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Chapter 1

Introduction

Computational modeling and mechanical characterization of porous and lattice materials, and topol-
ogy optimization for 3D printing are topics that attract the attention of academicians and indus-
trialists. Design, manufacturing, medicine, biomedicine, automotive and aerospace industries are
contexts in which the research on these topics is of special relevance.

The estimation of the mechanical properties (e.g. Young’s modulus, Poisson’s ratio) of porous
and lattice materials is important for their applications as impact absorbers in the automotive and
aerospace industries. However, (1) material tests are expensive, and (2) numerical simulations are
intractable due to the large size of the computational representations. Therefore, the development
of effective and efficient methods to estimate the mechanical properties of porous material is still
an open research matter.

Additive manufacturing (or 3D printing) is revolutionizing the world of manufacturing. The
materials, design techniques and software, simulation and data acquisition methods, and the man-
ufacturing process by itself are being affected by the use of 3D printing technologies. The almost
free-form design and material savings are two of the main advantages of additive manufacturing.
Therefore, the use of topology optimization algorithms to find the optimum relation between ma-
terial expenses and structural functionality is gaining more importance. However, current topology
optimization algorithms are still very limited for the manufacturing constraints related to subtrac-
tive methods. Hence, the improvement of these algorithms is mandatory for the establishment of
3D printing at an industrial scale.

This work presents a compilation of different contributions to the problems stated in this intro-
duction. Subsequent Sections 1.1 and 1.2 summarize the articles included in this compendium and
list all the co-authors associated to each publication. Finally, Section 1.3 explains to the reader
how to follow this document.

1.1 Summary of Publications

Two conference publications, a chapter in book and two articles submitted to relevant international
journals are the results of the research executed during the course of the Master in Engineering
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at Universidad EAFIT. In Table 1.1 are listed the published and submitted articles with their
respective authorship and bibliographic information.

Table 1.1: List of published and submitted articles.

Item Bibliographic Information Type /
Status

1 Diego Montoya-Zapata, Oscar Ruiz-Salguero, Juan Lalinde-Pulido,
Juan Pareja-Corcho, and Jorge Posada. (2018). Non-manifold mod-
elling of lattice materials using kinematically constrained FEA. Pro-
ceedings of the 12th International Symposium on Tools and Methods
of Competitive Engineering (TMCE 2018). ISBN: 978-94-6186-910-4.
Las Palmas de Gran Canaria, Spain, May 7-11, 2018.

Conference
Article /
Published

2 Juan M. Munoz, Oscar Ruiz-Salguero, Diego Montoya-Zapata,
Camilo Cortés, and Carlos Cadavid. Direct Scalar Field - to - Truss
Representation and Stress Simulation of Open Pore Domains. Ac-
cepted to the Conference Smart Tools and Applications in Graphics
(STAG 2018), Brescia, Italy, October 18–19, 2018.

Conference
Article /
Accepted

3 Diego Montoya-Zapata, Diego A. Acosta, Oscar Ruiz-Salguero,
and David Sanchez-Londono. (2018). FEA Structural Opti-
mization Based on Metagraphs. International Joint Conference
SOCO’18-CISIS’18-ICEUTE’18. Print ISBN 978-3-319-94119-6 ,
Online ISBN 978-3-319-94120-2, pp 209-220, vol. 771. DOI:
https://doi.org/10.1007/978-3-319-94120-2 20 Book Series: Ad-
vances in Intelligent Systems and Computing. Springer International
Publishing AG, part of Springer Nature 2019.

Chapter
in Book /
Published

4 Diego Montoya-Zapata, Diego A. Acosta, Oscar Ruiz-Salguero, Jorge
Posada, and David Sanchez-Londono. (2018). FEA Structural Op-
timization Based on Metagraphs. Submitted to Journal Cybernet-
ics and Systems. Print ISSN: 0196-9722. Online ISSN: 1087-6553.
Publisher: Taylor & Francis. Indexed in Scopus: Q3, ISI (Web of
Science): Q3, Publindex: B.

Journal
Article /
Submit-
ted

5 Diego Montoya-Zapata, Camilo Cortés, and Oscar Ruiz-Salguero.
FE-Simulations with a Simplified Model for Open-Cell Porous Ma-
terials: A Kelvin Cell Approach. Submitted to Journal of Computa-
tional Methods in Sciences and Engineering. Print ISSN: 1472-7978.
Online ISSN: 1875-8983. Publisher: IOS Press. Indexed in Scopus:
Q3, Publindex: B.

Journal
Article /
2nd Round
Revision

1.2 List of Co-authors of this Compendium of Publications

The names and affiliations of the co-author of the articles presented in this compendium are listed
in Table 1.2.
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Table 1.2: Co-authors of this compendium of publications.

Name Affiliation
Diego Andrés Acosta Maya Process Development and Design Research Group

(DDP), Universidad EAFIT, Colombia
Carlos Cadavid Moreno Functional Analysis Group, Universidad EAFIT,

Colombia
Camilo Cortés Acosta eHealth and Biomedical Applications, Vicomtech,

Spain
Juan Guillermo Lalinde Pulido High Performance Computing Facility APOLO, Uni-

versidad EAFIT, Colombia
Diego Alejandro Montoya Zap-
ata

Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia
Industry and Advanced Manufacturing, Vicomtech,
Spain

Juan Manuel Muñoz Betancur Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia

Juan Pareja Corcho Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia

Jorge Posada Vicomtech, Spain
Oscar Ruiz Salguero Laboratory of CAD CAM CAE, Universidad EAFIT,

Colombia
David Sánchez Londoño Laboratory of CAD CAM CAE, Universidad EAFIT,

Colombia

1.3 How to Read this Document

This document presents the developments of a research executed at the Laboratory of CAD CAM
CAE at Universidad EAFIT (Colombia), and Vicomtech (Spain). The obtained results are a com-
bination of computational geometry, data structures and algorithms, and mathematics. Numerical
simulation plays an important role to test the accuracy and to evaluate the impact of the developed
approaches.

All the articles included in this compendium have been submitted to peer-reviewed
journals or conferences. Chapter 2 shows the observations of the Referees with the
corresponding responses given by the authors. As stated previously, the article A General
Meta-graph Strategy for Shape Evolution under Mechanical Stress has only been submitted and the
first communication from the Editors of the journal is still pending.

Chapter 3 presents a work-flow to model and simulate efficiently large 2.5D lattice domains. To
ease the study of these 2.5D lattice domain, a data structure to support non-2-manifold topology
is developed and kinematic constraints are added into the executed FEA analyses.

Chapter 4 proposes an alternative to model open-cell porous materials in which the 1.5D rep-
resentation of the porous domain is directly obtained from the voxel scalar field of the Computer
Tomography of the domain, thus avoiding the explicit calculation of the domain boundary. Shear
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and tension numerical simulations, conducted on the obtained 1.5D model, show the suitability of
the approach to characterize open-cell porous domains.

Chapter 5 proposes a topology optimization algorithm that is based on the representation of
FEA meshes as mathematical graphs. The presented algorithm uses a meta-graph based tech-
nique integrated into the Evolutionary Structural Optimization algorithm. By considering this
meta-graph connectivity approach, the optimization process is not interrupted by disconnections
generated during the material removal stage.

Chapter 6 presents a truss-based approach to model and simulate efficiently open-cell porous
materials. Estimations of macro-mechanical properties (Young’s modulus and Poisson’s ratio) are
used to show the suitability of the truss-based approach to analyze large and complex porous
domains.

Finally, relevant conclusions of this work as well as possible future improvements on this research
are presented in Chapter 7.
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Chapter 2

Response to Reviewers’
Observations

In this chapter are presented the responses given to the Reviewers’ observations that have arisen
from the Revision Stages of the corresponding Peer Review Process that each article of this Com-
pendium has followed.

2.1 Non-Manifold Modelling of Lattice Materials using Kine-
matically Constrained FEA

2.1.1 Responses to Referee 1

Table 2.1: Responses to Reviewers’ observations of article “Non-
Manifold Modelling of Lattice Materials using Kinematically Con-
strained FEA”.

Item Observation Actions Taken
1 Is there any limitation

of modelling shapes of
arbitrary geometric shape
(morphological characteris-
tic) with Kelvin cells?

We have addressed the observation of the Reviewer. In
Section 3.3 (above Fig. 7) the following paragraph was
inserted:
“Notice that small details of the Elephant (e.g. ear
and body creases) disappear in the modelling process.
Kelvin cells convey a sampling of the original shape.
Therefore, high frequency features disappear, repre-
senting a limitation of the shapes modelled by Kelvin
cells”
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2 How the approach was val-
idated beyond error analy-
sis?

To abide the Reviewer’s observation we have added
along the manuscript text to express the need to val-
idate our approach with laboratory experiments. We
performed the following actions:
1) At the end of the Abstract, we modified the text
that refers to the Future Work. We included this text:
“Future research may be addressed in contrasting the
numerical results with real laboratory tests.”
2) We inserted in Section 5 (Conclusions and Future
Work) the following text: “Future research is required
in contrasting the results presented in this manuscript
with laboratory experiments.”
3) We added a new Section (4.3 Advantages and Disad-
vantages) in which the need for physical experimental
verification of our approach is expressed.

3 The advantages and the
shortcomings of the pro-
posed approach should be
made more explicit in Sec-
tion 4 of the paper. How
about computation itself?

In order to fulfil the Reviewer’s requirement we have:
1) At the beginning of Section 4.1 Comparison of the
2.5D FACEs and 3D B-Rep models, we added a discus-
sion about the computational advantages of the 2.5D
model in comparison to the 3D model.
2) Added a new header in Section 4 (4.3 Advantages
and Disadvantages).

4 In the Abstract overuse of
dashes should be reduced,
for instance in “In silico
simulations of non triv-
ial 3D slender shapes do
not terminate, usually not
passing the 3D meshing
stage. Slender plates can be
practically finite - element
analysed with 2D FACE
plus thickness elements, but
such 2D elements accept no
Boolean union as they pro-
duce non manifold situa-
tions”.

The Reviewer is right. We have supressed the unneces-
sary dashes from the Abstract. We highlighted in the
Abstract the words from which we removed the dashes.

5 The image and caption of
Figure 1 are separated by
part of the running text.
Please correct.

We have addressed the observation of the Reviewer. In
the original version, the captions (a) and (b) were too
close, giving the impression of intruding running text.
We have corrected them by adding horizontal space
between the two subfigures.

6 Table captions should be
placed above the tables.

We have addressed the observation of the Reviewer.
All the captions of the tables have been placed above.
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7 Continuity of text in 2.3
should be checked.

We have corrected this typo error. In Section 2.3, a
spurious line break was supressed.

8 Width of Table 5 should be
adjusted to page margins.

Table 5 has been adjusted according to the TMCE 2018
template.

9 Figures 13 and 14 are to be
inserted to where they are
referred to in the text.

We have moved Figures 13 and 14 to Section 4, as per
the Referee’s request.

10 Footer inserts should be ad-
justed (cut back) to single
line.

1) In author footer inserts, we removed the duplication
of the name “Oscar Ruiz-Salguero”.
2) In title footer inserts, this observation implies chang-
ing the manuscript title. We thus refer to the Proceed-
ings Editor to guide us in the correct protocol to change
the manuscript title (or authorise us to locally shorten
it in the footer).
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2.2 Direct Scalar Field - to - Truss Representation and Stress
Simulation of Open Pore Domains

2.2.1 Responses to Referee 1

The contribution is focused on providing simplified geometric representations for real (non-simulated)
porous materials that could be suitable for finite element analysis. In particular a quite simple direct
conversion from CT scans to a truss graph representation, related to medial axis skeleton extraction.
Actually the results provided by the proposed technique are limited to 1D skeleton representations
not supporting surface medial axis portions of the simplified material representation, as authors
acknowledge.

Table 2.2: Responses to the observations of Referee 1 of article “Di-
rect Scalar Field - to - Truss Representation and Stress Simulation
of Open Pore Domains”.

Item Observation Actions Taken
1 I found the proposed simplification

quite simple and seemingly mostly
based on ref [JST16]. Please bet-
ter justify the difference between the
proposed medial axis extraction and
[JST16].

We thank the Referee for the valuable com-
ment. To abide by the Referee’s observa-
tion, we have made multiple changes to the
manuscript to justify the difference between
our approach and the one in [JST16]:
(1) We have added the following text in the
final paragraph of Sec. 2.1:
“However, the mass of the whole domain can-
not be retrieved from the final skeleton.”
(2) In Sec. 2.3 we have added the item 2(c):
“Our algorithm avoids possible disconnections
in the curve skeletons that may occur in
[JST16]”.
(3) We have modified the second paragraph of
Sec. 3.1. The modified piece now reads:
“This is an important difference with previ-
ous methods (e.g. [JST16]), where 1-manifold
wires are considered only if they have received
a large amount of mass from the boundary vox-
els.”

2 Once medial axis representation is
extracted its simplification involves
very simple operations that are how-
ever too coarsely described (e.g. are
there parameters to be set by the
user? which ones?).

We thank the Referee for the valuable com-
ment. To address the observation of the Ref-
eree, we have specified in Sec. 3.2 two param-
eters (L, P) that must be set by the user.
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3 I found many similarities in terms of
addressed problem and proposed so-
lutions with ref [COU*18] with the
exception of the direct derivation
of the truss graph from 3D scalar
fields (voxel representation from CT
scan) instead of passing for BRep
description. This is good but un-
fortunately no comparison has been
provided to show that this short-
cut is still able to guarantee good
approximations for the intended us-
ages (FEA). I think this is the main
problem with this work and I would
see possible acceptance of this con-
tribution as subject to some quanti-
tative results that actually demon-
strate if not the equivalence, at least
the fact that not having to compute
Bref representation to extract the
truss graph entail a reasonable per-
formance degradation tradeoff.

We thank the Referee for the valuable com-
ment. To address this observation we have:
(1) Improved the shear simulation, so that the
results of the Voxel and Truss models can be
compared.
(2) Run a tension test to get more experimental
data.
(3) Calculated and reported some error mea-
surements of the Truss model in comparison
with the Voxel model (see Comment 5 below).
(4) Presented in a clearer way the compu-
tational (memory and time) efficiency of the
Truss model (see Comment 6 below).

4 Quantitative results are not even
given in terms of approximation
quality parameters between voxel
set and truss graph representations.

We thank the Referee for the valuable com-
ment. To abide by the observation of the Ref-
eree, we have included in Sec. 4.1 a quantita-
tive comparison of the porosity parameter be-
tween our truss simplification and the voxel set.

5 Even if I do not have enough ex-
pertise to go into detailed judgment
of the application part regarding
stress-strain computation, I appre-
ciate the declared application value
but the comparison still seems to me
quite qualitative and scarcely com-
mented.

We thank the Referee for the valuable com-
ment. To address this observation we have
calculated and reported in Sec. 4.2 some error
measurements of the Truss model in compari-
son with the Voxel model:
“Taking the maximum displacements of the
Voxel model as reference values, the error of
the Truss model in the estimation of X dis-
placements in the shear test is 12.5%. In a
similar fashion, the error in the estimation of
Z displacements in the tension test is 15.1%.”
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6 Moreover Table 2 does not report
any timings comparisons while it
seems to me they should be relevant
as well.

The Referee is right. We have included a com-
parison of the computing time expenses be-
tween the two models in Section 4.2:
“The saving factor in all categories (FE nodes,
elements, equations and memory) in favor of
Truss graph data is in the order of 102. To
determine how such saving factor impacts the
computing time, we recur to the order of
growth O of the execution time in terms of the
number of nodes. In the worst- case scenario,
the bandwidth of the stiffness matrix is O(N2),
where N is the number of nodes. Hence, the
time complexity of a FEA simulation is given
by the term O(N3) ([FSSC11]). Then, a differ-
ence of 102 in the number of elements, implies
a difference in the order of 106 in the num-
ber of operations that need to be performed to
simulate the models.”

7 Minor issues to be fixed: What’s
the difference between skeleton and
truss graph. Is the truss graph a de-
noised skeleton? Please give a more
formal definition of truss graph.

We thank the Referee for the valuable com-
ment. To abide by the Referee’s observation,
we have added the definition of Truss Graph:
“Truss Graph. The bar + node representation
of SK(B), with the radii and dimensions of bars
and nodes being determined by the mass in-
formation present in SK(B). The Truss graph
includes kinematic and torque restrictions re-
quired to mimic joints of the physical equiva-
lent frame.”

8 On page two the following part
is written twice: “Given a 2-
manifold.4 points”

We thank the Referee for the comment. We
have corrected this error. The repeated para-
graph has been removed.

9 On page 2: “surface skeleton (2D)
surface” I think there is a “surface”
too many.

We thank the Referee for the comment. We
have corrected this typo error. The repeated
word has been suppressed.
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10 In sec. 2.3 differences and possi-
ble advantages of the proposed ap-
proach with respect to [COU*18]
should be clearly stated.

We thank the Referee for the valuable com-
ment. To abide by the Referee comment, we
have modified the item 1 of the list in Sec. 2.3
as follows:
“1. Synthesis of the Truss graph directly from
the Voxel scalar field B, without passing by the
computing- and labor - expensive skin B. No-
tice that this is an important advantage with
respect to [COU*18], where a smooth, water-
tight, manifold, high-quality triangular mesh
is required to obtain the medial-axis using the
Mean Curvature Flow approach reported in
[TAOS12].”

11 Figure 4 should be referenced as Al-
gorithm 1.

We appreciate the Referee’s comment. Figure
4 is now referenced as Algorithm 1.

12 Page 5. “The high level of noise in
Fig.4” sure that is Fig.4?

We appreciate the Referee’s comment. We
have corrected this typo error. The paragraph
now reads:
“The high level of noise in Fig. 5 is removed
by replacing quasi linear paths with a straight
edge.”

13 Unreferenced Fig.8 (which should be
Algorithm 2).

We appreciate the Referee’s comment. To
abide by the Referee’s observation, we have:
(1) Changed the reference from Figure 8 to Al-
gorithm 2.
(2) Added in the first paragraph of Sec. 3.2
the following text:
“Algorithm 2 presents a description of the pro-
cedure to obtain the Truss graph from the Me-
dial Axis.”

14 It seems to me that Fig.9 (a) and
Fig.10 (a) are different rendering of
the same structure. Fig. 9 and 10
should be fused in a single clearer
figure.

The Referee is right. We have merged former
Figures 9 and 10 into current Figure 7. We also
have added new results to the current Figure
7, in concordance with Comment 6 of Referee
2.

15 Fig.11d and 11c should be switched
in position.

We thank the Referee for the comment. We
have switched Figures 11c and 11d, as per the
Referee’s request.

2.2.2 Responses to Referee 2

The paper describes a method to extract a truss representation starting from a scalar field (voxels)
with no need to explicitly calculate an intermediate BRep representation. As far I understand,
their proposal is based on the idea of extracting the medial axis by contraction, removing defects,
and finally convert the clean medial axis to a truss representation. This pipeline sounds good, but
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from my point of view, the paper needs some major revision to make the reader follow the pipeline
and be convinced of the results.

Table 2.3: Responses to the observations of Referee 2 of article “Di-
rect Scalar Field - to - Truss Representation and Stress Simulation
of Open Pore Domains”.

Item Observation Actions Taken
1 The paper needs some major revi-

sion to make the reader follow the
pipeline and be convinced of the re-
sults.

We thank the Referee for the comment. We
have improved the pipeline explanation and
added new results to improve the quality of
our contribution. We report in this table the
details of the mentioned improvements.

2 Section 3 starts with the first step
of the pipeline. A global overview of
the method is missing. I would add
it just before Section 3.1 to help the
reader follow the paper.

To abide by the Referee’s observation we have
added the following text at the beginning of
Sect. 3:
“In this section we present the implemented
method to estimate a truss graph simplification
from the skeleton SK(B). We use as input the
CT of the sample, expressed as a scalar field f
in the form of voxels. In Section 3.1, we calcu-
late the medial axis of B (MA(B)), which con-
tains information about the mass of B. Then,
in Section 3.2, we use MA(B) with the mass in-
formation to find a truss graph simplification
of B, which is well suited to model bar pore
materials.”

3 Also, Section 3.2 titles “truss graph
from medial axis” but it actually de-
scribes the cleaning operations. I
would suggest to re-title section 3.2
as “Cleaning medial axis” (or simi-
lar) and to move the truss represen-
tation (described in 4.1) in an addi-
tional Section 3.3

The Referee is right. Sect. 3.2 only presented
the cleaning operations and not the whole pro-
cess to obtain the truss graph from the medial
axis. Therefore, we have extended Sect. 3.2 so
that it presents all the steps in Algorithm 2 to
obtain the truss graph. The added text at the
end of Sect. 3.2 reads:
“Wire connectivity in SK(B) is used in con-
junction with the mass information to produce
a truss graph [V,E] (e.g. Figs. 11(c), 11(g)).
Elements in V and E are assumed to be spheres
and cylinders, respectively. Finally, we esti-
mate the radius of each element in V and E by
using its geometric and mass data, as shown in
step 5 of algorithm 2.”
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4 Also, check the usage of the terms
“medial axis” and “skeleton”. In
some parts of the description, they
are used as synonyms, but they are
not, as underlined in the formal def-
initions and in figure 3.

We thank the Referee for the comment. We
have reviewed all the text and have changed
the wrong instances of both terms medial axis
and skeleton.

5 Looking at the result section, a sin-
gle result is shown. I would appreci-
ate some more results (2-3 at least)
and some comparison with previ-
ous works. Is the proposed method
more efficient than previous meth-
ods based on the extraction the in-
termediate Brep? What about the
quality of the generated truss wrt
the previous methods?

We thank the Referee for the comment. We
now present two results of the computation
of the Truss structure from voxel-based do-
mains. Besides, we have added a quantitative
evaluation of the approximation quality of the
Truss representations with respect to the orig-
inal voxel-based samples. A comparison of the
presented voxel-to-truss method with respect
to other related approaches is left for future
work, since it is out of the scope of the present
article.

6 Minor changes: - The Glossary at
the beginning of the paper is redun-
dant. The same definitions are in
the Introduction section and after,
thus it can be removed.

We appreciate the Reviewer’s observation. We
have removed the Glossary to avoid the repet-
itive definitions.

7 - Figure 1b is incomplete. The rect-
angular window is empty. Also, add
to the caption the meaning of sym-
bols in figure 1b.

In order to address the Referee’s observation
we have:
(1) Modified the rectangle in Figure 1(b) so
that it shows an empty space.
(2) Specified in Sec. 1 (just before the def-
inition of k-manifold) that the subset of the
domain in the rectangle is not processed.
(3) Added to the caption the meaning of the
symbols in Figure 1(b): “Skeleton from Solid
in Fig. 1(a). Limbs are formed by curves (e.g.
ci(u), cw(u), 0u1) and local radius ri.”

8 - The definition of a k-manifold
refers to a B(p,r). Please, clarify
that it is a ball centered in p and
having radius r. Be aware that the B
symbol represents the surface in the
following paragraphs. Please, dis-
ambiguate the symbol.

The Referee is right. We have changed the
symbol B(p, r) to Ball(p, r) and have added the
following text to the definition of k-manifold:
“() where Ball(p,r) is an open ball centered at
p with radius r.”

9 - Just after the definition of a skele-
ton, a non-titled paragraph repeats
the definition of medial axis. Please,
remove it.

Please see comment 15 of Referee 1.
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10 - I would add the definition of Truss
graph in the list of formal defini-
tions.

Please see comment 7 of Referee 1.

11 - Section 3.2, at the end of the left
column, refers to Fig. 4 (“the high
level of noise in Fig. 4 ...”), but fig-
ure 4 shows an algorithm and not
an example of noisy medial axis.
Please, check and correct.

Please see comment 12 of Referee 1.

12 - Figure 5: Is there any reason why
the boundary of the noisy medial
axis is curved, while it is straight
when hair is removed? I would inte-
grate figure 5 with the recursive sub-
division applied to fig 5a to obtain
5b, instead of using the additional
figure 6.

In order to address the Referee’s observation
we have:
(1) The boundary of the medial axis of Fig.
5(a) has been changed, so that now it is
straight.
(2)We have added the following text in the
third paragraph of Section 3.2 to clarify to the
reader that the hair removal and linearization
are two independent processes:
Once the hairs have been suppressed, it is nec-
essary to execute a linearization of the resul-
tant medial axis to eliminate oscillations and
high curvatures in the node - to - node paths.”

13 - Figure 9b shows an intermediate
skeleton, while the caption says it is
the medial axis. Please, check. Ad-
ditionally, the text says that solid
lamps are present. Please, underline
solid lamps in the figure.

The Referee is right. We have placed a new
caption that corresponds to what is presented
in the former Figure 9 (current Figure 7). We
have also marked some zones in the figure to
ease the visualization of the solid lumps.

14 Also, add an additional subfigure
(9c) to show the final result.

Please see comment 14 of Referee 1 and its re-
spective response.

15 - It would be better to use the LA-
TEX construct for algorithms in-
stead of using figures showing pseu-
docode.

We have addressed the observation of the Ref-
eree. We have used Latex code instead of fig-
ures to show the algorithms.
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2.3 FEA Structural Optimization Based on Metagraphs

2.3.1 Responses to Referee 1

Table 2.4: Responses to the observations of Referee 1 of article “FEA Structural Optimization
Based on Metragraphs”.

Item Observation Actions Taken
1 This is very interesting paper aimed to

improve structural optimization of 2D
shapes. Paper is well structured and
has only minor suggestions:
1. Abstract must not exceed 150 words.

The Abstract has been rewritten to ful-
fill the Reviewer’s requirement.

2 2. The total number of pages must be
no more than 10.

The manuscript has been on one hand
shortened, but on the other hand addi-
tional material has been added to abide
by the Referees’ observations. At this
time, the manuscript has 12 pages. We
are, obviously, ready to assume the ex-
tra pages fee, as per the SOCO2018 reg-
ulations.
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2.3.2 Responses to Referee 2

Table 2.5: Responses to the observations of Referee 2 of article
“FEA Structural Optimization Based on Metragraphs”.

Item Observation Actions Taken
1 The paper presents

interesting initial re-
sults for a practical
problem, it looks like
a good paper, but the
results are compared
only qualitatively,
there is no discussion
of computational time
demands against the
quality of the solu-
tion in comparison to
competing approaches.

To abide by the Referee’s observation, we have inserted Sec-
tion 4.3 (Computational Demands of the Proposed Algo-
rithm). In this section we added:
a- Table 1, which presents the computational expenses of
our algorithm.
b- The following text:
“Due to the material removal procedure associated to the
presented algorithm, given the mesh Mi = (Ni, Ei) at it-
eration i we can say: |N0| > |Ni| and |E0| > |Ei|, where
M0 = (N0, E0) is the initial mesh. In addition, |N0| > |E0|.
Therefore, the computational demands of one iteration of
the algorithm can be expressed as a function of N0 and the
bandwidth W of the stiffness matrix calculated during the
FEA simulation [5].
Table 1 presents the computational expenses of our algo-
rithm. Notice that the time complexity and memory com-
plexity of an iteration of our algorithm is dictated by the
term O(N2

0 ). This term corresponds to the dominant gen-
eration of the graph and the metagraph associated to the
FEA mesh.
A comparison of the computational resources used vs. the
efficiency of evolution is beyond our capabilities. One rea-
son for this limitation is that the measure of the quality or
efficiency of an evolution is itself an open research question
at this time.”
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2 Also, while the al-
gorithm compares
results in principle
with evolutionary
based approaches,
there is very little of
evolutionary approach
in it (no crossover, no
mutation, just basi-
cally iterative greedy
approach).

To abide by the observation of the Referee, we have
1- Added the following text to the Section 2.4 of the
manuscript:
“The present manuscript intends to illustrate a methodology
to use graphs to administrate the information of neighbor-
hood and static connectedness to support an independent
shape evolutionary strategy. We do not try in the present
status of our manuscript to evaluate or apply alternative
evolutionary strategies (e.g. mutation and crossover oper-
ators [7,9]). Our future work seeks to widen the variety of
stimuli (kinematics, abrasion, temperature) that drive evo-
lution in the nature domain.”
2- Modified the end of Abstract to:
Future work addresses the implementation of such stimuli
type, the integration of our algorithm with other evolution-
ary based techniques and the extension of the method to 3D
shapes.”
3- Modified Section 5.2 (Future Work) to mention the need
of further research in the integration of our algorithm with
other evolutionary based techniques.

2.3.3 Responses to Referee 3

Table 2.6: Responses to the observations of Referee 3 of article “FEA Structural Optimization
Based on Metragraphs”.

Item Observation Actions Taken
1 This paper presents and alternative design

for FEA Structural Optimization. The pa-
per is generally well written, with a good
structure and adequately referenced. It
proposes a different approach to deal with
non-valid FEA configurations. The paper
could give more emphasis to the evolution-
ary component.

Please see responses to Observa-
tion 2 of Referee 2.
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2.3.4 Responses to Referee 4

Table 2.7: Responses to the observations of Referee 4 of article “FEA Structural Optimization
Based on Metragraphs”.

Item Observation Actions Taken
1 The title of the paper is very illus-

trative of its contents. I found the
subject relevant and the approach
worth pursuing. The manuscript is
completed with a set of simulation
results illustrating the merit of the
contribution. Introduction could be
rewritten to appeal to a wider audi-
ence. As it is written, it is very hard
to understand what is the problem,
the approached followed and how it
related to the existing approaches.
This can only be appreciated after
reading most of the paper.

We have added a paragraph to the In-
troduction, offering a justification for the
meta-graph approach. This paragraph had
to, however, be very concise, not to extend
our already outsized manuscript. This ad-
ditional paragraph reads:
“Shape evolution, in nature, demands that
the shape continue to execute the function
while evolving. This circumstance obliges
each evolution individual to transmit force,
torque, motion, etc. as per the constraints
imposed to it by the stimuli and demands
that it receives. This stability in function
designates neighborhoods of the shape as
“indispensable”, while others are “expend-
able”. This manuscript focuses on the syn-
thesis, classification and administration of
indispensable vs. expendable shape neigh-
borhoods of a given shape, via graph mod-
eling”
In addition, some grammar errors of the
Introduction and general manuscript have
been corrected.
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2.4 FE-Simulations with a Simplified Model for Open-Cell
Porous Materials: A Kelvin Cell Approach

2.4.1 Responses to Referee 1

The paper proposes a new approach in dealing with FEA of foam like structures which is known as
a difficult subject to tackle in modeling of porous materials.

It seems to be enough evidence in the open literature that such a cell model is suitable for
modeling porous materials in this case rigid metallic porous materials. A specific type of constraints
as well as boundary conditions is used in the modeling along with a simpler type of element which
enables the analysis of up to 1000 cells. The literature presents models based on complex elements
solid 3D elements with multiple degrees of freedom which it is known that is not suitable for large
models.

Table 2.8: Responses to Reviewers’ observations of article “FE-
Simulations with a Simplified Model for Open-Cell Porous Materi-
als: A Kelvin Cell Approach”.

Item Observation Actions Taken
1 The domain characteriza-

tion needs to be determined
as the result is sought us-
ing numerical approach so
specific size of nodes, links
is assumed based on some
undisclosed source (in the
paper the density of the
porous material is called for
this assumption but other
configurations will provide
same density. I believe that
the authors need to provide
the reasons for their size se-
lection. A slight change
may significantly influence
the results so this aspect
needs to be set.

To abide by the observation of the Referee, we have
effected these changes in the manuscript:
1. We moved misplaced former “Table 1. Relative
density of the analyzed domains” from Section “3.
Methodology” to Section “4. Results”, because it is
a result (not an input) of our work. This table is now
Table 2.
2. We added in Section “3. Methodology” this text:
“The specification of the Kelvin Cell properties (mate-
rial and statistical dimensions) corresponds to an ex-
isting physical sample with height 100 µm and average
ligament radius 5 µm [8].”
3. We added the size of the Kelvin Cell “(current)
Table 1. Simulation Set Up”
4. We have clarified and ordered “(current) Table 1.
Simulation Set Up”.
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2 Further the model is built
automatically built by gen-
eration of nodes, beams and
joining base on a pre-set
algorithm. However, lit-
tle explanation is provided
with respect to selection
of the solid element 182.
Same issue needs to be ad-
dressed in 3.3.1 for BEAM
188. There are few options
which should be discussed
and eventually, the selection
may come clear.

We have addressed the observation of the Referee. A
discussion about the selection of elements has been
added in Section “3.2 Generation of BREP and Truss
Models”:
1) Solid Case: In Section 3.2.1: “For full 3D FEA
simulation we use elements SOLID185 [1]. These el-
ements are first order ones (2 nodes/edge) and ac-
cept linear and non-linear analysis. Other ANSYS ele-
ments (SOLID186, SOLID187) have higher order, thus
demanding more computational resources. Elements
SOLID186 and SOLID187 are not needed for elastic
compression loads.”
2) Truss Case: In Section 3.2.2: “We use BEAM188 for
the FE analysis. This is a first order element and serves
linear elastic loads (our simulation domain). ANSYS
element BEAM189 was not selected since it has higher
order (not essential in our case) and thus demands
larger computational resources [1].”

3 Further, a compression test
is simulated on both solid
model and the truss-based
model. Young modulus and
Poisson ration are evaluated
for the results of the two
simulations while the ref-
erence is assumed in the
BREP model. Further, the
computation resources are
discussed. The results are
presented in a string-like
format. There are 10 table
that are difficult to follow. I
suggest to attempt to set all
results in a sole table where
all the information is avail-
able at one glance.

We thank the Referee’s observation. We attempted
to reduce all tables to one. This reduction was not
possible, because some tables were incompatible with
others. Therefore, we:
(a) Reduced from 10 to 3 Tables, merging the compat-
ible material.
(b) We introduced XY plots which display the infor-
mation in the tables, for the benefit of the reader.
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4 There are 21 figures pre-
sented in the paper. I find
many as not necessary. For
moduli estimation there are
used 6 figures which I find
not all relevant. I suggest re-
ducing the number of figure
to a minimum necessary as,
the way the figures are pre-
sented bring no information
to the value of the paper.

We have addressed the observation of the Referee.
Multiple editorial changes have been made:
1) We have reduced the number of figures from 21 to
10.
2) In Sections 1 (Introduction) and Section 2 (Lit-
erature Review), we have also effected multiple local
changes to improve the readability of our manuscript.
3) In Section 3 (Methodology), we have suppressed un-
necessary tables, figures and non-relevant implementa-
tion details, to present our approach in a clearer way.
4) In Section 4 (Results and Discussion), we have: (i)
deleted non - relevant tables and figures, (ii) re-written
the text to clarify the advantages and disadvantages of
our approach.
5) In Section 3 (Methodology), we have added a para-
graph discussing the difference between “Torque en-
abled” vs. “Torque disabled” Trusses. We have cor-
respondingly used these terms in the text and in the
reduced set of Tables and Figures.

5 The approach is interesting
although the errors for small
number of cells is relative
large for even once cell. I
assume that introduction of
some anisotropic terms may
improve the matching of the
results provided for small
number of cells by the two
approaches: solid modeling
vs. truss.

We thank the Referee observations.
1) Considering the Reviewer comment about the accu-
racy of the Truss approach, we have added the follow-
ing text in section 4.2 (Mechanical Moduli Estimation):
“For few (less than 8) Kelvin cells, the Truss model
does not correctly mimic the BREP model. However,
notice that the computational cost of the BREP model
is so large that only 12 Kelvin Cells can be modeled
in total. It is worth remarking that for larger domains
(8 or more cells), the Torque-enabled Truss model al-
most halves the error of the Torque-disabled model in
the estimation of the Young’s modulus, being indeed a
stiffer model than the one used in [8].”
2) Regarding the Referee comment about the introduc-
tion of anisotropic terms, we have included this text in
Section 5.1 (Future Work):
“The Kelvin cell considered in this article is isotropic
(i.e., both geometric and lattice manufacturing con-
ditions). On the other hand, in spite of geometrical
symmetry, anisotropy may be also introduced by con-
struction orientation (e.g. additive methods). This
fact shows that anisotropy in lattice materials is a very
extensive and complex research area, which we do not
intend to undertake in the present work.”
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Chapter 3

Non-Manifold Modelling of Lattice
Materials using Kinematically
Constrained FEA

Diego Montoya-Zapata1, Oscar Ruiz-Salguero1, Juan Lalinde-Pulido2, Juan Pareja-Corcho1, Jorge
Posada3

1 Laboratory of CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.
2 High Performance Computing Facility APOLO, Universidad EAFIT, Medelĺın, Colombia
3 Vicomtech, Spain.

3.1 Context

Diego Montoya-Zapata, Oscar Ruiz-Salguero, Juan Lalinde-Pulido, Juan Pareja-Corcho,
and Jorge Posada. (2018). Non-manifold modelling of lattice materials using kinemat-
ically constrained FEA. Proceedings of the 12th International Symposium on Tools and
Methods of Competitive Engineering (TMCE 2018). ISBN: 978-94-6186-910-4. Las
Palmas de Gran Canaria, May 7-11, 2018.

3.1.1 Proof of Publishing

This publication presents the results of a collaborative work between the following institutions: (1)
Universidad EAFIT, represented by Laboratory of CAD CAM CAE Research Group and the High
Performance Computing Facility APOLO, and (2) Vicomtech.
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Figures 3.1–3.3 show proofs of the publication of the article Non-manifold modelling of

lattice materials using kinematically constrained FEA in the Proceedings of TMCE 2018.
Figures 3.1 and 3.2 present the front matter and the edition notice of the Proceedings Book of
TMCE 2018. In Fig. 3.3 is depicted the portion of the table of contents that references our article
(pp. 657).

Figure 3.1: Front cover of the Proceedings Book of TMCE 2018.

23



II 

Disclaimer: 

The Organizing Committee of the International TMCE 2018 Symposium, the Delft University of Technology, 
the University of Las Palmas de Gran Canaria, Spain, accept no responsibility for errors or omissions in the 
papers, and shall not be liable for any damage caused by the contents of the published papers. 

All rights reserved. 

This publication may not be reproduced in whole or in part, stored in a retrieval system, or transmitted in any 
form or by any means without the written permission of the Organizing Committee of the International TMCE 
2018 Symposium. ( info@tmce.org ) 

Published by the Faculty of Industrial Design Engineering, Delft University of Technology 
Landbergstraat 15, 2628 CE Delft, the Netherlands 

Cover design: Mr. Shahab Pourtalebi, Delft University of Technology, the Netherlands 

ISBN/EAN (Digital/Printed Proceedings): 978-94-6186-910-4 

© 2018 The Organizing Committee of TMCE 2018 
Printed in the Netherlands 

Figure 3.2: Edition notice of the Proceedings Book of TMCE 2018.

24



 

 XI 

Development of thickness prediction strategy in incremental forming for 
improvement in part evaluation 
Satwik Priyadarshi (IN), Saurabh Verma (IN), Puneet Tandon (IN) 567 

Triply periodic helical structure of minimal surfaces produced by additive 
approach and its mechanical properties 
Katarina Monkova (SK), Peter Monka (SK), Ivana Zetkova (SK) 577 

Modeling, design and analysis 585 
An image-based method to classify power lines in LIDAR point clouds 
Sebastián Ortega (ES), Agustín Trujillo (ES), José Miguel Santana (ES), 
José Pablo Suárez (ES) 585 

G-codes and free-form motions 
Ben Cross (UK ), Robert J. Cripps (UK), Jason Matthews (UK), 
Glen Mullineux (UK) 593 

Automated retrieval of arbitrary complex similar CAD-parts based on dimensionless 
invariants 
Dennis Kaiser (DE), Stephan Rudolph (DE) 603 

Tennis string-bed response measurement  
Rod Valentine (UK) 615 

Development and implementation of behavioural modules for platform-based 
mechatronic design 
Zuhal Erden (TR) 625 

Geometry and image processing 635 
Mesh segmentation driven by bijective parameterization 
Daniel Mejia (CO), Oscar Ruiz-Salguero (CO), Carlos Cadavid (CO), 
Jairo R. Sánchez (CO), Jorge Posada (CO), Diego A. Acosta (CO) 635 

Predicting haptic perception of textile texture and analysis between smooth 
rough preferences through images 647 
K.V. Rakhin (IN), Prasad S. Onkar (IN) 

Non-manifold modelling of lattice materials using kinematically constrained FEA 
Diego Montoya-Zapata (CO), Oscar Ruiz-Salguero (CO), Juan Lalinde-Pulido (CO), 
Juan Pareja-Corcho (CO), Jorge Posada (CO) 657 

Types of free-form motion 
Ben Cross (UK), Robert J. Cripps (UK), Glen Mullineux (UK) 671 

3D retrieval in huge CAD databases: New shape-based similarity calculation 
approach 
Ahmed Fradi (FR), Borhen Louhichi (FR), Mohamed Ali Mahjoub (FR), 
Benoit Eynard (FR) 681 

4 LIST OF CONTRIBUTING AUTHORS 693 

Figure 3.3: Portion of the table of contents of the Proceedings Book of TMCE 2018.

25



3.2 Abstract

In geometric modelling and finite element analysis (FEA) of lattice materials, the datasets are
usually massive, and thus intractable for even the most basic workpieces. Since slender and thin
shapes are involved, the size of traditional 3D finite elements is minute, and thus the model sizes
explode. 3D modelling of slender shapes is only accepted by very basic shapes, or else, through
material tests. In silico simulations of nontrivial 3D slender shapes do not terminate, usually not
passing the 3D meshing stage. Slender plates can be practically finite element analysed with 2D
FACE + thickness elements, but such 2D elements accept no Boolean union as they produce non
manifold situations. The existing alternative, of replacing the Boolean unions by node constraints, is
not well studied. Responding to this void, this manuscript presents the non-manifold data structure
and FEA modelling of complex lattice workpieces using 2D FACE elements assembled with several
linear kinematic constraints (also called 2.5D FEA). The data structure is a variation of the 3D solid
models which accommodates in natural manner the 2.5D models. We present comparisons between
2.5D vs. 3D FEA for the cases which actually terminate (i.e. for very elementary workpieces),
showing a numerical result agreement which is reasonable for many early design scenarios using
lattice materials. Future research may be addressed in contrasting the numerical results with real
laboratory tests. Future work is required in the modelling of more complex kinematic constraints
among the 2D FACEs, which would permit to simulate a broader range of materials and designs,
as well as the extension and modification to this approach for emerging applications in the field of
additive manufacturing.

3.2.1 Keywords

Lattice materials, non-manifold modelling, kinematic constraints, computational mechanics, addi-
tive manufacturing

Nomenclature

1-Manifold in
R3:

A set of points in R3 in which all local neighbourhoods are homomorphic
to the interval (0, 1). A curve in R3 which contains no self-intersections.

2-Manifold in
R3:

A set of points in R3 in which all local neighborhoods can be flattened (i.e.
are homeomorphic to a disk in R2). A surface in R3 which contains no
self-intersections.

2 1
2D: Finite Element representing a thin wall by a 2D FACE with thickness

(noted also as 2.5D).
BB Bounding box. Smallest orthogonally oriented rectangular prism contain-

ing the workpiece.
B-Rep: Representation of a solid in R3 by using its boundary or skin.
CT: Computer Tomography.
DOF: Degree of freedom.
E: Young’s modulus of the bulk material (GPa).
FACE: A 2-manifold in R3 with border.
FEA: Finite Element Analysis.
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FEM: Finite Element Method.
V : Poisson’s ratio of the bulk material (dimensionless).
VoXel: Volumetric PiXel or cubic cell in R3 located in a 3D discrete grid as dictated

by Medical or Industrial Imaging.
Ω: Subset of R3 that represents the workpiece.
Ki: Kinematic Constraint involving points, straight line segments, etc.

3.3 Introduction

Computational mechanics simulations of lattice or porous materials involve massive geometry
datasets. The geometries of these materials have two independently undesirable characteristics,
which produce large datasets: (1) cell walls and links are usually very slender, and (2) cell sizes are
very small when compared to the functional dimensions of the latticed workpiece. Together, (1)
and (2) make unfeasible the 3D full geometry simulation of a latticed workpiece.

Finite element analyses with 3D elements require a 2-manifold Boundary Representation (B-
Rep) of the multiple SHELLs that bound the solid or BODY. Current solid modelling techniques
guarantee such manifold properties when the SHELLs are the result of Boolean Union among
the boundaries of small solid pieces that compose the lattice workpiece. FEA meshing is fully
understood and correctly implemented for such solids. However, the 3D elements required to mesh
such BODYs must have an aspect ratio in the order of 1.0. Therefore, the 3D elements (e.g.
tetrahedral, block) must be exceedingly small due to the slender aspect of the lattice walls. The
result is an explosive number 3D FEA elements.

For slender shapes, FEA provides 1-manifold and 2-manifold elements, which allow represent-
ing a rod (1D) or a thin plate (2D) with large FEA Beam or Shell elements, respectively. This
approximation allows posing a 1D or 2D tractable FEA problem for slender workpieces. However,
a problem arises as the rod or plate is mechanically attached (welded, screwed, fastened) to other
rods or plates, since the Boolean union of several 1- or 2-manifolds incident to a point violate
manifoldness. Such a violation immediately impedes the FEA process.

Current FEA software provides a way (called 2.5D) to by-pass the non-manifold character of
such Boolean unions by replacing the union with sets of kinematic constraints among the nodes
of the Beam and Shell elements meant to be mechanically fastened. Each FACE, independently
considered, is a 2-manifold with border. Its border is, as usual, modelled as a set of EDGE sequences.
However, an EDGE may represent the incidence of more than 2 FACEs, which is a fundamental
departure from classic manifold modelling. In this approach, kinematic constraints are enforced
among the FEA nodes (belonging to several FACEs) that happen to fall onto, or be near to, a given
EDGE. Such constraints replace the Boolean union of the several FACEs incident to the EDGE.

Current research does not define the type of constraints placed among nodes of the various
FACEs being incident to an EDGE. For example, given element segments ab and cd , one could
have (i) a = c, b = d, and all interior points of ab be coincident with interior points of cd, (ii) a = c
and b = d, with freedom in all intermediate points of the segments, (iii) node a being in the interior
of segment cd, (iv) orientation equality (enforced or waived) of the coordinate systems attached to
the nodes a and c in (i) - (ii), (v) distance constraint between nodes (i.e. spherical joint), (vi) spring
constraints between nodes (i.e. weighted spherical joint), etc. There is also an emerging need for
simplified computational models of the material behaviour when engineered lattice materials are
produced with additive manufacturing techniques. For instance, the work of [3] shows interesting
experiments of compression of octet truss and Kelvin cell unit cells foams, but the simulations are
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performed with classical FEM methods.
This article contributes in the following aspects: (1) compares the accuracy and feasibility using

of 2.5D FEA vs. full 3D FEA for modelling thin wall lattices, (2) develops and uses a formalism (data
structure) to model lattice workpieces and translate them into 2.5D FEA models, (3) implements
and presents the results of constrain models (i) and (ii) above. Our investigation shows a dramatic
superiority of the 2.5D FEA against 3D FEA models, as only trivial load computations of the 3D
case actually terminate.

Section 2 reviews the existing literature on the topic and positions this article’s contributions.
Section 3 discusses the Methodology used to implement our contribution. Section 4 presents the
results of the tests run to assess our method. Section 5 concludes the manuscript and informs of
the improvements needed and research fields open as result of our approach.

3.4 Literature Review

3.4.1 Computational Modelling of Porous Materials

Several computational feasible models for FEA have been used to study the mechanical behaviour
of porous and lattice materials with slender walls. These models can be divided in four groups:
(1) VoXel based models, (2) B-Rep based models, (3) tessellation based models, and (4) unit-cell
models.

VoXel Based Models

VoXel based models are derived from Computer tomography (CT) scans of the actual specimen. A
VoXel is a 3D cubic PiXel. VoXel based models have been used to study the mechanical behaviour
of porous materials in [4–7]. VoXel models are easily obtained from CT images. However, these
models have two disadvantages: (1) they produce an intractable amount of finite elements (blocks,
hexahedra) [4], and (2) geometrical inaccuracies may result from converting directly VoXels into
finite elements [4]. The first drawback impedes the FEA of large domains using VoXel based models.

B-Rep Based Models

B-Rep models are also derived from CT scans of the actual workpiece. However, in contrast with
VoXel based models, B-Rep based models require the smoothing of the VoXels of the CT images
and a legal B-Rep of the domain must be obtained. For this reason, a precise description of the
geometry of the actual domain is obtained [8]. These models are widely used to perform mechanical
characterizations of porous materials [4, 8–10].

However, the main drawback of B-Rep models is the massive number of elements required to
mesh the final volume [9]. This is reflected in the large amount of memory and time consumed in
the generation of the model [6, 10]. Hence, as for VoXel based models, it is not possible to analyse
numerically large domains represented with B-Rep based models [6, 10].

Tessellation Based Models

A 3D tessellation is a division of a finite volume into cells, so that the cells form a partition of the
initial domain. In general, the cells are irregular and randomly arranged. Different tessellations are
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used to study porous and lattice materials, mainly Voronoi [11–13] and Laguerre [14–16] tessella-
tions. Tessellation based models for FEA are obtained by meshing the cells of the tessellation with
Shell finite elements.

When a preprocessing of the domain is carried out, tessellation based models are able to mimic
some morphological characteristics of the actual specimen, such as the porosity, mean cell size
and mean cell wall thickness [12–14, 16]. However, they are not capable to represent faithfully the
geometry of the actual domain.

Unit-Cell Models

Unit-cell models consider that the domain is composed by arrays of regular polyhedrons, with
Kelvin cells being particularly popular ([17–21]). Other structures addressed include cubic spherical
or cruciform-pyramidal cells [18].

Unit cell domains allow addressing domains larger to the ones simulated with B-Rep or VoX-
els [13]. However, the simplification itself and constraint networks must be modelled and con-
structed. Such endeavours are central to the present article. Unit cells are also very relevant in
additive manufacturing techniques, especially when micron scale mesoscopic structures are produced
for the design of specific properties of materials (as for instance Kelvin foams) [3].

3.4.2 Kinematic Constraints in FEA of Lattice Materials

Addition of kinematic constraints has been considered to study different materials. For example
in [22,23] a variational multiscale method is used to study multiple-point constraints on composite
beams of two or more shear deformable layers stacked together.

Incidence of elements having different dimensions (e.g. beam-to-shell, shell-to-solid) is addressed
in [24]. Ref. [25] uses kinematic constraint for the non-linear analysis of fan blades. We have not
found usage of kinematic constraints for lattice materials.

3.4.3 Non-Manifold Data Structures for Applied Mechanics

Non-manifold modelling is relevant when different dimensionality structural members (e.g. 1D
Beams, 2D Shells, 3D Blocks) are connected. Ref. [26] presents the Radial Edge structure and
Ref. [27] discusses a faster improvement of it (Partial Entity structure). Lately, renewed interest
has appeared in non-manifold structures: [28] and [29] are improvements of Radial Edge, in the
data structure domain, without application. Refs. [30] and [31] address non-manifold meshes in
Computer Aided Design, without particular application domain.

3.4.4 Conclusions of the literature review

The representations used to model slender wall elements are: (1) VoXel, (2) B-Rep, (3) tessellation,
and (4) unit-cells. VoXel and B-Rep based models are computationally inefficient. The use of
tessellations requires a preprocessing of the domain. We also detected that FEA with kinematic
constraints has not been used to analyse lattice domains.

In response to these limitations, this article assesses the accuracy of 21
2D FEA model with

kinematic constraints to represent a lattice composed by Kelvin cells. We show the feasibility of
this model to perform mechanical studies of large and complex-shape domains. We compare the
2.5D FEA model with constraints against the 3D FEA model.
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We implement a data structure to treat 2-manifold violations in lattice domains, since we found
that this problem has not been addressed previously in the literature. This data structure allows
the manipulation of large domains and the setting of different types of kinematic constraints to
study the mechanical response of lattice materials. Contributions of this article are summarized in
Table 3.2. Our article does not include experiments with actual probes.

Table 3.2: Contributions of this article with respect to state of the art in the domain of in-sillico
experiments.

Aspect References Current status Our contribution
Computational
modelling of lattice
materials

[3, 4, 6, 9, 10,
12–14,16]

(1) VoXel and B-
Rep based models
are computational
expensive models.
(2) Tessellation based
models are subjected
to an expensive
preprocessing of the
domain

(1) For tractable
datasets, comparison
between Full 3D
B-Rep vs. 2.5D
FACE + Con-
straints approaches.
(2) Large 2.5D FACE
+ Constraints sim-
ulations (intractable
with 3D).

FEA of lattice ma-
terials using kine-
matic constraints

[22,23,25] Kinematic con-
straints are used in
the study of other
structures, but not
for lattice materials

Illustration and tax-
onomy of linear con-
straints in 2.5D mod-
els of lattice materi-
als.

Non-manifold data
structure to manip-
ulate 2D-Shell do-
mains of lattice ma-
terials

[26–31] There are plenty of
non-manifold data
structures, but none
of these has been
used in the study of
lattice materials

Development of
a data structure
to 2.5D FACE +
Constraints FEA
modeling of lattices.

3.5 Methodology

3.5.1 Data Structure for Lattice Materials

Full 3D Boundary Representation

The Geometric Modelling community has standards to express solid models, which are then poured
into file formats (e.g. IGES, SAT, STEP). The correspondence between the mathematical concepts
and internal modeller entities is very complex. Besides the obvious data translators, Application
Programming Interfaces are specified (e.g. [32]) which allow to write generic CAD-client software
that runs on top of diverse actual geometric Kernels [33].

In this manuscript, we use as basis the ACISTM manifoldcompliant terminology (Table 3.3, [2]),
with some variations, as we intend to model non-manifold structures.
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Table 3.3: Relations and hierarchy of topologic and geometric elements (informal description).
Example entity names from ACISTM Modeler (Spatial Corporation [2]).

Dim Topology Comment Geometry Comment
3D BODY Possibly disconnected com-

pact dense point set
3D LUMP Connected subset of a BODY
2D SHELL 2-manifold without border,

subset of a LUMP boundary
2D FACE Connected subset of a SHELL

or 2-manifold with border
SURFACE
S(u,w)

FACEs are
mounted on
Surfaces.

1D LOOP 1-manifold without border,
subset of the boundary of a
FACE

1D EDGE Connected subset of a LOOP
or a 1-manifold with border

CURVE
C(u)

EDGEs are
mounted on
Curves.

0D VERTEX Border (endpoint) of an
EDGE

POINT
(x, y, z)

A VERTEX is
mounted on a
Point.

Non-Manifold B-Rep

The thin walls of a lattice material can be simplified as, so called, 2.5D entities or FACE plus
thickness. This name is a contradiction in terms since a FACE is a 2-manifold (i.e. has zero
thickness). However, this is a useful simplification since a 2-manifold accepts much larger and fewer
FEA elements. Notice that the 2.5D simplification leads to non-manifold structures, since in general
more than 2 FACEs with thickness are incident onto an EDGE (Fig.3.4(a)).

Instead of conducting a Boolean union of 2.5D FACEs + thickness,
⋃

i=1 Fi, each Fi is isolated
from the other Fj 2.5D FACES. The only relations among the Fis are the kinematic constraints
Kj among their FACEs. Therefore, in their private modelling space, all Fi continue being legal
2-manifolds (Fig. 3.4(b)).

Fig. 3.5 displays our variation of an orthodox 3D B-Rep devoted to model slender wall (e.g.
lattice) structures. The lattice does not have BODY, LUMP, SHELL objects, since it is a collection
of FACE + thickness (2.5D entities). The FACEs are mounted on planes, are bounded by LOOPs,
which are sequences of EDGEs. The EDGEs are mounted in straight LINEs, and have 2 bounding
VERTEX objects, each mounted on a point. The kinematic constraints are enforced among finite
element nodes, which appear at sub-divisions of these entities. Therefore, the kinematic constraints
do not appear in this diagram.

3.5.2 Kinematic Constraints

The taxonomy and illustration of the kinematic constraints in 2.5D models of lattice materials are
given in Table 3.4 and Fig. 3.6.
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Table 3.4: Kinematic Constraints for FEA Modeling using FACE + Thickness Elements.

Menm. Type Properties
V≡V Vertex Iden-

tity
1. EDGE Ew = (vk, vm) in all FACEs Fi incident to Ew.
2. Unique Coord. System Sk = [Xk, Yk, Zk, Ok] attached
to VERTEX vk in all incident FACEs Fi.
3. Position and Angle identity.
4. Force and Torque at Joint

V-on-V Point Iden-
tity or
Spherical
Joint

1. Each FACE Fi incides onto its own EDGE Ew =
(vk, vm).
2. EDGES Ew = (vk, vm) and Es = (vt, vq) are coincident
but not identical.
3. VERTEX aliasing: vk 6= vt.
4. Systems Sk = [Xk, Yk, Zk, Ok] and St = [Xt, Yt, Zt, Ot]
must be constrained to each other by either:
4.1. Position Constraint: Ok = Ot (3 DOFs constrained,
force constraint).
4.2. Position and Angle Constraint: Sk = St (6 DOFs
constrained, force and torque constraints).

V-on-
VkVm

Slide plus
Spherical
Joint

1. Constraint: Point O6 on Segment O5O7.
2.1. Position Constraint: Ok ∈ O5O7 (slide joint, 3 DOF
constrained, force constraint)
2.2. Position and Angle constraints: Ok ∈ O5O7 and
[Xk, Yk, Zk] = f(X5, Y5, Z5, X6, Y6, Z6) (slide + spherical
joints, 6- DOFs constrained, force and torque constraint).

d(V,V) Distance
Constraint

1. Constraint: d(Ok, Ot) = ∆.
2. DOFs restricted=5.
3. Highly non-linear.

F =
g(V,V)

Spring
(damper,
etc.) Con-
straint

1. Constraint: Force = g(Ok, Ot).
2. DOFs restricted=5.
3. g(): spring, damper and/or other mechanical device.
4. Highly non-linear.
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(a) Non-manifold to-pology if Boolean Union
of incoming FACEs is applied.

(b) Repair of non-manifold topology by kine-
matic constraint application.

Figure 3.4: 2.5D Finite Element Model as alternative to full 3D FEM for slender geometries.

3.5.3 Comparison of 2.5D FACEs and 3D B-Rep Models

Let Ω ⊂ R3 be a rectangular prismatic lattice domain. Our goal is to assess the performance of
the 2.5D FACEs model to predict the mechanical response of Ω under shear, tension, and torsion
tests. We consider the 3D B-Rep model for Ω as the reference values to test the accuracy of the
2.5D model.

To achieve this goal, we follow the procedure described in Fig. 3.7. First, the 2.5D FACEs and
3D B-Rep models for Ω are obtained from the CT scan of Ω. The 2.5D model is recovered using a
Principal Component Analysis to extract the FACEs and their connectivity. The B-Rep for the 3D
model is obtained with an IsoSurface synthesis algorithm applied to the CT scan (e.g. Marching
cubes).

Finally, we test the accuracy of the 2.5D model against the 3D model. We assume that the
lattice domain Ω is formed by Kelvin cells. A detailed discussion on the considered domains and
the mechanical tests performed on each domain follows.

Domain Characterization

In order to assess the accuracy of the 2D FACEs + Constraints model, we analyse four lattice
domains formed by rectangular arrays of 4, 8, 27, and 64 Kelvin cells, as can be seen in Fig. 3.8.
The size and properties the Kelvin cells of the four domains are listed in Table 3.5. In Fig. 3.8(a)
is depicted a section view of the Kelvin cell used for the simulations.

Mechanical Analysis

The accuracy of the 2.5D model w.r.t. the 3D B-Rep model is tested for shear, tension, and torsion
simulations. In Table 3.6 is presented the procedure to carry out the comparison between both
models.
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Figure 3.5: Data Structure for Geometric Modelling of Lattice Solids. The Topologies BODY,
LUMP, SHELL are replaced by FACE SET.

(a) Vertex-Vertex Constraint. (b) Point-Point Constraint (c) Point-on-Segment Con-
straint.

(d) Length Constraint.

Figure 3.6: Constraint types to implement FACE + Thickness modelling.
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Figure 3.7: Workflow comparison between 3D Full B-Rep and 2D FACEs + Constraints modelling.

Table 3.5: Dimensions and mechanical properties of the Kelvin cell used for the comparison among
2D FACEs + Constraints vs. 3D B-Rep models.

Property Value
Bulk material Aluminum (AA5182) [19]
Bulk material Young’s
Modulus (GPa)

Ez = 71 GPa

Bulk material Poisson’s Ratio V = 0.3
Kelvin cell size (mm per side) 1.9 mm x 1.9 mm x 1.9 mm
Kelvin cell thickness (mm) 0.1 mm
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Table 3.6: Description of the mechanical simulations with the 2.5D FACEs and 3D B-Rep models.

2D FACEs + Constraints model 3D Full B-Rep model
Given 2D FACEs and Point-Point kine-

matic constraints between FACEs
that represent the lattice domain.

3D Boundary Repre-
sentation of the lattice
domain.

Mesh 2.5D FACEs are meshed with
the element Shell-181 in ANSYS.
Very little elements are gener-
ated for comparing accurately the
2.5D and 3D models on the anal-
ysed domains.

B-Rep is meshed with
Solid-285 in ANSYS.
Elements are small to
assure an aspect ratio
close to 1.0.

Boundary
conditions

Shear
test

The setup of the shear test can be seen in Fig. 3.9(a). At the
bottom of the domain, all DOF are constrained to 0. Loads
in X direction are applied at the top of the domain. The
total loads applied to each domain are listed in Table 3.7.

Tension
test

The setup of the tension test is displayed in Fig. 3.9(c). At
the bottom of the domain: (1) Z displacement is set to 0,
and (2) nodes at the centre are embedded (all DOF are con-
strained to 0). Loads in Z direction are applied at the top
of the domain. The total loads applied to each domain are
listed in Table 3.7.

Torsion
test

In Fig. 3.9(b) is described the boundary conditions of the
torsion test. All DOF are set to 0 at the bottom of the
domain. Loads in X and -X are applied at two opposite
sides of the bounding box (BB) of the domain. Magnitudes
of the loads are given in Table 3.7.

Solution All the simulations are carried out in ANSYS using the
Sparse Direct Solver. Resultant X, Y, and Z nodal displace-
ments are collected for subsequent comparison among 2.5D
and 3D approaches.

Table 3.7: Load magnitudes on each domain for tension, shear, and torsion tests.

Number
of cells

Tension test Shear test Torsion test

Force (N) Dir. Force (N) Dir. Force (N) Dir.
4 0.112 +Z 0.112 +X 0.112 +X, -X
8 0.112 +Z 0.112 +X 0.112 +X, -X
27 0.252 +Z 0.252 +X 0.168 +X, -X
64 0.448 +Z 0.448 +X 0.224 +X, -X
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(a) Section view of the Kelvin
cell.

(b) 4 and 8
Kelvin cells

(c) 27 Kelvin cells (d) 64 Kelvin cells

Figure 3.8: Tested domains for the comparison among 2.5D FACEs and 3D B-Rep models.

(a) Shear load case description (b) Torsion load case description

(c) Tension load case description

Figure 3.9: Boundary conditions of the shear, tension, and torsion tests.

3.5.4 2.5D FACEs Multi-Lattice

Let Ω ⊂ R3 be the Elephant shown in Fig. 3.10(a). Our goals are (1) to represent Ω with Kelvin
cells and (2) to show the feasibility of the 2D FACEs + Constraints abstraction to carry out FEA
of large and complex-shape domains. We depict the procedure to achieve these goals in Fig. 3.11.

Model of the Elephant with Kelvin Cells

Given the B-Rep of the Elephant shown in Fig. 3.10(a), a grid of 28 x 50 x 50 Kelvin cells is
generated. The size of the grid is the same of the BB of the Elephant. The size of each Kelvin
cell is 4.0 mm x 4.0 mm x 4.0 mm. The other properties are the same of the Kelvin cell used
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(a) 3D triangular B-Rep. (b) 2.5D (lattice) representation.

Figure 3.10: Elephant dataset.

Figure 3.11: Data flow for the simulation with the Elephant dataset.
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for the comparison of the 2.5D and 3D models (see Table 3.5). Finally, to obtain a Kelvin cell
representation of the Elephant, we intersect the B-Rep of the Elephant with the Kelvin cell grid. A
cell is considered to be in the intersection if at least one of its VERTEXes lies inside the Elephant
B-Rep. The result of this operation can be seen in Fig. 3.10(b).

Notice that small details of the Elephant (e.g. ear and body creases) disappear in the modelling
process. Kelvin cells convey a sampling of the original shape. Therefore, high frequency features
disappear, representing a limitation of the shapes modelled by Kelvin cells.

FEA of the Elephant

In order to carry out a FEA of the Elephant, we execute the following steps:

1. 2.5D FACEs model generation: the 2.5D FACEs representation of the Elephant is obtained
by adding Point-Point kinematic constraints are added to the FACEs of the resultant Kelvin
cell model.

2. Meshing: the 2.5D FACEs of the Kelvin cells are meshed with the ANSYS element Shell-181.
Since the main goal is to show the feasibility of the 2.5D model to perform FEA with large
and complex-shape domains, this mesh is coarser than the mesh of the Kelvin cells for the
comparison of the 2.5D and 3D models.

3. FEA load case: the 2.5D model is used to simulate shear, tension, and torsion load cases.
Boundary conditions of shear and torsion simulations are shown in Fig. 3.12. Load magnitudes
for each test are presented in Table 3.8.

4. FEA solution: all load cases are simulated with the Sparse Direct Solver of ANSYS.

(a) Shear test (b) Torsion test

Figure 3.12: Boundary conditions for the FEA of the Elephant.

3.6 Results

Section 4.1 reports cases in which 3D and 2.5D computations are feasible and thus, comparable.
Section 4.2 reports cases in which 3D computations are intractable while only 2.5D computations
are feasible. In those cases, no comparison is possible.
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Table 3.8: Load magnitudes for tension, shear, and torsion tests with the Elephant.

Tension test Shear test Torsion test
Force (N) Dir. Force (N) Dir. Torque (N) Dir.
21.629 +Z 21.629 -Y 21.629 +Z

3.6.1 Comparison of the 2.5D FACEs and 3D B-Rep Models

The ratio r of 3D vs. 2.5D finite elements needed to mesh a slender plate is r ∼ K(a/l)2, where a
and l are the side lengths of the 2.5D and 3D elements, respectively, and K = 3

√
6. This estimation

assumes: (a) the 3D domain is meshed with tetrahedra of edge length l, (b) the 2.5D domain is
meshed with triangles of size length a, (c) l is at least half of the plate thickness, so that two layers
of 3D tetrahedra are used to mesh.

A conservative approach, in which the side of the 2.5D elements a has the same order of magni-
tude as l, results in r ∼ 10. This means that approximately 10 times more 3D elements than 2.5D
elements are required to mesh a slender plate. In such conservative conditions, Figs. 3.13(a), 3.13(b)
and 3.13(c) show that the saving of 2.5D models with respect to 3D ones is very high in terms of
(i) number of elements, (ii) number of nodes and (iii) memory allocated by the ANSYS solver.
In practice [14, 15], the side a of the 2.5D elements is significantly larger than the thickness (and
therefore, larger than the edge l of the 3D elements). In such conditions, the computing resource
savings of the 2.5D approach would be larger.

In Figs. 3.14 and 3.15 are presented the results of the shear and torsion simulations of the
domain of 64 Kelvin cells. These figures exhibit the deformed domain and the resultant nodal
displacements for the 2.5D FACEs and 3D B-Rep approaches.

The similarity in the colour distribution in Figs. 3.14 and 3.15 shows that the deformation along
the whole domain obtained with the 2.5D model resembles the deformation produced by the 3D
model. This assertion holds for the three types of simulations carried out: shear, tension, and
torsion.

To test the quality of the results given by the 2.5D model, we calculate the relative error
of the nodal displacements estimated with the 2.5D model taking as reference values the nodal
displacements of the 3D model. The error is calculated using the maximum nodal displacement in
each case since 1) the minimum nodal displacement is zero or the negative of the maximum nodal
displacement and 2) the deformation along the whole domain is similar for both the 2.5D and 3D
models.

In Fig. 3.16 can be seen the relative error of the 2.5D model w.r.t. the 3D model for the
estimation of the X, Y, and Z nodal displacements in shear, tension, and torsion tests for the
domains of 4, 8, 27, and 64 Kelvin cells. The dotted line represents a relative error of 16%. Notice
that for the shear and torsion tests, the relative error is lower than 16% in all cases. Likewise,
the error in the estimation of X and Y nodal displacements in the tension test is also lower than
16%. The error in the Z nodal displacement of the tension test is greater than 16% but it tends to
decrease while the number of cells increases.

3.6.2 2.5D FACEs Multi-Lattice

The 2.5D model for the Elephant has 14K Kelvin cells. The mesh contains 906K elements and 689K
nodes. In Fig. 3.17 are displayed the deformed shapes and nodal displacements of the Elephant for
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(a) Number of elements vs.
Number of kelvin cells.

(b) Number of nodes vs. Num-
ber of kelvin cells.

(c) Memory allocated by the
ANSYS solver vs. Number of
kelvin cells.

Figure 3.13: Comparison of the computational cost of the 2.5D FACEs and 3D B-Rep approaches.

(a) Shear test. X displacement (mm) (b) Torsion test. Y displacement (mm)

Figure 3.14: 2D FACEs + Constraints model. Domain of 64 Kelvin cells. Nodal displacements
(mm) of shear and torsion tests.

the shear and tension simulations. These results demonstrate the feasibility of the 2.5D FACE +
Constraints model to study large and complex domains.

3.6.3 Advantages and Disadvantages

Advantages

The results obtained in the comparison between the 2.5D and 3D approaches show that the 2.5D
model is not only an efficient, but an accurate alternative for modelling and simulating lattice
domains. In addition, the 2.5D approach allows the efficient computation of models composed by
thousands of Kelvin cells.

The formulation of 2.5D FEA models allows for assignment of material properties reflecting
anisotropy. Future research efforts include the generation of 2.5D FEA equations parameterized by
such local and directional variations.
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(a) Shear test. X displacement (mm) (b) Torsion test. Y displacement (mm)

Figure 3.15: 3D B-Rep model. Domain of 64 Kelvin cells. Nodal displacements of shear and torsion
tests.

(a) Shear test. Relative error
(%).

(b) Tension test. Relative error
(%).

(c) Torsion test. Relative error
(%).

Figure 3.16: Relative error of the 2.5D FACEs model w.r.t. 3D B-Rep model.

Disadvantages

The 2.5D FACE + Constraints approach is not appropriate to model domains with small details and
high frequency regions. The usage of 2.5D simplifications requires the validations against physical
test results, in addition to comparison against 3D FEA model results.

3.7 Conclusions and Future Work

This article presents a methodology to model and simulate large and complex lattice domains. The
presented model uses a 2.5D approach in which FACEs are joined by means of sets of kinematic
constraints. The 2.5D model is found to be more computationally efficient than the 3D B-Rep
model. Likewise, for shear, tension, and torsion simulations, the 2.5D model is able to reproduce
the resultant nodal displacements of the 3D model with errors under 16% in the vast majority of the
cases. The 2.5D model has shown to be a feasible alternative to analyse large and complex-shape
domains.

This work describes the type of kinematic constraints that can be placed for lattice domains.
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(a) Shear test. Y displacement (mm). (b) Tension test. Z displacement (mm)

Figure 3.17: Shear and tension tests with the Elephant dataset. Nodal displacements (mm).

This article presents the development and use of a data structure to model lattice domains and
translate them into 2.5D FEA models.

Future work is required in the implementation of more complex kinematic constraints, such as
distance or spring constraints. In this manner, a broader range of materials and designs would
be analysed. Future research is required in contrasting the results presented in this manuscript
with laboratory experiments. The model presented in this manuscript could be extended to model
not only lattice, but more complex thin-walled porous materials by including other geometrical
and morphological characteristics (e.g. anisotropy). That would be the case for instance in the
extension of this approach for Additive Manufacturing techniques.
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Chapter 4

Direct Scalar Field - to - Truss
Representation and Stress
Simulation of Open Pore Domains

Juan Manual Munoz1, Oscar Ruiz-Salguero1, Diego Montoya-Zapata1,2, Camilo Cortes2 and Carlos
Cadavid3

1 Laboratory of CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.
2 Vicomtech, Spain.
3 Functional Analysis Group, Universidad EAFIT, Medelĺın, Colombia

4.1 Context

Juan M. Munoz, Oscar Ruiz-Salguero, Diego Montoya-Zapata, Camilo Cortés, and
Carlos Cadavid. Direct Scalar Field - to - Truss Representation and Stress Simulation
of Open Pore Domains. Accepted to the Conference Smart Tools and Applications in
Graphics (STAG 2018), Brescia, Italy, October 18–19, 2018.
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4.1.1 Proof of Submission

This publication presents the results of a collaborative work between the following institutions:
(1) Universidad EAFIT, represented by Laboratory of CAD CAM CAE Research Group and the
Functional Analysis Group, and (2) Vicomtech.

Figure 4.1 shows a proof of the submission of the article Direct Scalar Field - to - Truss

Representation and Stress Simulation of Open Pore Domains to the International Confer-
ence STAG 2018.

Figure 4.1: Proof of Submission to STAG 2018.

4.2 Abstract

In the domain of lattice and porous material geometric modeling, the problem of data size is
central. When using full 3D manifold Boundary Representations (BRep), even the smallest domains
engender staggering amounts of 3D finite elements. A partial solution has been implemented, which
represents slender solid neighborhoods with non-manifold Boolean union of 1-manifolds (curves)
and/or 2-manifolds (surfaces), added with thickness information, called 1.5D and 2.5D models,
respectively. Automatic applications of these techniques requires the estimation of the medial axis
of the porous media, to produce a truss or frame FEA. Previous works require explicit synthesis of
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the skin of the porous domain. This manuscript presents an alternative in which the medial axis
and thus the 1.5D (truss) representation of the porous domain is directly obtained from the scalar
field (i.e., Computer Tomography -CT-) of the domain, thus avoiding the explicit calculation of the
domain skin. The manuscript also presents the noise removal and linearization of the medial axis
data, to obtain the skeleton truss graph (including bar radii), that represents the porous domain.
Shear and tension load simulations are conducted with the Truss model, showing that the generated
model can be used in FEA software. Future work is required in extending this concept to lattice
materials, where the medial axis includes surfaces and not only curves, as in this manuscript.

4.3 Introduction

Porous and lattice materials (e.g. foams) are particularly important in aerospace, medicine, additive
manufacturing, etc. The geometric modeling of such materials presents intractably large data
sets. This circumstance, in turn, hinders computations, behavior assessments, and design. In the
particular domain of open pore materials, it is possible to use a Truss or Frame modeling (called 1.5D
modeling) to study reasonable sized domains, which would be expensive to model and simulate, in
terms of human manual work time and computational cost, by using full Boundary Representation
(3D BReps).

Computer Tomography (CT) is a common method to sample foam or reticular materials. CTs
basically produce a discrete scalar function f : R3 → R that characterize the space occupancy of
the open pore material. In CTs, f is presented in form of voxel (Volumetric Pixel) sets. Previous
mechanical truss modeling of open pore materials ([34]) takes CT as input, and explicitly produces
the iso-surface ∂B f(p) = c which bounds the solid material B. Then, the skeleton of ∂B (SK(B))
is computed. Finally, SK(B) is used to define the Truss graph, which is the input to FEA methods
to compute stress - strain models of B.

The present manuscript presents a method to avoid the explicit calculation of the skin ∂B to
compute the skeleton SK(B). Our method estimates SK(B) directly from the scalar field f . An
intermediate step is to estimate the Medial Axis of B, MA(B). This medial axis MA(B) presents
a number of degeneracies which must be corrected before SK(B) can be estimated in the form of
a truss graph and used to model the material. This manuscript presents such a cleaning process.

This manuscript also presents an application of the direct f - to - SK(B) skeleton extraction, in
the particular area of strain - stress computation. The Truss model of an open pore material is then
used for a FEA mechanical simulation, showing that the simplified truss representation obtained
from the scalar field is a viable alternative to 3D Brep - based FE models.

Fig. 4.2(a) shows a portion of a porous material which in a large extent accepts a characterization
in the form of a truss or frame, built with fastened struts or limbs.

Fig. 4.2(b) conveys the fact that the limbs have skeletons, which are curves ci and have a local
radius at each point of the curves. The curves meet in general in non-manifold nodes, as more than
2 curves are incident to them. Nodes with n curves incident to them are loci of the Star-n (Sn)
type.

However, this example contains a non-processed subset (marked with a rectangular window),
whose skeleton is a surface, and not a curve. In this manuscript, we assume that the foam material
contains no such wall - like portions. A formalization of this discussion follows.
k-manifold. A set M in Rn is said to be k-manifold if for every point p ∈ M , there exists δ > 0
such that for all radius 0 < r < δ, the set M ∩ Ball(p, r) is homeomorphic to an open disk in Rk
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([35]), where Ball(p, r) is an open ball centered at p with radius r. Informally speaking, 1-manifolds
are curves and 2-manifolds are surfaces, with no self-intersections in both cases.
Open Pore Materials. These structures contain spaces empty of material, or cavities, which are
all connected.

(a) Point set Skin ∂B and Tangent Balls.

non-manifold joint

1-manifold ci(u)

cw(u)

ci(u)

ck(u)

cm(u)

ri: local

radius

(b) Skeleton from Solid in Fig. 4.2(a). Limbs are
formed by curves (e.g. ci(u), cw(u), 0 ≤ u ≤ 1)
and local radius ri.

Figure 4.2: Porous Material with mostly 1D skeleton. Materials containing a 2D skeleton (see
rectangular window) are not in the scope of this work.

Medial Axis. Given a 2-manifold smooth closed surface ∂B which bounds a solid B, the medial
axis of ∂B, MA(B) (Fig. 4.2(b)), is the set of all voxels v that are centers of balls Ball(v, r),
centered in v with some radius r > 0 such that each ball Ball(v, r) is tangent to ∂B in exactly 4
points.
Skeleton. Is the graph of voxel centers with the same connectivity as MA(B). It may be considered
as the wire version of MA(B). Each point of SK(B) contains the mass transferred to it by the
mass conservation strategy in the iterative thinning of B.
Truss Graph. The bar + node representation of SK(B), with the radii and dimensions of bars
and nodes being determined by the mass information present in SK(B). The Truss graph includes
kinematic and torque restrictions required to mimic joints of the physical equivalent frame.
Star-n sets in R2. A star-n (Fig. 4.3) in this manuscript refers to an open set of points p ∈ R2,
which is the Boolean union of n = 2, 3, 4, ... straight line segments. Each segment contains the
origin in one end, and is open in the other end (Fig. 4.4).
Bar Pore Material. A bar pore material B is the set of points p ∈ R3 whose medial axis MA(B)
is composed by either (a) finite points in B whose neighborhood in B is homeomorphic to a star
Sn with n > 2, or (b) infinite points in B, whose neighborhood in B is homeomorphic to S2.

The point set B whose boundary ∂B is shown in Fig. 4.2(a) is not a bar pore material because
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S3 S4 S5 S6S2

Figure 4.3: Open point sets Star-n, S2, S3, S4, S5, S6 in R2. Note: Sn sets are open as they
exclude the branch ends. The term open set star has no relation with open pore.

the portion in the rectangular window has medial axis which is 2-manifold (surface) and not 1-
manifold (curve).

This manuscript refers to Bar Pore Materials and it is organized as follows: Section 2 reviews
the relevant State of the Art. Section 3 explains the applied methodology. Section 4 presents the
results of the implementation used and its application. Section 5 concludes the manuscript and
suggests domains for future work.

wire skeleton

SK(B)

non-manifold

S6 joint

voxel Medial

AxisMA(B)

non-manifold

S3 joint

Figure 4.4: Voxel Medial Axis MA(B), wire skeleton SK(B), S3 and S6 non-manifold star joints.

4.4 Literature Review

First, a recent survey on the state of the art in skeletonization by [36] is discussed. Then, focus is
made on (a) contraction and (b) thinning methods. Finally, skeletonization of foams is discussed.

4.4.1 Skeletonization algorithms

Skeletonization provides an effective and compact representation of an object by reducing its dimen-
sionality to a medial axis or skeleton while preserving the topological and geometrical properties of
the object [37]. For a 3D solid, a skeleton could be a surface skeleton (2D) or a curve skeleton (1D).
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We are interested in objects with 1D skeletons because they allow simplification and acceleration
[36] of the FEA problems.

The most common methods for computing analytical curve skeletons are: (a) Medial Surface -
based, (b) Contraction methods, and (c) mesh decimation methods. The Medial Surface - based
methods consist of identifying curves on the surface skeletons. Such methods are highly expensive
[36] as they require accurate computation of geodesics between all points in a surface skeleton [38].

Contraction methods establish a shape evolution from the shape boundary to the curve skeleton
[39]. Another contraction method is the discretization of the mean curvature flow in differential
geometry. This method traces the surface-area loss through time steps [40].

Mesh decimation methods use iterative edge collapse on a triangle mesh [41] to converge towards
the skeleton. However, the result is not necessarily smooth or centered, according to [36].

Curve skeletons from CT. For Computer Tomography scalar fields, contraction methods are
directly applicable since they work on voxels. Refs. [42, 43] present algorithms where voxels are
removed from the object boundary (skin) while preserving connectivity. A method to classify voxels
that can be removed is described in [44, 45]. It must be noticed that, in contraction methods, the
order of voxel removal (thinning order) severely affects the final result [46]. Ref. [47] presents a
divergence - driven thinning that uses a sorted heap to ensure the correct processing order. Ref.
[46] uses a voxel density order to prevent the jagging in the curve medial axes. This reference also
presents a scalar attribute of the surviving voxels. At each evolution step, the scalar represents
the mass of the voxels that have been removed, being this mass transferred to the surviving voxels.
However, the mass of the whole domain cannot be retrieved from the final skeleton.

4.4.2 Models from Porous Materials

The generation of geometric models of foam microstructure and properties can be classified into (a)
statistically generated models and (b) models from physical samples, as in [34].

Statistically generated models. They characterize complex solid geometry by using its mor-
phological parameters[48]. The approaches generate typical structures, with statistical variations,
spanning a large domain by using pre - defined local arrangements. Used methods are: (a) arrays
of identical cells (e.g. kelvin cells [49]) or (b) stochastic approaches such as Voronoi tessellations,
ellipsoid overlapping, etc [50]. In any case, all methods aim to generate a geometry and topology
that mimics typical physical specimens. It is difficult for these methods to grasp the large variation
in cell sizes and shapes [51] and manufacturing defects of physical samples. If 3D full Breps are
generated, the 3D meshing and simulation processes may not converge due to factors such as data
size, data quality, and even software license constraints (as reported in [34]). In this case, the
relevance of the present manuscript (direct skeletonization from CT data) is evident.
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Table 4.1: Literature Review summary.

Approach Refs. Advantages Disadvantages
Foam models from
physical specimens.

[10,
34,
52–54]

- Preservation of geometry
and topology of the origi-
nal sample.
- Efficient computing of
stress - strain models of
foams using Truss graphs
[34].

- Computing- and labor-
expensive Breps required.
- Expensive Full 3D FEA
required.

3D characteri-
zation of simple
points for thinning
algorithms.

[44,
45]

- Calculation of the num-
ber of holes or genus not
required.

- The proposition given to
classify a simple voxel is
correct, but the proposed
pseudo-code in Ref. [44]
may misclassify a simple
voxel v as non-simple.

Volume contraction
using thinning or-
derings.

[46,
47]

- Thinning orderings for
diverse applications.
- [46] keeps track of the
mass of voxels in the sur-
face.
- Surface or curve skele-
ton available through ad-
ditional computation.

- Portion of initial mass of
B missing in skeletoniza-
tion [46].
- Disconnection in the
curve skeleton topology
[46].
- Boundary of the con-
tracting shape not explic-
itly available in Ref. [47].

Models from Physical Specimens. Physical specimens from foams, porous or reticular
materials are usually sampled using micro-computed tomography (mCT). The 3D scalar field of
such scans is expressed in voxel arrays with resolutions around 0.5 microns and domain sizes in the
cm range [55]. Full 3D modeling from these samples may be conducted by either keeping the voxel
set B, or computing a smooth boundary (skin) of B, ∂B. FEA simulations and visualizations are
then conducted [10,52–54]. The full 3D modeling is very precise and faithful to the physical sample.
However, it is intractable for even the smallest cm-range samples, due to the staggering amount of
data and labor required. Computing of smooth BReps from scalar fields is typically achieved by
variations of the Marching Cubes algorithm [56], followed by intensive human labor in correcting
the violations to 2-manifold properties that are common in triangle meshing. After the BRep is
obtained, the FEA 3D meshing and computing may not converge even with small domains.

Ref. [34] uses as input a correct BRep, ∂B of the porous domain. It produces a Truss graph
representation of the strut frame implicit in ∂B. The Truss representation is then analyzed with
finite elements, taking advantage of the so called 1.5D finite elements, which are 1-dimensional ones
equipped with local diameter (i.e. rods). This work shows important advantages from the Truss
(i.e. 1.5D) over the full 3D models, showing that the truss model is less computationally expensive
to simulate and that it can render reasonable strain - stress results. The method also has shown a
good preservation of the porosity (ratio of empty to total volume) of the real sample with the Truss
model.
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4.4.3 Conclusions of the Literature Review

The main advantages and disadvantages of the surveyed methods are summarized in Table 4.1.
The contributions of this manuscript, with respect to the existing methods are:

1. Synthesis of the Truss graph directly from the Voxel scalar field B, without passing by the
computing- and labor - expensive skin ∂B. Notice that this is an important advantage with
respect to [34], where a smooth, watertight, manifold, high-quality triangular mesh is required
to obtain the medial-axis using the Mean Curvature Flow approach reported in [57].

2. To achieve (1), we use and improve on [46] in the following aspects:

(a) Our algorithm keeps precise track of the mass of the initial solid B. Each voxel of the
final Medial Axis MA(B) accounts for representing a quantified contribution to keep the
initial mass. This feature permits a precise estimation of the local radii along the struts
of the Truss graph.

(b) Our algorithm conserves hanging branches of B for the purpose of representing their
medial axis.

(c) Our algorithm avoids possible disconnections in the curve skeletons that may occur in
[46].

3. We illustrate an application of the synthesized Truss graph in mechanical (stress - strain)
computations.

4.5 Methodology

In this section we present the implemented method to estimate a truss graph simplification from
the skeleton SK(B). We use as input the CT of the sample, expressed as a scalar field f in the form
of voxels. In Section 4.5.1, we calculate the medial axis of B (MA(B)), which contains information
about the mass of B. Then, in Section 4.5.2, we use MA(B) with the mass information to find a
truss graph simplification of B, which is well suited to model bar pore materials.

4.5.1 Medial Axis from Scalar Field Extraction

Algorithm 1 displays the main features of the extraction of the voxel Medial Axis from the domain
B (voxels from the CT scan). Our algorithm is inspired in the boundary density transport approach
of [46].

In the line 3, the superfluous set is chosen, which is composed of voxels in the boundary ∂B
which (a) do not change the voxel set connectivity when missing (i.e. simple voxels [44, 45]), and
(b) participate of a 1-manifold violation. We add the condition (b) to avoid that the medial axes
of hanging branches disappear. Voxels which do not change connectivity but belong to a hanging
branch are not superfluous. This is an important difference with previous methods (e.g. [46]),
where 1-manifold wires are considered only if they have received a large amount of mass from the
boundary voxels. Since, by definition, every voxel of a hanging or dead-end branch does not change
connectivity of the set, using only connectivity as elimination criterion would lead to the whole
dead-end branch to be eliminated. Condition (b) above forces to eliminate only voxels of such
branches which additionally violate 1-manifoldness. Line 4 indicates that the iteration stops when
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Algorithm 1: Extraction of Medial Axis from Scalar Field (CT).

1: procedure MA = Field to Medial Axis(B : voxel set)
2: ∂B = boundary(B)
3: superfluous = find simple( ∂B )
4: while superfluous 6= [ ] do
5: v = first( superfluous )
6: n = inner normal( ∂B, v )
7: N(v) = neighbors( ∂B, v, n )
8: mass( N(v) ) = mass( N(v) ) + mass(v)
9: superfluous = superfluous − {v}

10: ∂B = update( ∂B, v )
11: superfluous = update(superfluous, ∂B, v)
12: end while
13: MA = ∂B
14: end procedure

only essential voxels remain in B. Line 5 chooses for elimination a voxel in the superfluous set
which has a minimal value of accumulated mass in it. Line 6 computes the inner pointing vector
normal n to the skin ∂B at v using a gradient estimation (Neumann et al [58]). Line 7 identifies
the 26-neighborhood N26 [44] associated with the voxel v to delete.

(a) Medial Axis with Noise (hairs). (b) Medial Axis without Noise.

Figure 4.5: Hair removal from the Medial Axis MA(B).

Pi
Pj

Pk

(a) Large Linearization Error.

Pi

Pj

Pk

(b) Small Linearization Error.

Figure 4.6: Recursive subdivision to obtain a small linearization error from MA(B).

Line 8 transfers the mass of voxel v to its neighbors in direction n, using diffusive advection
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(Jalba et al. [46]). In this approach, the major receptor of mass is the voxel in the neighborhood
of v that occupies the n direction. The other voxels in the neighborhood of v also receive minor
proportions of the v mass. At this time the mass associated to v is null (fully transferred to its
neighbors). In lines 9 and 10, voxel v is eliminated from the superfluous, B and ∂B sets. Now,
the boundary ∂B is updated around v. Line 11 recomputes the B connectivity since the absence
of v changes it. Thus, the superfluous voxel set must be updated.

When the superfluous voxel set is empty, B = ∂B = MA(B). Line 13 recognizes this fact.

P2

Pc P3

P1

(a) 3 - cycle in Medial Axis.

Pc

(b) 3 - cycle eliminated from Medial
Axis.

Figure 4.7: Elimination of 3-cycles from MA(B).

Algorithm 2: Conversion from the Medial Axis MA(B) into the Truss Graph (V,E)

1: procedure [V, E] = Medial Axis to Truss( MA : Medial Axis Graph )
2: MA = hair removal( MA )
3: MA = edge linearization( MA )
4: SK = cycles removal( MA )
5: [V, E] = radii estimation( SK )
6: end procedure

4.5.2 Truss Graph from Medial Axis

The Medial Axis MA(B) obtained from the thinning algorithm in Algorithm 1 contains several
characteristics, which make it useless as skeleton for a Truss graph (Fig. 4.9(a)). These features
are: (1) high level of noise that manifests in small dead-end paths (hairs), (2) oscillations and high
curvatures in the node - to - node paths, and (3) irreducible cycles of 3 edges (3-cycles). Algorithm
2 presents a description of the procedure to obtain the Truss graph from the Medial Axis. Steps 2-4
outline the cleaning of MA(B) by removing features (1)-(3). Then, the mass information is used
to produce the truss graph.

To advance towards a Truss graph, noise in the form of hairs must be removed (Fig. 4.5). The
short excursions or short dead-end paths are removed. An excursion is classified as short if its
length is smaller than a given parameter L. In this work, L is equivalent to the biggest value of the
Transform of Euclidean Distance [59] from MA(B) to the original skin of B (∂B).

Once the hairs have been suppressed, it is necessary to execute a linearization of the resultant
medial axis to eliminate oscillations and high curvatures in the node - to - node paths. The high level
of noise in Fig. 4.6(a) is removed by replacing quasi linear paths with a straight edge. If the path
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(a) Domain 1. Scalar Field Expressed in Vox-
els.

(b) Domain 1. Intermediate Medial Axis.

(c) Domain 1. Medial Axis Expressed in Vox-
els.

(d) Domain 2. Scalar Field Expressed in Vox-
els.

(e) Domain 2. Intermediate Medial
Axis.

(f) Domain 2. Medial Axis Expressed in
Voxels.

Figure 4.8: Voxel - based Scalar Field and its Medial Axis. Data Sets 1 and 2
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deviates in significant manner (Fig. 4.6) from a straight one, a recursive subdivision is conducted
until each linear edge does not deviate more than a threshold P from its curved equivalent. We
have taken P = 0.2, which means that the polyline can deviate at most 20% from the straight line.

Irreducible cycles of 3 edges (3-cycles) appear in the wireframe Medial Axis MA(B) (Fig. 4.7).
They are removed by replacing vertex points p1, p2 and p3 in Fig. 4.7(a) by the barycenter of the
triangle pc in all relevant graph topology. After the 3-cycles are suppressed, the skeleton SK(B) is
obtained.

Wire connectivity in SK(B) is used in conjunction with the mass information to produce a
truss graph [V,E] (e.g. Figs. 4.9(c), 4.9(g)). Elements in V and E are assumed to be spheres and
cylinders, respectively. Finally, we estimate the radius of each element in V and E by using its
geometric and mass data, as shown in step 5 of algorithm 2.

4.6 Results

Section 4.6.1 shows the result of the application of Algorithms 1 and 2 to two different samples, and
gives a comparison of the porosity (a characteristic parameter for porous media) between the Truss
graph and the initial shape. Section 4.6.2 shows an example in which the Truss graph approximation
can be used to generate relevant mechanical simulations.

4.6.1 Truss Representation of Voxel Sets

Fig. 4.8 presents an initial voxel - based scalar field and an intermediate result of the Medial
Axis extraction (Algorithm 1). It is relatively simple to detect that the thinning has not finished
since Figs. 4.8(b) and 4.8(e) show solid lumps of voxels still present. These lumps are in violation
of 1-manifold or Sn (Fig. 4.3) conditions. Figs. 4.8(c) and 4.8(f) show the final medial axis
representation, which in all neighborhoods presents 1-manifold or Sn conditions.

Fig. 4.9 presents aspects of the processing of a medial axis MA(B) to convert it into a usable
skeleton SK(B) and then into a Truss graph representation of B (Algorithm 2). The medial axis
is usually very noisy (Fig. 4.9(a)), containing hairs, irreducible triangular cycles, and strongly
curved struts. Figs. 4.5, 4.6 and 4.7 intuitively explain the hair removal, recursive linearization and
3-cycle elimination, respectively. The result is a clean linearized skeleton SK(B), as presented in
Fig. 4.9(b).

Fig. 4.9(c) presents the equivalent Truss Graph (V,E). In this graph, the nodes in V contain
information about their (x, y, z) position in R3 and the equivalent radius of an envelope sphere
that represents the material accumulated in the Sn joints. The edges in E contain information
of their end vertices as well as the equivalent cylinder radius, as per the accumulated mass m(v)
of the surviving voxels in MA(B). The radii associated with the Sn joints are not used in this
manuscript, but are relevant to the void vs. full space ratio (i.e. porosity) of the material. Fig.
4.9(d) contrasts the initial (voxel) scalar field against its Truss graph approximation.

In order to get a measure of the quality of the truss graph approximation, the porosity (or void
fraction) of the initial samples is compared with the porosity of their respective truss approximations
(Table 4.2). The reader may notice that, for both samples, the difference of the porosity between
the actual and the truss approximated domain is lower than 1%.
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(a) Domain 1. Wireframe
Noisy Skeleton.

(b) Domain 1. Wireframe
Clean Linearized Skeleton.

(c) Domain 1. Truss Graph
Approximation.

(d) Domain 1. Voxel Set
and its Truss Graph Ap-
proximation.

(e) Domain 2. Wireframe
Noisy Skeleton.

(f) Domain 2. Wireframe
Clean Linearized Skeleton.

(g) Domain 2. Truss
Graph Approximation.

(h) Domain 2. Voxel Set
and its Truss Graph Ap-
proximation.

Figure 4.9: Process of Approximation of a Voxel Set by a Bar / Sphere Graph. Data Sets 1 and 2

Table 4.2: Comparison of the Porosity of the Actual Samples vs. the Porosity of the Truss Approx-
imation.

Domain Actual
porosity

Truss graph’s
porosity

Relative
error

Domain 1 93.90% 94.01% 0.12%
Domain 2 93.32% 93.30% 0.02%
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4.6.2 Application on Open Pore Stress - Strain Calculation

This section presents a proof - of - concept in the sense of showing that the Truss graph approxima-
tion of a voxel scalar field is indeed advantageous for relevant mechanical analyses . The particular
example domain chosen is the stress - strain behavior of the porous material, as computed with
Finite Element Analysis (FEA).

X

Z

Load direction

90µm

18µm

18µm

Loaded nodes

Full constrained nodes

(a) Shear Test Conditions.

X

Z

Load direction

90µm

18µm

18µm

Loaded nodes

Constrained nodes in Z

(b) Tension Test Conditions.

Figure 4.10: Boundary Conditions for the Mechanical Tests.

X

Z

0.0 0.35x10-5µm

(a) Shear Deformation in X di-
rection.

X

Z

0.0 0.79x10-6
�m

(b) Tension Deformation in Z
direction.

Figure 4.11: Shear and Tension FE Analyses with Truss model. Displacement scales are augmented
by the FEA software for visualization.

In order to gain some insights on the computational savings of the Truss model against other
traditional models, we have analyzed the Porous Domain 1 by generating two case studies of shear
and tension loads (Fig. 4.10) for the corresponding (a) 3D voxel - based model and (b) Truss -
based model. The 3D voxel - based model is generated by converting every Voxel into a hexahedral
(cubic) element. Despite this technique does not represent the geometry of the domain with the
same fidelity as a BRep model, it has been used for multiple studies of the mechanical response
(estimation of apparent mechanical properties) of porous materials ([4, 60]).

The results of the simulations are shown in Figs. 4.11 and 4.12. These figures are generated
using a feature of the FEA software which allows to exaggerate the deformation for visualization
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X

Z

0.0 0.40x10-5µm

(a) Shear Deformation in X di-
rection.

X

Z

0.0 0.93x10-6�m

(b) Tension Deformation in Z
direction.

Figure 4.12: Shear and Tension FE Analyses with the Voxel Model. Displacement scales are
augmented by the FEA software for visualization.

purposes. Taking the maximum displacements of the Voxel model as reference values, the error
of the Truss model in the estimation of X displacements in the shear test is 12.5%. In a similar
fashion, the error in the estimation of Z displacements in the tension test is 15.1%.

Table 4.3 compares the FEA resources devoted to Voxel - based model vs. Truss - based
simulations. The saving factor in all categories (FE nodes, elements, equations and memory) in
favor of Truss graph data is in the order of 102. To determine how such saving factor impacts the
computing time, we recur to the order of growth O of the execution time in terms of the number
of nodes. In the worst-case scenario, the bandwidth of the stiffness matrix is O(N2), where N is
the number of nodes. Hence, the time complexity of a FEA simulation is given by the term O(N3)
([61]). Then, a difference of 102 in the number of elements, implies a difference in the order of 106

in the number of operations that need to be performed to simulate the models.

Table 4.3: Computing Expenses for Truss vs. Voxel - based Foam Models.

Model Number of
Nodes

Number of
Elements

Number of
Equations

Memory
allocated by
Solver

Truss 729 786 3450 1.8MB
Voxel 95390 61039 230676 628.4MB

4.7 Conclusions

This manuscript presents a method to directly synthesize a truss graph representation from the
scalar field (voxel CT) of an open pore material domain B. This approach is an alternative to
previous ones which first require the estimation of the skin or Boundary representation ∂B. The
implemented method enforces the conservation of volume information of each original domain bar,
thus allowing to estimate the radii of the equivalent truss bars. The method implemented estimates
the medial axis of the domain B, removes the noise (inherent to medial axes) and linearizes the
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local geometry. FEA computations are presented with the Truss model obtained from the scalar
field, showing that it is a viable alternative to the 3D BRep - based models, which are much more
expensive to generate and simulate.

Future work is required in porous or lattice domains whose medial axis includes surfaces (and
not only curves). Additional work is needed in comparing the 1.5D Truss vs. 3D Brep simulations
(considering the 3D one as ground truth). Also, experimental work is needed with actual porous
material samples, to contrast the equivalent mechanical parameters estimated with the simulations
vs. the laboratory values.
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5.1 Context

Diego Montoya-Zapata, Diego A. Acosta, Oscar Ruiz-Salguero, and David Sanchez-
Londono. (2018). FEA Structural Optimization Based on Metagraphs. International
Joint Conference SOCO’18-CISIS’18-ICEUTE’18. Print ISBN 978-3-319-94119-6 , On-
line ISBN 978-3-319-94120-2, pp 209-220, vol. 771. DOI: https://doi.org/10.1007/978-
3-319-94120-2 20 Book Series: Advances in Intelligent Systems and Computing. Springer
International Publishing AG, part of Springer Nature 2019.

5.1.1 Proof of Publishing

The article FEA Structural Optimization Based on Meta-graphs –Diego Montoya-Zapata, Diego A.
Acosta, Oscar Ruiz-Salguero, David Sanchez-Londono was presented in the “13th International Con-
ference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2018)”.
It was published as a chapter of the Springer book series Advances in Intelligent Systems and
Computing (AISC) (Fig. 5.1).

Figure 5.1: FEA Structural Optimization Based on Metagraphs presented in SOCO 2018.
Screenshot of the AISC Book Series, Springer.
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The was selected for the organizers of SOCO 2018 to be extended and submitted to an Special
Issue in the Journal Cybernetics and Systems, Taylor & Francis. Figure 5.2 depicts a proof of the
submission of the improved article to the Journal Cybernetics and Systems.

In order to simplify this document, only the version of the article submitted to the Journal
Cybernetics and Systems is added into the text. The reader may consult the article presented
in SOCO 2018 in the Springer web page. See the corresponding bibliographic information in
Section 5.1.

Figure 5.2: Proof of Submission to Special Issue in Journal of Cybernetics and Systems.

5.2 Abstract

The challenges that a shape or design stands are central in its evolution. In the particular domain
of stress / strain challenges, existing approaches eliminate under-demanded neighborhoods from
the shape, thus producing the evolution. This strategy alone incorrectly (a) conserves disconnected
parts of the shape, and (b) eliminates neighborhoods which are essential to maintain the boundary
conditions (supports, loads). The existing analyses preventing (a) and (b) are conducted in an
ad-hoc manner, by using graph connectivity. This manuscript presents the implementation of a
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meta-graph methodology, which in systematic manner lumps together finite element subsets of the
current shape. By considering this meta-graph connectivity, the method impedes situations (a) and
(b), while maintaining the pruning of under-demanded neighborhoods. Research opportunities are
open in the application of this methodology with other types of demand on the shape (e.g. friction,
temperature, drag, abrasion).

5.2.1 Keywords

Topology optimization, Evolutionary structural optimization, Mathematical graph

Glossary

AM: Additive manufacturing.
BESO: Bidirectional evolutionary structural optimization.
ESO: Evolutionary structural optimization.
FEA: Finite element analysis.
GA: Genetic algorithms.
Ω0: Compact and bounded subset of R2, that represents an initial ma-

terial stock from which to carve the part.
Ωi: The part after the i-th step of the evolution.
f : Scalar function f : Ωi → R that expresses how much is the neigh-

borhood of a point x ∈ Ωi being demanded by the stimuli (e.g.
stress) being considered.

g: Scalar function g : Ωi → R that expresses the permissible level of
demand f that the neighborhood of a point x ∈ Ωi may stand (e.g.
permissible stress allowable). In mechanical design, g is usually a
constant for the whole domain Ωi.

G =
(V,A):

the Finite Element - based graph in which a vertex vi ∈ V is a
finite element. An arc (vi, vj) ∈ A means that finite elements vi
and vj are neighbors.

GM =
(VM , AM ):

A meta-graph built on G, in which a meta-vertex Vi ∈ VM is a
connected set of finite elements of V . A meta - arc (Vi, Vj) ∈ AM

means that meta-vertices Vi and Vj are neighbors.

5.3 Introduction

As a result of the process of evolution, natural shapes lose the neighborhoods that do not affect
their basic functions. This evolutionary process is influenced by the different stimuli (heat, friction,
stresses) to which the shape is subjected to.

Based on the response of the shape to the different stimuli, one can classify the shape neigh-
borhoods as (1) demanded, if they are highly used to fulfill the functional requirements, or (2)
under-demanded, when they are not completely necessary.

This work presents a methodology for structural optimization in which the exact nature of
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the stimulus may be generic. At the same time, the criterion of material removal may be also
generic. Examples of such a criterion are low stress, high exposure to friction, maximization of
wave reflection (e.g. sound), etc. In this particular article, the material removal obeys to low
stressed neighborhoods when subjected to stress / strain stimuli. Notice that, once the stimuli are
calculated (by specialized outsourced software), the particular criteria for material removal can be
applied in a generic manner.

This article presents a meta-graph methodology, which systematically removes material neigh-
borhoods (represented by subsets of finite elements) of the current shape. By considering this
meta-graph connectivity, the method prunes under-demanded neighborhoods while impeding the
(a) generation of disconnections on the shape, and (b) elimination of the essential neighborhoods
that maintain the boundary conditions (supports, loads).

This manuscript is organized as follows: Section 5.4 provides a review of the related literature.
Section 5.5 describes the proposed meta-graph based algorithm and Section 5.6 presents and eval-
uates the results obtained following the meta-graph approach. Finally, Section 5.7 contains the
conclusions and some possible research lines to extend this work.

5.4 Literature Review

5.4.1 Evolutionary Structural Optimization

Xie and Steven ([62]) introduce a structural optimization method called Evolutionary Structural
Optimization (ESO). ESO removes progressively the low stressed portions of a structure by carrying
out iterative FEA simulations. Therefore, the weight of the structure is reduced without affecting
its functionality. Bidirectional ESO (BESO) [63] is an extension of ESO in which new material can
be added in high-stressed zones. One of the main drawbacks of ESO and BESO is the formation
of non-valid configurations as a result of material removal, which cause the end of the optimization
process.

Recent publications on improvements of ESO/BESO techniques [64, 65] and on review articles
focused on ESO/BESO [66–68] prove that the development of these algorithms is a matter of interest
for the academic community.

One of the reasons of the popularity of ESO and BESO is the wide range of engineering problems
that can be addressed with these methods. Some examples are: aeronautics [69], biomedicine [70],
and materials design [71].

Likewise, much of the research efforts in topology optimization are focusing on additive man-
ufacturing (AM) [72, 73]. The recent advances in AM allow the exploitation of the full capacities
of ESO/BESO techniques. Hence, it is necessary to improve the current topology optimization
algorithms so that they adapt to the manufacturing capabilities that have been gained because of
AM.

5.4.2 Graphs Representations Used with ESO

Stojanov et al. ([74]) uses graphs to represent of FEA meshes, so that each graph vertex represents
a FEA element. In this work, graphs are used to check the connectivity of the generated structures.
Structures that do not meet the connectivity requirement are discarded. In a similar fashion, Munk,
Vio, and Steven ([65]) use a graph-based connectivity checker to extend BESO.
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In these two papers [65, 74] graph representations have been mainly used to find valid (or non-
valid) configurations of FEA meshes while using ESO algorithms and when a non-valid configuration
is found, this branch of the optimization process is not taken into account. Additionally, graphs
abstractions are not integrated to the material removal process

Montoya-Zapata et al. ([75]) integrate ESO algorithm and graphs to perform 2D structural
optimization. In their work, Montoya-Zapata et al. ([75]) develop a meta-graph (a graph generated
from subsets of elements of the FEA mesh) strategy to be used as part of the material removal
routine. However, this strategy is only used in a particular case, when the connectivity of the
boundary conditions is compromised.

5.4.3 Graph Representations in Other Structural Optimization Algo-
rithms

Graph representations have been used in conjunction with other structural optimization techniques,
apart from ESO. For instance, Giger and Ermanni ([76]) focus on the topology optimization of
trusses, using genetic algorithms (GA) as the basis of the algorithm to remove the useless material
of the truss structure. Graph representations are mainly used to establish a criterion to test if a
solution is structurally valid.

Another example of the use of GA and graph representations in structural optimization is
presented by Madeira, Pina, and Rodrigues ([77]). In this work, each graph vertex represents
a finite element, and a graph arc between two vertices indicates that the elements the vertices
represent are neighbors. These graphs are created and modified using GA to find an optimal
solution.

5.4.4 Conclusions of the Literature Review

Structural optimization and specifically ESO/BESO are topics of interest because of the multiple
application fields in which they can be used. In particular, the use of topology optimization in AM
is establishing as a necessity. Therefore, it is necessary to improve current topology optimization
algorithms.

We have shown that the use of graph abstractions is common in structural optimization. How-
ever, graphs are mainly used to check the connectivity of the generated solutions and they are not
integrated into the material removal algorithm.

This contribution intends to illustrate a methodology to use graphs to administrate the infor-
mation of neighborhood and static connectedness to support the shape evolutionary strategy. The
present paper proposes a generalization of the meta-graph based strategy presented by Montoya-
Zapata et al. ([75]), so that it is used at every stage of the optimization process. In this way,
the material removal algorithm is simplified and fully based on the meta-graph information (meta-
graph connectivity and meta-nodes degree). In addition, this work presents additional examples to
support and illustrate the behavior of our meta-graph based optimization approach.

We do not try in the present status of our manuscript to evaluate or apply alternative evolution-
ary strategies (e.g. mutation and crossover operators [76,77]). Our future work seeks to widen the
variety of stimuli (kinematics, abrasion, temperature) that drive evolution in the nature domain.
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5.5 Methodology

5.5.1 Problem Statement

Given

1. Let Ω0 ⊂ R2 be a compact and bounded domain that represents an initial oversized domain.

2. A stimulus function S that acts over ΩS ⊂ Ω0.

3. FEA mesh M0 = (N0, E0) for Ω0, where N0 is the set of nodes and E0 is the set of elements.

Goal

To obtain the design domain ΩF ⊂ Ω0 that solves the optimization problem:

min
Ω

A(Ω)

s.t. f(x) ≤ g(x), for all x ∈ Ω,Ω ⊂ Ω0

ΩS ⊂ Ω

where A(Ω) is the area of Ω, f(x) is the response for x ∈ Ω to the stimuli S and g(x) expresses
the permissible level of demand f that the neighborhood of a point x ∈ Ωi may stand (e.g.
permissible stress allowable).

5.5.2 Structural Optimization Algorithm

The implemented optimization algorithm follows the procedure described in Fig. 5.3(a). First,
a FEA simulation is carried out, given the initial FEA mesh M0 = (N0, E0) and the stimulus
function S. The FEA simulation allows to find the domain response f to the stimuli S. If f
exceeds the permissible limit g, then the algorithm stops. Otherwise, the algorithm proceeds to
delete the under-demanded FEA elements. The sub-algorithm that performs the deletion of the
FEA elements is presented in Fig. 5.3(b). It is described in detail in Sect. 5.5.3.

Finally, another FEA simulation is performed with the resultant domain after the deletion of
the under-demanded FEA elements deletion. The cycle is repeated until no more elements can be
deleted.

The reader may notice that the algorithm presented in this article reduces Ω0 by removing
under-demanded material (i.e. elements from E0) given a deletion criterion. The stimulus function
S and the deletion criterion are user-defined properties and f is calculated by using FEA software.
Therefore, the presented algorithm is independent to the kind of stimuli (forces, friction, abrasion,
humidity, etc.) to which the domain is subjected.
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Ei-1 = Ei

(a) Work-flow of the optimization algorithm

Graph generation

G = (V, A)

Graph partition

GSD, GSND
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components calculation

C1, …, Ck

END

S, f(x),
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Criterion

Mi-1

Ei

GM = (VM, AM)

(b) Element deletion sub-algorithm

Figure 5.3: Data flow of the implemented optimization procedure.

5.5.3 Element Deletion Algorithm

The main objective of our element deletion algorithm is to assure that the resultant configuration
(after removing the unnecessary FEA elements) is valid from a structural point of view. Our
algorithm is based on a graph abstraction of the design domain, as presented in Fig. 5.3(b). The
main stages of the algorithm are discussed in the following sections.

Graph Generation

For every FEA mesh M = (N,E), a graph G = (V,A) can be generated with the following
procedure:

1. Assume that E = {e1, e2, . . . , ek}. Then, for every ei ∈ E create a graph vertex vi ∈ V .

2. A graph arc (vi, vj) ∈ A exists if and only if the corresponding FEA elements ei, ej are
adjacent.

Different adjacency relations between elements can be defined for a 2D FEA mesh. In particular,
in this article we consider two elements as adjacent if they have a common edge. In Fig. 5.4 is
depicted an example of the graph associated to a FEA mesh following this FEA-edges adjacency
rule.
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(b) Graph edges produced by adjacent FEA edges

Figure 5.4: FEA mesh to graph conversion using FEA edge adjacency criteria.

Graph Partition

In order to carry out the elimination of the under-demanded material, the graph is partitioned into
two sub-graphs GSD and GSND where: (i) GSD contains the graph nodes that are candidates for
elimination (ED ⊂ E) and GSND contains the rest of nodes (END = E − ED).

The set of nodes ED are those nodes associated to the under-demanded FEA elements. These
elements are selected based on the response function f and a Deletion Criterion. In our case, our
Deletion Criterion is defined by an admissible limit for the Von Mises stress at each optimization
stage. In addition, the FEA elements in which the stimulus function S acts cannot be eliminated,
so they always belong to END.

Connected Components Calculation and Meta-graph Generation

The procedure to generate the meta-graph GM associated to 1) the graph G = (V,A) and 2) the
set of candidate elements to be deleted ED ⊂ E is described below. Fig. 5.5 shows a graphical
representation of the given procedure.

1. Find the connected components of GSD and denote them as {c1, c2, . . . , cp} (see Fig. 5.5(a)).

2. Find the connected components of GSND and denote them as {cp+1, cp+2, . . . ,
cp+r} (see Fig. 5.5(a)).

3. Each connected component of GSD and GSND becomes a vertex (meta-node) of the meta-
graph.

4. Two meta-nodes ci, cj are adjacent if and only if exist vertices vi, vj ∈ V such that: (a) the
arc (vi, vj) ∈ A exists, (b) vertex vi belongs to the connected component ci, and (c) vertex vj
belongs to the connected component cj (see Fig. 5.5(b)).
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(b) Meta-graph connectivity

Figure 5.5: Meta-graph associated to a FEA mesh and the candidate elements to be deleted

Meta-graph Pruning

The last step of the element deletion algorithm is the elimination of the under-demanded material
(meta-graph pruning). For this purpose, we consider three different scenarios:

Case 1 - Non-candidate elements for deletion are fully connected: As can be seen in
Fig. 5.6(a), in this scenario all the non-candidate elements to be deleted lie in the same meta-node
(C3). In this case, all the meta-nodes that contain under-demanded elements are removed (C1 and
C2).

Case 2 - Non-candidate elements for deletion are partially connected: In this case,
the non-candidate elements for deletion are not in the same meta-node. However, all elements
under the action of the stimulus S do lie in the same component. An example of this scenario is
shown in Fig. 5.6(b). Since the deletion of C1 would annul the action of C3, in this work both C1

and C3 are removed. The only meta-node left after deletion would be C2. In general, in this case
all the meta-nodes but the one that contains the elements with boundary conditions are deleted.

Case 3 - Non-candidate elements for deletion are not connected: In this scenario,
elements with boundary conditions are not in the same meta-node. In order to preserve the con-
nectivity of the stimulated subdomain ΩS , a meta-node Ci is deleted if meets these conditions: 1)
Ci is a connected component of GSD and 2) Ci has degree 1.

The second condition assures that deleting Ci will not affect the connectivity of the elements
with boundary conditions.

For the example illustrated in Fig.5.6(c), the only meta-node that is deleted is C1, since the
deletion of C2 would generate a disconnection between the meta-nodes with boundary conditions
(C3, C5).
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Figure 5.6: Material removal scenarios.

5.5.4 Boundary Synthesis

Since the presented algorithm works with FEA meshes, the final shapes obtained with the algorithm
tend to be rough and difficult to manufacture. For this reason, the boundary of the final designs
must be smoothed. In Fig. 5.7 is shown the process to obtain the smoothed boundary of a given
FEA mesh.

FEA mesh
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Boundary
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Boundary
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(b) Example

Figure 5.7: Post-processing for part boundary smoothing.

5.6 Results

Section 5.6.1 reports the accomplished results with our meta-graph based algorithm for different
problems found in the literature. Section 5.6.2 reports the results for other simulations that are
useful to illustrate the behavior of the presented algorithm. In all the simulations we show in a
particular iteration how the meta-graph approach is applied to keep always a connected domain.
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5.6.1 Benchmarking Cases

Michell Structure

The design problem and theoretical solution of a Michell structure are depicted in Figs. 5.8(a) and
5.8(b). In Figs. 5.10(a)-5.10(d) can be seen the domain at different iterations. These figures show
how the shape evolved until reaching a design that resembles the theoretical solution.

Figs. 5.9(a)-5.9(d) show the action of the meta-graph strategy in an intermediate iteration of the
optimization process. Fig. 5.9(a) shows the candidate elements for deletion and Fig. 5.9(b) depicts
the meta-nodes associated to the configuration in Fig. 5.9(a). In Fig. 5.9(c) can be seen the meta-
graph abstraction for this particular iteration. Based on the algorithm presented in Section 5.5.3,
the meta-nodes C2, C3, C4, and C5 would be removed and the resultant shape after elimination is
shown in Fig. 5.9(d).
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Y
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X
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(a) Michell structure conditions
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X

Y

U
X
=0

U
Y
=0 U

Y
=0

U
X
=0

(b) Theoretical optimization [78]

Figure 5.8: Michell structure. Deign domain and benchmarking solution.

(a) Elements candidate for elimination:
red.

(b) Meta-nodes: (i) C1: green region. (ii)
C2, C3: red. (iii) C4, C5: blue.

C1 C2 C4C3C5

Boundary conditions

(c) Meta-graph generated from Fig. 5.9(b). (d) Surviving meta-node C1 after elimina-
tion of meta-nodes C2, C3, C4, C5.

Figure 5.9: Michell structure. Intermediate iteration. Elimination of under-stressed meta-nodes
lead to disconnection-based secondary elimination, as administered by the meta-graph strategy.
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(a) Iteration 40 (b) Iteration 120 (c) Iteration 160 (d) Iteration 240

Figure 5.10: Michell structure. Evolution dictated by the meta-graph strategy. Dotted line denotes
the initial design domain.

Two Bar Frame:

The initial domain and boundary conditions for the design of a two bar frame are shown in
Figs. 5.11(a). The theoretical solution is illustrated in Fig. 5.11(b). The evolution of the shape
throughout the optimization is shown in Figs. 5.13(a)-5.13(d). As in the Michell structure example,
it can be seen that the design obtained with the meta-graph abstraction is similar to the theoretical
solution.

The role of the meta-graph modeling in the optimization process is shown in Fig. 5.12. In
Fig. 5.12(a) are shown the candidate elements for deletion. This is an example of the Case 1
described in Section 5.5.3, since all the non-candidate elements for deletion lie in the same meta-
node, as shown in Fig. 5.12(b). Thus, all the meta-nodes different to C1 can be deleted and the
resultant shape is as seen in Fig. 5.12(c).

Michell Structure with Alternative Boundary Conditions

The initial domain and boundary conditions for a Michell structure are shown in Fig. 5.14(a). In
comparison with the first example, the node in the lower-right corner does not have restriction
of movement in X direction. Fig. 5.14(b) exhibit a solution obtained via simulation by Xie and
Steven ([62]). In Figs. 5.16(a)-5.16(d) is shown the shape of the domain at different iterations.
Notice that the final shape is similar to the proposed by Xie and Steven ([62]).

Fig. 5.15 show the performance of the meta-graph based algorithm in a intermediate iteration.
As in the previous examples, Figs. 5.15(a), 5.15(b), and 5.15(c) show the tentative element for
deletion and the meta-graph associated to the current iteration. This is an instance of the Case
2 presented in Section 5.5.3. Fig. 5.15(d) shows the resultant domain after the application of the
corresponding meta-graph pruning strategy.
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Figure 5.11: Two bar frame. Design domain and benchmarking solution.

(a) Elements candidate for
elimination: red. Meta-nodes:
(i) C1: green region. (ii) C2,
C3, C4, C5, C6, C7, C8: red.

C1 C7
C2

Boundary conditions
C8

C6

C3

C5
C4

(b) Meta-graph generated from
Fig. 5.12(a).

(c) Surviving meta-node C1 af-
ter elimination of meta-nodes
C2, C3, C4, C5, C6, C7, C8.

Figure 5.12: Two bar frame. Intermediate iteration. Elimination of under-stressed meta-nodes lead
to connected domain.

(a) Iteration 10 (b) Iteration 50 (c) Iteration 150 (d) Iteration 300

Figure 5.13: Two bar frame. Evolution dictated by the meta-graph strategy. Dotted line denotes
the initial design domain.
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Figure 5.14: Michell structure with alternative boundary conditions. Design domain and bench-
marking solution.

(a) Elements candidate for elimination:
red.

(b) Meta-nodes: (i) C1: green region. (ii)
C2, C3, C4, C5: red. (iii) C6: blue.

C1 C4 C6C2

Boundary conditions C5

C3

(c) Meta-graph generated from
Fig. 5.15(b).

(d) Surviving meta-node C1 after elimina-
tion of meta-nodes C2, C3, C4, C5, C6.

Figure 5.15: Michell structure with alternative boundary conditions. Intermediate iteration. Elim-
ination of under-stressed meta-nodes lead to disconnection-based secondary elimination, as admin-
istered by the meta-graph strategy.

(a) Iteration 40. (b) Iteration 70. (c) Iteration 120. (d) Iteration 135.

Figure 5.16: Michell structure with alternative boundary conditions. Evolution dictated by the
meta-graph strategy. Dotted line denotes the initial design domain.
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5.6.2 Other Experiments

Bar under Opposite Loads

In Fig. 5.17 are shown the design domain and the load conditions for a bar subjected to loads of the
same magnitude but in opposite directions. With this simulation we aim to exhibit a clear example
of the behavior of the meta-graph approach in the Case 3 (see Section 5.5.3). Likewise, Fig. 5.19
shows the evolution of the shape during the optimization process.

In Figs. 5.18(a) and 5.18(b) are shown the tentative elements to be deleted and the corresponding
meta-nodes. In Fig. 5.18(c), where the meta-graph is depicted, is clear that the elements with
boundary conditions are not in the same component, and the deletion of meta-node C3 would
lead a non-connected domain. Thus, following the approach presented in Section 5.5.3, only the
meta-nodes C4 and C5 can be removed. Fig. 5.18(d) exhibits the resultant shape.

Ux = 0

UY = 0

10m

3m

3m

X

Y

2m

Figure 5.17: Bar under opposite loads. Design domain and load conditions.

(a) Elements candidate
for elimination: red.

(b) Meta-nodes: (i) C1:
magenta region. (ii) C2:
green region. (iii) C3 -
C5: red.

C1 C3 C2

C4

C5

Boundary conditions

(c) Meta-graph generated from
Fig. 5.18(b).

(d) Surviving meta-
nodes C1, C2, C3
after elimination of
meta-nodes C4, C5.

Figure 5.18: Bar under opposite loads. Intermediate iteration. Elimination of under-stressed
meta-nodes lead to disconnection-based secondary elimination, as administered by the meta-graph
strategy.
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(a) Iteration 20. (b) Iteration 30. (c) Iteration 40.

Figure 5.19: Bar under opposite loads. Evolution dictated by the meta-graph strategy. Dotted line
denotes the initial design domain.

Viaduct Simulations

In order to show the capacity of our algorithm to replicate to some extent some well-known en-
gineering structures, we carried out two different simulations to try to resemble the aspect of a
viaduct. In Fig. 5.20 are shown the design domain and the load conditions for the two simulations.
In both cases, a distributed load along the length of the domain is applied.

Figs. 5.22 and 5.24 the how the meta-graph abstraction was used and the resultant domain for
a particular iteration in each simulation.

Figs. 5.23 and 5.25 show the evolution of the shape throughout the optimization. The obtained
designs resemble to some extent the shape of a viaduct of the type of the Millau Viaduct, France.
In Fig. 5.21 is shown a picture of this viaduct.
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Figure 5.20: Viaduct/Bridge simulations. Design domain and load conditions.
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Figure 5.21: Millau Viaduct, France. Image by MIEL1971 ([1]). Licensed by CC0 (Creative Com-
mons Zero).

(a) Elements candidate for elimination: red. (b) Meta-nodes: (i) C1: green region. (ii) C2 - C9:
red. (iii) C10 - C13: blue.
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C11

C10 C9

C12
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(c) Meta-graph generated from Fig. 5.22(b). (d) Surviving meta-node C1 after elimination of
meta-nodes C2 - C13.

Figure 5.22: Bridge 1. Intermediate iteration. Elimination of under-stressed meta-nodes lead to
disconnection-based secondary elimination, as administered by the meta-graph strategy.

(a) Iteration 30. (b) Iteration 60. (c) Iteration 129.

Figure 5.23: Bridge 1. Evolution dictated by the meta-graph strategy. Dotted line denotes the
initial design domain.
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(a) Elements candidate for elimination: red. (b) Meta-nodes: (i) C1: green region. (ii) C2 - C5:
red. (iii) C6 - C9: blue.
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(c) Meta-graph generated from Fig. 5.24(b). (d) Surviving meta-node C1 after elimination of
meta-nodes C2 - C9.

Figure 5.24: Bridge 2. Intermediate iteration. Elimination of under-stressed meta-nodes lead to
disconnection-based secondary elimination, as administered by the meta-graph strategy.

(a) Iteration 10. (b) Iteration 60. (c) Iteration 120.

Figure 5.25: Bridge 2. Evolution dictated by the meta-graph strategy. Dotted line denotes the
initial design domain.

5.6.3 Computational Demands of the Proposed Algorithm

Due to the material removal procedure associated to the presented algorithm, given the mesh
Mi = (Ni, Ei) at iteration i we can say: |N0| ≥ |Ni| and |E0| ≥ |Ei|, where M0 = (N0, E0) is the
initial mesh. In addition, |N0| > |E0|. Therefore, the computational demands of one iteration of
the algorithm can be expressed as a function of N0 and the bandwidth W of the stiffness matrix
calculated during the FEA simulation [61].

Table 5.1 presents the computational expenses of our algorithm. Notice that the time complexity
and memory complexity of an iteration of our algorithm is dictated by the term O(N2

0 ). This term
corresponds to the dominant generation of the graph and the meta-graph associated to the FEA
mesh.

A comparison of the computational resources used vs. the efficiency of evolution is beyond our
capabilities. One reason for this limitation is that the measure of the quality or efficiency of an
evolution is itself an open research question at this time.
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Table 5.1: Analysis of the computational costs of an iteration of the proposed algorithm

Process Time expenses Memory expenses

FEA Simulation O(N0W
2) [61] O(N0W ) [61]

Mesh Partition O(N0) O(N0)
Element Deletion O(N2

0 ) O(N2
0 )

Graph Generation O(N2
0 ) O(N2

0 )
Graph Components Calculation O(N0) O(N0)
Meta-graph Generation O(N2

0 ) O(N2
0 )

Meta-graph Pruning O(N0) O(N0)

5.6.4 Boundary Synthesis

The simulations carried out with the meta-graph based algorithm showed that the resultant shape
is very rough. Following the procedure described in Sect. 5.6.4, one of the designs obtained with
the algorithm was smoothed. The results of the application of the smoothing algorithm using a
mean filter of order 4 are shown in Fig. 5.26. Notice that the boundary of the shape was corrected
without losing sensitive information of the design.

(a) Result of meta-graph pruning (b) Structure boundary (c) Smoothed boundary

Figure 5.26: Michell structure. Post-processing for border smoothing.

5.7 Conclusions

This article presents a novel methodology for topology optimization. This methodology joints
the concepts of ESO (a well-known optimization algorithm) with mathematical graph modeling of
the FEA mesh. The presented methodology is able to remove progressively the under-demanded
material of the structure and to produce a feasible solution at every iteration.

In comparison with previous works that use graph abstractions and ESO, this article presents
a general approach in which the removal of under-demanded material is fully based on a meta-
graph abstraction of the FEA mesh. In addition, this paper presents six different examples with a
clear illustration of the meta-graph approach in each example. In spite of the algorithm has been
developed only for 2D topology optimization, it can be extended to be applied for 3D domains.

Despite the given examples are in the field of 2D linear elasticity, the given algorithm can be
adapted to interact with other stimuli sources different from forces, pressures or torques. The only
requirement is that the effects of the stimuli can be described as a scalar field f acting on a set of
graph nodes.
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5.7.1 Limitations and Shortcomings

In the case in which elements with boundary conditions do not lie in the same meta-node, some
meta-nodes of degree 2 (or more) could be deleted and the optimization process must be divided in
multiple branches. However, since only meta-nodes of degree 2 are deleted, all the other branches
are not considered.

5.7.2 Future Work

Future work should address the utilization of stimuli other than stress/strain: friction, abrasion,
heat, humidity, etc. Future research should also address the extension of the algorithm to R3 and
the integration of our algorithm with other evolutionary based techniques (e.g. mutation) to allow
the generation of multiple feasible solutions that explore a wider region of the solution space.
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6.2 Abstract

In in-silico estimation of mechanical properties of open (Kelvin) cell porous materials, the geomet-
rical model is intractable due to the large number of finite elements generated. Such a limitation
impedes the study of reasonable domains. VoXel or Boundary representations of the porous do-
main result in FEA data sets which do not pass the stage of mesh generation, even for very modest
domains. Our method to overcome such limitations partially replaces geometrical minutiae with
kinematical constraints imposed on cylindrical bars (i.e. Truss model). Our implemented method
uses node position equality constraints augmented with rotation constraints at the joints. Such a
method significantly reduces the computational expense of the model, allowing the study of do-
mains of 103 Kelvin cells. The results of the tests executed show the accuracy and efficiency of
the Truss model in the estimation of Young’s modulus and Poisson’s ratio when compared with
current procedures. The method allows application for materials which depart from Kelvin Cell
uniformity, since the Truss model admits general configurations. As the simulation is made possible
by the Truss model, new challenges appear, such as the application to anisotropic materials and
the automatic generation of the Truss model from actual foam scans (e.g. tomographies).

6.2.1 Keywords

Computational efficiency, in-silico estimation, Kelvin cell, porous materials, Poisson’s ratio, Truss
model, Young’s modulus.

Glossary

BB: Bounding box.
BREP: Boundary representation of a solid in R3.
FE: Finite element.
FEA: Finite element analysis.
∆i: Displacement in direction i (m).

∆i(j): Displacement of node j in direction i (m).
εk: Strain in direction k (m).
ε̄k: Average strain in direction k for a set of nodes (m).
Ek: Young’s modulus in direction k (Pa).
i(j): Coordinate i of node j.
Li: Length of the domain in direction i (m).
ρ: Relative density of a porous domain (%).
r: Radius of the ligaments of the domain (m).
rnode: Radius of the spheres that model the ligament joints of the domain

(m).
σ: Total stress applied in compression test (Pa).
Vij : Poisson’s ratio measured from a contraction in direction j given an

extension in direction (adimensional).
| · |: Cardinality of a set.
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6.3 Introduction

Porous materials have a wide range of applications that cover different fields such as medicine,
biotechnology, automotive industry, design and manufacturing ([79–81]). In many of these applica-
tions a mechanical characterization of the material is needed. However, (1) existing material tests
are extremely expensive and (2) most of the computer simulations are intractable because of the
large size of the models. Therefore, the development of an effective and efficient method for the
estimation of the mechanical properties of porous material is a matter of interest.

Different authors have proposed numerical simplified models for the study of the mechanical
behavior of porous materials. One of the most common approaches is to represent the complicated
geometry of the material with regular arrays of Kelvin cells [49,50,81–87]. Ref. [88] presents another
simplification technique (Truss model), in which the ligaments of the material are represented with
beams of circular cross-section and variable radius.

In this article we aim to evaluate a variation of the Truss model using Kelvin cells. Our eval-
uations is purely numerical and neither experimental data nor experimental results are used for
benchmarking. The results obtained allow us to confirm that the proposed variation of the Truss
model is a promising technique for obtaining efficient and accurate estimations of the mechanical
moduli of open-cell porous materials.

This article is structured as follows: in Section 6.4 we provide a review of the geometric models
used for the representation of porous materials. In Section 6.5 we describe the employed methodol-
ogy. Section 6.6 presents and evaluates the results of the simulations. Finally, Section 6.7 contains
the conclusions of this work and possible future improvements on this research.

6.4 Literature Review

Multiple techniques have been used to obtain theoretical and computational models that may be
used to study the properties of porous materials, such as: models of regular arrays of polyhedra
(Kelvin cells [50, 81–87] and WeairePhelan cells [89]), random tessellation models [82, 90, 91], 3D
image-based models [10,52,54,92], and 1D image-based models ([88]). However, given the scope of
this research, we will focus on reviewing (1) image-based models (1D, and 3D) and (2) models of
regular arrays of Kelvin cells. A description of the other methodologies can be found in [93].

1. Image-based models: These models take a set of images (commonly from a X-ray computed
tomography (CT) [10, 52, 54, 88, 92]) of an actual foam sample to obtain an accurate compu-
tational representation of the domain of study. The images are processed to retrieve a 3D
representation of the foam and to generate its respective FE model [93]. Depending on the
type of element used for the FE simulations, these models may be classified as 3D image-based
models and 1D image-based models.

(a) 3D or BREP models: The main goal of BREP models is to preserve with a great level
of detail the geometry and topology of the original material sample. For this reason,
3D elements (cubic elements from VoXels [52] or tetrahedral elements [54]) are used for
the FE meshing. The obtained model consumes significant memory and time in FEA
simulations ([10, 54,94]). Therefore, simulations are constrained to small domains.

(b) 1D or Truss models: These models attempt to retain most of the geometry and topology
of the original material sample using less computational resources when compared with
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BREP models [88]. This is achieved by using 1D elements (beams of circular cross-
section with variable radius) for approximating foam ligaments. Truss models are used
for the estimation of equivalent mechanical moduli (Young, Shear, Poisson) of real foam
samples. Errors in the estimations are under 16%, when compared with the respective
BREP model. However, BREP model tends to be stiffer than the Truss model.

2. Models of regular arrays of Kelvin cells: This technique has been used to developed both
theoretical and numerical models that allow the analysis of the mechanical properties of open-
cell porous materials. The studies include the characterization of the compressive ([50,84–86])
and tensile ([87]) responses, the description and prediction of equivalent mechanical moduli
([81, 82,84]), and the analysis of thermal conductivity ([83]).

In what concerns to the study of the equivalent mechanical moduli of Aluminum foams,
authors in [50,82] report results considering one anisotropic Kelvin cell modeled with (a) 3D
solid elements (BREP model) and (b) beams of non-uniform cross section area (Truss model).
Errors of the Truss model vs. BREP model are between 14% and 17%, with the BREP model
being always stiffer than the Truss model. However, they do not assess the accuracy of the
estimations for a domain of more than one cell. They evaluate the results against experimental
estimations, which is out of the scope of this article.

Conclusions of the Literature Review

Based on the literature review, the Truss model excels the BREP model in the efficiency of the
use of computational resources. Likewise, the Truss model is able to conserve the geometry and
topology of the original foam. However, it is a matter of interest to make the Truss representation
stiffer so that it resembles more accurately the behavior of the BREP model.

In this article, we generate a stiffer Truss model by adding rotation constraints at the joins of
the bars. We perform an evaluation of the proposed Truss abstraction using Kelvin cells, which is
a widely used technique for the analysis of porous materials.

Unlike other approaches in which domains of a single Kelvin cell are considered, we study five
domains formed with 1, 4, 8, 12, and 1000 Kelvin cells. The evaluation consists in the estimation of
equivalent mechanical moduli (Young’s modulus, Poisson’s ratio) using FE mechanical simulations
in compression static tests. We compare the estimations performed by the BREP and Truss mod-
eling approaches for four domains (1, 4, 8, and 12 Kelvin cells). We also show the computational
efficiency of the Truss model with respect to the BREP model.

6.5 Methodology

In order to evaluate our approach to estimate equivalent mechanical moduli of porous materials,
we simulate numerical compression tests using ANSYS. Simulations are configured to appraise the
models in the elastic region. In addition, to asses the performance of the proposed approach, we
compare the estimations of the (a) BREP model, (b) traditional Truss model, and (c) proposed
Truss model with restricted rotations, taking the BREP as Reference model to measure the error
in the estimations of the other two models.

The addition of rotational constraints at the ligament junctions allows the traditional Truss
model to gain torque resistance. Therefore, the traditional Truss model and its variation with
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restricted rotations may be also called Torque-disabled and Torque-enabled Truss models, respec-
tively.

In Fig. 6.3 we show the process to carry out the mechanical moduli estimations with the BREP
and Truss abstractions. This process can be summarized in three main steps:

1. Generation of a suitable BREP and Truss models for FE simulations.

2. Set up and execution of the FE compression test in ANSYS.

3. Estimation of the moduli (Young’s modulus, Poisson’s ratio) based on the resultant nodal
deformations.

6.5.1 Domain Characterization

We analyze five domains of isotropic Kelvin cells composed by 1, 4, 8, 12, and 1000 Kelvin cells.
Fig. 6.2 illustrates the 5 domains. The specification of the Kelvin cell properties (material and
statistical dimensions) corresponds to an existing physical sample with height 100µm and average
ligament radius r = 5.0µm [88]. Ligament junctions (nodes) are modeled as spheres of radius
rnode = 5.42µm to avoid the formation of stress concentrators (crevasses) in the zones close to the
nodes.

(a) 1 Kelvin cell (b) 4 Kelvin cells (c) 8 Kelvin cells (d) 12 Kelvin cells

(e) 1000 Kelvin cells

Figure 6.2: Analyzed domains.

6.5.2 Generation of BREP and Truss Models

BREP Model for FEA:

We use Rhinoceros 3D to produce a BREP of each analyzed domain. Then, we generate the
corresponding 3D mesh in ANSYS. For full 3D FEA simulation we use elements SOLID185 [95].
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These elements are first order ones (2 nodes/edge) and accept linear and non-linear analysis. Other
ANSYS elements (SOLID186, SOLID187) have higher order, thus demanding more computational
resources. Elements SOLID186 and SOLID187 are not needed for elastic compression loads. Fig.
6.4(a) presents the 3D mesh generated in ANSYS for the domain of 8 Kelvin cells.

Truss Model for FEA:

We generate a Truss abstraction of each domain of Kelvin cells using C language. Then, we generate
two independent FEA cases in ANSYS that correspond to the Torque-enabled and Torque-disabled
Truss models. Fig. 6.4(b) shows the mesh generated in ANSYS using beam elements. We use
BEAM188 for the FE analysis. This is a first order element and serves linear elastic loads (our
simulation domain). ANSYS element BEAM189 was not selected since it has higher order (not
essential in our case) and thus demands larger computational resources [95].

6.5.3 Configuration of the Compression Test

The parameters used for the simulations are reported in Table 6.1. The set-up of the compression
test for the domain of 8 Kelvin cells is displayed in Fig. 6.5. For the BREP and Truss models, at
the bottom of each domain: (1) Z displacement is set to 0, and (2) at least two nodes at the center
are embedded (all degrees of freedom are constrained to zero displacement). Compression loads in
negative Z direction are applied at the top of each domain. Table 6.1 shows the magnitude of the
loads.

In the case of the Torque-enabled Truss model, at the junction of the ligaments, rotations with
respect to X, Y, and Z are set to 0. These rotation constraints allow us to simulate a stiffer Truss
model without modeling explicitly the junctions between the struts of the porous domain, which
must be modeled when the BREP abstraction is used.

Table 6.1: Simulation set-up.

Property
Experiment conditions

Truss model BREP model
Material Al-6101-T6 [82] Al-6101-T6 [82]
Young’s modulus of bulk
material

E = 69.0 GPa [82] E = 69.0 GPa [82]

Poisson’s ratio of bulk mate-
rial

V = 0.3 [82] V = 0.3 [82]

Side length of Kelvin cell 100.0 µm [88] 100.0 µm [88]
Ligament radius r = 5.0 µm [88] r = 5.0 µm [88]
Nodal radius Does not apply rnode = 5.42 µm
Total applied stressa 2.50 MPa 2.0 to 2.3 MPa

aFEA requests Force (and not Pressure) boundary conditions. Pressure values slightly differ due to the fact
that they are calculated as F/A using a bounding box side area.

6.5.4 Estimation of Young’s Modulus and Poisson’s Ratio

Young’s modulus Ez is estimated as per Eq. 6.1:
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(a) Truss model (b) BREP model

Figure 6.3: Comparison between procedures for the moduli estimation the Truss and BREP models.

(a) BREP model (b) Truss model

Figure 6.4: Meshes generated in ANSYS for the domain of 8 Kelvin cells.

88



Figure 6.5: Domain of 8 Kelvin cells. Boundary conditions for the (a) BREP model (left), and (b)
Truss model (right).

Ez =
σ

εz
(6.1)

where σ is the total applied stress (see Table 6.1) and εz is the strain in Z direction.
On the other hand, Poisson’s ratio (Vzx, Vzy) is estimated as per Eq. 6.2:

Vzj = εj/εz for j = x, y (6.2)

where εj is the strain in j direction (j = X, Y), and εz is the strain in Z direction.
To estimate the strain in each direction, we calculate the average strain for a set of FE nodes

in a selected region of the domain. Figs. 6.6 and 6.7 depict the regions selected for the estimation
of X, Y, and Z strain for some of the studied domains. The thickness of each band corresponds to
the 10% of the domain size length.

(a) 1 Kelvin cell (b) 4 Kelvin cells (c) 8 Kelvin cells (d) 12 Kelvin cells

Figure 6.6: Selected region to estimate strain in Z direction.

6.6 Results and Discussion

6.6.1 Relative Density

Table 6.2 shows the calculation of the relative densities for the five analyzed domains. Notice that
for every domain, the relative density is between 6.2% and 7.0%, which lie in the range of typical
relative densities for metal foams [96].

89



(a) 1 Kelvin cell (b) 4 Kelvin cells (c) 8 Kelvin cells (d) 12 Kelvin cells

Figure 6.7: Selected region to estimate strain in X direction.

Table 6.2: Relative density of the analyzed domains.

Domain Relative density (%)
1 cell 6.98%
4 cells 6.73%
8 cells 6.56%
12 cells 6.51%
1000 cells 6.19%

(a) BREP model (b) Torque-enabled
Truss model

(c) Torque-disabled
Truss model

(d) Torque-enabled
Truss model

(e) Torque-disabled
Truss model

Figure 6.8: Compression test. Nodal displacements in Z direction for the domains of 8 and 1000
cells. Domain deformation is not noticeable in this image.
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6.6.2 Mechanical Moduli Estimation

Fig. 6.8 shows the resultant nodal displacements in Z direction after the simulation of a compression
test. The figure exhibits the response of the BREP and Truss abstractions for the domains of 8 and
1000 Kelvin cells. The reader may observe that the nodal displacements of each studied domain
have the same order of magnitude. Likewise, the nodal displacements for the Torque-enabled Truss
model are lower than for the Torque-disabled Truss model.

Table 6.3: Graphical version in Figs. 6.9 and 6.10. Mechanical moduli estimation with (a)
BREP model, (b) Torque-enabled Truss model, and (c) Torque-disabled Truss model. The
BREP model is considered as ground truth. Percentage errors are calculated based on 6
decimal places, while only 2 decimal places appear in this Table.

Modu-
lus

Domain BREP
model

Torque-enabled
Truss model. Rela-
tive error %

Torque-disabled
Truss model. Rela-
tive error %

Young
(EZ)

1 cell 182.07
MPa

223.96 MPa
(23.01%)

166.57 MPa
(8.52%)

4 cells 200.41
MPa

230.36 MPa
(14.94%)

149.00 MPa
(25.65%)

8 cells 223.11
MPa

208.94 MPa
(6.35%)

162.42 MPa
(27.20%)

12 cells 234.43
MPa

202.73 MPa
(13.52%)

165.74 MPa
(29.30%)

1000 cells NAa 165.72 MPa (NA) 158.04 MPa (NA)

Poisson
(VZX)

1 cell 0.49 0.45 (8.38%) 0.47 (3.73%)
4 cells 0.44 0.40 (8.57%) 0.44 (0.47%)
8 cells 0.44 0.43 (3.31%) 0.45 (1.42%)
12 cells 0.44 0.43 (1.94%) 0.45 (1.86%)
1000 cells NA 0.45 (NA) 0.45 (NA)

Poisson
(VZY )

1 cell 0.48 0.45 (6.64%) 0.47 (1.89%)
4 cells 0.45 0.40 (9.23%) 0.44 (1.19%)
8 cells 0.44 0.43 (3.06%) 0.45 (1.69%)
12 cells 0.44 0.43 (2.39%) 0.45 (1.39%)
1000 cells NA 0.45 (NA) 0.45 (NA)

aNA: Not available

Based on the nodal deformations, we estimate Young’s modulus (Ez), and Poisson’s ratio (Vzx,
Vzy) using Eqs. 6.1, and 6.2. Results are listed in Table 6.3 and a comparison of the estimations
using the three models is depicted in Fig. 6.9. As expected from the nodal displacements shown
in Fig. 6.8, Young’s modulus estimations for the Torque-enabled Truss model are greater than for
the Torque-disabled Truss model. So, restricting the rotations of the Truss abstraction produces a
stiffer model with the advantage that the nodes must not be modeled explicitly, as is the case for
the BREP model.

For few (less than 8) Kelvin cells, the Truss model does not correctly mimic the BREP model.
However, notice that the computational cost of the BREP model is so large that only 12 Kelvin
Cells can be modeled in total. It is worth remarking that for larger domains (8 or more cells), the

91



Torque-enabled Truss model almost halves the error of the Torque-disabled model in the estimation
of the Young’s modulus, being indeed a stiffer model than the one used in [88].

The reader may observe in Fig. 6.9 that Young’s modulus estimations of the Torque-enabled
Truss model tend to decrease when the size of the model increases. Conversely, Young’s modulus
estimations of the BREP model tend to increase. This fact may compromise the accuracy of the
Truss abstraction for larger domains. However, notice that the estimations of the Torque-enabled
Truss model are greater that the ones of the Torque-disabled model, even for the domain of 1000
Kelvin cells. So, for this task, the Torque-enabled Truss model is a better option than the traditional
Torque-disabled Truss model.

Errors in the estimations of Poisson’s ratio (Vzx, Vzy) using both Truss abstractions are under
10% in all the presented cases, as shown in Fig. 6.10. Moreover, error tends to decrease when
the domain becomes larger. This performance confirms that the Truss abstraction is a feasible
alternative for the numerical estimation of the Poisson’s ratio for large porous domains.

(a) Young’s modulus EZ (b) Poisson’s ration VZX (c) Poisson’s ration VZY

Figure 6.9: Estimations of the Young’s modulus and Poisson’s ratio using the (a) BREP model, (b)
Torque-enabled Truss model and, (c) Torque-disabled Truss model.

(a) Young’s modulus EZ (b) Poisson’s ration VZX (c) Poisson’s ration VZY

Figure 6.10: Relative error in the estimation of the Young’s modulus and Poisson’s ratio for the (a)
Torque-enabled Truss model and (b) Torque-disabled Truss model. The BREP model is considered
as ground truth.
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6.6.3 Computational Resources

Fig. 6.11 depicts the computational expenses of the BREP and Truss abstractions: (1) the number
of elements, (2) the number of equations and (3) the solver allocated memory are presented as
functions of the number of ligaments of the studied domains. The computational efficiency of the
Truss abstraction is noticeable: the BREP model uses 200 times the number of elements, generates
35 times the number of equations, and spends 20 times the memory of the Truss model.

In order to show that the low computational cost of the Truss abstraction allows the numerical
analysis of large domains, we simulate a compression test for a domain composed by 1000 Kelvin
cells. The simulation is carried out with the Torque-enabled and Torque-disabled Truss model.
Fig. 6.8 shows the resulting nodal displacements in Z direction.

The estimations of the Young’s modulus and Poisson’s ratio are given in Table 6.3 and Fig 6.9.
A comparison against the BREP model is not feasible, due to the large size of the domain. However,
the value of the estimations confirm that the Torque-enabled Truss model remains stiffer than the
traditional Truss model even for large domains.

(a) Number of elements (b) Number of equations (c) Solver allocated memory

Figure 6.11: Comparison of the computational expenses of the BREP and Truss models.

6.7 Conclusions

In this paper we present a numerical procedure for estimating efficiently macro-mechanical prop-
erties of open-cell metal foams with rounded ligaments. We propose and implement a variation
of the Truss model that considers torque at the ligament joints of the domain. The performance
of this Torque-enabled Truss model is assessed with the estimation of the Young’s modulus and
Poisson’s ratio for domains of 1, 4, 8, 12, and 100 Kelvin cells. The results obtained allow us to
assert that the Torque-enabled Truss model (1) is an accurate and more efficient alternative for the
computational representation of open-cell porous materials with rounded ligaments when compared
with the BREP model, (2) is suitable to carry out estimations of the elastic properties of porous
materials using numerical simulations, and (3) is stiffer and more accurate than the Torque-disabled
Truss model when large domains are considered.
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6.7.1 Future Work

The Kelvin cell considered in this article is isotropic (i.e., both geometric and lattice manufacturing
conditions). On the other hand, in spite of geometrical symmetry, anisotropy may be also introduced
by construction orientation (e.g. additive methods). This fact shows that anisotropy in lattice
materials is a very extensive and complex research area, which we do not intend to undertake in
the present work.

It was observed a trend of the Torque-enabled Truss model to become less stiff when the size
of the domain increases. This effect may affect the performance of the proposed approach when
compared to the BREP model. Therefore, a further analysis of this phenomenon is left as future
work.
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Chapter 7

Conclusions

This work presents a compilation of publications in applications of Computational Mechanics in
which Computational Geometry and Numerical Simulation have a central role. Likewise, tools from
mathematics, optimization, graph theory, and data structures and algorithms are fundamental for
the developed approaches.

This compendium shows a method for structural optimization in which the material removal is
based on the graph modeling of a FEA mesh. This material removal technique is integrated into
Evolutionary Structural Optimization, one of the most used algorithms in topology optimization.
This method assures the validity (from a structural point of view) of all the intermediate solutions
and is well-suited to be used with a external software that performs the FEA calculations.

This document also contributes in the modeling and mechanical characterization of porous
and lattice materials. Porous and lattice domains are modeled using 2.5D and 1.5D geometrical
entities that can be converted into FEA elements of homologous dimensions. These geometrical
simplifications reduce the time and memory expenses of the numerical simulations and allow the
estimation of macro-mechanical properties (e.g. Young’s modulus and Poisson’s ratio) in a more
efficient way. Comparisons between the BREP-based models and the geometrical simplified show
differences of maximum 16% in the estimation of the Young’s modulus for different domains.

Finally, the different contributions presented here can be further extended. Therefore, future
research can be focused on: (1) the extension to 3D domains of our tool for topology optimization,
(2) the modeling of geometrical and material anisotropy associated with the real porous domains,
and (3) the validation through real tests of the numerical results for the estimation of mechanical
properties of porous and lattice domains.
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