HARDWARE-ACCELERATED WEB VISUALIZATION OF VECTOR
FIELDS. CASE STUDY IN OCEANIC CURRENTS

Mauricio Aristizabal!, John Congotem, Alvaro Seguraz, Aitor Moreno?, Harbil Arregui2 and Oscar

Ruiz!

LCAD/CAM/CAE Laboratory, EAFIT University, Medellin, Colombia

2Vicomtech Research Center, Donostia - San Sebastian, Spain
maristi7 @eafit.edu.co, {jcongote,asegura,amoreno,harregui’} @vicomtech.org, oruiz@edfit.edu.co

Visualization of vector fields plays an important role in research activities nowadays. Increasing web appli-

cations allow a fast, multi-platform and multi-device access to data. As a result, web applications must be
optimized in order to be performed heterogeneously as well as on high-performance as on low capacity de-
vices. This paper presents a hardware-accelerated scheme for integration-based flow visualization techniques,
based on a hierarchical integration procedure which reduces the computational effort of the algorithm from
linear to logarithmic, compared to serial integration methodologies. The contribution relies on the fact that
the optimization is only implemented using the graphics application programming interface (API), instead of
requiring additional APIs or plug-ins. This is achieved by using images as data storing elements instead of
graphical information matrices. A case study in oceanic currents is implemented, showing that the procedure

Keywords: Line Integral Convolution, Hierarchical Integration, Flow Visualization, WebGL
Abstract:

requires 32 integration steps to obtain good visual results.
GLOSSARY

API Application Programming Interface
CUDA Compute Unified Device Architecture
PL Piecewise Linear

SIMD Single Instruction Multiple Data
GLSL Graphic Library Shading Language
WebGL Web Graphic Library

LIC Line Integral Convolution

GPU Graphics Processing Unit
FBO FrameBufer Object
Shader Instructions to be performed in the
GPU

1 INTRODUCTION

Vector field visualization has an important role in
the automotive and aero-spatial industries, maritime
transport, engineering activities and others. It allows
the detection of particularities of the field such as vor-
texes or eddies in flow fields, but also permits ex-
ploring the entire field behavior, determining stream
paths.

Figure 1: LIC flow visualization of Indian ocean currents
in WebGL. Hierarchical integration was used to reduce the
total number of iterations required to calculate the integrals,
reducing it from 32 to four iterations.

Particularly, ocean flow visualization is an impor-
tant factor in weather and climate prediction activities
since the movement of huge water masses can pro-

duce temperature variation of wind currents.

As a result, flow visualization of oceanic streams
becomes an important activity to represent the ocean’s
behavior. There exist several methodologies for this
purpose, like geometric-based methodologies, which
use objects whose visual properties (like size and
color) represents the flow characteristics. However
their placement along the field is determinant to visu-
alize anomalies as eddies or vortexes, and, therefore,
data preprocessing is required. On the other hand,
there are texture-based approaches, which modifies or
creates textures to represent the flow’s behavior.

LIC convolves a noise field with a mapping image
along the trajectory of each particle in the vector field.
It is a widely implemented texture-based procedure,
and can easily detect flow’s anomalies without data
preprocessing since a quasi-continuous visualization
is performed. However, as for the procedure to be
accurate, several evaluations of textures are required
in order to numerically build an integral, and therefore
it increases the computation time of the procedure.

The emerging technology WebGL (OpenGL for
the web), allows hardware-accelerated visual applica-
tions to be performed in web-pages. However, chal-
lenges arise since these applications must be suitable
to be executed in low capacity devices such as mo-
bile devices, smart phones and tablet computers. As
a consequence, LIC flow visualization might not be
suitable for this technology unless optimization pro-
cedures are applied.

Our contribution is a hardware-accelerated opti-
mization scheme for LIC flow visualization imple-
mented in WebGL. The optimization is based on a
hierarchical integration procedure (Hlawatsch et al.,
2011), which reuses previously calculated informa-
tion in order to build the integrals and therefore
avoids unnecessary calculations. As a consequence
the complexity of the procedure is reduced, compared
with a serial calculation of integrals, from O(N) to
O(logN) (Hlawatsch et al., 2011) Compared with
other methodologies, our implementation only re-
quires WebGL API to be performed, as it employs im-
ages as data storing elements instead of graphical in-
formation matrices, using the render-to-texture capa-
bilities of WebGL. The optimization is purely imple-
mented on shaders, this is, in GPU’s hardware, which
allows to the procedure to have a fast and parallel pro-
cessing scheme.

This paper is organized as follows. Section 2
presents the related work. Section 3 exposes the
methodology of LIC flow visualization and its opti-
mization. Section 4 presents a case of study in oceanic
currents and finally the conclusions of our work are
presented in section 5.

2 LITERATURE REVIEW

2.1 Flow Visualization

A great amount of methodologies to visualize vec-
tor fields (flow fields) has been developed among
the last decades. Geometric-based approaches draw
icons on the screen whose characteristics represent
the behavior of the flow (as velocity magnitude, vor-
ticity, etc). Examples of these methodologies are ar-
row grids (Klassen and Harrington, 1991), stream-
lines (Kenwright and Mallinson, 1992) and streak-
lines (Lane, 1994). However, as these are discrete
approaches, the placement of each object is critical
to detect the flow’s anomalies (such as vortexes or ed-
dies), and therefore, data preprocessing is needed to
perform an illustrative flow visualization. Reference
(McLoughlin et al., 2010) presents an up-to-date sur-
vey on geometric-based approaches.

On the other hand, texture-based approaches rep-
resent both a more dense and a more accurate visu-
alization, which can easily deal with the flow’s fea-
ture representation as a dense and semi-continuous
(in stead of sparse and discrete) flow visualization
is produced. A deep survey in the topic on texture-
based flow visualization techniques is presented by
(Laramee et al., 2004).

Reference (Van Wijk, 2002) implements an ani-
mated flow visualization technique in which a noise
image is bended out by the vector field, and then
blended with a number of background images. In
(Van Wijk, 2003) the images are then mapped to a
curved surface, in which the transformed image visu-
alizes the superficial flow.

Line Integral Convolution (LIC), presented by
(Cabral and Leedom, 1993), is a widely imple-
mented texture-based flow visualization procedure. It
convolves the associated texture-pixels (texels) with
some noise field (usually a white noise image) over
the trajectory of each texel in some vector field.
This methodology has been extended to represent ani-
mated (Forssell and Cohen, 1995), 3D (Liu and Moor-
head II, 2004) and time varying (Liu and Moorhead,
2005; Liu and Moorhead II, 2004) flow fields.

An acceleration scheme for integration-based flow
visualization techniques is presented by (Hlawatsch
et al., 2011). The optimization relies on the fact
that the integral curves (such as LIC) are hierarchi-
cally constructed using previously calculated data,
and, therefore, avoid unnecessary calculations. As
a result, the computational effort is reduced, com-
pared to serial integration techniques, from linear to
logarithmic. Its implementation is performed on the

CUDA architecture, which allows a GPU-based paral-
lel computing scheme, and therefore the computation
time is critically reduced. However, it requires, addi-
tionally to the graphic APIs, the CUDA API in order
to reuse data, and hence, execute the procedure.

2.2 WebGL literature review

The Khronos Group released the WebGL 1.0 Specifi-
cation in 2011. It is a JavaScript binding of OpenGL
ES 2.0 API and allows a direct access to GPU graph-
ical parallel computation from a web-page. Calls to
the API are relatively simple and its implementation
does not require the installation of external plug-ins,
allowing an easy deployment of multi-platform and
multi-device applications. However, no data calcu-
lated on shaders but images can be transfered between
rendering procedures using FBOs.

Several WebGL implementations of different ap-
plications have been done such as volume rendering,
presented by (Congote et al., 2011) or visualization
of biological data, presented by (Callieri et al., 2010).
However, for the best of our knowledge, no other im-
plementation that regards to LIC flow visualization on
WebGL has been found in the literature or in the Web.

2.3 Conclusion of the Literature Review

WebGL implementations allow to perform applica-
tions for heterogeneous architectures in a wide range
of devices from low-capacity smart phones to high-
performance workstations, without any external re-
quirement of plug-ins or applets. As a result, opti-
mized applications must be developed. In response
to that, this work optimizes the visualization of 2D
steady vector fields using images as data storing ele-
ments instead of graphical information matrices. As
a consequence, previously calculated data is reused,
avoiding unnecessary calculations, and reducing the
complexity of the algorithm to O(log N). Hence, only
the graphics API is required for its implementation,
preserving the multi-platform purpose of the applica-
tion.

3 METHODOLOGY

This article addresses the optimization of
integration-based flow visualization procedures using
only the graphics API. It starts from a 2D vector field
F : X — R?, with X C R?, representing the velocity
at each point inside the field. An image represented
as the 2D matrix M : [1,hy] % [1,wy] — (R, G, B,A),
with hy; and wy, representing its height and width

respectively in pixels, and a noise field W : R? — R,
both mapping to F.

The goal is to calculate a 2D matrix 7 : [1,h;] x
[1,w;] — (R,G,B,A) that defines an image, with A;
and wy representing its height and width in pixels.
Each pixel is a four-component vector (R,G,B,A) of
red, green, blue and alpha values (R, G,B,A € [0,1]).

3.1 Line Integral Convolution

In order to visualize 2D vector field, the procedure
convolves the mapping image M with its noise field W
along the trajectory of each point in the vector field, as
proposed by (Cabral and Leedom, 1993). For this pur-
pose, let us define g as an arbitrary point in the field.
Hence, for its associated finite trajectory c (extracted
from F), with p(s) € ¢, and s the parameter associated
to ¢, the resulting image is obtained as follows:

6]

Figure 2: Trajectory of the point p inside F.

Note that g represents the starting point of the tra-
jectory that is going to be convolved (i.e. p(0) = g),
and the trajectory c evaluates the upstream (s > 0) and
downstream (s < 0) directions. This integral is per-
formed for all g € X

For a computer implementation, a discrete calcu-
lation of the integral is required. As a result, a PL
approximation of ¢ is performed using a first-order
approximation of the point’s displacement (see equa-
tions 2-5). Figure 3 shows the PL approximation of

i) =)
p,<2>p,-<1>+k”1;§§j§3§||)
pi(~1) = p;(0) kH’;EZEBBH @)
pj(=2) :pj(_l)_km (5)

In equations (2-5), only the direction of the veloc-
ity is regarded. The parameter k represents a scaling

Pi(-2)

Figure 3: Piecewise linear approximation of c.

factor of the displacement, in order to transform that
vector to the local coordinates of the representation.
With this, the final image [is calculated for each point
g, in the field as follows.

=Y M(p; ()W (p;(1)) (©)
—i))W(p;(—i)) (7)

: ilw(

1

Py(q;)

t

ZW pi(

i—=1
Iy(q;) +1Ip(q))
Py(q;)+Po(q;)

where Iy and Ip represents the convolution between
M and W in the upstream and downstream directions
respectively, Py and Pp represents the total weight
sum in both directions in order to average the con-
volution, ¢ represents the maximum number of inte-
gration steps for both directions and ¢ represents the
current evaluating point.

pj(i)) (8)

) 9)

I(qj) = (10)

3.2 Hierarchical Integration

Integration over massive point trajectories in n-
dimensional vector fields suffer from unnecessary
step calculations since several points in the field might
lie over the same trajectory and therefore share por-
tions of the integrals. Figure 4 illustrates this sit-
vation for different points along the same path. In
response to this, hierarchical integration (Hlawatsch
et al., 2011) only calculates the necessary steps and
then iteratively grows the integrals reusing the data,
reducing the computational complexity of the algo-
rithm from O(N), using serial integration methodol-
ogy, to O(logN). The procedure is summarized as
follows.

Let us define some arbitrary line integral f : Y —
R™, with Y C R", bounded by its trajectory c, and its

. 2
105(0) w»

x,(2)
x/({)/s'
y,=x,(0)

Figure 4: Trajectory overlapping in line integral evaluation.

discrete approximation like described in equation 11.

10 = [t~

where t is is the maximum number of steps, represent-
ing the curve length, x;(0) =y, is the starting point of
the trajectory path. The integration procedure is per-
formed for all points y; € Y in parallel.

For the sake of simplicity assume that As =1,

): w(x;(i)). The algo-

;w(xj(i»As (11)

Vy; € Y and therefore f(y;) ~

rithm starts with the calculatlon of the first integration
step for all the points in the field, this is:

So(yj) = w(x;(1)) (12)

It is required to store the last evaluated point x;(1)
over the growing trajectory and the value of fi(y;)
for every point in order to reuse them in the following
steps to build the integral. With this, the following
is to update the value of the integral, using the sum
of the previously calculated step at y; and the step
evaluated at its end point (x;(1)), namely,

fi(yj) = fo(x;(0)) + fo(x;(1)) (13)

In this case, the end point of fi(x;(0)) is x;(2) as
the calculation evaluates fo(x;(1)), and therefore the
next iteration must evaluate f at x;(0) and x;(2) in or-
der to grow the integral. In general, the k’th iteration
of the procedure is calculated as

Je(yj) = fi—1(x;(0)) + fi—1(xj(end)) (14)

Note that each iteration of this procedure evalu-
ates two times the integration steps evaluated in the
previous iteration. As a result, the total number of
integration steps ¢ must be a power of two, and the
hierarchical iterations required to achieve this evalu-
ations is reduced by a logarithmic scale. This is, the
total number of iterations to be performed k = log, ¢.
Figure 5 illustrates the procedure for two hierarchi-
cal iterations, which leads to four integration steps to
build the integral.

g@’@m»f 620
f1(x,(0) _/;(XMZ»

L) f60(1) ~f002)
x(0) 5(1)

Q@@,(z)):. (5(2)

LO(0)_fx (1)~ (2)
0 e L

T A TORGY

Figure 5: Comparison between the growth of the evaluated
trajectories using serial integration methodology (left) and
the hierarchical integration procedure (right), for iterations
kequalsto 0, 1 and 2.

3.3 Data Storing

Despite graphics APIs does not allow to transfer data
calculated on shaders (such as matrices, vectors or
single values), between rendering procedures, they
can transfer images. An image is a 2D matrix that
stores at each position a four-component vector that
defines its color, i.e. [1,4] x [1,w] — (R, G,B,A), with
h and w its height and width in pixels respectively. A
pixel color is defined by red, green blue and alpha val-
ues (R,G,B,A € [0,1]).

As a result, for any field X € R? it is possible to
store four values associated to any point p; € X in an
image that maps to X. Note that pixels are discrete
values and p; might be continuous. In this case, av-
erage and interpolation of data are required to both
read and write the values on the image that maps to
the field, and therefore avoid high error between cal-
culations. If more than four values are required to be
stored, it is needed to render (calculate) more than one
image in order to store those values.

4 CASE STUDY

In this section the visualization of oceanic currents
in a WebGL application using a hierarchical integra-
tion scheme is carried out. Images are used to trans-
fer data between iterations and to input the ocean’s
velocity field, the ocean’s bathymetric and the earth’s
topographic information.

4.1 Global Information

Many data services regards to the measurement of
earth’s information such as wind flow, superficial tem-
perature, ocean salinity and others. For this applica-
tion, the vector field that defines the velocity is re-
quired. The Global Ocean Data Assimilation System

(GODAS)! provides this information in a netCDF for-
mat (Hankin et al., 2010), which allows, throughout
servers, to visualize the data as an image information.
Figures 6(a) and 6(b) shows the ocean’s longitudinal
and latitudinal components of the velocities respec-
tively, in grayscale images. They represent for a full
white color (R=G=B=1.0) a velocity component of
3.0 and for a full black color (R=G=B=0.0) a velocity
component of -3.0.

Earth’s bathymetric (B) and topographic (T") infor-
mation, provided by the NASA’s earth observatory?,
refers to the ocean’s depth and the land’s height re-
spectively, and is also stored as images (see Figures
6(c) and 6(d)). For bathymetric information, brighter
values represent shallow water. In contrast, for topo-
graphic information, brighter values represent higher
surface elevation. As a result, these data are used to
transform earth’s vertices, which initially represent a
sphere. For vertex V(g;), its transformation is carried
out as follows,

V(qj') = V(qj) * (1 —Op B(qj').R), qu S Xocean (15)
V(gj) =V(q;)*(1+ar T(g;).R), Vq; € Xiana (16)
where op and o7 are user defined scaling factors
to interactively vary the representation and Xjcean
and Xj,,q are the corresponding ocean and land re-

gions respectively such that X,ceqn U Xiang = X and
Xacean leand =0

Figure 7: Earth vertex transformation using bathymetric
and topographic information.

Finally, a satellite image of earth’s surface (see
figure 6(e)), also provided by the NASA’s earth ob-

nttp:/fwww.esrl.noaa.govipsd/
2 http:/fearthobservatory.nasa.gov/

(d)

(e)

Figure 6: Global information. Gray-scale of the oceanic currents magnitude in the (a) longitudinal and (b) latitudinal di-
rections, of the 1% December of 2010. Gray-scale of the (c) bathymetric and (d) topographic information, and (e) satellite

photography of earth.

servatory, is used to map the non-oceanic regions of
the visualization.

4.2 Data Storing

Taking advantage of massive parallel computing ca-
pabilities and data interpolation of SIMD program-
ming architectures, it is possible to optimize the cal-
culation of the integrals using images. Although
graphic libraries can not return or store previously cal-
culated data as arbitrary matrices, they are capable of
performing render-to-texture operations. This allows
to store a rendered image in GPU’s memory instead
of displaying it, to then access it from another render-
ing procedure and access its information. As a result,
images might be used as data storing elements instead
of graphical information matrices.

In order to implement hierarchical integration
with LIC, regarding that it performs a single direc-
tion integration and the integrals must be performed
along both upstream and downstream directions, it
is required to perform integration for both directions
separately and then merge both results in order to ob-
tain the final image 1.

The mapping image (M) used in this case study is
shown in figure 8. It is a gray-scale image, therefore

the values of each color components are the same for
each pixel, i.e. R =G = B. The weight field used
is W(gj) = 1.0 Vg; € X. In order to perform LIC
with hierarchical integration, for both the upstream
and downstream directions, one value is needed to
store the partial integral (since M is single-valued),
and two values are required to store the two coordi-
nates that define the final point of the partially eval-
uated trajectory. As a consequence, two images are
required to store the values for each point p; in the
field. For this purpose let us define the following con-
vention of data storing in the next two images in order
to store the data:

Image Q: [1,hg] x [1,wg] — (R,G,B,A), is used
to store the data in the upstream direction for each
point g; in the field. The first component (where the
red component is stored) is used to store the partially
evaluated convolution and the second and third com-
ponents (green and blue components) store the coor-
dinates of the tail point of the trajectory. The fourth
component is always used as 1.0. Note that since the
weight field is 1.0 for all points in the field, the con-
volution becomes the average of all values of M along
the partially evaluated trajectory. As a result, the up-
date throughout the iterations of the image is calcu-

Figure 8: Mapping image to perform LIC.

lated as follows

Ok-1(p;(0)).R+Q;_1(pj(end)).R
2

Or—1(pj(end)).G (17)
Oi—1(pj(end)).B

where .R, .G and .B extracts the values stored in the
red, green and blue components of the image respec-
tively.

With the same convention of Q, image S : [1,hg] x
[1,wg] = (R,G,B,A), is used to store the data but for
the downstream direction for each point g in the field,

Ok(qj) =

Sk—1(pj(0))-R+Si_1(pj(—end)).R

Sic1(pj(—end)).G (1)
Sk-1(pj(—end)).B

As a consequence, the final visualization of the
flow is calculated as follows

0(q;)-R+S(q))-R
2

4.3 Data Storage in WebGL

Sk(gj) =

1(gj) = (19)

WebGL permits to set up vertex and index buffers, to
change rendering engine state such as active texture
units or transform matrices, and to invoke drawing
primitives. It also allows to perform render-to-texture
operations using FrameBuffer Objects (FBOs), which
allow other render engines to access previously calcu-
lated data, all inside the GPU. Recently, while the re-
search of this article was ongoing, the Khronos group
released the OES_texture_float extension revision 3,
which allows floating points texture management as
color attachments in FBOs. This enables to store and

reuse data inside the GPU’s hardware, with floating
point precision values, instead of 8-bit integers.

In order to perform render-to-texture operations in
WebGL it is needed to define the necessary FBOs.
Each FBO has an associated texture (image) to which
the rendering code is performed. Additionally, for the
matter of this implementation, it is important to con-
sider that when the rendering procedure of an FBO is
being performed, it does not allow to access the same
memory space (in GPU) to which the rendering oper-
ation will write the information.

As a result, the flow visualization, regarding the
hierarchical integration, requires the double of FBOs
than the number of rendered images, this is, one FBO
is used to calculate and update the image and the other
FBO is used to copy the resulting image in another
place of memory in order to allow data to be reused
for the next iteration. Hence 4 FBOs are required to
perform LIC flow visualization for this case study.

4.4 Flow Visualization in WebGL

Final results are shown in figure 9. The final LIC
image I is used to determine the brightness of each
point in the field. Color-mapping is determined by
the speed at each point in a warm-cold color-scale.

Final results show that 5 iterations (see figure
9(f)) produce excessive blending that results in a
blurred visualization and hence makes harder to de-
tect streams (figure 10(c)). On the other hand, 3 itera-
tions (see figure 9(d)) produce short paths, and there-
fore the identification of the flow’s behavior is diffi-
cult (figure 10(a)). Optimal results are obtained af-
ter 4 hierarchical iterations (see figure 9(e)), this is,
16 total integration steps for both the upstream and
downstream directions, making a detailed visualiza-
tion with long and distinguishable trajectories (figure
10(b)).

S CONCLUSIONS AND FUTURE
WORK

This article presents a hardware accelerated LIC flow
visualization in WebGL. The procedure is suitable to
be performed on multi-platform and in low-capacity
devices such as smart phones and tablet computers
since no other API or plug-in is required to perform
the procedure, and the number of iterations that is
usually required is reduced. The procedure is not
only suitable for WebGL implementation but for any
render-to-texture capable parallel graphics implemen-
tation.

(d) (e ®
Figure 9: Visualization of the Pacific and Atlantic oceans currents using LIC with hierarchical line integration in WebGL.
The initial iteration (a) shows only two integration steps, taking into account both integration directions (upstream and down-
stream). One iteration (b) achieves four integration steps. Two iterations (c) perform eight integration steps, which shows
extremely short paths and streams are not detected. Three iterations (d) perform 16 integration steps and streams are barely
detected. Four iterations (e) achieve 32 integration steps and shows distinguishable streams. Five iterations (f) performs 64
integration steps and show excessive blending.

(a) (b) ©
Figure 10: Comparison between different hierarchical iteration results. With 3 iterations (a) the visualization shows short
paths and visual detection of streams is difficult, 4 iterations (b) show long and distinguishable paths and 5 iterations(c) shows
excessive blending and detection of streams is difficult.

Results show that 32 effective integration steps
(16 in both the upstream and the downstream direc-
tions) are required in order to obtain a desirable vi-
sualization. Our methodology decreases to only 4
real iterations the execution of the procedure, hence,
significantly reducing the computational effort of the
procedure.

It is proposed the development of a human user in-
teraction application for the visualization of oceanic
currents as a subsequent activity to this work. Apart
from this, other topics might be suitable as future
work such as the implementation of this methodology
to visualize 3D vector fields and to other integration-
based visual applications.

ACKNOWLEDGEMENTS

This work was partially supported by the Basque
Government’s ETORTEK Project (ITSASEUSII) re-
search program and CAD/CAM/CAE Laboratory at
EAFIT University and the Colombian Council for
Science and Technology COLCIENCIAS. GODAS
data (ocean velocity information) was provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their Web site at http://www.esrl.noaa.gov/psd/,
and ohter information such as earth’s bathymet-
ric, topologic and satellite images, was provided by
the NASA’s Earth Observatory from their web site
http://earthobservatory.nasa.gov/.

REFERENCES

Cabral, B. and Leedom, L. (1993). Imaging vector fields
using line integral convolution. In Proceedings of the
20th annual conference on Computer graphics and in-
teractive techniques, pages 263-270. ACM.

Callieri, M., Andrei, R., Di Benedetto, M., Zoppe, M.,
and Scopigno, R. (2010). Visualization methods for
molecular studies on the web platform. In Proceed-
ings of the 15th International Conference on Web 3D
Technology, pages 117-126. ACM.

Congote, J., Segura, A., Kabongo, L., Moreno, A., Posada,
J., and Ruiz, O. (2011). Interactive visualization of
volumetric data with webgl in real-time. In Proceed-
ings of the 16th International Conference on 3D Web
Technology, pages 137-146. ACM.

Forssell, L. and Cohen, S. (1995). Using line integral
convolution for flow visualization: Curvilinear grids,
variable-speed animation, and unsteady flows. Visu-
alization and Computer Graphics, IEEE Transactions
on, 1(2):133-141.

Hankin, S., Blower, J., Carval, T., Casey, K., Donlon, C.,
Lauret, O., Loubrieu, T., Srinivasan, A., Trinanes,
J., Godoy, O., et al. (2010). Netcdf-cf-opendap:

Standards for ocean data interoperability and object
lessons for community data standards processes. In
Oceanobs 2009, Venice Convention Centre, 21-25
septembre 2009, Venise.

Hlawatsch, M., Sadlo, F., and Weiskopf, D. (2011). Hier-
archical line integration. Visualization and Computer
Graphics, IEEE Transactions on, (99):1-1.

Kenwright, D. and Mallinson, G. (1992). A 3-d stream-
line tracking algorithm using dual stream functions.
In Proceedings of the 3rd conference on Visualiza-
tion’92, pages 62—-68. IEEE Computer Society Press.

Klassen, R. and Harrington, S. (1991). Shadowed hedge-
hogs: A technique for visualizing 2d slices of 3d vec-
tor fields. In Proceedings of the 2nd conference on
Visualization’91, pages 148—-153. IEEE Computer So-
ciety Press.

Lane, D. (1994). Ufat: a particle tracer for time-dependent
flow fields. In Proceedings of the conference on Visu-
alization’94, pages 257-264. IEEE Computer Society
Press.

Laramee, R., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.,
and Weiskopf, D. (2004). The state of the art in flow
visualization: Dense and texture-based techniques. In
Computer Graphics Forum, volume 23, pages 203—
221. Wiley Online Library.

Liu, Z. and Moorhead, R. (2005). Accelerated unsteady
flow line integral convolution. IEEE Transactions
on Visualization and Computer Graphics, pages 113—
125.

Liu, Z. and Moorhead II, R. (2004). Visualizing time-
varying three-dimensional flow fields using acceler-
ated uflic. In The 11th International Symposium on
Flow Visualization, pages 9—12. Citeseer.

McLoughlin, T., Laramee, R., Peikert, R., Post, F., and
Chen, M. (2010). Over two decades of integration-
based, geometric flow visualization. In Computer
Graphics Forum, volume 29, pages 1807-1829. Wi-
ley Online Library.

Van Wijk, J. (2002). Image based flow visualization. In
ACM Transactions on Graphics (TOG), volume 21,
pages 745-754. ACM.

Van Wijk, J. (2003). Image based flow visualization for
curved surfaces. In Proceedings of the 14th IEEE Vi-
sualization 2003 (VIS’03), page 17. IEEE Computer
Society.

