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Abstract

In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the
use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by
the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately re�ect limb
posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical
marker-based MOCAP in the rehabilitation exoskeleton. en, the GH joint angles are estimated by combining the estimated marker poses and
exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and
imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. is paper presents the formulation,
simulation, and accuracy quanti�cation of the proposed method with simulated human movements. In addition, a sensitivity analysis of the
method accuracy to marker position estimation errors, due to system calibration errors and marker dris, has been carried out. e results show
that, even with signi�cant errors in the marker position estimation, method accuracy is adequate for RAR.

1. Introduction
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1. Introduction

e application of robotics and Virtual Reality (VR) to motor neurorehabilitation (Figure 1) has been bene�cial for patients, as they receive
intensive, repetitive, task-speci�c, and interactive treatment [1–4].

Figure 1: Robotic and VR-based rehabilitation.

e assessment of (a) patient movement compliance with the prescribed exercises and (b) patient long-term improvement is critical when planning
and evaluating the efficacy of RAR therapies. In order to obtain the patient motion data to conduct the said assessments, one has to estimate patient
posture (i.e., the joint angles of the limbs). Patient posture estimation methods need to be practical and easy to set up for the physician, so that the
said assessments can indeed be an integral part of the therapy.

Current methods for estimating patient posture are either cumbersome or not accurate enough in exoskeleton-based therapies. In order to
overcome such limitations, we propose a method where low-cost RGB-D cameras (which render color and depth images) are directly installed in
the exoskeleton and colored planar markers are attached to the patient’s limb to estimate the angles of the GH joint, thereby overcoming the
individual limitations of each of these systems.

2. Literature Review

Optical, electromagnetic, and inertial MOCAPs have been used in many rehabilitation scenarios for accurate posture estimation [5]. However, the
use of the said MOCAPs in exoskeleton-based rehabilitation is limited by the factors discussed below:

In exoskeleton-based rehabilitation, the prevailing approach to estimate human limb joint angles (e.g., [10–13]) is to approximate them with the
angles of the exoskeleton joints. However, misalignment between the axes of the exoskeleton and human joints may produce large estimation errors
[14, 15]. Accurate estimation of GH joint angles is hard to achieve using this approach, since it requires an exoskeleton with a complex kinematic
structure that considers the concurrent motion of the sternoclavicular and acromioclavicular joints.

Recognizing the differences in the kinematic structures of the limb and exoskeleton, [16] presents a computational method which considers the
limb and exoskeleton parallel kinematic chains related by the cuff constraints joining them together. en, the IK problem of the parallel kinematic
chain can be solved to �nd the limb joint angles. A limitation of this method is that its performance has been demonstrated solely for analytic (1-
DOF) movements of the elbow and wrist joints. e estimation accuracy of the GH joint angles has yet to be determined.

Reference [17] presents a computational method based on the estimation of the arm swivel angle (which parametrizes arm posture) for

exoskeleton-based therapy. e arm IK is solved with a redundancy resolution criterion that chooses a swivel angle that allows the subject to retract

(1)

(2)

(3)

Optical marker-based systems (e.g., Optotrak, CODA, Vicon) are considered the most accurate for human motion capture [5]. Reference
[6] reports Optotrak errors of 0.1–0.15 mm. However, in the speci�c case of exoskeleton-based therapy, these systems require redundant
sensors and markers to cope with occlusions caused by the exoskeletal body. erefore, their speci�c usage for therapy is limited. Besides,
the cost of these systems is high (50 K–300 K USD [7]) compared to nonoptical MOCAPs.
Electromagnetic systems do not suffer from optical occlusions. However, they are easily perturbed by surrounding metallic objects (e.g.,
exoskeletal body) and electric/magnetic �elds [5]. An additional drawback of these systems is their limited detection volume when
compared to optical systems.
Inertial and Magnetic Measurement Systems are robust, handy, and economical for full-body human motion detection (upper limb tracking
in [8, 9]). With the use of advanced �ltering techniques, inertial sensor dri errors are reduced and a dynamic accuracy of 3 deg. RMS [5] is
achieved. However, these systems require patients to perform calibration motions/postures, which may not be suitable for those with
neuromotor impairments.

http://www.hindawi.com/journals/abb/2016/5058171/fig1/
http://www.hindawi.com/journals/abb/2016/5058171/fig1/
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exoskeleton-based therapy. e arm IK is solved with a redundancy resolution criterion that chooses a swivel angle that allows the subject to retract
the palm to the head efficiently. e approach in [17] extends their previous work in [18, 19] by considering the in�uence of the wrist orientation
on the swivel angle estimation. Although the error of the swivel angle estimation (mean error  4 deg.) has been reported for compound
movements [17], individual errors in the wrist, elbow, and GH joint angles are not indicated.

Reference [20] extends the method in [17] to estimate the wrist angles and assesses its performance for compound movements (mean RMSE  10 
deg. in the swivel angle estimation). Reference [20] reports the individual errors of the arm joint angles solely for the movement task where the
swivel angle was best estimated (mean RMSE  5 deg. in the swivel angle estimation). No errors of the arm joint angles were discussed for the other
cases. A limitation of the work in [20] is that the MOCAP used to obtain the reference angles to assess their method performance is a custom-made
inertial system with no reported measurement accuracy.

2.1. Conclusions of the Literature Review

We remind the reader that the general context of this paper is the estimation of the GH joint angles.

2.2. Contributions of is Paper

In response to the limitations discussed in the estimation of patient joint angles in exoskeleton-based therapy (Sections 2 and 2.1), this paper
introduces a hybrid approach to estimate, in real-time, the GH joint angles. is hybrid system is composed of a low-cost marker-based vision
system and the rehabilitation robot, overcoming the individual limitations of its constitutive subsystems:

is paper presents the implementation and assessment of our method using simulated human motion data. In addition, a sensitivity analysis of
our method accuracy to marker position estimation errors is carried out.

We have considered the following scenarios of application for the proposed method in the RAR domain:

3. Methods

3.1. Problem De�nition

is section presents the problem of estimating the patient limb GH joint angles during the GH joint RAR using the proposed hybrid motion
capture system (a detailed version of the problem de�nition is presented in the Appendix). is problem can be stated as follows.

Given. Consider the following:

(1)

(2)

(3)

As per our literature review, no MOCAPs have been developed for the speci�c scenario of exoskeleton-based rehabilitation. Even if current
MOCAPs and the exoskeleton could be set up for simultaneous use (e.g., [15, 16]), the setup protocol and operation are intricate and
con�icting with the usual time and resources available for patient treatment.
Exoskeleton-based posture estimations present limitations in their accuracy due to kinematic mismatch of the limb and exoskeleton [15,
16].
e accuracy of the GH joint angle estimations provided by computational methods in [16, 17] is unknown. Reference [20] extends the
work in [17] by estimating the wrist angles. Reference [20] solely reports the estimation accuracy of the GH angles for the best-case
scenario and the precision of its ground-truth is not indicated.

(a)
(b)

Occlusions are minimized, which are a major limitation of optical systems.
Accuracy of joint angle estimation is improved, which is a major limitation of exoskeleton-based systems.

(A)
(B)

Precise estimation of GH joint angles during rehabilitation or evaluation sessions of GH joint analytic movements.
Acquisition of GH joint movement data enabling validation and improvement of other posture estimation methods without using
expensive redundant optical MOCAPs.

(1) Patient: (a) the kinematic model (e.g., the Denavit-Hartenberg parameters [21]) of the human upper limb ( ) (Figure 2(a)).

http://www.hindawi.com/journals/abb/2016/5058171/fig2/
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Figure 2: Components of the GH joint angles estimation system: (a) human kinematic model, (b) exoskeleton kinematic
model, (c) marker-based optical motion capture system, and (d) hybrid GH joint angles estimation system.

Goal. e goal is to estimate the patient GH joint angles ( ) with minimum error during the GH joint rehabilitation exercises.

3.2. Kinematic Models

is section discusses the main features of the kinematic models of the human limb and exoskeleton used for the posture estimation method.

3.2.1. Kinematic Model of the Human Upper Body

e human kinematic model is denoted by , where  and  are the sets of links and joints, respectively. We use the human upper
body model presented in [16] (Figure 2(a)), which includes joints of the spine, scapuloclavicular system, and arm. e upper limb is modeled with
9 DOFs: 2 DOFs of the scapuloclavicular system, 3 DOFs of the GH joint (spherical joint), 2 DOFs of the elbow, and 2 DOFs of the wrist (see
further details in the Appendix). is model presents the following advantages:

3.2.2. Kinematic Model of the Exoskeleton

e exoskeleton kinematic model is denoted by , where  and  are the sets of links and joints, respectively. In this research, the
rehabilitation exoskeleton used is the Armeo Spring (Figure 2(b)), which is a passive system that supports the weight of the patient’s arm [23] with
springs. e Armeo kinematic structure includes rotational joints (equipped with encoders [24, 25]) and prismatic joints (enabling exoskeleton
adjustment to the size of each patient). We use the Armeo Spring kinematic model presented in [16], which includes both types of joints (see
further details in the Appendix).

3.3. GH Joint Angles Estimation Method

e aim of the method is to estimate the GH joint angles with respect to (w.r.t.) a coordinate system (CS) attached to the scapuloclavicular system.
Figure 2(d) shows the proposed system for the GH joint angle estimation. Our approach is based on the estimation of the upper arm orientation
w.r.t. the acromion (Figure 3(a)). According to such requirements, the rationale to install the markers of the optical MOCAP  is as follows:

(1)
(2)

(3)

Patient: (a) the kinematic model (e.g., the Denavit-Hartenberg parameters [21]) of the human upper limb ( ) (Figure 2(a)).
Exoskeleton: (a) the kinematic model of the exoskeleton ( ) and (b) the exoskeleton joint angles at any instant of the therapy ( ) (Figure
2(b)).
Marker-based optical motion capture system ( ): (a) color and depth information captured by the RGB-D cameras installed in the
exoskeleton links and (b) geometry and color of the markers attached to the patient upper limb (Figure 2(c)).

(a)
(b)
(c)

It can be easily implemented in robotic simulators and similar tools.
It is suitable for simulating human-robot interaction in real-time [16].
e spherical model of the GH joint avoids limitations of other representations of such joint, like the Gimbal lock that occurs when using
the three concurrent and orthogonal 1-DOF revolute joints’ model [22].

(a)

(b)

Marker  is rigidly installed in the acromion, so the estimated upper arm orientation can be expressed w.r.t. the  CS (and therefore
w.r.t. the scapuloclavicular system).
Marker  is rigidly installed in the upper arm, so that all the rotations of the upper arm are captured by . e region that was chosen to

attach  to the upper arm by using a custom-made �xation (Figure 2(d)) is the distal part of the humerus (near the elbow). Elbow

http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig3/#a
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
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Figure 3: (a) Schematic diagram of the hybrid GH joint angles estimation system and (b) high-level operation of the system.

Reference [26] reports a �ve-marker installation procedure. is reference explicitly mentions �ve markers as an acceptable number for clinical
upper limb tracking. In this paper, we report the usage of two markers for upper arm tracking. It is not possible to compare the performance of the
marker placement protocol proposed here with the one in [26] because the work in [26] addresses (a) non-RAR scenarios, (b) tracking of the entire
upper limb, and (c) protocol sensitivity w.r.t. its application on the dominant/nondominant arm and w.r.t. the age of test subjects. However, the
work in [26] helps to establish the number of markers compatible with the clinical application of upper limb tracking.

e cameras of the optical motion capture system  are rigidly attached (using custom-made supports) to exoskeleton links so that camera 
detects marker  and camera  detects marker  during the GH joint training. Camera  is mounted on link  and camera  is mounted on
link  (Figure 3(a)).

e cameras used in our system are of low cost. Commercial cameras that present similar speci�cations to the ones simulated here (Table 1) are
Intel® SR300 (99 USD) [27, 28], DepthSense® 525 (164 USD) [29, 30], and CamBoard  (690 USD) [28, 31].

Table 1: Vision sensor features.

Figure 3(b) shows an overview of the operation of the estimation method. In order to estimate the upper arm pose, the poses of the markers need
to be expressed w.r.t. a common CS. A suitable CS to conduct such estimation is the exoskeleton base.

A summary of the steps to estimate the GH joint angles is as follows:

e details of the mentioned steps are presented in the following sections.

3.3.1. Estimation of the Pose of the Markers w.r.t. the Cameras

e purpose of this step is to estimate the position and orientation of the markers (Figure 4) w.r.t. the CSs of the cameras using the color and depth
images provided by each camera :

attach  to the upper arm by using a custom-made �xation (Figure 2(d)) is the distal part of the humerus (near the elbow). Elbow
rotations do not affect the orientation of .

(1)
(2)
(3)
(4)
(5)

Estimate the pose of the markers w.r.t. the cameras.
Estimate the pose of the cameras w.r.t. the exoskeleton.
Estimate the pose of the markers w.r.t. the exoskeleton.
Estimate the upper arm pose w.r.t. the exoskeleton.
Refer the GH joint angles w.r.t. the acromion (marker  CS).

(A)

(B)

e RGB image is  (  pixels). e pixel coordinates  take values  and .  ( ) contains
the RGB color associated with each pixel .
e depth image associated with the scene in  is  (  pixels);  and . e pixel coordinates  in  take values 

 and . e CS of images  and  is coincident.  ( ) contains the ( ) coordinates of the

http://www.hindawi.com/journals/abb/2016/5058171/fig3/#a
http://www.hindawi.com/journals/abb/2016/5058171/tab1/
http://www.hindawi.com/journals/abb/2016/5058171/fig3/#b
http://www.hindawi.com/journals/abb/2016/5058171/fig4/
http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/fig3/
http://www.hindawi.com/journals/abb/2016/5058171/tab1/
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Figure 4: Schematic diagram of the iterative estimation of the pose of the markers.

e pose estimation of the markers w.r.t. the cameras is based on the reconstruction of the 3D position of the colored disks on the markers. e
following steps are taken to estimate the marker pose:

 and . e CS of images  and  is coincident.  ( ) contains the ( ) coordinates of the
object in each pixel  w.r.t. the  CS.

(1)

(2)

Estimation of disk coordinates in color image (Figure 5): the purpose of this step is to �nd the approximate  coordinates of the centers
of the marker disks in image . e following steps are carried out:

(a)

(b)

(c)

Color segmentation in image : image regions containing the colors of the marker disks are preserved and the other regions are
colored in white. e resulting image is de�ned as .
Blob extraction on image : blob extraction consists of �nding the connected regions in the image  sharing the same color and
labeling them according to their color.
Disk center coordinates estimation: for each  ( ) blob extracted from , the position  of the center of a
bounding box for the blob is obtained. is point approximates the actual center of disk  (Figure 5). e resulting set of the

approximate coordinates of disk centers in  is . e  center coordinates are referenced w.r.t. the
internal image CS. Blobs are extracted with standard connected-component labeling algorithms.

Estimation of disk coordinates in the camera  CS: this step converts disk coordinates in the internal image CS into the  ones w.r.t. the 
sensor CS, as follows:

(a)

(b)

 

Convert the positions  of the disk centers in set  into the image  CS. e CSs of images  and  match. Hence,

Compute the indices  of the ( ) coordinates of point  in array  as follows:

e point  contains the ( ) coordinates of point  w.r.t. the  CS. e coordinates of point  are obtained as follows:

http://www.hindawi.com/journals/abb/2016/5058171/fig5/
http://www.hindawi.com/journals/abb/2016/5058171/fig5/
http://www.hindawi.com/journals/abb/2016/5058171/fig4/
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Figure 5: Estimation of disk coordinates in color image. (a) Simulated RBG image, (b) result of the color segmentation
(zoomed image), and (c) result of the blob extraction (zoomed image).

3.3.2. Estimation of the Pose of the Cameras w.r.t. the Exoskeleton

e goal of this step is to �nd the transformation , which expresses the pose of the camera  w.r.t. the base of the exoskeleton (Figure 6).

Figure 6: Schematic diagram of the iterative estimation of the pose of the cameras.

e rigid transformation matrices  and , which describe the pose of the cameras  w.r.t. the CS of the link where they are installed,
are estimated during system calibration (the calibration matrix can be obtained by camera detection of a 2D/3D calibration object mounted on a
known location of the exoskeleton). e poses  and  of the exoskeleton links  and  w.r.t. to the exoskeleton base CS are computed using

the Forward Kinematics of exoskeleton . en,  and  are estimated as follows:

(3)
 e approximate marker disk centers detected by camera  form the set .

Computation of the marker  CS in the  camera CS: an  coordinate frame  is attached to each marker:
(a)

(b)

 

Make

Use the four disk centers in the marker (Figure 5) as follows:

e submatrix  is normalized to guarantee its  nature. e frame  describes the estimated pose of marker  w.r.t.
the CS of the camera .

http://www.hindawi.com/journals/abb/2016/5058171/fig6/
http://www.hindawi.com/journals/abb/2016/5058171/fig5/
http://www.hindawi.com/journals/abb/2016/5058171/fig5/
http://www.hindawi.com/journals/abb/2016/5058171/fig6/
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the Forward Kinematics of exoskeleton . en,  and  are estimated as follows:

3.3.3. Estimation of the Pose of the Markers w.r.t. the Exoskeleton

e objective of this step is to estimate the transformation ( ) that describes the pose of marker  w.r.t. the exoskeleton base CS (Figure 7).
Transformations  are estimated as follows:

Figure 7: Schematic diagram of the iterative estimation of the pose of the markers w.r.t. the exoskeleton CS.

3.3.4. Estimation of the Upper Arm Pose w.r.t. the Exoskeleton

e purpose of this step is to estimate the upper arm pose ( ) w.r.t. the exoskeleton base CS using the marker poses  (Figure 8). e upper
arm direction vector is computed from the estimated position of the end-points of the upper arm (GH and elbow joint centers) as follows (CSs in
Figure 9):

(1)

(2)

(3)

(4)

Estimate the position of the GH joint center: the rigid transformation matrix , which expresses the pose of the GH joint CS w.r.t. the 
CS, is estimated during the calibration process of the system. Hence, the GH joint center is estimated as follows:

(a)
(b)

Estimate , which is the pose of the GH joint CS w.r.t. the exoskeleton  base CS (see (8)).
Extract  from . e point  is the position of the center of the GH joint seen from the  CS:

Estimate the position of the elbow joint center: the rigid transformation matrix  (elbow joint CS w.r.t. the  CS) is estimated during
the calibration process of the system. Hence, the elbow joint center is computed as follows:

(a)
(b)

Estimate , which is the pose of the elbow joint CS w.r.t. the exoskeleton  base CS (see (9)).
Extract  from . e point  is the position of the center of the elbow joint seen from the  CS:

Estimate the upper arm position:
(a)
(b)

Estimate the arm direction vector as .
Estimate the origin of the upper arm CS as .

Estimate the upper arm orientation: the estimated orientation of the upper arm is computed using Euler angle  decomposition w.r.t. the
base CS of exoskeleton :

(a) Estimate the rotation of the arm around the -axis of the  CS using the projection of  on the  plane of the �xed  CS.

http://www.hindawi.com/journals/abb/2016/5058171/fig7/
http://www.hindawi.com/journals/abb/2016/5058171/fig8/
http://www.hindawi.com/journals/abb/2016/5058171/fig9/
http://www.hindawi.com/journals/abb/2016/5058171/fig7/
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Figure 8: Schematic diagram of the iterative estimation of the upper arm pose.

Figure 9: Coordinate systems for the upper arm pose estimation.

3.3.5. Refer the Angles of the GH Joint w.r.t. the Acromion

Since  is rigidly attached to the acromion, the upper arm orientation can be expressed w.r.t. the acromion by using the inverse of :

3.4. Implementation and Simulation

e arm posture estimation method was implemented by using the V-REP robotics simulator [32]. In the simulator, the scene in Figure 2(d) is
created, which includes the models of (a) a human patient, (b) an Armeo Spring, (c) the RGB-D vision sensors with the couplings to attach them to
the exoskeleton, and (d) the planar markers with the couplings to attach them to the human arm. e con�guration of the simulated vision sensors
is summarized in Table 1.

For the estimation of the coordinates of disk centers  in the image , color segmentation and blob detection algorithms available in the
simulator were used. Additional code was written to sort blob centers by color. All additional code was written in LUA (lightweight embeddable
scripting language) scripts.

3.4.1. Generation of the Ground-Truth Poses of the Patient Upper Limb during RAR

e accuracy of the proposed method is determined by comparing its estimations of the upper arm poses with the ones of the simulated human
patient (ground-truth values of ). To generate movements of the simulated patient that resemble the ones of therapy, we performed the next
steps:

(5)

(a)
(b)
(c)

Estimate the rotation of the arm around the -axis of the  CS using the projection of  on the  plane of the �xed  CS.
Compute the rotation of the arm around the mobile -axis of  CS from the inner product of  with the mobile -axis of  CS.
Estimate the rotation of the upper arm around its longitudinal axis  as the rotation of the marker  around vector . is
angle is the one between (i) the mobile -axis of  CS and (ii) the projection of -axis of marker  CS onto the  plane of  CS.

Express the pose of the upper arm w.r.t. the  base CS as the  rigid transformation .

(1)

(2)

Armeo movement generation: we recorded 4 time sequence datasets of the actual Armeo joint measurements (sampled at 66.6 Hz) while
performing the following shoulder movements (Figure 10): (a) shoulder horizontal abduction-adduction (SAbAd), (b) shoulder �exion-
extension (SFE), (c) shoulder internal rotation (SIR), and (d) a combination of all the mentioned movements (COMB). ese movement
history datasets are used to guide a simulation of the Armeo model.
Patient movement generation: the movements of the patient upper limb that correspond to the recorded movements of the Armeo are
computer-generated with the method in [16]. e said method provides an estimation of the patient posture given the joint angles of the
exoskeleton by using an inverse kinematics approach.

http://www.hindawi.com/journals/abb/2016/5058171/fig2/
http://www.hindawi.com/journals/abb/2016/5058171/tab1/
http://www.hindawi.com/journals/abb/2016/5058171/fig10/
http://www.hindawi.com/journals/abb/2016/5058171/fig8/
http://www.hindawi.com/journals/abb/2016/5058171/fig9/
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Figure 10: GH joint movements: (a) shoulder �exion-extension (SFE), (b) shoulder horizontal abduction-adduction (SAbAd),
and (c) shoulder internal rotation (SIR).

In this way, four sets (one per movement dataset) of known poses of the upper arm are obtained by simulating patient movement and compared
here against those estimated with our method. Our method accuracy is assessed without compensating any time offsets between the reference and
estimated angles. In this way, real-time accuracy of the method is assessed. Table 2 presents the approximate amplitudes of the  Euler angle
decomposition of the GH joint movements of the simulated patient w.r.t. its local CS.

Table 2: Movement dataset features.

3.4.2. Measurement of the Estimation Performance

3.5. Sensitivity Analysis

A sensitivity analysis is carried out to study the in�uence of relevant parameters on the method accuracy. Formally, the sensitivity analysis
determines the effect of the perturbation of the parameter  on the objective function . e relative sensitivity of  w.r.t. , , is given by
(11) [33]. e value of  is the ratio (dimensionless) between the percentual changes in  and :

e upper arm pose accuracy (and, therefore, that of the GH joint angles) relies on the precise estimation of the position of the centers of the elbow
and GH joints (  and ) (Section 3.3.4), which ultimately depend on the following transformations involving the markers:

(1)

(2)

 

Error in the estimation of the markers position: the error in the position estimation of markers  is computed as the RMS of expression 
, where .

Error in the estimation of the arm pose: the error in the arm position estimation for a GH joint movement dataset ( ) is computed as the
RMS of  for all samples in the movement dataset.
To quantify the error in the arm orientation estimation ( ), the next steps are carried out:

(a)

(b)
(c)

Compute the matrix of rotation error , where  and  are the rotation submatrices of
transformation matrices  and , respectively.
Express  in exponential map notation [22] as .
Compute  as the RMS of  for all samples in the movement dataset.

(a)
(b)

 and  (markers w.r.t. exoskeleton).
 and  (GH and elbow joints w.r.t. markers).

http://www.hindawi.com/journals/abb/2016/5058171/tab2/
http://www.hindawi.com/journals/abb/2016/5058171/fig10/
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e conducted sensitivity analysis focuses on errors in  and , given that errors in the estimation of  and  (Section 4.2) are small.
Possible causes of errors in  and  are as follows:

In the sensitivity analysis, translations errors in matrices  and  are induced by disturbing the location of the markers  ( ) w.r.t.
the CSs of the GH and elbow joints. Since orientation information in  and  is not used to estimate the upper arm pose, it is excluded from
the sensitivity analysis.

For the sensitivity analysis (see (11)), the vector-valued function  quanti�es the estimation error of the arm position and orientation (see (12))
and the parameter set  represents the marker translation errors. e parameter set  is de�ned as , where each  is a
scalar representing the magnitude of a translation of a speci�c marker along a prescribed direction. Table 3 describes the meaning of each
parameter in set :

Table 3: Parameters of function  (error in the position and orientation estimation of the upper arm (see (12))) to study in
the sensitivity analysis.

e sensitivity analysis procedure (Figure 11) entails the following steps:

(1)
(2)

Inaccurate computation of  and  during the system calibration.
Relative displacement of the markers w.r.t. the GH and elbow joints due to skin movement.

(1)
(2)

(3)

(4)

(5)

(6)

Load the movement dataset of the GH joint to test (SFE, SAbAd, SIR, and COMB).
Select the parameter  to perturb (selection of a marker and a direction of translation). Marker  translates along axes of the GH joint
CS. Marker  translates along axes of the elbow joint CS (Figure 12).
Apply the translation indicated by  to the corresponding marker. e marker perturbation  is applied for the complete movement
dataset.
Compute the estimation errors of the upper arm position and orientation  as the simulated patient moves
according to the chosen GH joint movement dataset. e current iteration of the process is indicated by index .
Compute the position and orientation components of  as per (11). e derivative of  w.r.t.  is given by (13). e required
derivatives are computed numerically [34, 35]:

Increment  by  and go to step . Repeat the process until the desired number of iterations  of the procedure is reached.

http://www.hindawi.com/journals/abb/2016/5058171/tab3/
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Figure 11: Sensitivity analysis steps.

Figure 12: Sensitivity analysis. Coordinate systems of reference for the translations of (a) marker  and (b) marker .

e complete sensitivity analysis was performed for each movement dataset (SFE, SAbAd, SIR, and COMB). e directions in which marker
translations occur (Table 3) are chosen so that the markers do not leave the detection volume of the cameras. Table 4 summarizes the parameters of
the sensitivity analysis. Translation units are in meters (mts).

Table 4: Parameters of the sensitivity analysis.

4. Results and Discussion

is section presents and discusses the results of (a) estimation accuracy of the marker 3D position, (b) estimation accuracy of the upper arm pose,
and (c) sensitivity analysis of the estimation accuracy of the upper arm pose w.r.t. translation errors in  and .

4.1. Results of Marker Position Estimation

Table 5 presents the RMS of the estimation errors of the position of the markers  per movement dataset. e mean RMS errors of the position
estimation of  and  for all movement datasets are 0.00083 and 0.00208 mts, respectively.

Table 5: RMS of errors (and standard deviation in parentheses) in the position estimation of markers  in the datasets of GH
joint movements.

Figure 13 shows the box plots of the estimation errors in the marker positions for all movement datasets. A greater variation in the position
estimation accuracy of marker , in comparison to that of , is observed. We have attributed this to (a) the higher linear and rotational velocities
and likewise (b) the larger translations and rotations that  undergoes compared to .

Figure 13: Box plots of estimation errors in markers position and upper arm position and orientation for all movement
datasets.

4.2. Results of Upper Arm Pose Estimation

http://www.hindawi.com/journals/abb/2016/5058171/tab3/
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4.2. Results of Upper Arm Pose Estimation

e RMS of errors in the upper arm pose estimation are presented in Table 6. By averaging the results of all movement datasets, errors of 0.00110 
mts and 0.88921 deg. in the upper arm position and orientation estimation are obtained. Figure 13 shows the box plots of the estimation errors in
the upper arm position and orientation for all movement datasets.

Table 6: RMS (and standard deviation in parentheses) of errors in the upper arm position and orientation estimation in the
assessed movement datasets.

In motor rehabilitation, angular errors in the range of 3–5 degrees are considered acceptable for mobility evaluation of patients [6, 36, 37]. Figure
13 shows that our arm orientation estimation accuracy is adequate for exoskeleton-assisted rehabilitation.

4.3. Results of the Sensitivity Analysis

e results of the sensitivity analysis per movement dataset of the shoulder are presented in Figures 14, 15, 16, and 17. In each �gure, the following
sub�gures are presented:

Figure 14: Results of the sensitivity analysis with the SAdAd movement dataset ( : -  movement/ -  movement/ -
movement/ -  movement/ -  movement/ -  movement).

Figure 15: Results of the sensitivity analysis with the SFE movement dataset ( : -  movement/ -  movement/ -
movement/ -  movement/ -  movement/ -  movement).

(a)

(b)

(c)

(d)

Error in upper arm position estimation ( ) versus total marker translation ( ): this �gure shows the evolution of the absolute error in
the upper arm position estimation as the error in the translation components of matrices  and  increases.
Error in upper arm orientation estimation ( ) versus total marker translation ( ): this �gure shows the evolution of the absolute error in
the upper arm orientation estimation as the error in the translation components of matrices  and  increases.
Position component of  versus total marker translation ( ): this �gure shows the evolution of the relative sensitivity metric
corresponding to the error in the upper arm position estimation as the error in the translation components of matrices  and 
increases.
Orientation components of  versus total marker translation ( ): this �gure shows the evolution of the relative sensitivity metric
corresponding to the error in the upper arm orientation estimation as the error in the translation components of matrices  and 
increases.
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Figure 16: Results of the sensitivity analysis with the SIR movement dataset ( : -  movement/ -  movement/ -
movement/ -  movement/ -  movement/ -  movement).

Figure 17: Results of the sensitivity analysis with the COMB movement dataset ( : -  movement/ -  movement/ -
movement/ -  movement/ -  movement/ -  movement).

4.3.1. Sensitivity in Arm Position Estimation

Regarding the arm position estimation, one can observe that translations of marker  produce larger absolute errors than translations of marker 
. is difference is due to the fact that the translations of  produce a larger change in  when compared to the one produced by

translations of . Note that since  is computed by using , any modi�cation in  directly affects the accuracy of .

Observing the behavior of the position component of , one can conclude that all translations of the markers  and  contribute similarly to
the error in the arm position estimation. e curves obtained for the position component of  resemble a logarithmic function with an asymptote
along the value 1 of the ordinate axis. A value of 1 in the magnitude of the position component of  means that a percentage change in the
magnitude of the marker translation produced the same percentage change (also matching the sign) in the magnitude of the error in the arm
position estimation.

4.3.2. Sensitivity in Arm Orientation Estimation

In Figures 14, 15, 16, and 17, one can observe that the translations of marker  produce larger absolute errors in the upper arm orientation
estimation when compared to those produced by translations of marker . Notice that the -axis and -axis of the elbow joint CS are always
perpendicular to the upper arm vector ( ) (Figure 12(b)). When the position of  is perturbed along the said axes, the angle between (i) the
actual upper arm vector ( ) and (ii) the estimated upper arm vector ( ) (which is inaccurate due to the perturbation of the marker position)
is maximal.

A side effect of the marker position perturbation is that the marker  suffers modi�cations of scale and changes in the level of perspective
distortion in the images of camera , affecting the accuracy of the system. is situation can be observed in Figures 14(b), 15(b), 16(b), and 17(b),
where translations of  along the -axis of the elbow joint CS should not produce variations in the orientation estimation error. However, on the
contrary, slight variations in the accuracy of the orientation estimation are indeed present in the mentioned �gures.

4.3.3. Robustness of the Upper Arm Pose Estimation Method

In Figures 14(c), 14(d), 15(c), 15(d), 16(c), 16(d), 17(c), and 17(d) one can observe that the position component of  increases faster than the
orientation component of . e behavior of  observed remains across the datasets used. Hence, the orientation estimation of the upper arm is
more robust than the position estimation w.r.t. errors in the translational components of matrices  and .

e results of the sensitivity analysis show that the assumption that transformations  and  are rigid is reasonable. Even with marker dris of
0.02 mts, the GH joint angles can be estimated with an accuracy (RMSE 3.6 deg.) appropriate for the mobility evaluation of patients (in the range of
3–5 deg.).
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0.02 mts, the GH joint angles can be estimated with an accuracy (RMSE 3.6 deg.) appropriate for the mobility evaluation of patients (in the range of
3–5 deg.).

Marker dris must be mitigated by the marker attachments to the human body. Furthermore, marker attachments should be designed to minimize
the effect of errors in  and  on the method accuracy. For example, notice how the attachment of marker  (Figure 12(b)) locates marker 

 with an offset w.r.t. the elbow joint center along the direction which least affects the upper arm orientation estimation.

e results presented suggest that the method we implemented is a feasible alternative for estimating the GH joint angles in a RAR scenario.

4.4. Comparison to Related Works

e literature review provided no references other than [16–20] for upper limb posture estimation (including the GH joint) in exoskeleton-based
rehabilitation using computational methods. Among the mentioned works, only [20] reports the errors (mean RMSE 4.8 deg.) in the GH joint
angles estimation. Reference [20] reports RMSE values of the GH joint angles only for the best-case scenario (swivel angle mean RMSE 5 deg.). For
all the movement tasks tested, the method in [20] presents a mean RMSE of 10 deg. for the swivel angle estimations. Given that global errors of the
swivel angle double those of the best-case scenario, a report of global errors of GH joint angle estimations of the method in [20] is required to reach
a conclusion regarding its suitability for clinical use.

Table 7 summarizes the comparison of our contributions w.r.t. comparable works (i.e., [20]).

Table 7: Contributions of this paper w.r.t. comparable works.

5. Conclusions and Future Work

In the context of RAR, this paper presents the formulation, implementation, and assessment, in silico, of a novel accurate method to estimate the
patient GH joint angles during therapy. Our method does not require redundant markers or cameras and relies on simple geometric relationships
and tools of standard robotics and computer vision libraries. ese characteristics make it economical and readily applicable in RAR.

e accuracy and the robustness of our method are evaluated using computer-generated human movement data corresponding to actual
movement datasets of the Armeo Spring. We present a formal sensitivity analysis of the pose estimation accuracy w.r.t. marker position estimation
errors produced by (a) system calibration errors and (b) marker dris (due to skin artifacts). is analysis indicates that even in the presence of
large marker position errors our method presents an accuracy that is acceptable for patient mobility appraisal.

Future work includes (a) implementation of the method using commercially available RGB-D vision sensors, (b) evaluation of the method
accuracy with actual human movement data, (c) adaptation of the method using solely RGB cameras, and (d) extension of our method to address
other limbs.

Appendix

Problem Statement

Given. Consider the following:

(1) A human patient upper body with a kinematic model  (Figure 2(a)). Consider the following remarks:
(a)

(b)

(c)

e model is a simpli�ed version of the spine, arm, and scapuloclavicular systems. However, since we focus on the study of the
upper limb, we only describe in detail the kinematic model of the said limb.
e set of links is , containing the sternum, clavicle, upper arm, forearm, and hand ( ).
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(2)

(3)

(c)

(d)

e set of joints is , containing the sternoclavicular, GH, elbow, and wrist joints.
(i)
(ii)
(iii)

(iv)

 denotes the number of DOFs of . , 2, or 3  .
 is an -tuple whose th component is the angle of the th DOF of joint th, .

 is the index of the GH joint .  since the GH joint has 3 DOFs.  is the 3-tuple containing the values of
the DOF of the  (GH) joint.

 registers the status, at time , of the DOF of the GH joint.
 is an open kinematic chain, and, therefore,  and  are connected by joint .

An exoskeleton with a kinematic model , which is attached to the patient’s limb  and assists the patient when performing
rehabilitation exercises (Figure 2(b)). Consider the following remarks:

(a)
(b)

(c)
(d)

(e)

e set of links is .
e set of joints is .

(i)
(ii)

 denotes the number of DOFs of .
 is a -tuple whose th component is the angle of the th DOF of joint th, .

 is modeled as an open kinematic chain, and, therefore,  and  are connected by joint .
e -tuple ( ) contains the set of independent coordinates which uniquely de�nes a con�guration of .

(i)
(ii)

Also .
 registers the state, at time , of the DOF of , which is known .

e exoskeleton may be con�gured to impose speci�c motion constraints on the patient by blocking speci�c joints of the  set.
A marker-based optical tracking system  composed of two RGB-D cameras and two planar markers (Figure 2(c)). Consider the following
remarks:

(a)

(b)

A set  of planar markers that are detected by the cameras of  and are installed on the patient upper limb.
(i)

(ii)

(iii)

(iv)

All  present the same 2D square geometry, with a disk in each corner. e position of each disk w.r.t. the marker CS is
known. e set of disks is .

(A)
(B)

(C)

 presents a color  that can be detected by  (Figure 2(c)).
e set of colors of the disks mounted on each  is . Each  is represented with a RGB
color code.

.
 is mounted on the acromion with a 0-DOF coupling (Figure 2(d)). A rigid transformation matrix  de�nes the

relative position and orientation of the GH joint CS w.r.t. the CS of .
 is mounted on the upper arm with a 0-DOF coupling (Figure 2(d)). A rigid transformation matrix  de�nes the

relative position and orientation of the elbow joint CS w.r.t. the CS of . Note that, to compute the GH joint angles, the
calculation of the elbow joint angles is not necessary with this setup.
e rigid transformation matrices  and  are estimated during the calibration of the system.

A set  of low-cost cameras is installed in the exoskeleton.
(i)

(ii)

(iii)

(iv)

 is mounted on exoskeleton link  with a 0-DOF coupling, such that the disks on  are inside its detection volume
during the rehabilitation exercises. e rigid transformation matrix  de�nes the relative position and orientation of the
CS of  w.r.t. the  CS.

 is mounted on the exoskeleton link  with a 0-DOF coupling, such that it can detect the disks on  (see Figure 2(c)).
e rigid transformation matrix  de�nes the relative position and orientation of the CS of  w.r.t. the  CS.

e rigid transformation matrices  and  are estimated during system calibration.
Remarks on each camera  are as follows:
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Goal

Glossary

Acromion: Region of the scapula bone above the GH joint
Clavicle: Bone of the shoulder girdle located at the root of the neck
CS(s): Coordinate system(s)
COMB: Combination of movements of the GH joint (SAbAd, SFE, and SIR)
DOF(s): Degree(s) of freedom
GH: Glenohumeral
Humerus: Upper arm bone
MOCAP(s): Motion capture system(s)
mts: Meters
RAR: Robot-Assisted Rehabilitation
RMS: Root mean square
Scapula: Bone that connects the humerus to the clavicle
SAbAd: Shoulder horizontal abduction-adduction
SFE: Shoulder �exion-extension
SIR: Shoulder internal rotation
VR: Virtual Reality
V-REP: Virtual Robot Experimentation Platform
w.r.t.: With respect to

: Exoskeleton kinematic model
: Human upper body kinematic model

: Set of planar markers mounted on the patient
: Position of the GH joint w.r.t. the  CS

: Position of the elbow joint w.r.t. the  CS
: Set of vision sensors that compose the optical MOCAP

: 3-tuple of joint angles of the GH joint at instant 
: Tuple of joint angles of the exoskeleton kinematic model at instant 

Transformation matrix of marker  w.r.t. the  base CS

(iv)

(v)

Remarks on each camera  are as follows:
(A) 
(B) 

(C)

 renders RGB image  of  pixels. e pixel coordinates  take values  and .
 renders a depth image associated with the scene in , de�ned as , of  pixels;  and . e pixel

coordinates  in  take values  and . e CS of images  and  is coincident.
 presents a truncated square pyramid detection volume parametrized by the minimum and maximum detection

distances and the horizontal and vertical �eld of view of . Table 1 presents the model features of the vision sensors
that have been used for the simulations.

e system of cameras  produces the following array sequence of each :
(A)
(B)

 ( ) contains the RGB color associated with each pixel .
 ( ) contains the ( ) coordinates of the object in each pixel  w.r.t. the  CS.

(1) Find the values of , which approximates  such that  is minimum .
(a)  is the Euclidean norm of vector .

http://www.hindawi.com/journals/abb/2016/5058171/tab1/
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: Transformation matrix of marker  w.r.t. the  base CS
: Transformation matrix of marker  w.r.t. the  CS
: Transformation matrix of the GH joint w.r.t. the  marker
: Transformation matrix of the elbow joint w.r.t. the  marker

Notation :  can be a position, transformation, and so forth, of object  w.r.t. object  CS.
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