANG S., L1IAO M.,
NISTER D.: Real-time global stereo matching using hierarchical
belief propagation. In BMVC (2006), British Machine Vision
Association, pp. 989-998.

(© The Eurographics Association 2009.



