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Structured Abstract: 

Purpose: Mesh Parameterization is central to reverse engineering, tool path planning, etc. This 
work synthesizes parameterizations with (a) un-constrained borders, (b) overall minimum angle plus 
(c) area distortion. We present an assessment of the sensitivity of the minimized distortion with 
respect to weighed area and angle distortions. 

Methodology: A mesh parameterization is implemented which does not constrain borders by 
performing: (1) isometry maps for each triangle to the plane Z=0, (2) An affine transform within the 
plane Z=0 to glue the triangles back together and (3) a Levenberg-Marquardt minimization algorithm 
of a nonlinear  𝐹 penalty function that modifies the parameters of the transformations (1) and (2) to 
discourage triangle flips, angle or area distortions. 𝐹 is a convex weighed combination of area 
distortion (weight: 𝛼 with 0 ≤ 𝛼 ≤ 1) and angle distortion (weight: 1 − 𝛼). 

Value:  (1) The devised free boundary nonlinear mesh parameterization method does not require a 
valid initial parameterization and produces locally bijective parameterizations in all of our tests. (2) 
A formal sensitivity analysis shows that the resulting parameterization is more stable (i.e. the UV 
mapping changes very little) when the algorithm tries to preserve angles than when it tries to preserve 
areas. (3)  Our algorithm belongs to the class that parameterizes meshes with holes. (4) We present 
the results of a complexity analysis comparing our algorithm with 12 competing ones. 

Findings: Our parameterization algorithm has linear complexity (𝒪(𝑛), 𝑛 = number of mesh 
vertices). The sensitivity analysis permits a fine-tuning of the weight parameter (𝛼) which achieves 
overall bijective parameterizations in the studied cases. No theoretical guarantee is given in this 
manuscript for the bijectivity. Our algorithm has equal or superior performance compared with the 
ABF, LSCM and ARAP algorithms for the Ball, Cow and Gargoyle datasets. Additional correct 
results of our algorithm alone are presented for the Foot, Fandisk and Sliced-Glove datasets. 

Keywords: Reverse Engineering, Mesh Parameterization, Nonlinear Optimization, Levenberg-
Marquardt, Complexity Analysis, Sensitivity Analysis. 

Article Classification: Research paper. 

Abbreviations: 

LM: Levenberg-Marquardt. 

𝐼𝑘: Identity matrix of degree 𝑘. 

𝒪(𝑓(𝑛)): Computational time complexity of an algorithm being asymptotic to 𝑓(𝑛), with 𝑛 
being the measuring unit. 

Page 1 of 25

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 D

an
ie

l M
ej

ia
 (L

ab
. C

AD
 C

AM
 C

AE
, D

ie
go

 A
. A

co
st

a 
(P

ro
ce

ss
es

 G
ro

up
) O

sc
ar

 R
ui

z-
Sa

lg
ue

ro
. (

La
b.

 C
AD

 C
AM

 C
AE

). 
U

ni
v 

EA
FI

T,
 C

ol
om

bi
a

 
Weighted area / angle distortion minimization for Mesh Parameterization. Daniel Mejia, Diego A. Acosta, Oscar Ruiz-Salguero, J. Eng. Computations,  Emerald Isight, 

http://www.emeraldinsight.com/doi/full/10.1108/EC-02-2016-0072 ,  ISSN: 0264-4401, 2017, v34, n6, doi:   10.1108/EC-02-2016-0072



Engineering Com
putations

𝑀: Triangular mesh (with non-empty border) of a 2-manifold embedded in ℝ3, composed 
by the set of triangles 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚} with vertex set 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (𝑋 ⊂
ℝ3). 

𝜙(𝑥): Parameterization of 𝑀 which is a piecewise affine mapping {𝜙1, 𝜙2, … , 𝜙𝑚} with 
𝜙𝑖 = 𝜓𝑖 ∘ 𝜂𝑖. 𝜙:𝑀 → 𝜙(𝑀) ⊂ ℝ2 is a homeomorphism. 

𝑈: Set of points 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} corresponding to the image of 𝑋 under the mapping 
𝜙 (i.e., 𝑢𝑖 = 𝜙(𝑥𝑖)). 

𝜂𝑖: Rigid transformation which maps the triangle 𝑡𝑖 of 𝑀 to the plane Z=0 (also called XY 
plane here) and its center of mass 𝑥̅𝑖 to the origin. 

𝑅𝑖: Image of the vertices [𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3] of the i-th triangle of 𝑀 under the mapping 𝜂𝑖. 

𝑄𝑖: Right pseudo-inverse of 𝑅𝑖 (i.e., 𝑅𝑖𝑄𝑖 = 𝐼2). 

𝜓𝑖: An affine mapping ℝ2 → ℝ2 which maps 𝑅𝑖 to its final place in the parameterization 
(𝜙). 𝜓𝑖(𝜉) = 𝐴𝑖𝜉 + 𝑐𝑖. 

𝐴𝑖: Jacobian matrix of 𝜓𝑖. 

𝐷𝑎𝑟𝑒𝑎
𝑖 : Area distortion of the triangle 𝑡𝑖 under the mapping 𝜙𝑖 defined as 𝐷𝑎𝑟𝑒𝑎

𝑖 =

(det(𝐴𝑖) − 1)
2
. 

𝐷𝑎𝑛𝑔𝑙𝑒
𝑖 : Angle distortion of the triangle 𝑡𝑖 under the mapping 𝜙𝑖 defined as 𝐷𝑎𝑛𝑔𝑙𝑒

𝑖 =

(𝐴11
2 − 𝐴22

2 )2 + (𝐴12
2 − 𝐴21

2 )2. 

𝐹(𝑈): Penalty function ℝ2𝑛 → ℝ to be minimized which sums the weighted area and angle 
distortion of the triangles in 𝑀 under the mapping 𝑈 = 𝜙(𝑋). 

𝐹∗: Value at which the penalty function 𝐹 is a local minimum. 

𝛼: Parameter 0 ≤ 𝛼 ≤ 1 which weighs area distortion (𝛼) against angle distortion (1 −
𝛼) in the penalty function 𝐹. 

∇: Gradient operator. 

ℋ: Hessian operator. 

𝜆: Damping parameter of the LM algorithm. 

𝜀: Tolerance parameter of the LM algorithm. 

𝑆𝑝
𝑓: Relative sensitivity of a penalty function 𝑓 with respect to a 𝑝 parameter. 

 

1. Introduction 

In CAD CAM CAE, it is usual to have a triangular mesh 𝑀 ⊂ ℝ3 as a result of the segmentation of 
a larger triangular mesh. 𝑀 is a 2-manifold with non-empty border and low curvature (i.e., 𝑀 is near-
developable). Therefore, 𝑀 admits a 2-variable parameterization which is a homeomorphism between 
𝑀 and a polygonal region in ℝ2. 

Mesh Parameterization consists of finding a mapping 𝜙:𝑀 → 𝜙(𝑀) ⊂ ℝ2 such that: 1) 𝜙 and 𝜙−1 
are continuous (i.e., connectivity of the triangles is preserved after the mapping) and 2) 𝜙 is bijective 
(i.e., triangles do not overlap after the mapping). 𝜙 is a homeomorphism and the image of 𝑀 under 
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𝜙 is a parameterization of 𝑀. In addition, local preservation of properties (e.g., angle, area, 
dimensions, etc.) is pursued but rarely achieved in parameterizations of actual engineering 𝑀 meshes. 

Mesh Parameterization is relevant in areas such as reverse engineering, tool path planning, feature 
detection, re-design, etc. This article proposes an algorithm for computing 𝜙 by minimizing a penalty 
function 𝐹 which discourages triangle flips, angle and area distortions. Different results may be 
obtained for the same mesh by changing the parameter 𝛼 (which weighs angle vs. area preservation) 
in 𝐹, allowing the user to pick up the best parameterization. Fine-tuning of this parameter allows in 
some cases to reach globally bijective parameterizations from non-bijective ones. 

The remainder of this article is structured as follows: Section 2 reviews the relevant literature. Section 
3 describes the implemented methodology. Section 4 presents and discusses the results of the test 
runs. Section 5 concludes the paper and introduces opportunities for future work. 

 

2. Literature Review 

Mesh Parameterization is usually achieved by posing an optimization problem where some kind of 
distortion measure is minimized in the parameter space. Depending on the characteristics of the 
method, Mesh Parameterization algorithms can be classified into: 1) Constrained-Boundary methods, 
2) Free-Boundary methods, or 3) Dimensionality Reduction (DR) methods. Refs. (Hormann et al., 
2007; Sheffer et al., 2006) present a survey of the state of the art in Mesh Parameterization methods. 
Extending such surveys, this section discusses the relevant literature in the topic. 

 

2.1. Constrained-Boundary Mesh Parameterization 

In Constrained-Boundary parameterizations, the border of the mesh is constrained in the resulting 
parameterization. Such constraint is forced by mapping the vertices of the mesh border to a fixed 
shape (e.g., a disk) in the parameter space.  Barycentric coordinates methods (Floater, 1997) solve 
the parameterization problem by expressing each vertex in the parameter space as a convex 
combination of its neighbors. In Ref. (Yoshizawa et al., 2004), a nonlinear-gradient algorithm which 
minimizes a stretch measure on a given Floater parameterization is proposed. The Signal-Specialized 
method (Sander et al., 2002) proposes a non-linear algorithm for mapping the surface to a rectangular 
domain based on a function defined on the surface (such as a color map). In Ref. (Pietroni et al., 
2011), a local flattening operator is proposed to interactively parameterize rectangular patches on a 
surface to their corresponding planar domain. In Ref. (Zou et al., 2011), an area-preserving mapping 
is sought by simulation of Lie advection (moving mass property change) on the surface, while in 
Refs. (Zhao et al., 2013; Su et al., 2016) area-preserving mappings are computed using the optimal 
mass transport technique. 

Constrained-Boundary methods present an additional problem of mapping the boundary to the 
parameter space in a separate step. This problem leads to highly distorted mappings in most 
application cases. The Virtual Boundary algorithm (Lee et al., 2002) partially overcomes this problem 
by introducing an artificial boundary connected to the real boundary. However, the shape of the 
artificial boundary affects the result and still introduces several distortions. 
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2.2. Free-Boundary Mesh Parameterization 

In contrast to Constrained-Boundary parameterizations, Free-Boundary methods do not require fixing 
the boundary in the parameter space. The MIPS (Most Isometric Parameterizations) method 
(Hormann and Greiner, 2000) proposes to minimize a nonlinear-gradient Dirichlet energy without 
boundary conditions, which produces a free boundary parameterization. Similarly, the Intrinsic 
Parameterizations algorithm (Desbrun et al., 2002), minimizes an energy functional which is a linear 
combination of both area and angle distortions. LSCM (Least Squares Conformal Maps) seeks a 
conformal parameterization by discretizing the Cauchy-Riemann equations on a triangular mesh 
(Lévy et al., 2002). The One-Step Inverse Forming approach (Li et al., 2010; Zhu et al., 2013) is a 
mesh parameterization algorithm based on the simulation of physical plastic deformation of the 
surface. In Ref. (Li et al., 2012), an isometric parameterization is sought by computing geodesics on 
the surface. The aforementioned Free-Boundary algorithms present the shortcoming of only accepting 
surfaces that are homeomorphic to a disk in ℝ2 (i.e. surfaces without holes). 

The ABF (Angle-Based Flattening) algorithm (Sheffer and de Sturler, 2001) is a nonlinear-gradient 
algorithm which poses an optimization problem in terms of the angles of the mesh triangles in order 
to find a conformal parameterization. However, the ABF algorithm is computationally expensive 
making it impractical for large datasets. The ABF++ algorithm (Sheffer et al., 2005) and the Linear 
ABF (Zayer et al., 2007) present variations to the original ABF algorithm which potentially improves 
the computation time at the cost of global distortion. Angle-based algorithms usually require a post-
processing step where the parameterization must be recovered from the computed angles of the mesh. 
The Circle Patterns (Kharevych et al., 2006), Curvature Prescription (Ben-Chen et al., 2008), 
Conformal Equivalence (Springborn et al., 2008) and Controlled-distortion (Myles and Zorin, 2013) 
algorithms seek conformal parameterizations by transferring the Gaussian curvature of the triangular 
mesh to a selected set of nodes known as cone singularities. A similar approach extended to 
hexagonal meshes is proposed in Ref. (Nieser et al., 2012). Automatic algorithms for placing such 
cone singularities on the mesh have been proposed in the literature (Ben-Chen et al., 2008; 
Springborn et al., 2008; Myles and Zorin, 2012). However, such placement is an additional pre-
processing step to the Mesh Parameterization process that increases the complexity of the algorithm. 

In Ref. (Zayer et al., 2005), a nonlinear-gradient algorithm which uses conformal and quasi-harmonic 
maps for parameterizing surfaces with holes is proposed. ASAP/ARAP (As Similar As Possible / As 
Rigid As Possible) and ARAP++ (Liu et al., 2008; Wang et al., 2016) minimize an energy functional 
which is a linear combination of both area and angle distortions. However, the ASAP/ARAP method 
requires a post-processing step due to triangle flips occurring in the resulting parameterization. The 
Constrained Parameterization on Parallel Platforms algorithm (Athanasiadis et al., 2013) minimizes 
an energy function similar to the MIPS energy, using GPU resources to improve the computational 
efficiency. These nonlinear-gradient methods allow to parameterize surfaces with holes as opposed 
to previous methods. However, nonlinear-gradient methods require computing an initial valid 
parameterization (i.e., with no triangle flips) which increases the computational cost of the algorithm 
and the implementation complexity. 

The problem of globally bijective parameterizations cannot be guaranteed in most cases (especially 
for Free-Boundary methods). The recently proposed Bijective Parameterizations with Free 
Boundaries algorithm (Smith and Schaefer, 2015) overcomes this problem by posing a nonlinear 
optimization problem with barrier functions which do not allow boundary overlapping. However, this 
algorithm becomes highly expensive when evaluating boundary overlaps. In addition, as most 
nonlinear-gradient parameterization algorithms it requires an initial valid parameterization. 
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2.3. Dimensionality Reduction for Mesh Parameterization 

Mesh Parameterization is an application of Dimensionality Reduction (DR). DR techniques perform 
a parameterization of a k-manifold 𝑀 (𝑘 ∈ ℕ), using the information about a proximity graph of the 
manifold. DR does not, in general, take advantage of the explicit mesh triangulation structure. 
Algorithms such as Isomap (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin and Niyogi, 
2003), LTSA (Local Tangent Space Alignment) (Zhang and Zha, 2002), LLE (Locally Linear 
Embedding) (Roweis and Saul, 2000) and HLLE (Hessian Locally Linear Embedding) (Donoho and 
Grimes, 2003) are popular DR algorithms which have been relevant in the mesh parameterization 
literature. In Ref. (Sun and Hancock, 2008), a method that combines Isomap and barycentric 
coordinates is proposed in order to produce an isometric parameterization. However, such method 
relies on estimation of geodesics which is inappropriate for non-convex manifolds. In addition, 
geodesics are computationally expensive to estimate. Refs. (Ruiz et al., 2015) (using Laplacian 
Eigenmaps) and (Mejia et al., 2016) (using a modified HLLE) avoid the computation of geodesics. 
This modification largely offsets the problems related to geodesic distance estimation. However, they 
cannot guarantee preservation of angle or areas resulting in high distortions. The Optimal Local 
Flattening algorithm (Chen et al., 2007) is a Mesh Parameterization algorithm based on the LTSA 
dimensionality reduction technique which presents low distortions. However, triangle flips (local 
non-bijectivity) may arise during the mapping. 

 

2.4. Conclusions of the literature review 

As discussed earlier, current Mesh Parameterization algorithms may present one or more of the 
following disadvantages: constrained boundary, local overlaps (triangle flips), requirement of an 
initial valid parameterization to avoid local minima (for the penalty function) and non-bijective 
mappings, etc. In this article we propose a free-boundary mesh parameterization algorithm where 
each triangle is mapped individually to the plane Z=0 by a rigid transformation and then a penalty 
function 𝐹 measuring distortion in the global parameterization is minimized. In contrast to most non-
linear gradient algorithms, our algorithm does not require an initial valid parameterization. We 
observed no triangle flips in the cases processed by our algorithm, although we have no theoretical 
guarantee for such a behavior.  A 0 ≤ 𝛼 ≤ 1 parameter weighs area distortion against angle distortion 
weighed by 1 − 𝛼. The weighting scheme proposed in this manuscript restricts the 𝛼 parameter by a 
convex combination which potentially avoids numerical instabilities that may arise as opposed to 
unbounded weighting parameters as in Refs. (Desbrun et al., 2002; Degener et al., 2003; Liu et al., 
2008). 

In order to minimize 𝐹 we implement the Levenberg-Marquardt (LM) algorithm. LM is a gradient 
descent method with high convergence rate allowing to evade the computation of an initial valid 
parameterization which is a requirement in most nonlinear-gradient algorithms. The test runs consider 
both surfaces with and without holes, showing that no triangle flips occur in the resulting 
parameterization. A fine-tuning of the 𝛼 parameter results in globally bijective parameterizations. We 
present a complexity analysis of our algorithm and a sensitivity analysis for the minimized 𝐹∗ with 
respect to 𝛼. As per our Literature Review, a sensitivity analysis for weighting parameters has not 
been yet presented in the Mesh Parameterization. 
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3. Methodology 

Consider 𝑀 = (𝑋, 𝑇) a connected 2-manifold in ℝ3 with border which is homeomorphic to a 
polygonal region in ℝ2, possibly with holes. Our goal is to find a set of points 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} ⊂

ℝ2 such that 𝑢𝑖 is the image of 𝑥𝑖 ∈ 𝑋 under a homeomorphism 𝜙:𝑀 → ℝ2. 

We build 𝜙 as the composition 𝜓 ∘ 𝜂, as follows: (1) 𝜂:𝑀 → 𝑋𝑌 ⊂ ℝ3 maps in arbitrary rigid manner 
each triangle 𝑡𝑖 of 𝑀 onto the plane Z=0. (2) An affine mapping 𝜓 in ℝ2 glues the 2D (parametric 
space) triangles as they originally were in 𝑀. The function 𝜙 presents a compromise between angle 
vs. area preservation. The extent of such a compromise is part of the findings of this manuscript. 

The algorithm for finding the parameterization 𝑈 = 𝜙(𝑋) is described below (Fig. 1): 

a. Rigid mapping 𝜼𝒊:𝑴 → 𝑿𝒀 ⊂ ℝ𝟑: Find the rigid transformation 𝜂𝑖:𝑀 → 𝑋𝑌 ⊂ ℝ3 that 
maps the triangle 𝑡𝑖 to the 𝑋𝑌 plane and its center of mass 𝑥̅𝑖 to the origin. The matrix 𝑅𝑖 =

𝜂([𝑥𝑖1
, 𝑥𝑖2

, 𝑥𝑖3
]) corresponds therefore to the image of the vertices [𝑥𝑖1

, 𝑥𝑖2
, 𝑥𝑖3

] of the 
triangle 𝑡𝑖 under such mapping. 

b. Affine mapping 𝝍𝒊: ℝ
𝟐 → ℝ𝟐: Since each triangle has been mapped individually to ℝ2, an 

affine mapping 𝜓𝑖(𝜉) = 𝐴𝑖𝜉 + 𝑐𝑖 which maps each 𝑅𝑖 to the final parameterization 𝜙 is 
constructed. The Jacobian matrix 𝐴𝑖 can be computed in terms of 𝑅𝑖 and the vertices 
[𝑢𝑖1 , 𝑢𝑖2 , 𝑢𝑖3] of the triangle 𝜙(𝑡𝑖). From this construction, 𝜙𝑖 = 𝜓𝑖 ∘ 𝜂𝑖 is an affine mapping 
and 𝜙 = {𝜙1, 𝜙2, … , 𝜙𝑚} is a piecewise affine mapping which parameterizes 𝑀. The 
continuity of 𝜙 is implied in 𝜓 = {𝜓1, 𝜓2, … , 𝜓𝑚} from the connectivity of 𝑀, i.e., if 𝑡𝑖 and 
𝑡𝑗 share the edge (𝑥𝑘 , 𝑥𝑙) then 𝜓𝑖 and 𝜓𝑗 overlap in the edge (𝑢𝑘 , 𝑢𝑙). 

c. Weighted penalty function 𝑭(𝑼): A penalty function 𝐹:ℝ2𝑛 → ℝ which penalizes the 
weighted area and shape distortion of each triangle is constructed in this step. Since 𝜙𝑖 =

𝜓𝑖 ∘ 𝜂𝑖 is an affine mapping and 𝜂𝑖 is rigid, all the distortion of 𝜙𝑖 can be extracted from 𝐴𝑖. 
An area (𝐷𝑎𝑟𝑒𝑎

𝑖 ) and angle (𝐷𝑎𝑛𝑔𝑙𝑒
𝑖 ) distortion is build for each triangle in terms of 𝐴𝑖, and a 

weighted sum of these terms over all the triangles compose the penalty function 𝐹. 
d. Parameterization 𝑼 = 𝝓(𝑿): Since 𝜙 has a minimum distortion, 𝑈 is estimated by 

minimizing 𝐹. Because ∇𝐹 is nonlinear, we implement the LM algorithm for this 
optimization process. 

A detailed discussion follows. 
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Figure 1: Implemented Mesh Parameterization algorithm. 

 

3.1. Rigid mapping 𝜂𝑖:𝑀 → 𝑋𝑌 ⊂ ℝ3 

In order to build the function 𝐹, we propose to map individually each triangle 𝑡𝑖 of 𝑀 to the 𝑋𝑌 plane 
first. One way to do this is to compute the center of mass 𝑥̅𝑖 and the normal vector 𝑛⃗ 𝑖 of the triangle 
𝑡𝑖. If 𝐵𝑖 = [𝑣 1

𝑖 , 𝑣 2
𝑖 ] is an orthonormal basis of the plane with normal 𝑛⃗ 𝑖, then 𝜂𝑖: ℝ

3 → 𝑋𝑌 ⊂ ℝ3 
defined as: 

𝜂𝑖(𝑥) = 𝐵𝑖
𝑇(𝑥 − 𝑥̅𝑖), (1) 

is a projection which maps isometrically the triangle 𝑡𝑖 to the plane tangent to 𝑡𝑖 (Fig. 2). Therefore, 
the matrix 𝑅𝑖 corresponds to the image of the current triangle vertices under the map 𝜂𝑖, i.e.: 

𝑅𝑖 = 𝜂𝑖([𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3]), (2) 
where 𝑥𝑖𝑗  is the j-th vertex of 𝑡𝑖. 

  
(a) A triangle (𝑡𝑖) on the surface 𝑀. (b) Mapping of the triangle 𝑡𝑖 to the plane 𝑋𝑌. 

The mapped triangle 𝑅𝑖 is isometric to 𝑡𝑖 and it 
is mean centered.  

Figure 2: Mapping of a triangle on 𝑀 to ℝ2 by projecting it onto the tangent plane. 
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3.2. Affine mapping 𝜓𝑖: ℝ
2 → ℝ2 

𝜙𝑖 is an affine transformation such that 𝜙𝑖 = 𝜓𝑖 ∘ 𝜂𝑖, where 𝜓𝑖: ℝ
2 → ℝ2 is an affine transformation 

that maps 𝑅𝑖 to the global parameterization 𝑈. Therefore: 

𝜓𝑖(𝜉) = 𝐴𝑖𝜉 + 𝑐𝑖 , (3) 
where 𝐴𝑖 is a 2 × 2 linear transformation and 𝑐𝑖 =

1

3
∑ 𝑢𝑖𝑗

3
𝑗=1  is a translation term corresponding to 

the center of mass of the triangle 𝜙(𝑡𝑖). 

Since 𝜂𝑖 is isometric to 𝑡𝑖, the matrix 𝐴𝑖 contains all the information about the distortion of the triangle 
𝑡𝑖 under the mapping 𝜙𝑖. Recalling that 𝜙(𝑡𝑖) = 𝜓𝑖(𝑅

𝑖), we solve Eq. (3) for 𝐴𝑖: 

𝐴𝑖 = [𝑢𝑖1 − 𝑐𝑖 , 𝑢𝑖2 − 𝑐𝑖 , 𝑢𝑖3 − 𝑐𝑖]𝑄
𝑖 , (4) 

where 𝑄𝑖 is the right pseudoinverse of 𝑅𝑖 (i.e., 𝑅𝑖𝑄𝑖 = 𝐼2). The preservation of the connectivity of 𝑀 
under 𝜙 is implied in Eq. (4). Specifically, the set of matrices 𝑨 = {𝐴1, 𝐴2, … , 𝐴𝑚} are correlated in 
the sense that if 𝑡𝑖 and 𝑡𝑗 share an edge (𝑥𝑘 , 𝑥𝑙), the matrices 𝐴𝑖 and 𝐴𝑗 share the terms 𝑢𝑘, 𝑢𝑙. 

 

3.3. Weighted penalty function 𝐹(𝑈) 

Calculating 𝐴𝑖 in terms of the parameterization coordinates 𝑈 allows to evaluate the local authalic 
(area) and conformal (angle) distortion for each triangle under the parameterization 𝜙. A 
transformation is authalic if and only if its Jacobian determinant is ±1. A consistent orientation is 
important to avoid local overlaps (triangle flips) which may result in a non-bijective mapping, 
therefore the minus sign is discarded. Thus we measure the area distortion 𝐷𝑎𝑟𝑒𝑎

𝑖  on each triangle by 
setting: 

𝐷𝑎𝑟𝑒𝑎
𝑖 = (det(𝐴𝑖) − 1)

2
 (5) 

 

On the other hand, a mapping is conformal if its Jacobian matrix is 𝑘 times a rotation matrix. Similar 
to (Lévy et al., 2002), we construct the angle distortion measure 𝐷𝑎𝑛𝑔𝑙𝑒

𝑖  of each triangle as follows: 

𝐷𝑎𝑛𝑔𝑙𝑒
𝑖 = (𝐴11

𝑖 − 𝐴22
𝑖 )

2
+ (𝐴12

𝑖 + 𝐴21
𝑖 )

2
 (6) 

If we define the area and shape distortion of the mapping as the weighted sum of all 𝐷𝑎𝑟𝑒𝑎
𝑖  and all 

𝐷𝑎𝑛𝑔𝑙𝑒
𝑖  respectively, we can measure the global distortion as a convex combination of the global area 

and angle distortion: 

𝐹 = ∑𝛼𝐷𝑎𝑟𝑒𝑎
𝑖 + (1 − 𝛼)𝐷𝑎𝑛𝑔𝑙𝑒

𝑖

𝑚

𝑖=1

, (7) 

with 0 ≤ 𝛼 ≤ 1 being a weighting parameter such that 𝐹 measures only angle distortion if 𝛼 → 0 and 
𝐹 measures only area distortion if 𝛼 → 1. 𝐹 is only dependant of 𝑸 = {𝑄1, 𝑄2, … , 𝑄𝑚} and 𝑈 =

{𝑢1, 𝑢2, … , 𝑢𝑛} which are required to compute 𝐴𝑖 as described in Eq. (4) and the weighting parameter 
𝛼  is introduced in order to control the resulting parameterization. The parameter α produces a 
compromise between area - preserving vs. angle - preserving parameterizations. This compromise is 
central in the cases were both criteria cannot be satisfied. Simultaneous area and angle preservation 
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is only possible with isometric parameterizations, which are feasible only for the special case of 
developable surfaces (e.g. with null Gaussian curvature at each surface point). 

 

3.4. Parameterization 𝑈 = 𝜙(𝑋) 

In order to find the global parameterization 𝑈 = 𝜙(𝑋) it is necessary to minimize the 𝐹 defined in 
Eq. (7). Therefore our global parameterization is given by the value of 𝑈 that solves the following 
unconstrained problem: 

min
𝑈

 𝐹 = {∑𝛼𝐷𝑎𝑟𝑒𝑎
𝑖 + (1 − 𝛼)𝐷𝑎𝑛𝑔𝑙𝑒

𝑖

𝑚

𝑖=1

}, (8) 

 

The function 𝐹 from Eq. (7) is continuous and has 2𝑛 degrees of freedom (2 degrees for each 
coordinate value 𝑢𝑖). The nonlinear nature of the gradient of 𝐹 requires a nonlinear method for finding 
a solution to Eq. (8). Therefore, we choose the Levenberg-Marquardt (LM) algorithm for such a 
purpose, which is described below. 

 

3.5. The Levenberg-Marquardt (LM) algorithm 

We use a LM algorithm to update the parameterization coordinates according to the following scheme 
(Ravindran et al., 2007): 

𝑈𝑘+1 = 𝑈𝑘 − (ℋ[𝐹(𝑈𝑘)] + 𝜆𝑘𝐼2𝑛)
−1

∇𝐹(𝑈𝑘), (9) 
where 𝑘 + 1 is the current iteration, 𝜆𝑘 is the LM damping parameter which is updated iteratively 
according to the current solution, and ℋ[𝐹(𝑈𝑘)] is the Hessian matrix of 𝐹 defined as ℋ𝑖𝑗[𝐹] =

𝜕2𝐹

𝜕𝑢𝑖𝜕𝑢𝑗
 (Papadimitriou and Steiglitz, 1982). 

We coded an implementation of the LM algorithm in MATLAB for the solution of Eq. (8). The 
advantages of our implementation are described below: 

1. Initial parameterization: Our implementation allows an initial random parameterization 𝑈0 
for iterating Eq. (9), providing consistent parameterizations in all our test cases. This is 
superior to most nonlinear-gradient algorithms which require an initial valid parameterization 
(estimated by a linear parameterization algorithm) to proceed, such as in Refs. (Athanasiadis 
et al., 2013; Liu et al., 2008; Smith and Schaefer, 2015). 

2. Hessian estimator: The LM algorithm proposes to estimate the Hessian matrix as ℋ[𝐹] ≈

∇𝐹 ⋅ ∇𝐹𝑇. This approach leads to a dense Hessian matrix. Our implementation computes the 
Hessian of each triangle distortion (𝛼ℋ[𝐷𝑎𝑟𝑒𝑎

𝑖 ] + (1 − 𝛼)ℋ[𝐷𝑎𝑛𝑔𝑙𝑒
𝑖 ]) individually, and then 

adds up such terms to the global Hessian matrix ℋ[𝐹]. Therefore, our estimated Hessian 
ℋ[𝐹] ends up being a 2𝑛 × 2𝑛 (with 𝑛 = number of mesh nodes) symmetric sparse matrix 
where only adjacent points in 𝑀 have respective nonzero elements. The sparsity of our 
Hessian matrix has positive effects (Sect. 4.5) on the computing expenses of our algorithm. 

The iterative procedure is applied on Eq. (9) until certain criteria is met: 1) the norm of the gradient 
‖∇𝐹‖ is lower than a fixed tolerance  𝜀 (𝜀 ∈ ℝ) or 2) a certain number of iterations has occurred. 
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3.6. Sensitivity analysis 

We perform a relative sensitivity analysis of the minimized penalty function 𝐹∗ with respect to the 
weighing parameter 𝛼 to compare the resulting paramaterization and the global distortion for a chosen 
value for 𝛼 numerically (Edgar and Himmelblau, 2001): 

𝑆𝛼
𝐹 =

𝜕 ln 𝐹∗

𝜕 ln 𝛼
=

𝛼

𝐹∗

𝜕𝐹∗

𝜕𝛼
≈

𝛼̅

𝐹∗̅̅ ̅

Δ𝐹∗

Δ𝛼
  (10) 

 

Eq. (10) provides an idea of how small changes in the 𝛼 parameter impact the minimized penalty 
function 𝐹∗ given mesh 𝑀. 

3.7. Computer Experiment Set Up 

The tests run to assess our algorithm performance include several data sets and comparison with 
competitor algorithms. Table 1 discusses the data sets used. Table 2 lists the competitor algorithms 
tested along with ours.  We do not intend to run a full benchmark test because we cannot guarantee 
even conditions to run all algorithms. 

 Natural 
Border 

In - source added boundary  Origin 

Tests Run in Competition with ARAP, ABF, LSCM. 

Balls Yes None ARAP site 

Beetle Yes None ARAP site 

Cow No (closed) Yes (Sheffer and Hart, 2002) Ref. (ALICE project-team, 
2008) 

Gargoyle No (closed) Yes (Sheffer and Hart, 2002) ARAP site 

 

Tests of our algorithm alone 

Bull No (closed) Yes (Sheffer and Hart, 2002) Ref. (ALICE project-team, 
2008) 

Foot Yes Yes (Sheffer and Hart, 2002) Ref. (ALICE project-team, 
2008) 

Fandisk No (closed) Yes (Sheffer and Hart, 2002) Ref. (ALICE project-team, 
2008) 

Sliced - Glove Yes.  Yes (open cut to use one 
hemisphere) 

Ref. (ALICE project-team, 
2008).  

ARAP site:  http://www.math.zju.edu.cn/ligangliu/cagd/Projects/ARAPPara/default.htm 

Table 1: Datasets used for the algorithm appraisal. 
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 Requires a 
valid initial 
parameteriz
ation 

Generality of tests Reference Code 

 

ARAP Yes Restricted for data 
sets Balls, Beetle, 
Gargoyle, Cow 

(Liu et al., 2008) Interpreted 
(MATLAB) 

ABF No No restricted (Sheffer and de 
Sturler, E. 2001) 

Compiled (C) 

LSCM No No restricted (Lévy et al., 2002) Compiled (C) 

Our algorithm No No restricted This article. Interpreted 
(MATLAB) 

Table 2: Conditions of competitor algorithms considered. 

 

4. Results and discussion 

In this section, two case studies from the literature are presented and analyzed thoroughly. Section 
4.1 presents the first case corresponding to the Beetle dataset (Fig. 3(a)). We show that by tuning 
adequately the 𝛼 parameter, a valid parameterization can be achieved. Section 4.2 presents the second 
case study namely the Cow dataset (Fig. 3(b)). This case study has presented several problems and 
though a nearly-valid parameterization is achieved with our algorithm, global overlaps cannot be 
helped (Sheffer and de Sturler, 2001; Smith and Schaefer, 2015). Section 4.3 presents and discusses 
a summary of the results of our parameterization algorithm applied to other datasets and Sect. 4.4 
compares our parameterization results with ABF, LSCM and ARAP. Finally, Sect. 4.5 presents the 
results of a complexity analysis comparing our algorithm with 12 competing ones. 

 
 

(a) Beetle dataset. (b) Cow dataset. 
Figure 3: Case studies datasets. 

 

4.1. Beetle dataset results 

Fig. 4 presents the resulting parameterization 𝑈 for the Beetle dataset with different values of 𝛼. 
Setting 𝛼 = 0.1 results in a valid parameterization with low shape distortion as seen in Fig. 4(a). This 
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is not the case for 𝛼 = 0.5 (Fig. 4(b)), where global overlaps occur as some area preservation is 
demanded to the algorithm (triangle flips do not happen). A highly authalic mapping (𝛼 = 0.9) results 
in a parameterization with higher shape distortion and low area distortion (Fig.4(c)). Despite no 
triangle flips occur, the boundary and non-adjacent triangles overlap resulting in a non-bijective 
parameterization. The mapped texture in Fig. 5 shows how the shape is highly preserved as squares 
attain its form through the bijective mapping for 𝛼 = 0.1. Similar results for this dataset have been 
presented by other authors (Liu et al., 2008; Sun and Hancock, 2008). 

Recalling that the implemented algorithm converges to the same solution despite the initial (possibly 
non-valid) parameterization, Fig. 6 presents the initial, intermediate and final stages for 𝛼 = 0.1 of 
the LM for different initial parameterizations: i) an initial parameterization 𝑈Isomap

0  computed by the 
Isomap algorithm (Tenenbaum et al., 2000) (Fig. 6(a)), ii) an initial parameterization 𝑈LapEig

0  
computed by the Laplacian Eigenmaps algorithm (Belkin and Niyogi, 2003) (Fig. 6(b)) and iii) a 
randomly generated (non-bijective) initial parameterization 𝑈Rand

0  (Fig. 6(c)). We coded an 
implementation of both DR algorithms (Isomap and Laplacian Eigenmaps) in MATLAB, while the 
random parameterization is generated by the MATLAB rand() routine. The respective intermediate 
steps (Figs. 6(d), 6(e) and 6(f)) show how the surface is unfolded in each case and Fig. 6(g) presents 
the resulting parameterization for all the cases illustrating the consistency of the algorithm (even for 
the random non-valid initial parameterization 𝑈Rand

0 ) as discussed in section 3.5. 

 

 

 

 

 

 
(a) 𝛼 = 0.1. (b) 𝛼 = 0.5. (c) 𝛼 = 0.9. 

Figure 4: Resulting parameterization for the Beetle dataset for different 𝛼 values: (a) 𝛼 = 0.1 
(quasi-conformal), (b) 𝛼 = 0.5 (conformal and authalic), (c) 𝛼 = 0.9 (quasi-authalic). 
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Figure 5: Texture map for the Beetle dataset (𝛼 = 0.1). 

 

 

 

 

 

 

 
(a) Isomap initial 
parameterization 𝑈Isomap

0 . 
(b) Laplacian Eigenmaps 
initial parameterization 
𝑈LapEig

0 . 

(c) Random (non-bijective) 
initial parameterization 𝑈Rand

0 . 

 

 

 

 

 

 
(d) Intermediate solution for 
𝑈Isomap

0 . 
(e) Intermediate solution for 
𝑈LapEig

0 . 
(f) Intermediate solution for 
𝑈Rand

0 .  
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(g) Final LM parameterization for: i) 𝑈Isomap
0 , ii) 𝑈LapEig

0  and iii) 𝑈Rand
0 . 

 
Figure 6: Initial, intermediate and final stages of LM optimization for the Beetle dataset using 
different initial parameterizations: i) Isomap 𝑈Isomap

0 , ii) Laplacian Eigenmaps 𝑈LapEig
0  and iii) 

random parameterization 𝑈Rand
0 . 𝛼 is set to 0.1. 

 

Using the random initial solution of Fig. 6(c), Fig. 7(a) presents the evolution of the penalty function 
𝐹 for different 𝛼 values. Higher values of 𝛼 take more iterations before converging. Also, though 𝐹∗ 
reaches a lower value for 𝛼 = 1 than for 𝛼 = 0.5, this is not guarantee of a better result as seen in 
Figs. 4(b) and 4(c). Fig. 7(b) plots the relative sensitivity of 𝐹∗ with respect to 𝛼 as per Eq. (12). 𝐹∗ 
becomes highly sensitive to 𝛼 for values greater than 0.6. In this particular case, the resulting 
parameterization becomes non-valid for higher values of 𝛼 as seen in Figs. 4(a) and 4(b). 

 
 

(a) Evolution of 𝐹 for different 𝛼 values. (b) Relative sensitivity 𝑆𝛼
𝐹. 

Figure 7: Beetle dataset. Sensitivity analysis of 𝐹 with respect to 𝛼. For area-preserving 
parameterizations, (a) the algorithm evidences slower convergence for higher values of 𝛼 and (b) 
the penalty function 𝐹 is highly sensitive in the area preserving (𝛼 → 1) side. 

 

4.2. Cow dataset results 

For a random initial parameterization 𝑈Rand
0 , Fig. 8 presents the resulting parameterization 𝑈 for the 

Cow dataset with different 𝛼 values. Setting 𝛼 = 0.1 results in a non-valid parameterization where 
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the head of the Cow overlaps its body (Fig. 8(a)). For 𝛼 = 0.01, the head no longer overlaps the body 
in the resulting parameterization (Fig. 8(b)). However, the resulting parameterization is still non-
bijective. Attempting a purely conformal parameterization (𝛼 = 0) results in a high distorted mapping 
where the head and the legs present a high area distortion (Figs. 8(c) and 9). Zooming into the head 
and tail of the Cow it is clear that the boundary self-intersects and the parameterization is not bijective 
(Figs. 8(d) and 8(e)). It is important to emphasize that none of the discussed results above presents 
triangle flips despite the map not being bijective. Our results are in concordance with other authors 
(Ben-Chen et al., 2008; Liu et al., 2008; Sheffer et al., 2005; Zayer et al. 2007) where non-bijective 
parameterizations (e.g., global overlaps) have been also reported for the Cow dataset. Finally, higher 
values of 𝛼 were tested resulting in worse parameterizations. 

Fig. 10 presents a sensitivity analysis of 𝐹 with respect to 𝛼 for the Cow dataset. Again, higher values 
of 𝛼 require the algorithm more iterations to converge (Fig. 10(a)). Similar to our Beetle sensitivity 
results, the relative sensitivity of 𝐹 with respect to 𝛼 (Fig. 10(b)) shows how 𝐹 becomes highly 
sensitive for higher values of 𝛼 (𝛼 > 0). Again, the sensitivity analysis must be complemented by 
the user criteria as different values for 𝛼 produce different (and not necessarily valid) 
parameterizations (Fig. 8). 

 

 
 

 

 

 

(a) Cow parameterization (𝛼 =
0.1). 

(b) Cow parameterization (𝛼 =
0.01). 

(c) Cow parameterization (𝛼 =
0). 
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 (d) Cow parameterization (𝛼 =
0). Zoom into head. 

(e) Cow parameterization (𝛼 =
0). Zoom into tail. 

 

Figure 8: Parameterization results for the Cow dataset. 
 

4.3. Results for other datasets 

Fig. 11 presents the parameterization results of the proposed algorithm for the Sliced-Glove, Fandisk, 
Foot and Bull datasets. With an 𝛼 = 0.5, the algorithm converged in all the presented cases to valid 
parameterizations (except for the Bull parameterization which is not bijective). Table 3 presents a 
quantification of the performance of our algorithm for the case studies. A random initial 
parameterization 𝑈Rand

0  is used and in all the test cases, ‖∇𝐹∗‖ < 10−8 and the lowest eigenvalue of 
the Hessian is nonnegative indicating that a local minimum has been reached and the algorithm has 
converged. All the resulting parameterizations are locally bijective (no triangle flips). 

 

Figure 9: Texture map for the Cow dataset (𝛼 = 0). Area distortion is more noticeable in the head, 
legs and tail. 
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(a) Evolution of 𝐹 for different 𝛼 values. (b) Relative sensitivity 𝑆𝛼
𝐹. 

Figure 10: Cow dataset. Sensitivity analysis of 𝐹 with respect to 𝛼. For area-preserving 
parameterizations, (a) the algorithm evidences slower convergence for higher values of 𝛼 and (b) 
the penalty function 𝐹 is highly sensitive in the area preserving (𝛼 → 1) side. 

 

 

 

(a) Sliced-Glove bijective parameterization and texture map. 

  
(b) Fandisk bijective parameterization and texture map. 
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(c) Foot bijective parameterization and texture map. 

 

 

(d) Bull non-bijective parameterization and texture map. 
Figure 11: Parameterization results for several datasets and their corresponding texture map. All 
meshes are 2-manifolds with border. 

 

Dataset 𝒏 𝜶 ‖𝛁𝑭‖ Result 

Beetle 988 0.1 2 × 10−12 Fig. 5 
Cow 3195 0 4 × 10−11 Fig. 9 

Sliced-Glove 985 0.5 7 × 10−11 Fig. 11(a) 
Fandisk 6699 0.5 4 × 10−11 Fig. 11(b) 

Foot 10211 0.5 6 × 10−11 Fig. 11(c) 
Bull 17918 0.1 4 × 10−9 Fig. 11(d) 

Table 3: Quantification of our algorithm performance for the cases studied (n: number of iterations, 
: weight of area - preserving criterion, ‖𝛁𝑭‖: gradient of objective function). 

 

4.4. Comparison with competitor algorithms 
To compare our algorithm with other Mesh Parameterization algorithms, the GraphiteLE software 
(https://gforge.inria.fr/frs/?group_id=1465, accessed 01 August 2016) is used to run the ABF and the 
LSCM algorithms, while the MATLAB version of ARAP (see Table 2) status of 01 August 2016, is 
used for computing such parameterization. The algorithms are run with default parameters and no 
modifications to the routines have been made. Furthermore, ARAP is run with a valid initial 
parameterization (ABF by default) while our algorithm is run with a random initial guess.  
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Fig. 12 presents the parameterization results obtained by our algorithm vs. ABF, LSCM and ARAP 
for the Balls, Beetle, Cow and Gargoyle datasets. We do not measure execution times because: (1) 
the algorithms are written in different programming languages (C and MATLAB), (2) ARAP has its 
own data which requires a pre-processing, (3) in general, we cannot provide an even field for 
algorithm comparison.  Table 4 and Figure 12 present the results for the different algorithms. For the 
four datasets, ABF and our algorithm present no triangle flips, while LSCM and ARAP invert some 
triangles through the process. Our algorithm results in globally bijective parameterizations for the 
Balls, Beetle and Gargoyle datasets. None of the algorithms reaches a globally bijective 
parameterization for the Cow dataset. 

 𝐎𝐮𝐫 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐀𝐁𝐅 𝐋𝐒𝐂𝐌 ARAP 

Dataset Triangle 
Flips 

Global 
Overlaps 

Triangle 
Flips 

Global 
Overlaps 

Triangle 
Flips 

Global 
Overlaps 

Triangle 
Flips 

Global 
Overlaps 

Balls No No No No Yes Yes No No 
Beetle No No No No No No No No 
Cow No Yes No Yes Yes Yes Yes Yes 

Gargoyle No No No No No No Yes Yes 
Table 4: Appraisal of the parameterization results for our algorithm, ABF, LSCM and ARAP. A 
necessary condition for a valid parameterization is the absence of triangle flips and global overlaps. 
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Our Algorithm ABF LSCM ARAP 

Figure 12: Parameterization results for the Balls, Beetle, Cow and the Gargoyle datasets using our 
algorithm and several state of the art Mesh Parameterization algorithms. Legal parameterizations 
are enclosed with a framed cell. 

 

4.5. Complexity analysis 

The time complexity of our algorithm is discussed in this section. In Ref. (Ueda and Yamashita, 
2012), a complexity analysis of the LM algorithm has been presented which shows that LM iterates 
𝒪(ln 𝜀−1) times. In our algorithm, for a mesh with 𝑚 triangles and 𝑛 nodes each LM iteration must 
perform the following operations: 
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1) Compute 𝐹(𝑈𝑘), ∇𝐹(𝑈𝑘) and ℋ[𝐹(𝑈𝑘)]. 

2) Solve the linear system (ℋ[𝐹(𝑈𝑘)] + 𝜆𝑘𝐼2𝑛)
−1

∇𝐹(𝑈𝑘) as per Eq. (9).  

In the first step of the LM iteration, 𝐹(𝑈𝑘), ∇𝐹(𝑈𝑘) and ℋ[𝐹(𝑈𝑘)] are computed by adding the 
distortion 𝐷𝑎𝑟𝑒𝑎

𝑖  and 𝐷𝑎𝑛𝑔𝑙𝑒
𝑖  and their corresponding derivatives for each individual triangle. The cost 

of this operation is 𝒪(𝑚). For the linear system in the second step, the matrix ℋ[𝐹(𝑈𝑘)] + 𝜆𝑘𝐼2𝑛 is 
a 2𝑛 × 2𝑛 symmetric sparse matrix whose nonzero elements correspond to adjacent nodes in the 
mesh as discussed in section 3.5.  The solution of this linear system costs 𝒪(𝑛𝑧) (where 𝑛𝑧 is the 
number of nonzeros in the matrix ℋ[𝐹(𝑈𝑘)] + 𝜆𝑘𝐼2𝑛). Due to the Euler characteristic of triangular 
meshes, 𝑛𝑧 ≈ 28𝑛. Hence, the complexity order for the linear system solution becomes 𝒪(𝑛) (Botsch 
et al., 2005). 

In summary, the order of our algorithm is of the same order of the LM algorithm times the internal 
loop i.e., 𝒪(ln 𝜀−1)(𝒪(𝑚) + 𝒪(𝑛)). However, for a fixed 𝜀 and assuming (by the Euler 
characteristic) that 𝒪(𝑚) = 𝒪(𝑛), our algorithm becomes of the order 𝒪(𝑐 ⋅ 𝑛) (where 𝑐 is the 
number of iterations of the LM algorithm before convergence). Table 3 presents a comparison of 
computational complexities for several Mesh Parameterization algorithms. 

Reference Algorithm Complexity 

N/A Our LM Mesh Parameterization 𝒪(𝑐 ⋅ 𝑛) 
(Donoho and Grimes, 2003) Classic HLLE 𝒪(𝑐 ⋅ 𝑛) 

(Floater, 1997) Floater Parameterization 𝒪(𝑐 ⋅ 𝑛) 
(Yoshizawa et al., 2004) Stretch Minimizing 

Parameterization 
𝒪(𝑐1 ⋅ 𝑐2 ⋅ 𝑛) 

(Desbrun et al., 2002) Intrinsic Parameterization 𝒪(𝑐 ⋅ 𝑛) 
(Lévy et al., 2002) LSCM 𝒪(𝑐 ⋅ 𝑛) 
(Lee et al., 2002) Virtual Boundary Parameterization 𝒪(𝑐1 ⋅ 𝑛 + 𝑐2 ⋅ |𝜕𝑀|) 

(Zayer et al., 2007) Linear ABF 𝒪(𝑐 ⋅ 𝑛) 
(Liu et al., 2008) ASAP 𝒪(𝑐 ⋅ 𝑛) 
(Liu et al., 2008) ARAP 𝒪(𝑐1 ⋅ 𝑐2 ⋅ 𝑛 + 𝑐3 ⋅ |𝜕𝑀|) 

(Sheffer and de Sturler, 2001) ABF 𝒪(𝑐1 ⋅ 𝑐2 ⋅ 𝑛) 
(Kharevych et al., 2006) Discrete Conformal Mappings 𝒪(𝑐1 ⋅ 𝑐2 ⋅ 𝑛) 

(Smith and Schaefer, 2015) Free Boundary Parameterization 𝒪(𝑐(𝑛 + |𝜕𝑀|)) 
Table 3: Computational time complexity of several Mesh Parameterization algorithms. 𝑐 denotes 
the number of iterations before convergence for that particular algorithm while |𝜕𝑀| denotes the 
number of vertices at the boundary of 𝑀. 

 

5. Conclusions 

This article presents an algorithm for parameterizing a triangular mesh 𝑀 of a 2-manifold with non-
empty border embedded in ℝ3. The proposed algorithm consists of mapping each triangle 
individually to the plane Z=0 by a rigid transformation 𝜂 and then mapping it to the global 
parameterization 𝜙 by an affine mapping 𝜓. The parameterization 𝑈 = 𝜙(𝑋) is obtained by 
minimizing the weighted area and angle distortion of 𝜓 (which also penalizes triangle flips) with the 
LM algorithm. The complexity analysis of our algorithm shows asymptotic linear behavior 𝒪(𝑐 ⋅ 𝑛) 
in the number of vertices which makes our method comparable to most mesh parameterization that 
are also asymptotically linear in time as illustrated in table 3. Our algorithm presents the advantage 

Page 21 of 25

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 D

an
ie

l M
ej

ia
 (L

ab
. C

AD
 C

AM
 C

AE
, D

ie
go

 A
. A

co
st

a 
(P

ro
ce

ss
es

 G
ro

up
) O

sc
ar

 R
ui

z-
Sa

lg
ue

ro
. (

La
b.

 C
AD

 C
AM

 C
AE

). 
U

ni
v 

EA
FI

T,
 C

ol
om

bi
a

 
Weighted area / angle distortion minimization for Mesh Parameterization. Daniel Mejia, Diego A. Acosta, Oscar Ruiz-Salguero, J. Eng. Computations,  Emerald Isight, 

http://www.emeraldinsight.com/doi/full/10.1108/EC-02-2016-0072 ,  ISSN: 0264-4401, 2017, v34, n6, doi:   10.1108/EC-02-2016-0072



Engineering Com
putations

over other nonlinear-gradient parameterization algorithms of not requiring an initial valid 
parameterization. 

A weighting parameter 𝛼 is introduced in the penalty distortion function which allows tuning by the 
user to favour area against angle preservation turning a non-bijective parameterization into a bijective 
one in specific cases. Our sensitivity analysis shows that our penalty function is very sensitive in the 
domain of area preservation (𝛼 → 1). Our experiments show that global overlaps are more frequent 
when preserving areas than when preserving angles, encouraging angle preservation. It must be 
remarked that a sensitivity analysis assesses the influence of the parameters on the penalty function 
F and not the goodness of F for the problem at hand.  

Compared to other Mesh Parameterization algorithms in general, our algorithm converged presenting 
correct results across the datasets, rendering low distortion, non-overlapping and valid 
parameterizations except for highly non-developable datasets (i.e., Cow and Bull).  

4.1. Ongoing work 

Segmentation of large meshes into smaller ones increases the probability of finding bijective 
individual parameterizations for the smaller ones. Therefore, it is of interest to explore mesh 
segmentation as a necessary step for mesh parameterization. 

Bijectivity of the resulting parameterization relates to: (1) local overlaps (triangle flips) and (2) global 
overlaps. Although not proven, all of our experiments present no triangle flips, partially addressing 
the problem of local overlaps. However, global bijectivity is a non-trivial constraint which increases 
the computational complexity of the algorithm as shown in Ref. (Smith and Schaefer, 2015). 
Therefore, further work is required on this aspect. 
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