Hybrid geometry / topology based mesh segmentation for Reverse Engineering

ARTICLE INFO

Article history:
Received 2018-02-16

Keywords: Mesh Segmentation, Heat Transfer, Reverse Engineering, ЄAヨ CAMCAE CAD/CAM/CAE

Abstract

Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices.

(C) 2018 Elsevier B.V. All rights reserved.

RE Reverse Engineering.
CAD Computer Aided Design.
CAM Computer Aided Manufacturing.
CAE Computer Aided Engineering.
B-Rep Boundary Representation.
FEA Finite Element Analysis.
M Triangular mesh of a connected 2-manifold embedded in \mathbb{R}^{3}. $M=(X, T)$ is composed by the set of triangles $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ with vertex set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{R}^{3}$.
$E \quad$ Set of mesh edges $E=\left\{e_{1}, e_{2}, \ldots\right\}$ describing the connectivity of M.
$M_{i} \quad$ A sub-mesh of the segmentation of $M . \bigcup_{i=1}^{k} M_{i}=$ $M, M_{i} \cap M_{j}=\emptyset(i \neq j)$.
$\psi_{i} \quad$ Bijective 2D parameterization of $M_{i} . \psi_{i}: M_{i} \rightarrow$ \mathbb{R}^{2}.
$S \quad$ Mesh seeds. Subset of mesh vertices $S \subset X$ defining temperature constraints for the heat-based segmentation of M.
$S_{i} \quad$ Mesh seeds associated to sub-mesh $M_{i} . S_{i} \subset S$, $S_{i} \cap S_{j}=\emptyset(i \neq j)$.
$\Delta \quad$ Laplace-Beltrami operator defined on M. In local tangent coordinates $\left(b_{1}, b_{2}\right), \Delta=\partial^{2} / \partial b_{1}^{2}+\partial^{2} / \partial b_{2}^{2}$. $\Delta: C^{2}(M) \rightarrow C(M)$.
$u_{i} \quad$ Temperature field solution associated to the mesh seeds $S_{i} . u_{i}: M \rightarrow \mathbb{R}$.
$\mathbf{L} \quad$ FEA matrix which discretizes the operator Δ on M.
$\theta_{\text {threshold }}$ Dihedral angle threshold defined by the user to compute the mesh seeds $S . \quad \theta \leq \theta_{\text {threshold }} \leq \boldsymbol{\pi}$ $\theta_{\text {threshold }} \rightarrow 0$.
$\varepsilon \quad$ Area percentage parameter used to discard small sub-meshes from the segmentation. $0 \leq \varepsilon \leq 1$.
$\mathbf{H}_{\mathbf{x}}^{\text {tan }} \quad$ Tangent Hessian of M defined at any point $x \in M$.
$\mathcal{H}^{\mathbf{H}}$

K
$n \times n$ matrix which discretizes the \mathcal{H} functional on M_{i}. The first two non-constant eigenvectors of \mathbf{K} define the parameterization $\psi_{i}(X)$.

1. Introduction

In the context of CAD-CAM-CAE CAD/CAM/CAE and the emerging Industrie 4.0 framework, RE encompasses (re)design, manufacturing, simulation, etc. [1]. Typical RE processes (Fig. 11): (1) tessellate the point cloud of the scanned model, (2) clean the raw triangular mesh (smoothing, filling, non-manifold repair, decimation, etc.), (3) build the Boundary Representation (B-Rep) of the mesh, (4) segment the mesh, (5) fit the resulting partition with parametric surfaces (analytic and / or freeform surfaces), (6) build the B-Rep of the reconstructed CAD model, and (7) conduct the engineering analysis. RE applications include (but are not limited to) Finite Element Analysis (FEA) [2, 3], Structural Optimization [4, 5] and Dimensional Analysis [6, 7].

Mesh segmentation / parameterization plays a crucial role in RE (steps 4-5) for the adequate geometric modeling of the workpiece. The mesh segmentation / parameterization problem is defined as follows:

Given: A 2-manifold triangular mesh M embedded in \mathbb{R}^{3}. Goal: (i) to partition (i.e. segment) the triangle set M into a set of disjoint and connected sub-meshes $\left\{M_{1}, M_{2}, \ldots M_{k}\right\}$ which together compose the original mesh, and (ii) to compute a bijective parameterization $\psi_{i}: M_{i} \rightarrow \mathbb{R}^{2}$ for each sub-mesh M_{i}. The segmentation step (i) must favor the parameterizability of the computed sub-meshes while retaining feature (functional) surfaces of the scanned workpiece.

Mesh segmentation algorithms can be classified depending on the surface features used to divide the mesh:

1. Geometry-based segmentation captures locally geometric features of the surface (sharp edges, principal curvatures, surface normals, etc.) and partitions the surface using this information. This type of segmentation is ideal for CAD meshes that present clear sharp transitions between sub-meshes. However, geometric criterion alone applied to noisy or imperfect meshes results in over-segmentation (Fig. 2). If the workpiece is smooth, geometric segmentation produces large and (likely) non-parameterizable submeshes.
2. Topology-based segmentation relies on the spectra (eigenpairs) of any Laplacian operator computed on the mesh graph. This type of segmentation is common in Computer Graphics applications. However, this segmentation usually results in non-parameterizable sub-meshes; rendering useless the parameterization algorithms (Fig. 3(a)).
3. Interactive segmentation is the most common practice by RE software (such as Geomagic ${ }^{\circledR}$ and Polyworks ${ }^{\circledR}$, Fig. 3(b)). The current state-of-the-art segmentation approaches still demand expensive user interaction in order to achieve suitable segmentations for parameterization and B-Rep reconstruction (Fig. 11).

Having the mesh segmented, the construction of the B-Rep becomes straightforward if a bijective parameterization of each sub-mesh is computed. A trimmed NURBS (Non-Uniform Rational B-Splines) surface can be fitted by Least Squares [9] or Radial Basis Functions (RBFs) [10] to each sub-mesh. The fitted surfaces and their trimming curves can be oriented and related to each other by their adjacency graph in order to produce the reconstructed B-Rep model [11].

This manuscript presents a hybrid mesh segmentation / parameterization algorithm for RE, as follows: (i) A set of heat transfer equations are defined on the mesh. The topology of the mesh is captured by the Laplace-Beltrami operator inherent in the differential equation for heat transfer. (ii) Temperature constraints are imposed on a subset of vertices (mesh seeds), acting as heat sources and sinks. The local geometry of the mesh is captured by choosing the mesh seeds according to a dihedral angle criterion. (iii) To avoid over-segmentation, seeds that produce small sub-meshes are ignored. The temperature fields are used to re-compute the segmentation without these small submeshes. (iv) The parameterization of each sub-mesh is thereafter computed by a Hessian-based parameterization [12].

The contribution of this manuscript resides in the mixed topology (temperature) / geometry (dihedral) nature of the segmentation algorithm;. Our algorithm not only pursues mesh parameterizability but also a functional partition of scanned mechanical workpieces, whieh eneourages the parameterizability of the resulting partition without resorting to over-segmentation. The algorithm allows (almost) automatic processing of 3D meshes from scanned workpieces, improving the RE workflow.

The remainder of this manuscript is organized as follows: Sect. 2 reviews the relevant literature. Sect. 3 describes the mesh segmentation \neq parameterization algorithm. Sect. 4 discusses the implementation details of the algorithm. Sect. 4 5 presents and discusses results of the conducted experiments. Sect. 6 concludes the paper and introduces what remains for future work.

2. Literature review

This seetion reviews the taxenemy of meshrsegmentationand mesh parameterization algorithms. Mesh segmentation algorithms can be classified depending on the mesh properties used to partition the mesh as follows:

2.1. Geometry-based segmentation

Geometry-based segmentation approaches compute local geometric properties (e.g. dihedral angle, curvature, frequency, [8, 13]) and use region-growing algorithms to lump property homogeneous regions (Fig. 2).

Shape recognition algorithms partition the surface by matching analytic shapes to the mesh [14, 15, 16]. One of these analytic shapes (plane, sphere, cylinder or cone) is registered to each mesh vertex according to the local geometric information (such as curvature). A clustering or region growing algorithm is finally applied to compute the mesh segmentation.

Fig. 1. The current RE workflow is user-intensive [8]

Fig. 2. Dihedral segmentation produces over-segmentation due to surface imperfections and surface blends

Fig. 3. Topology vs. user - based segmentations [8]

Geometry-based segmentation algorithms (1) require sev2 eral post-processing due to over-segmentation, (2) do not favor functional or feature segmentation, and (3) are highly sensitive 4 to noise. Mesh smoothing may be used to reduce noise previous 5 to segmentation [13].

2.2. Topology-based segmentation

In spectral analysis, a mesh topology operator matrix (e.g. adjacency or Laplacian) is estimated on the mesh graph in order to extract and analyze its spectra (eigenpairs) [17]. A partition of the first non-constant Laplacian (Fiedler) eigenvector reflects a possible segmentation of the mesh [8, [18]. A central precondition for spectral methods is the edge length homogeneity through the mesh. To improve the robustness of the spectral segmentation, Refs. [19, 20] segment similar meshes simultaneously by introducing edge correspondences between meshes, while Ref. [21] captures images of the same mesh from different perspectives in order to correlate the mesh edges.

Ref. [22] computes an edge weighted Laplacian which includes information about concave regions. Chosen Laplacian eigenvectors are merged into a single scalar field whose partition segments the mesh. Ref. [23] introduces a Secondary Laplacian and Giaquinta-Hildebrant operators which locally capture geometric properties (e.g. principal curvatures), thus allowing to infere 3D concavities / convexities. Ref. [24] computes the spectra of a weighted dual graph Laplacian. The dual Laplacian encodes the topology of the mesh in terms of the connectivity of the triangles (instead of the points connectivity). The weighting scheme incorporates dihedral angles, which improves the sub-mesh definition.

Heat-based algorithms are an alternative approach for topologic segmentation, defining and solving different heat transfer equations on the mesh. The topology of the mesh is captured by the Laplace-Beltrami operator, present in the heat equation. The resulting segmentation is obtained from the computed temperature fields on the mesh. Ref. [25] presents an interactive segmentation algorithm where the user draws lines perpendicular to potential sub-meshes boundaries. The algorithm defines temperature constraints according to these user strokes. The algorithm computes the constrained temperature fields and produces the segmentation based on the temperature contours.

Heat kernels are specific solutions to the heat transfer prob-
lems with unique point sources. These heat kernels can be computed by means of the eigenvectors of the Laplace-Beltrami operator [26, 27]. Refs. [28, 29] compute the heat potential (tendency to attract heat) of each mesh point in order to identify crucial heat sources which are then used to compute the heat kernels and the underlying segmentation.
In general, topology-based methods present several shortcomings: (1) they produce large sub-meshes which are nonparameterizable, and (2) they usually require heavy user interaction in selection of eigenpairs (spectral) or heat sources (heatbased) on the mesh, critical for the quality of the segmentation [30].

2.3. Mesh segmentation/parameterization in RE

2.3. Mesh segmentation in $R E$

RE workflow currently requires intensive, costly user input (Fig. 1). Commercial tools include PolyWorks ${ }^{\circledR}$ [4], RapidWorks ${ }^{\circledR}$ [6] and Geomagic ${ }^{\circledR}$ [8]. Refs. [2, 31] apply RE to run FEA on scanned turbine blades. The turbine blades are manually divided into sections prior to digitizing. Ref. [11] uses the dihedral angle and curvature scalar fields on the mesh to segment it, seeking to optimally fit analytic shapes (sphere, cylinder, cone, etc.) to them. Refs. [9, 32] fit freeforms to growing sub-meshes, with Ref. [32] favoring rectangular ones. A common approach to represent an unknown model is to fit rectangular NURBs patches to the whole mesh [32]. These small NURBs patches have the advantage to produce low-distortion parameterizations, even in the case of complex geometries where such parameterization can be optimized to produce the smallest distortion [33, 34]. However, such patches usually lack from the functional information of the source CAD model (see Fig. 3(b).

2.4. Conclusions of the literature review

Current state of the at state-art segmentation ϕ parameterization algorithms are not fully suitable for RE applications. Geometry-based segmentation algorithms produce over-segmentation on scanned workpieces due to surface imperfections and surface blends between sub-meshes. On the other hand, topology-based algorithms result in parameterization - hostile segmentations. Therefore, the current RE workflow demands massive user input in order to produce usable BReps, requiring between 25-150 hours of interactive work for a single scanned workpiece [4, 8].

To overcome these problems, this article presents an automatic mesh segmentation $/$ parameterization algorithm for RE: (1) Our algorithm defines several constrained heat transfer problems on the mesh for segmentation. Temperature constraints are located automatically using a dihedral criterion. To avoid over-segmentation, constraints that produce small submeshes are removed. Therefore, our algorithm favors submeshes parameterizability by capturing local geometric features (dihedral angle) and avoids over-segmentation by capturing topologic mesh features (temperature fields). (2) The submeshes are parameterized with a Hessian-based parameterization algorithm [12]. Results are presented for meshes collected from a 3D optical scanner and public benchmarks.

Fig. 4. Overall scheme of the segmentation / parameterization algorithm

3. Methodology

To compute the segmentation /parameterization of the mesh, we extend the heat-based approach presented in Ref. [25], making the segmentation procedure completely automatic (in the sense that it does not require user interaction) as follows (Fig. 4): (1) instead of manually selecting a heat source and a heat sink to split the mesh into two sub-meshes, our segmentation algorithm locates simultaneously the set of all heat sources and sinks S. Such heat sources and sinks (mesh seeds) are located automatically by a dihedral angle criterion which captures the local geometry of the mesh. (2) These heat sources / sinks are used to define a set of heat transfer differential equations on the whole mesh. Therefore, for each heat source $S_{i} \subset S$, a mesh temperature field u_{i} is found. (3) The computed temperature fields are compared for each vertex in order to define a unique pre-segmentation of M. (4) Seeds that produce small sub-meshes are removed to avoid over-segmentation, resulting in a new set of temperature fields. (5) Finally, these new temperature fields define the final segmentation of M. In addition, an almost automatic parameterization algorithm proceeds as follows: (6) Artificial boundaries are manually (interactively) introduced en only in the case of cylinder-like sub-meshes to allow their parameterization. (7) The parameterization of each sub-mesh is computed with a Hessian-based parameterization algorithm [12].
 sides in the parameterizability of the resulting segmentation. Such parameterizability is hindered by high frequency zones and favored by low frequency zones. Our algorithm locates a set of mesh seeds S in in the low frequency neighborhoods of the mesh. These mesh seeds will expand the different submeshes of the segmentation by propagating heat through the whole mesh (discussed in subsequent sections). We identify such low frequency zones by a dihedral angle criterion as follows:

1. Set a dihedral angle threshold $\theta_{\text {threshold }} \leqslant \pi \theta_{\text {threshold }} \rightarrow 0$
2. For each vertex $x_{i} \in M$:
2..1 Compute the incident edges $E_{i}=e_{1}, e_{2}, \ldots$ on x_{i}.
2.. 2 Compute the dihedral angle θ_{j} of each incident edge e_{j}.
2..3 If $\pi-\theta_{j}$ (for any incident edge j) is smatler larger than the dihedral threshold $\theta_{\text {threshold }}$, then skip the current vertex.
2..4 Else, insert the current vertex x_{i} in the list of the mesh seeds S.

A vertex is considered as a low frequency vertex if and only if none of its incident edges is sharp (Fig. 5. An edge is sharp (non-planar) if $\pi-\theta_{j}>\theta_{\text {threshold }}$. Therefore, $\theta_{\text {threshold }} \rightarrow 0$ can be seen as the maximum non-coplanarity between two adjacent triangles in a low frequency zone. The shapnes the is graded by the dihedral threshold $\theta_{\text {threshold }}$ define by the user (Fig. 5). As $\theta_{\text {threshold }}$ approaehes π, the likelihood of an edge being eatalege as shatip inereases. Thus, the likeliheod of a vertex beeoming a sed deereases.

Our algorithm ensures that adjacent low frequency mesh vertices lie in the interior of a common sub-mesh by grouping them into a subset of mesh seeds $S_{i} \subset S$ (Fig. 6(a).

Fig. 6. Mesh seeds are located on low frequency zones. Each seed group defines a temperature field on the mesh.

3.2. Heat transfer with temperature constraints

The following partial differential equation describes the steady heat transfer phenomenon without heat sources on the mesh M :

$$
\begin{equation*}
\Delta u(x)=0 \tag{1}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator and $u(x)$ is the temperature distribution along the surface. We impose a temperature value $\left(u\left(S_{i}\right)=1\right)$ on a subset of mesh seeds (heat sources) $S_{i} \subset S$, and temperature value $\left(u\left(S_{j}\right)=0\right)$ at the remaining seed sets (heat sinks) $S_{j} \subset X, i \neq j$). Each subset of sources S_{i} will define a sub-mesh M_{i} of the segmentation. Therefore, for each sub-mesh M_{i}, the following constrained heat problem arises:

$$
\begin{align*}
& \qquad \Delta u_{i}(x)=0 \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
u_{i}\left(S_{i}\right)=1, \\
u_{i}\left(S_{j}\right)
\end{array} \tag{2}\\
& =0, \quad i \neq j
\end{align*}
$$

For each heat source S_{i}, its corresponding temperature field $u_{i}(x)$ is obtained by propagating the thermal energy through the whole mesh M (Fig. 6(b)). The temperature solution $u_{i}(x)$ is directly related to the sub-mesh M_{i}, achieving maximum value ($u=1$) at the defined heat sources S_{i} and minimum value ($u=$ $0)$ at the remaining heat sinks $S_{j}, i \neq j$.

The Finite Element Method is implemented to estimate Δ numerically. Therefore, Δ is approximated by the FEA matrix \mathbf{L},
defined as [35, 36]:

$$
\mathbf{L}_{i j}= \begin{cases}\frac{3}{A_{i}} w_{i j}, & \text { if }\left(x_{i}, x_{j}\right) \text { is an edge of } M \tag{3}\\ -\frac{3}{A_{i}} \sum_{x_{k} \in N_{i}} w_{i k}, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

where N_{i} is the neighborhood of $x_{i}, w_{i j}=\frac{\cot \alpha_{i j}+\cot \beta_{i j}}{2}$ is the cotangent weight of edge $\left(x_{i}, x_{j}\right), \alpha_{i j}$ and $\beta_{i j}$ are the angles opposite to edge $\left(x_{i}, x_{j}\right)$, and A_{i} is the area of all the triangles incident to vertex x_{i}. An $n \times n$ linear system of equations $\mathbf{A} U_{i}=B_{i}$ arises for each heat source S_{i}, with:

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{L} \tag{4}\\
\mathbf{I}_{\mathbf{S}_{\mathbf{i}}} \\
\mathbf{I}_{\mathbf{S}_{\mathbf{j}}}
\end{array}\right] \text {, and } B_{i}=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right]
$$

where \mathbf{L} is the FEA matrix for all the nodes with unknown temperature in M (i.e. rows associated to mesh sources and sinks are excluded from $\mathbf{L}), \mathbf{I}_{\mathbf{S}_{\mathbf{i}}}, \mathbf{I}_{\mathbf{S}_{\mathbf{j}}}$ are the constraints matrices for the current heat sources S_{i} and heat sinks S_{j}, respectively (i.e. entry $k l$ of matrix $\mathbf{I}_{\mathbf{S}}$ is 1 if constraint k fixes the temperature for the heat source $/ \operatorname{sink} x_{l}, 0$ otherwise).

Our algorithm simultaneously solves several heat transfer problems (one for each group of seeds S_{i}). The matrix \mathbf{A} is common to all of them and it is computed and prefactored once. The linear system defined by Eq. (4) is then solved using sparse Cholesky factorization, which in most cases can be solved in nearly linear time $O(n)$ [37, 38]. The following section describes how to combine the different temperature fields to obtain a single segmentation field.

3.3. Heat-based mesh segmentation

At this point, each vertex x_{i} in the mesh has an associated set of temperature values $u_{1}\left(x_{i}\right), u_{2}\left(x_{i}\right), \cdots$ from the temperature fields generated by each set of mesh seeds S_{1}, S_{2}, \ldots The segmentation of M is achieved by computing the maximum temperature value at each vertex and its corresponding seed group. Thus, each sub-mesh M_{i} is composed by the subset of vertices whose maximum temperature is $u_{i}(x)$:

$$
\begin{equation*}
M_{i}=\left\{x_{k} \in M \mid u_{i}\left(x_{k}\right)>u_{j}\left(x_{k}\right), i \neq j\right\} \tag{5}
\end{equation*}
$$

This construction guarantees that the set of heat sources S_{i} belongs to the sub-mesh M_{i}, assigning low frequency areas to the same sub-mesh. Heat propagates smoothly from these zones to higher frequency zones, defining the sub-mesh boundaries.

3.4. Discarding small seed groups

In RE, the mesh M presents surface imperfections due to manufacturing imperfections and / or RE pre-processing results (such as data acquisition, surface meshing, mesh filtering, mesh decimation, etc). Such imperfections and mesh noise produce small groups of seeds that lead the heat algorithm to an oversegmentation of the surface. A second heat - based segmentation is then executed excluding noise - originated seeds. An overview of the method follows:

1. Locate the initial heat seeds on low frequency neighborhoods.

(a) Parameterization - hostile cylinder-like sub-mesh
(b) Parameterizable cylinder-like sub-mesh

Fig. 7. To parameterize cylinder-like sub-meshes, an artificial boundary (red) is manually introduced using a cylinder generatrix
2. Find the mesh temperature fields and segment accordingly.
3. Compute the area of each sub-mesh.
4. Given the sub-mesh with the largest area $A_{\text {largest }}$, locate all the sub-meshes with an area below $\varepsilon \cdot A_{\text {largest }}$ (small submeshes).
5. Discard seeds in small sub-meshes.
6. Re-compute the temperature fields with the surviving seeds.
7. Re-compute the segmentation with the new temperature fields.

The terer-defmed area percentage parameter $0 \leq \varepsilon \leq 1$ measures the minimum sub-mesh size (relative to the largest sub-mesh) allowed by the segmentation. Triangles belonging to small sub-meshes in the over-segmentation are appended to the largest sub-meshes by temperature propagation as discussed in Sect. 3.3

3.5. Segmentation of cylinder-like sub-meshes

In the well known case of cylinder-like sub-meshes, our segmentation algorithm produces parameterization - hostile surfaces. However, such surfaces can be made parameterizable by manually making a generatrix of the cylinder a mesh boundary (Fig. 7), as follows:

1. The user selects the start and end vertices of the generatrix.
2. A shortest path (Dijkstra) algorithm computes the path that links the start and end vertices.
3. Our algorithm generates a new B-Rep of the sub-mesh introducing the computed trajectory as sub-mesh boundary.

Other authors have addressed the problem of fitting closed cylinders using least squares minimization [9, 11]. However, our approach comprises not only standard cylinders but also their topological equivalents (with and without holes).

3.6. Hessian-based mesh parameterization

To compute the parameterization $\psi \subset \mathbb{R}^{2}$ of M, a Hessianbased mesh parameterization algorithm [12] is applied on each sub-mesh M_{i}. This Hessian mesh parameterization algorithm applies the main concepts of HLLE [39] (a DR algorithm) on triangular meshes.

Fig. 8. Acquisition of 3D point cloud data through an optical 3D scanner

According to [12, 39], a parameterization of M_{i} is given by the first 2 non-constant eigenvectors of the Hessian functional \mathcal{H}, defined as:

$$
\begin{equation*}
\mathcal{H} f=\int_{M_{i}}\left\|\mathbf{H}_{\mathbf{x}}^{\tan } f\right\|_{F}^{2} \mathrm{dA} \approx \mathbf{f}^{\mathrm{T}} \mathbf{K} \mathbf{f} \tag{6}
\end{equation*}
$$

where $f \in C^{2}\left(M_{i}\right)$ is a smooth function defined on $M_{i},\|\cdot\|_{F}$ is the Frobenius norm, dA is the surface differential, $\mathbf{f}=$ $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ are the values of $f\left(x_{j}\right)$ at each vertex $x_{j} \in M_{i}$, and $\mathbf{K}=\left(\mathbf{K}_{1}+\mathbf{K}_{2} \cdots, \mathbf{K}_{n}\right)$ is the discrete Hessian estimator (matrix). This matrix is semidefinite-positive [12, 39]. Therefore, the parameterization $\psi_{i}\left(M_{i}\right)$ is extracted by computing the first two eigenvectors of \mathbf{K} with smallest non-zero eigenvalue. Such eigenvectors correspond to an orthogonal basis for all linear functions (and as a consequence, a basis for all parameterizations) defined on M_{i}.

4. Resutts

4. Implementation of the algorithm

Fig. 9. Datasets (point clouds) obtained with an optical scanner

(c) Rocker arm base (36.1 k faces)

Fig. 10. Input meshes for our segmentation /parameterization algorithm. These meshes are the result of manual preprocessing with commercial software (Geomagic ${ }^{(\circledR)}$).

Table 1. Default parameter values for our segmentation algorithm

Parameter	Value
$\theta_{\text {threshold }}$	$\frac{1}{20} \pi$ radians
ε	5%

are the actual input for our segmentation \dagger parameterization algorithm.

Fig. 11 plots the seed groups processing for the Knob mesh. The initial mesh seeds are computed with a $\theta_{\text {threshold }}=\frac{19}{20} \pi$ $\theta_{\text {threshold }}=\frac{1}{20} \pi$ radians (see Table 11, since this value has shown to consistently capture flat zones in all of our conducted experiments. Several small seed groups arise due to isolated low frequency points inside high frequency zones (Fig. 11(a)). The temperature-based segmentation using these seeds results in an over-segmentation of the surface (Fig. 11(b)). Small (noise-generated) sub-meshes are then discarded by the algorithm (as discussed in Sect. 3.4, no longer receiving heat seeds and therefore being absorbed in natural form by large meshes when the heat algorithm is run again. After applying seeds processing, the remaining seeds capture the local flat geometry of the mesh and the high frequency seeds dissapear (Fig. 11(c). The final temperature-based segmentation preserves the geometric properties from the dihedral criterion in low frequency zones while producing a smooth transition between submeshes, avoiding mesh over-segmentation (Fig. 11(d)). Fig. 12 plots the distribution of the sub-mesh sizes (sorted by surface area) and the area threshold used to discard small sub-meshes. In all our conducted experiments we choose an area threshold parameter of $\varepsilon=5 \%$ (see Table 1) as we have identified that it consistently differentiates large (albeit parameterizable) submeshes (Fig. 11(d) from small (noise-generated) ones 11(b) The initial segmentation of the knob produces 300 sub-meshes while the final segmentation produces only 15 sub-meshes. Decreasing the value of ε in Fig. 12 would increase the likelihood of over-segmentation. On the other hand, increasing its value could lead the algorithm to merge large sub-meshes and produce non-parameterizable segmentations. The user may, of course, change the cutting value (upon examination of the distribution exemplified in Fig. 12, reinforcing or decreasing the absorption of small sub-meshes into the larger ones.

Fig. 13 plots the final segmentation results for each mesh. The computed sub-meshes present low frequencies while submesh boundaries are located in high frequency zones. The segmentation is controlled by the number of sub-meshes desired by the user (15 sub-meshes for the knob, 12 for the triped joint and 17 for the roeker am base, respeetively) area percentage parameter ε (taken as $\varepsilon=5 \%$ in all our experiments), discarding noise - related sub-meshes as discussed in Sect. 3.4. Our algorithm produces parameterization - friendly segmentations while keeping a relatively low number of sub-meshes (15 sub-meshes for the knob - Fig. 13(a), 13 for the tripod joint - Fig. 13(b), and 27 for the rocker arm base - Fig. 13(c), respectively.).

Hessian parameterization is then applied on each sub-mesh. Fig. 14 plots the 2D parameterization of each of the knob sub-meshes. Such parameterization is completely bijective (i.e. no triangle flips nor surface overlaps occur in the parametric space). Fig. 15 plots the chessboard textures applied on the resulting segmentation using the computed Hessian parameterization. The distortion of the chessboard squares represents the distortion of the computed parameterization. In the case of the tripod joint (Fig. 15(b)), artificial boundaries have been introduced manually on the cylinder-like sub-meshes as dicussed in Sect. 3.5 Fig. 15 displays (using chessboard textures) the computed bijective Hessian parameterizations of the sub-meshes.

Fig. 11. Discarding mesh seeds. The initial seed groups produce oversegmentation due to surface imperfections (a-b). After discarding small seed groups, such over-segmentation is removed (c-d).

Fig. 12. Sub-mesh sizes for the initial segmentation of the knob mesh. The red line plots the area threshold $(\varepsilon=5 \%)$ used to discard small sub-meshes from the final segmentation.

The special segmentation case of topological cylinders (e.g. tripod joint, Fig. 15(b) currently requires manual creation of a boundary along a cylinder generatrix (discussion in Sect. 3.5).

4.2. Comparison with other algorithms

5. Results and benchmarking

This section presents a comparison of our segmentation algorithm against several state-of-the-art algorithms and commercial CAD software. Sect. 5.1 presents a standard benchmarking using datasets and algorithms from the National Design Repository [40] and the Princeton Benchmark Repository [41], which

Fig. 13. Temperature-based segmentation. The dihedral criterion captures the local mesh geometry while the temperature approach produces smooth transitions between sub-meshes.

Fig. 14. Knob Hessian parameterization

1 are standard in the mesh segmentation literature. Afterwards, 2 Sect. 5.2 compares our algorithm against recent algorithms 3 from the literature and some commercial software using our in4 house scanned pieces (introduced in Sect. 4).

(a) Knob

(b) Tripod joint

(c) Rocker arm base

Fig. 15. Chessboard texture applied on each sub-mesh. The resulting parameterization is bijective for all three scanned models.

5.1. Standard benchmarking

In order to eompare our algorithm with some state of the atit algorithms, several models from publie repositeries have been aequired. Fig. 16 plots our segmentation results compared with the Cross Boundary Brushes algorithm results [25] for some CAD models from the National Design Repository [40]. Both methods use a heat-based approach to capture geometric features of each CAD model. However, Cross Boundary Brushes is completely interactive, requiring user input for each computed sub-mesh. CAD models usually present several geometric features which require moderate segmentation sizes (> 10 submeshes). Therefore, interactive user input may become unreliable in such cases. In contrast, our algorithm produces similar segmentation results and parameterizable sub-meshes without requiring any user input.

Fig. 17 plots segmentation results of our algorithm and some state of the ant automatic algorithms for-seme-meshes from the Princeton Benchmark [41]. Our algorithm is able to capture the geometric features of the surface for the flange dataset (Fig. 17(d) while other algorithms struggle to capture such features, grouping different surfaces (such as the cylinders, cones and the plane on the flange orifices) into the same sub-mesh (Figs. 17(a)-17(c). As a consequence, our algorithm produces more sub-meshes (21) than the benchmark algorithms (<10), which in a RE context is preferable to allow easy parameterization of each of the flange sub-meshes (see Table 2). (resulting in under-segmentation of the medel). Additienally On the other hand, our segmentation of the cup dataset (Fig. $17(\mathrm{~d})$ results in a similar number of sub-meshes (see Table 2), and is in agreement with the rest of the benchmarking algorithms:(Figs. 17(a)-17(c)p, correctly segmenting the cup model into its meaningful parts (Fig. 17(d)p. However, our segmentation of the human datase is poor as the

Fig. 16. Standard benchmarking. Segmentation results of the Cross Boundary Brushes method [25] (above) vs. our automated method (below). Meshes from the National Design Repository [40].

Table 2. Number of sub-meshes for the segmentation results of the Princeton Benchmark

Algorithm \Dataset	Flange	Cup
Random Cuts [42]	7	4
Random Walks [43]	5	3
Fitting Primitives [44]	8	6
Our (Temp-Geom) algorithm	21	5

resulting sub-meshes are not parameterizable. Suehabehaviour is expeeted from our algorithm as it is not intended to work en organie meshes. Besides, the other algorithms atse fail in eomputing a parameterizable segmentation.

Our segmentation algorithm is designed to work on scanned meshes of mechanical pieces. As a consequence, our algorithm behaves unexpectedly if applied to organic meshes. Fig. 18 illustrates this fact by applying our algorithm to a human mesh. The result is a bad segmentation with features not being characterized by our algorithm (such as head, hands or leg), and also each sub-mesh is non-parameterizable. Despite of the topology (heat-based) component of the algorithm, such a result is mainly due to the dihedral-criterion used to place the temperature seeds on the mesh (see Sect. 3.1. This problem can be addressed by changing the approach to define these seeds, which is left for future work.

5.2. RE benchmarking

Fig. 19 plots the segmentation results of the scanned mechanical workpieces (introduced in Sect. 4 using state-of-the-art segmentation techniques. Fig. 19(a) plots the segmentation result using our implementation of the Contour Based automatic algorithm [13]. The resulting segmentation captures some of the surface features of the tripod joint and rocker arm meshes. However, sub-mesh boundaries are non-smooth and do not capture the real boundaries of the workpiece surfaces. The number of sub-meshes is relatively low (see Table 3 for each segmented piece, grouping several feature surfaces of the workpiece in the
same sub-mesh, which difficults the parameterization step of the RE process. The segmentation of the knob mesh is undesirable in the context of RE.

Figs. 19(b) 19(c) plot the automatic segmentation results of the scanned workpieces using commercial CAD software. The Autodesk ${ }^{\circledR} 3 \mathrm{ds}$ Max ${ }^{\circledR}$ result is able to locate the different feature surfaces of the CAD meshes. However, it produces an excessive amount of sub-meshes (>1000, see Table 3 which are for the most part product of mesh noise and blending surfaces. On the other hand, the Geomagic ${ }^{\circledR}$ Design ${ }^{\text {TM }}$ result captures not only feature surfaces but also blending surfaces (which dictate smooth transitions between feature surfaces) while ignoring the mesh noise. Such a result is highly desirable in a RE context to reconstruct the analytic surfaces of the scanned model. However, these blending surfaces can produce over-segmentation at some degree as illustrated in the Rocker Arm of Fig. 19(c) which has 115 sub-meshes. Our algorithm solves this problem by merging the blending surfaces into the feature surfaces (Fig. $19(\mathrm{~d})$, reducing this number 27 (10] while keeping the segmentation parameterizable.

Table 4 presents the main advantages and disadvantages of all the segmentation algorithms used in this manuscript. Our algorithm provides an automatic alternative to mesh segmentation of mechanical pieces for RE, avoiding over-segmentation even in the presence of blending surfaces and mesh noise (natural to scanning devices and manufacture defects). It is worth to note that in the general context of mesh segmentation, an algorithm is considered to be automatic if it does not require interactive input of the user to compute the result. However, it is very common for automatic algorithms (including ours, see Table 1) to require the use of at least one input parameter (prior to segmentation) which is used by the algorithm to internally perform numerical decisions during the segmentation.

Fig. 17. Standard benchmarking. Segmentation results of some state of the art algorithms for the flange, and cup and human models. Meshes from the Princeton Benchmark [41].

Fig. 18. Non-parameterizable segmentation of an organic mesh with our algorithm. Human mesh from the Princeton benchmark [41].

6. Conclusions and future work

This manuscript presents an algorithm for automatic mesh segmentation paramerization of 3D meshes of digitized ebjects mechanical pieces for RE applications. The implemented algorithm articulates a dihedral / heat transfer-based segmentation with a Hessian-based parameterization.

Compared to similar approaches, our method improves the RE workflow with an automatic hybrid geometry / topology approach which segments triangular meshes acquired from scanned mechanical models. The geometric component of the algorithm (i.e. dihedral criterion) favors the parameterizability of the resulting partition. On the other hand, the topologic

Table 3. Number of sub-meshes for the segmentation results of our scanned models using state-of-the-art algorithms and commercial software

Algorithm \Dataset	Knob	Tripod Joint	Rocker Arm Base
Contour Based Segmentation [13]	6	9	11
Autodesk ${ }^{\circledR}$ 3ds Max $^{\circledR}$	6216	5633	11772
Geomagic $^{\circledR}$ Design	40	26	115
Our (Temp- Geom) algorithm	15	13	27

component (captured by the temperature fields) favors smooth transitions between sub-meshes and avoids over-segmentation. The experiments were conducted on data acquired by a 3D optical scanner and from public repositories, and yet resulted in sets of fully parameterizable sub-meshes.

Ongoing work addresses: (1) Detection of cylinder-like submeshes and automatic computation of virtual boundaries as our algorithm currently requires user guidance to parameterize such cases. (2) Design of an alternative method to compute temperature seeds in the mesh to allow the segmentation of organic meshes. (3) Triangle negotiation / splitting between adja-

Fig. 19. Comparison of results: (a) state-of-the-art competitor [13], (b-c) commercial tools, (d) our algorithm. Datasets: in-house scanned mechanical pieces.

Table 4. Advantages and disadvantages of each segmentation algorithm

Algorithm	Advantages	Disadvantages
Cross Boundary Brushes [25]	1. Works on both mechanical and organic meshes 2. Smooth sub-mesh boundaries	1. Non-automatic (requires heavy user interaction)
Random Cuts [42]	1. Avoids over-segmentation 2. Smooth sub-mesh boundaries	1. Non-automatic (requires user interaction) 2. Non-parameterizable sub-meshes
$\begin{aligned} & \text { Random } \text { Walks } \\ & \text { [43] } \end{aligned}$	1. Automatic segmentation 2. Works on both mechanical and organic meshes 3. Avoids over-segmentation 4. Smooth sub-mesh boundaries	1. Non-parameterizable sub-meshes
Fitting Primitives [44]	1. Automatic segmentation 2. Smooth sub-mesh boundaries 3. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. Does not work properly on mechanical meshes composed by several freeform surfaces
$\begin{aligned} & \text { Contour Based } \\ & \text { Segmentation } \\ & \text { [13] } \end{aligned}$	1. Works on both mechanical and organic meshes 2. Avoids over-segmentation	1. Non-parameterizable sub-meshes 2. Non-smooth sub-mesh boundaries
	1. Automatic segmentation 2. Parameterizable sub-meshes	1. Does not work properly on organic meshes 2. over-segmentation
$\begin{aligned} & \text { Geomagic }^{\circledR} \\ & \text { Design } \end{aligned}$	1. Automatic segmentation 2. Smooth sub-mesh boundaries 3. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. over-segmentation on meshes with a lot of small features (such as blending surfaces)
Our (TempGeom) algorithm	1. Automatic segmentation 2. Avoids over-segmentation 3. Smooth sub-mesh boundaries 4. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. Ignores small feature surfaces

cent sub-meshes in order to produce smoother sub-mesh boundary curves, in preparation of cleaner B-Reps. (4) Definition of a consistent topology (SHELL, FACES, LOOPS, EDGES and VERTICES) and geometry (freeform curves and surfaces) which together compose the final B-Rep of the reconstructed model.

References

[1] Posada, J, Toro, C, Barandiaran, I, Oyarzun, D, Stricker, D, de Amicis, R, et al. Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Comput Graph Appl 2015;35(2):26-40. doi 10.1109/MCG. 2015.45
[2] Chintala, G, Gudimetla, P. Optimum material evaluation for gas turbine blade using reverse engineering (re) and fea. Procedia Eng 2014;97:13321340. doi $10.1016 / \mathrm{j}$.proeng. 2014.12.413
[3] Waggoner, T. Exporting solid models into finite element analysis (fea) for reverse engineering of electrical components. In: Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005. 2005, p. 231-235. doi 10.1109/EEIC.2005.1566297
[4] García, MJ, Boulanger, P, Henao, M. Structural optimization of as-built parts using reverse engineering and evolution strategies. Struct Multidiscip Optim 2008;35(6):541-550. doi 10.1007/s00158-007-0122-6
[5] Vučina, D, Pehnec, I. Enhanced Reverse Engineering Using Genetic-Algorithms-Based Experimental Parallel Workflow for Optimum Design. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-205200; 2011, p. 172-183. doi $10.1007 / 978-3-642-20520-0 _18$
[6] Asiabanpour, B, Ardis, A, Andrade, AA. A systematic use of reverse engineering in evaluating the overall accuracy of the fabricated parts. Int J Rapid Manuf 2014;4(2-4):165-178. doi 10.1504/IJRAPIDM. 2014. 066006
[7] Mejia, D, Sánchez, JR, Segura, Á, Ruiz-Salguero, O, Posada, J, Cadavid, C. Mesh segmentation and texture mapping for dimensional inspection in web3d. In: Proceedings of the 22 Nd International Conference on 3D Web Technology. Web3D '17; New York, NY, USA: ACM. ISBN 978-1-4503-4955-0; 2017, p. 3:1-3:4. doi 10.1145/3055624. 3075954
[8] Orozco, S, Formella, A, Cadavid, CA, Ruiz-Salguero, O, Osorno, M. Geometry and topology-based segmentation of 2-manifold triangular meshes in r3. Br J Appl Sci Technol 2017;21(1):1-14. doi 10.9734/ BJAST/2017/32827
[9] Wang, J, Gu, D, Yu, Z, Tan, C, Zhou, L. A framework for 3d model reconstruction in reverse engineering. Comput Ind Eng 2012;63(4):1189 1200. doi $10.1016 /$ j.cie.2012.07.009
[10] Ruiz, OE, Mejia, D, Cadavid, CA. Triangular mesh parameterization with trimmed surfaces. Int J Interact Des Manuf (IJIDeM) 2015;9(4):303316. doi 10.1007/s12008-015-0276-1
[11] Bénière, R, Subsol, G, Gesquière, G, Breton, FL, Puech, W. A comprehensive process of reverse engineering from 3 d meshes to cad models. Comput Aided Des 2013;45(11):1382-1393. doi $10.1016 / \mathrm{j} . \mathrm{cad}$. 2013.06.004
[12] Mejia, D, Ruiz-Salguero, O, Cadavid, CA. Hessian eigenfunctions for triangular mesh parameterization. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016). ISBN 978-989-758-175-5; 2016, p. 75-82. doi $10.5220 / 0005668200730080$
[13] Rodrigues, RS, Morgado, JF, Gomes, AJ. A contour-based segmentation algorithm for triangle meshes in 3d space. Comput Graph 2015;49:24-35. doi $10.1016 / \mathrm{j} . \mathrm{cag} .2015 .04 .003$
[14] Xiao, D, Lin, H, Xian, C, Gao, S. Cad mesh model segmentation by clustering. Comput Graph 2011;35(3):685-691. doi 10.1016/j.cag. 2011.03.020
[15] Wang, J, Yu, Z. Surface feature based mesh segmentation. Comput Graph 2011;35(3):661-667. doi 10.1016/j.cag.2011.03.016
[16] Yi, B, Liu, Z, Tan, J, Cheng, F, Duan, G, Liu, L. Shape recognition of cad models via iterative slippage analysis. Comput Aided Des 2014;55:13-25. doi 10.1016/j.cad.2014.04.008
[17] Zhang, H, Van Kaick, O, Dyer, R. Spectral mesh processing. Com-

- put Graph Forum 2010;29(6):1865-1894. doi 10.1111/j.1467-8659. 2010.01655.x
[18] Mejia, D, Ruiz-Salguero, O, Cadavid, CA. Spectral-based mesh segmentation. International Journal on Interactive Design and Manufacturing (IJIDeM) 2017;11(3):503-514. doi $10.1007 / \mathrm{s} 12008-016-0300-0$
[19] Golovinskiy, A, Funkhouser, T. Consistent segmentation of 3d models. Comput Graph 2009;33(3):262 - 269. doi $10.1016 / \mathrm{j} . \mathrm{cag}$.2009.03. 010
[20] Liu, X, Zhang, J, Liu, R, Li, B, Wang, J, Cao, J. Low-rank 3d mesh segmentation and labeling with structure guiding. Comput Graph 2015;46:99-109. doi 10.1016/j.cag.2014.09.019
[21] Le, T, Bui, G, Duan, Y. A multi-view recurrent neural network for 3d mesh segmentation. Comput Graph 2017;66(Supplement C):103-112. doi https://doi.org/10.1016/j.cag.2017.05.011. shape Modeling International 2017.
[22] Wang, H, Lu, T, Au, OKC, Tai, CL. Spectral 3d mesh segmentation with a novel single segmentation field. Graph Model 2014;76(5):440 456. doi $10.1016 / \mathrm{j} . \operatorname{gmod} .2014 .04 .009$
[23] Liao, T, Li, X, Xu, G, Zhang, YJ. Secondary laplace operator and generalized giaquintahildebrandt operator with applications on surface segmentation and smoothing. Comput Aided Des 2016;70:56-66. doi $10.1016 / \mathrm{j} . \mathrm{cad} .2015 .07 .009$
[24] Zhang, J, Zheng, J, Wu, C, Cai, J. Variational mesh decomposition. ACM Trans Graph 2012;31(3):21:1-21:14. doi 10.1145/2167076. 2167079
[25] Zheng, Y, Tai, CL. Mesh decomposition with cross-boundary brushes. Comput Graph Forum 2010;29(2):527-535. doi $10.1111 / \mathrm{j}$. 1467-8659.2009.01622.x
[26] Gěbal, K, Bærentzen, JA, Aanæs, H, Larsen, R. Shape analysis using the auto diffusion function. Comput Graph Forum 2009;28(5):14051413. doi $10.1111 / \mathrm{j} .1467-8659.2009 .01517 . \mathrm{x}$
[27] Sun, J, Ovsjanikov, M, Guibas, L. A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing. SGP '09; Aire-la-Ville, Switzerland, Switzerland: Eurographics Association; 2009, p. 1383-1392.
[28] Benjamin, W, Polk, AW, Vishwanathan, S, Ramani, K. Heat walk: Robust salient segmentation of non-rigid shapes. Comput Graph Forum 2011;30(7):2097-2106. doi 10.1111/j.1467-8659.2011.02060.x
[29] Fang, Y, Sun, M, Kim, M, Ramani, K. Heat-mapping: A robust approach toward perceptually consistent mesh segmentation. In: CVPR 2011. 2011, p. 2145-2152. doi 10.1109/CVPR.2011.5995695
[30] Meng, M, Fan, L, Liu, L. A comparative evaluation of foreground/background sketch-based mesh segmentation algorithms. Comput Graph 2011;35(3):650-660. doi 10.1016/j.cag.2011.03.038
[31] Vanco, M, Brunnett, G. Direct segmentation of algebraic models for reverse engineering. Computing 2004;72(1):207-220. doi 10.1007/ s00607-003-0058-7
[32] Soni, K, Chen, D, Lerch, T. Parameterization of prismatic shapes and reconstruction of free-form shapes in reverse engineering. Int J Adv Manuf Technol 2009;41(9):948. doi $10.1007 / \mathrm{s} 00170-008-1550-1$
[33] Yang, YJ, Zeng, W, Chen, JF. Equiareal parameterizations of nurbs surfaces. Graphical Models 2014;76(1):43-55. doi $10.1016 / \mathrm{j}$. gmod. 2013.10 .007
[34] Yang, YJ, Zeng, W, Meng, XX. Conformal freeform surfaces. Computer-Aided Design 2016;81:48-60. doi $10.1016 / \mathrm{j} . \mathrm{cad} .2016$. 09.003
[35] Pinkall, U, Polthier, K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 1993;2(1):15-36. doi 10.1080/ 10586458.1993 .10504266
[36] Reuter, M, Biasotti, S, Giorgi, D, Patanè, G, Spagnuolo, M. Discrete laplacebeltrami operators for shape analysis and segmentation. Com-
■ put Graph 2009;33(3):381 - 390. doi https://doi.org/10.1016/j. cag. 2009.03.005 iEEE International Conference on Shape Modelling and Applications 2009.
[37] Spielman, DA, Teng, SH. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing. STOC '04; New York, NY, USA: ACM. ISBN 1-58113-852-0; 2004, p. 81 - 90. doi $10.1145 / 1007352.1007372$
[38] Schmitz, PG, Ying, L. A fast direct solver for elliptic problems on general meshes in 2d. Journal of Computational Physics 2012;231(4):1314 1338. doi https://doi.org/10.1016/j.jcp.2011.10.013
[39] Donoho, DL, Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. P Natl Acad Sci USA

2003;100(10):5591-5596. doi 10.1073/pnas. 1031596100
[40] Regli, WC, Foster, C, Hayes, E, Ip, CY, Mcwherter, D, Peabody, M, et al. National design repository project: A status report. In: International Joint Conferences on Artificial Intelligence (IJCAI) and AAAI/SIGMAN Workshop on AI in Manufacturing Systems. 2001,
[41] Chen, X, Golovinskiy, A, Funkhouser, T. A benchmark for 3d mesh segmentation. ACM Trans Graph 2009;28(3):73:1-73:12. doi 10.1145/ 1531326.1531379
[42] Golovinskiy, A, Funkhouser, T. Randomized cuts for 3d mesh analysis. ACM Trans Graph 2008;27(5):145:1-145:12. doi $10.1145 / 1409060$. 1409098
[43] Lai, YK, Hu, SM, Martin, RR, Rosin, PL. Fast mesh segmentation using random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling. SPM '08; New York, NY, USA: ACM.

- ISBN 978-1-60558-106-4; 2008, p. 183-191. doi 10.1145/1364901. 1364927
[44] Attene, M, Falcidieno, B, Spagnuolo, M. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 2006;22(3):181193. doi $10.1007 / \mathrm{s} 00371-006-0375-\mathrm{x}$

Manuscript with changes implemented (but not highlighted) Click here to view linked References

Hybrid geometry / topology based mesh segmentation for Reverse Engineering

ARTICLE INFO

Article history:
Received 2018-02-16

Keywords: Mesh Segmentation, Heat Transfer, Reverse Engineering, CAD/CAM/CAE

Abstract

Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmentations produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this significant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). In response to these limitations, this article presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topological criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and physical piece scans data. The experiments are successful, except for the well - known cases of topological cylinders, which require a user - introduced boundary along the cylinder generatrices.

(C) 2018 Elsevier B.V. All rights reserved.

RE Reverse Engineering.
CAD Computer Aided Design.
CAM Computer Aided Manufacturing.
CAE Computer Aided Engineering.
B-Rep Boundary Representation.
FEA Finite Element Analysis.
M Triangular mesh of a connected 2-manifold embedded in \mathbb{R}^{3}. $M=(X, T)$ is composed by the set of triangles $T=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ with vertex set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbb{R}^{3}$.
$E \quad$ Set of mesh edges $E=\left\{e_{1}, e_{2}, \ldots\right\}$ describing the connectivity of M.
$M_{i} \quad$ A sub-mesh of the segmentation of $M . \bigcup_{i=1}^{k} M_{i}=$ $M, M_{i} \cap M_{j}=\emptyset(i \neq j)$.
$\psi_{i} \quad$ Bijective 2D parameterization of $M_{i} . \psi_{i}: M_{i} \rightarrow$ \mathbb{R}^{2}.
$S \quad$ Mesh seeds. Subset of mesh vertices $S \subset X$ defining temperature constraints for the heat-based segmentation of M.
$S_{i} \quad$ Mesh seeds associated to sub-mesh $M_{i} . S_{i} \subset S$, $S_{i} \cap S_{j}=\emptyset(i \neq j)$.
$\Delta \quad$ Laplace-Beltrami operator defined on M. In local tangent coordinates $\left(b_{1}, b_{2}\right), \Delta=\partial^{2} / \partial b_{1}^{2}+\partial^{2} / \partial b_{2}^{2}$. $\Delta: C^{2}(M) \rightarrow C(M)$.
$u_{i} \quad$ Temperature field solution associated to the mesh seeds $S_{i} . u_{i}: M \rightarrow \mathbb{R}$.
$\mathbf{L} \quad$ FEA matrix which discretizes the operator Δ on M.
$\theta_{\text {threshold }}$ Dihedral angle threshold defined by the user to compute the mesh seeds S. $\theta_{\text {threshold }} \rightarrow 0$.
$\varepsilon \quad$ Area percentage parameter used to discard small sub-meshes from the segmentation. $0 \leq \varepsilon \leq 1$.
$\mathbf{H}_{\mathbf{x}}^{\tan } \quad$ Tangent Hessian of M defined at any point $x \in M$.
$\mathcal{H} \quad$ Hessian functional on $M_{i} \cdot \mathcal{H}: C^{2}(M) \rightarrow C(M)$.

K $n \times n$ matrix which discretizes the \mathcal{H} functional on M_{i}. The first two non-constant eigenvectors of \mathbf{K} define the parameterization $\psi_{i}(X)$.

1. Introduction

In the context of CAD/CAM/CAE and the emerging Industrie 4.0 framework, RE encompasses (re-)design, manufacturing, simulation, etc. [1]. Typical RE processes (Fig. 11): (1) tessellate the point cloud of the scanned model, (2) clean the raw triangular mesh (smoothing, filling, non-manifold repair, decimation, etc.), (3) build the Boundary Representation (B-Rep) of the mesh, (4) segment the mesh, (5) fit the resulting partition with parametric surfaces (analytic and / or freeform surfaces), (6) build the B-Rep of the reconstructed CAD model, and (7) conduct the engineering analysis. RE applications include (but are not limited to) Finite Element Analysis (FEA) [2, 3], Structural Optimization [4, 5] and Dimensional Analysis [6, 7].

Mesh segmentation / parameterization plays a crucial role in RE (steps 4-5) for the adequate geometric modeling of the workpiece. The mesh segmentation / parameterization problem is defined as follows:

Given: A 2-manifold triangular mesh M embedded in \mathbb{R}^{3}. Goal: (i) to partition (i.e. segment) the triangle set M into a set of disjoint and connected sub-meshes $\left\{M_{1}, M_{2}, \ldots M_{k}\right\}$ which together compose the original mesh, and (ii) to compute a bijective parameterization $\psi_{i}: M_{i} \rightarrow \mathbb{R}^{2}$ for each sub-mesh M_{i}. The segmentation step (i) must favor the parameterizability of the computed sub-meshes while retaining feature (functional) surfaces of the scanned workpiece.

Mesh segmentation algorithms can be classified depending on the surface features used to divide the mesh:

1. Geometry-based segmentation captures locally geometric features of the surface (sharp edges, principal curvatures, surface normals, etc.) and partitions the surface using this information. This type of segmentation is ideal for CAD meshes that present clear sharp transitions between sub-meshes. However, geometric criterion alone applied to noisy or imperfect meshes results in over-segmentation (Fig. 2). If the workpiece is smooth, geometric segmentation produces large and (likely) non-parameterizable submeshes.
2. Topology-based segmentation relies on the spectra (eigenpairs) of any Laplacian operator computed on the mesh graph. This type of segmentation is common in Computer Graphics applications. However, this segmentation usually results in non-parameterizable sub-meshes (Fig. 3(a).
3. Interactive segmentation is the most common practice by RE software (such as Geomagic ${ }^{\circledR}$ and Polyworks ${ }^{\circledR}$, Fig. 3(b)). The current state-of-the-art segmentation approaches still demand expensive user interaction in order to achieve suitable segmentations for parameterization and B-Rep reconstruction (Fig. 1].

Having the mesh segmented, the construction of the B-Rep becomes straightforward if a bijective parameterization of each sub-mesh is computed. A trimmed NURBS (Non-Uniform Rational B-Splines) surface can be fitted by Least Squares [9] or Radial Basis Functions (RBFs) [10] to each sub-mesh. The fitted surfaces and their trimming curves can be oriented and related to each other by their adjacency graph in order to produce the reconstructed B-Rep model [11].

This manuscript presents a hybrid mesh segmentation / parameterization algorithm for RE, as follows: (i) A set of heat transfer equations are defined on the mesh. The topology of the mesh is captured by the Laplace-Beltrami operator inherent in the differential equation for heat transfer. (ii) Temperature constraints are imposed on a subset of vertices (mesh seeds), acting as heat sources and sinks. The local geometry of the mesh is captured by choosing the mesh seeds according to a dihedral angle criterion. (iii) To avoid over-segmentation, seeds that produce small sub-meshes are ignored. The temperature fields are used to re-compute the segmentation without these small submeshes. (iv) The parameterization of each sub-mesh is thereafter computed by a Hessian-based parameterization [12].

The contribution of this manuscript resides in the mixed topology (temperature) / geometry (dihedral) nature of the segmentation algorithm. Our algorithm not only pursues mesh parameterizability but also a functional partition of scanned mechanical workpieces, without resorting to over-segmentation. The algorithm allows (almost) automatic processing of 3D meshes from scanned workpieces, improving the RE workflow.

The remainder of this manuscript is organized as follows: Sect. 2 reviews the relevant literature. Sect. 3 describes the mesh segmentation algorithm. Sect. 4 discusses the implementation details of the algorithm. Sect. 5 presents and discusses results of the conducted experiments. Sect. 6 concludes the paper and introduces what remains for future work.

2. Literature review

Mesh segmentation algorithms can be classified depending on the mesh properties used to partition the mesh as follows:

2.1. Geometry-based segmentation

Geometry-based segmentation approaches compute local geometric properties (e.g. dihedral angle, curvature, frequency, [8, 13]) and use region-growing algorithms to lump property homogeneous regions (Fig. 2].

Shape recognition algorithms partition the surface by matching analytic shapes to the mesh [14, 15, 16]. One of these analytic shapes (plane, sphere, cylinder or cone) is registered to each mesh vertex according to the local geometric information (such as curvature). A clustering or region growing algorithm is finally applied to compute the mesh segmentation.

Geometry-based segmentation algorithms (1) require several post-processing due to over-segmentation, (2) do not favor functional or feature segmentation, and (3) are highly sensitive to noise. Mesh smoothing may be used to reduce noise previous to segmentation [13].

Fig. 1. The current RE workflow is user-intensive [8]

Fig. 2. Dihedral segmentation produces over-segmentation due to surface imperfections and surface blends

Fig. 3. Topology vs. user - based segmentations [8]

2.2. Topology-based segmentation

In spectral analysis, a mesh topology operator matrix (e.g. adjacency or Laplacian) is estimated on the mesh graph in order to extract and analyze its spectra (eigenpairs) [17]. A partition of the first non-constant Laplacian (Fiedler) eigenvector reflects a possible segmentation of the mesh [8, 18]. A central precondition for spectral methods is the edge length homogeneity
through the mesh. To improve the robustness of the spectral segmentation, Refs. [19, 20] segment similar meshes simultaneously by introducing edge correspondences between meshes, while Ref. [21] captures images of the same mesh from different perspectives in order to correlate the mesh edges.

Ref. [22] computes an edge weighted Laplacian which includes information about concave regions. Chosen Laplacian eigenvectors are merged into a single scalar field whose partition segments the mesh. Ref. [23] introduces Secondary Laplacian and Giaquinta-Hildebrant operators which locally capture geometric properties (e.g. principal curvatures), thus allowing to infere 3D concavities / convexities. Ref. [24] computes the spectra of a weighted dual graph Laplacian. The dual Laplacian encodes the topology of the mesh in terms of the connectivity of the triangles (instead of the points connectivity). The weighting scheme incorporates dihedral angles, which improves the sub-mesh definition.

Heat-based algorithms are an alternative approach for topologic segmentation, defining and solving different heat transfer equations on the mesh. The topology of the mesh is captured by the Laplace-Beltrami operator, present in the heat equation. The resulting segmentation is obtained from the computed temperature fields on the mesh. Ref. [25] presents an interactive segmentation algorithm where the user draws lines perpendicular to potential sub-meshes boundaries. The algorithm defines temperature constraints according to these user strokes. The algorithm computes the constrained temperature fields and produces the segmentation based on the temperature contours.

Heat kernels are specific solutions to the heat transfer problems with unique point sources. These heat kernels can be computed by means of the eigenvectors of the Laplace-Beltrami operator [26, 27]. Refs. [28, 29] compute the heat potential (tendency to attract heat) of each mesh point in order to identify crucial heat sources which are then used to compute the heat kernels and the underlying segmentation.

In general, topology-based methods present several short-
comings: (1) they produce large sub-meshes which are nonparameterizable, and (2) they usually require heavy user interaction in selection of eigenpairs (spectral) or heat sources (heatbased) on the mesh, critical for the quality of the segmentation [30].

2.3. Mesh segmentation in $R E$

RE workflow currently requires intensive, costly user input (Fig. 11. Commercial tools include PolyWorks ${ }^{\circledR}$ [4], RapidWorks ${ }^{\circledR}$ [6] and Geomagic ${ }^{\circledR}$ [8]. Refs. [2, 31] apply RE to run FEA on scanned turbine blades. The turbine blades are manually divided into sections prior to digitizing. Ref. [11] uses the dihedral angle and curvature scalar fields on the mesh to segment it, seeking to optimally fit analytic shapes (sphere, cylinder, cone, etc.) to them. Refs. [9, 32] fit freeforms to growing sub-meshes, with Ref. [32] favoring rectangular ones. A common approach to represent an unknown model is to fit rectangular NURBs patches to the whole mesh [32]. These small NURBs patches have the advantage to produce low-distortion parameterizations, even in the case of complex geometries where such parameterization can be optimized to produce the smallest distortion [33, 34]. However, such patches usually lack from the functional information of the source CAD model (see Fig. 3(b)).

2.4. Conclusions of the literature review

Current state-of-the-art segmentation algorithms are not fully suitable for RE applications. Geometry-based segmentation algorithms produce over-segmentation on scanned workpieces due to surface imperfections and surface blends between sub-meshes. On the other hand, topology-based algorithms result in parameterization - hostile segmentations. Therefore, the current RE workflow demands massive user input in order to produce usable B-Reps, requiring between 25-150 hours of interactive work for a single scanned workpiece [4, 8].

To overcome these problems, this article presents an automatic mesh segmentation algorithm for RE: (1) Our algorithm defines several constrained heat transfer problems on the mesh for segmentation. Temperature constraints are located automatically using a dihedral criterion. To avoid over-segmentation, constraints that produce small sub-meshes are removed. Therefore, our algorithm favors sub-meshes parameterizability by capturing local geometric features (dihedral angle) and avoids over-segmentation by capturing topologic mesh features (temperature fields). (2) The sub-meshes are parameterized with a Hessian-based parameterization algorithm [12]. Results are presented for meshes collected from a 3D optical scanner and public benchmarks.

3. Methodology

To compute the segmentation of the mesh, we extend the heat-based approach presented in Ref. [25], making the segmentation procedure completely automatic (in the sense that it does not require user interaction) as follows (Fig. 4): (1) instead

Fig. 4. Overall scheme of the segmentation algorithm
of manually selecting a heat source and a heat sink to split the mesh into two sub-meshes, our segmentation algorithm locates simultaneously the set of all heat sources and sinks S. Such heat sources and sinks (mesh seeds) are located automatically by a dihedral angle criterion which captures the local geometry of the mesh. (2) These heat sources / sinks are used to define a set of heat transfer differential equations on the whole mesh. Therefore, for each heat source $S_{i} \subset S$, a mesh temperature field u_{i} is found. (3) The computed temperature fields are compared for each vertex in order to define a unique presegmentation of M. (4) Seeds that produce small sub-meshes are removed to avoid over-segmentation, resulting in a new set of temperature fields. (5) Finally, these new temperature fields define the final segmentation of M. In addition, an almost automatic parameterization algorithm proceeds as follows: (6) Artificial boundaries are manually (interactively) introduced only in the case of cylinder-like sub-meshes to allow their parameterization. (7) The parameterization of each sub-mesh is computed with a Hessian-based parameterization algorithm [12].

3.1. Automatic placement of mesh seeds

One of the crucial requisites in mesh parameterization resides in the parameterizability of the resulting segmentation. Such parameterizability is hindered by high frequency zones and favored by low frequency zones. Our algorithm locates a set of mesh seeds S in in the low frequency neighborhoods of the mesh. These mesh seeds will expand the different submeshes of the segmentation by propagating heat through the whole mesh (discussed in subsequent sections). We identify
 lows:

1. Set a dihedral angle threshold $\theta_{\text {threshold }} \rightarrow 0$
2. For each vertex $x_{i} \in M$:
2..1 Compute the incident edges $E_{i}=e_{1}, e_{2}, \ldots$ on x_{i}.
2.. 2 Compute the dihedral angle θ_{j} of each incident edge e_{j}.
2..3 If $\pi-\theta_{j}$ (for any incident edge j) is larger than the dihedral threshold $\theta_{\text {threshold }}$, then skip the current vertex.
2..4 Else, insert the current vertex x_{i} in the list of the mesh seeds S.

A vertex is considered as a low frequency vertex if and only if none of its incident edges is sharp (Fig. 5). An edge is sharp (non-planar) if $\pi-\theta_{j}>\theta_{\text {threshold }}$. Therefore, $\theta_{\text {threshold }} \rightarrow 0$ can be seen as the maximum non-coplanarity between two adjacent triangles in a low frequency zone.

Our algorithm ensures that adjacent low frequency mesh vertices lie in the interior of a common sub-mesh by grouping them into a subset of mesh seeds $S_{i} \subset S$ (Fig. 6(a).

3.2. Heat transfer with temperature constraints

The following partial differential equation describes the steady heat transfer phenomenon without heat sources on the mesh M :

$$
\begin{equation*}
\Delta u(x)=0 \tag{1}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator and $u(x)$ is the temperature distribution along the surface. We impose a temperature value $\left(u\left(S_{i}\right)=1\right)$ on a subset of mesh seeds (heat sources) $S_{i} \subset S$, and temperature value $\left(u\left(S_{j}\right)=0\right)$ at the remaining seed sets (heat sinks) $S_{j} \subset X, i \neq j$. Each subset of sources S_{i} will define a sub-mesh M_{i} of the segmentation. Therefore,

Fig. 6. Mesh seeds are located on low frequency zones. Each seed group defines a temperature field on the mesh.
for each sub-mesh M_{i}, the following constrained heat problem arises:

$$
\begin{align*}
& \qquad \Delta u_{i}(x)=0 \\
& \text { s.t. } \\
& \qquad \begin{array}{l}
u_{i}\left(S_{i}\right)=1, \\
u_{i}\left(S_{j}\right)=0, \quad i \neq j
\end{array} \tag{2}
\end{align*}
$$

For each heat source S_{i}, its corresponding temperature field $u_{i}(x)$ is obtained by propagating the thermal energy through the whole mesh M (Fig. 6(b)). The temperature solution $u_{i}(x)$ is directly related to the sub-mesh M_{i}, achieving maximum value ($u=1$) at the defined heat sources S_{i} and minimum value ($u=$ $0)$ at the remaining heat sinks $S_{j}, i \neq j$.

The Finite Element Method is implemented to estimate Δ numerically. Therefore, Δ is approximated by the FEA matrix \mathbf{L}, defined as [35, 36]:

$$
\mathbf{L}_{i j}= \begin{cases}\frac{3}{A_{i}} w_{i j}, & \text { if }\left(x_{i}, x_{j}\right) \text { is an edge of } M \tag{3}\\ -\frac{3}{A_{i}} \sum_{x_{k} \in N_{i}} w_{i k}, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

where N_{i} is the neighborhood of $x_{i}, w_{i j}=\frac{\cot \alpha_{i j}+\cot \beta_{i j}}{2}$ is the cotangent weight of edge $\left(x_{i}, x_{j}\right), \alpha_{i j}$ and $\beta_{i j}$ are the angles opposite to edge $\left(x_{i}, x_{j}\right)$, and A_{i} is the area of all the triangles incident to vertex x_{i}. An $n \times n$ linear system of equations $\mathbf{A} U_{i}=B_{i}$
arises for each heat source S_{i}, with:

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{L} \tag{4}\\
\mathbf{I}_{\mathbf{S}_{\mathrm{i}}} \\
\mathbf{I}_{\mathbf{S}_{\mathrm{j}}}
\end{array}\right], \text { and } B_{i}=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{1} \\
\mathbf{0}
\end{array}\right]
$$

where \mathbf{L} is the FEA matrix for all the nodes with unknown temperature in M (i.e. rows associated to mesh sources and sinks are excluded from $\mathbf{L}), \mathbf{I}_{\mathbf{S}_{\mathrm{i}}}, \mathbf{I}_{\mathbf{S}_{\mathrm{j}}}$ are the constraints matrices for the current heat sources S_{i} and heat sinks S_{j}, respectively (i.e. entry $k l$ of matrix $\mathbf{I}_{\mathbf{S}}$ is 1 if constraint k fixes the temperature for the heat source / $\operatorname{sink} x_{l}, 0$ otherwise).

Our algorithm simultaneously solves several heat transfer problems (one for each group of seeds S_{i}). The matrix \mathbf{A} is common to all of them and it is computed and prefactored once. The linear system defined by Eq. (4) is then solved using sparse Cholesky factorization, which in most cases can be solved in nearly linear time $O(n)$ [37, 38]. The following section describes how to combine the different temperature fields to obtain a single segmentation field.

3.3. Heat-based mesh segmentation

At this point, each vertex x_{i} in the mesh has an associated set of temperature values $u_{1}\left(x_{i}\right), u_{2}\left(x_{i}\right), \cdots$ from the temperature fields generated by each set of mesh seeds S_{1}, S_{2}, \ldots The segmentation of M is achieved by computing the maximum temperature value at each vertex and its corresponding seed group. Thus, each sub-mesh M_{i} is composed by the subset of vertices whose maximum temperature is $u_{i}(x)$:

$$
\begin{equation*}
M_{i}=\left\{x_{k} \in M \mid u_{i}\left(x_{k}\right)>u_{j}\left(x_{k}\right), i \neq j\right\} \tag{5}
\end{equation*}
$$

This construction guarantees that the set of heat sources S_{i} belongs to the sub-mesh M_{i}, assigning low frequency areas to the same sub-mesh. Heat propagates smoothly from these zones to higher frequency zones, defining the sub-mesh boundaries.

3.4. Discarding small seed groups

In RE, the mesh M presents surface imperfections due to manufacturing imperfections and / or RE pre-processing results (such as data acquisition, surface meshing, mesh filtering, mesh decimation, etc). Such imperfections and mesh noise produce small groups of seeds that lead the heat algorithm to an oversegmentation of the surface. A second heat - based segmentation is then executed excluding noise - originated seeds. An overview of the method follows:

1. Locate the initial heat seeds on low frequency neighborhoods.
2. Find the mesh temperature fields and segment accordingly.
3. Compute the area of each sub-mesh.
4. Given the sub-mesh with the largest area $A_{\text {largest }}$, locate all the sub-meshes with an area below $\varepsilon \cdot A_{\text {largest }}$ (small submeshes).
5. Discard seeds in small sub-meshes.
6. Re-compute the temperature fields with the surviving seeds.

(a) Parameterization - hostile cylinder-like sub-mesh
(b) Parameterizable cylinder-like sub-mesh

Fig. 7. To parameterize cylinder-like sub-meshes, an artificial boundary (red) is manually introduced using a cylinder generatrix
7. Re-compute the segmentation with the new temperature fields.

The area percentage parameter $0 \leq \varepsilon \leq 1$ measures the minimum sub-mesh size (relative to the largest sub-mesh) allowed by the segmentation. Triangles belonging to small submeshes in the over-segmentation are appended to the largest sub-meshes by temperature propagation as discussed in Sect. 3.3

3.5. Segmentation of cylinder-like sub-meshes

In the well known case of cylinder-like sub-meshes, our segmentation algorithm produces parameterization - hostile surfaces. However, such surfaces can be made parameterizable by manually making a generatrix of the cylinder a mesh boundary (Fig. 7), as follows:

1. The user selects the start and end vertices of the generatrix.
2. A shortest path (Dijkstra) algorithm computes the path that links the start and end vertices.
3. Our algorithm generates a new B-Rep of the sub-mesh introducing the computed trajectory as sub-mesh boundary.

Other authors have addressed the problem of fitting closed cylinders using least squares minimization [9, 11]. However, our approach comprises not only standard cylinders but also their topological equivalents (with and without holes).

3.6. Hessian-based mesh parameterization

To compute the parameterization $\psi \subset \mathbb{R}^{2}$ of M, a Hessianbased mesh parameterization algorithm [12] is applied on each sub-mesh M_{i}. This Hessian mesh parameterization algorithm applies the main concepts of HLLE [39] (a DR algorithm) on triangular meshes.

According to [12, 39], a parameterization of M_{i} is given by the first 2 non-constant eigenvectors of the Hessian functional \mathcal{H}, defined as:

$$
\begin{equation*}
\mathcal{H} f=\int_{M_{i}}\left\|\mathbf{H}_{\mathbf{x}}^{\tan } f\right\|_{F}^{2} \mathrm{dA} \approx \mathbf{f}^{\mathrm{T}} \mathbf{K} \mathbf{f} \tag{6}
\end{equation*}
$$

where $f \in C^{2}\left(M_{i}\right)$ is a smooth function defined on $M_{i},\|\cdot\|_{F}$ is the Frobenius norm, dA is the surface differential, $\mathbf{f}=$ $\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$ are the values of $f\left(x_{j}\right)$ at each vertex $x_{j} \in M_{i}$, and $\mathbf{K}=\left(\mathbf{K}_{1}+\mathbf{K}_{2} \cdots, \mathbf{K}_{n}\right)$ is the discrete Hessian estimator

Fig. 8. Acquisition of 3D point cloud data through an optical 3D scanner

Table 1. Default parameter values for our segmentation algorithm

Parameter	Value
$\theta_{\text {threshold }}$	$\frac{1}{20} \pi$ radians
ε	5%

(matrix). This matrix is semidefinite-positive [12, 39]. Therefore, the parameterization $\psi_{i}\left(M_{i}\right)$ is extracted by computing the first two eigenvectors of \mathbf{K} with smallest non-zero eigenvalue. Such eigenvectors correspond to an orthogonal basis for all linear functions (and as a consequence, a basis for all parameterizations) defined on M_{i}.
4. Implementation of the algorithm

To test our algorithm in a real RE context, different engineering pieces have been scanned with an optical 3D scanner (Fig. 8). The RE result for these pieces is used in real engineering contexts. The optical 3D scanner produces point cloud data for each workpiece. Fig. 9 plots the datasets obtained by scanning (a) a knob, (b) a tripod joint, and (c) a rocker arm base. These datasets were user - processed in Geomagic ${ }^{\circledR}$ Design $^{\text {TM }}$ to ensure manifold properties (pre-condition for segmentation and parameterization).

Fig. 10 plots the resulting meshes after the interactive processing. Large holes have been left in the mesh. These meshes are the actual input for our segmentation algorithm.

Fig. 11 plots the seed groups processing for the Knob mesh. The initial mesh seeds are computed with a $\theta_{\text {threshold }}=\frac{1}{20} \pi$ radians (see Table 1), since this value has shown to consistently capture flat zones in all of our conducted experiments. Several small seed groups arise due to isolated low frequency points inside high frequency zones (Fig. 11(a)). The temperature-based segmentation using these seeds results in an over-segmentation of the surface (Fig. 11(b). Small (noise-generated) sub-meshes are then discarded by the algorithm (as discussed in Sect. 3.4, no longer receiving heat seeds and therefore being absorbed in natural form by large meshes when the heat algorithm is run

Fig. 9. Datasets (point clouds) obtained with an optical scanner

(c) Rocker arm base (36.1k faces)

Fig. 10. Input meshes for our segmentation algorithm. These meshes are the result of manual preprocessing with commercial software (Geomagic ${ }^{\circledR}$).
again. After applying seeds processing, the remaining seeds capture the local flat geometry of the mesh and the high frequency seeds dissapear (Fig. 11(c). The final temperaturebased segmentation preserves the geometric properties from the dihedral criterion in low frequency zones while producing a smooth transition between sub-meshes, avoiding mesh oversegmentation (Fig. 11(d). Fig. 12 plots the distribution of the

Fig. 11. Discarding mesh seeds. The initial seed groups produce oversegmentation due to surface imperfections (a-b). After discarding small seed groups, such over-segmentation is removed (c-d).
sub-mesh sizes (sorted by surface area) and the area threshold used to discard small sub-meshes. In all our conducted experiments we choose an area threshold parameter of $\varepsilon=5 \%$ (see Table 11 as we have identified that it consistently differentiates large (albeit parameterizable) sub-meshes (Fig. 11(d)) from small (noise-generated) ones 11(b) The initial segmentation of the knob produces 300 sub-meshes while the final segmentation produces only 15 sub-meshes. Decreasing the value of ε in Fig. 12 would increase the likelihood of over-segmentation. On the other hand, increasing its value could lead the algorithm to merge large sub-meshes and produce non-parameterizable segmentations. The user may, of course, change the cutting value (upon examination of the distribution exemplified in Fig. 12), reinforcing or decreasing the absorption of small sub-meshes into the larger ones.

Fig. 13 plots the final segmentation results for each mesh. The computed sub-meshes present low frequencies while submesh boundaries are located in high frequency zones. The segmentation is controlled by the area percentage parameter ε, discarding noise - related sub-meshes as discussed in Sect. 3.4 Our algorithm produces parameterization - friendly segmentations while keeping a relatively low number of sub-meshes (15 sub-meshes for the knob - Fig. 13(a) 13 for the tripod joint Fig. 13(b) and 27 for the rocker arm base - Fig. 13(c), respectively.).

Hessian parameterization is then applied on each sub-mesh. Fig. 14 plots the 2D parameterization of each of the knob sub-meshes. Such parameterization is completely bijective (i.e. no triangle flips nor surface overlaps occur in the parametric space). Fig. 15 plots the chessboard textures applied on the resulting segmentation using the computed Hessian parameterization. The distortion of the chessboard squares represents the distortion of the computed parameterization. In the case of the

Fig. 12. Sub-mesh sizes for the initial segmentation of the knob mesh. The red line plots the area threshold $(\varepsilon=5 \%)$ used to discard small sub-meshes from the final segmentation.

Fig. 13. Temperature-based segmentation. The dihedral criterion captures the local mesh geometry while the temperature approach produces smooth transitions between sub-meshes.
tripod joint (Fig. 15(b)), artificial boundaries have been introduced manually on the cylinder-like sub-meshes as dicussed in Sect. 3.5 Fig. 15 displays (using chessboard textures) the computed bijective Hessian parameterizations of the sub-meshes. The special segmentation case of topological cylinders (e.g. tripod joint, Fig. $15(\mathrm{~b})$ currently requires manual creation of a boundary along a cylinder generatrix (discussion in Sect. 3.5).

Fig. 14. Knob Hessian parameterization

(c) Rocker arm base

Fig. 15. Chessboard texture applied on each sub-mesh. The resulting parameterization is bijective for all three scanned models.

5. Results and benchmarking

This section presents a comparison of our segmentation algorithm against several state-of-the-art algorithms and commercial CAD software. Sect. 5.1 presents a standard benchmarking using datasets and algorithms from the National Design Repository [40] and the Princeton Benchmark Repository [41], which are standard in the mesh segmentation literature. Afterwards, Sect. 5.2 compares our algorithm against recent algorithms

Table 2. Number of sub-meshes for the segmentation results of the Princeton Benchmark

Algorithm \Dataset	Flange	Cup
Random Cuts [42]	7	4
Random Walks [43]	5	3
Fitting Primitives [44]	8	6
Our (Temp-Geom) algorithm	21	5

from the literature and some commercial software using our inhouse scanned pieces (introduced in Sect. (4).

5.1. Standard benchmarking

Fig. 16 plots our segmentation results compared with the Cross Boundary Brushes algorithm results [25] for some CAD models from the National Design Repository [40]. Both methods use a heat-based approach to capture geometric features of each CAD model. However, Cross Boundary Brushes is completely interactive, requiring user input for each computed submesh. CAD models usually present several geometric features which require moderate segmentation sizes (>10 sub-meshes). Therefore, interactive user input may become unreliable in such cases. In contrast, our algorithm produces similar segmentation results and parameterizable sub-meshes without requiring any user input.

Fig. 17 plots segmentation results of our algorithm and some automatic algorithms from the Princeton Benchmark [41]. Our algorithm is able to capture the geometric features of the surface for the flange dataset (Fig. 17 (d)] while other algorithms struggle to capture such features, grouping different surfaces (such as the cylinders, cones and the plane on the flange orifices) into the same sub-mesh (Figs. 17(a)-17(c). As a consequence, our algorithm produces more sub-meshes (21) than the benchmark algorithms (<10), which in a RE context is preferable to allow easy parameterization of each of the flange sub-meshes (see Table 2]. On the other hand, our segmentation of the cup dataset (Fig. 17(d)) results in a similar number of sub-meshes (see Table 2), and is in agreement with the rest of the benchmarking algorithms(Figs. 17(a)-17(c)), correctly segmenting the cup model into its meaningful parts (Fig. 17(d).

Our segmentation algorithm is designed to work on scanned meshes of mechanical pieces. As a consequence, our algorithm behaves unexpectedly if applied to organic meshes. Fig. 18 illustrates this fact by applying our algorithm to a human mesh. The result is a bad segmentation with features not being characterized by our algorithm (such as head, hands or leg), and also each sub-mesh is non-parameterizable. Despite of the topology (heat-based) component of the algorithm, such a result is mainly due to the dihedral-criterion used to place the temperature seeds on the mesh (see Sect. 3.1). This problem can be addressed by changing the approach to define these seeds, which is left for future work.

5.2. RE benchmarking

Fig. 19 plots the segmentation results of the scanned mechanical workpieces (introduced in Sect. (4) using state-of-the-art

Fig. 16. Standard benchmarking. Segmentation results of the Cross Boundary Brushes method [25] (above) vs. our automated method (below). Meshes from the National Design Repository [40].

Fig. 17. Standard benchmarking. Segmentation results for the flange and cup models. Meshes from the Princeton Benchmark [41].

Fig. 18. Non-parameterizable segmentation of an organic mesh with our algorithm. Human mesh from the Princeton benchmark [41].

1 segmentation techniques. Fig. 19(a) plots the segmentation re2 sult using our implementation of the Contour Based automatic 3 algorithm [13]. The resulting segmentation captures some of
the surface features of the tripod joint and rocker arm meshes. However, sub-mesh boundaries are non-smooth and do not capture the real boundaries of the workpiece surfaces. The number of sub-meshes is relatively low (see Table 3) for each segmented piece, grouping several feature surfaces of the workpiece in the same sub-mesh, which difficults the parameterization step of the RE process. The segmentation of the knob mesh is undesirable in the context of RE.

Figs. 19(b) 19(c) plot the automatic segmentation results of the scanned workpieces using commercial CAD software. The Autodesk ${ }^{\circledR}{ }^{\circledR} 3 \mathrm{ds}$ Max ${ }^{\circledR}$ result is able to locate the different feature surfaces of the CAD meshes. However, it produces an excessive amount of sub-meshes (>1000, see Table 3) which are for the most part product of mesh noise and blending surfaces. On the other hand, the Geomagic ${ }^{\circledR}$ Design ${ }^{\mathrm{TM}}$ result captures not only feature surfaces but also blending surfaces (which dictate

Table 3. Number of sub-meshes for the segmentation results of our scanned models using state-of-the-art algorithms and commercial software

Algorithm \backslash Dataset	Knob	Tripod Joint	Rocker Arm Base
Contour Based Segmentation [13]	6	9	11
Autodesk Max ${ }^{\circledR}$ 3ds	6216	5633	11772
Geomagic $^{\circledR}$ Design	40	26	115
Our (Temp- Geom) algorithm	15	13	27

smooth transitions between feature surfaces) while ignoring the mesh noise. Such a result is highly desirable in a RE context to reconstruct the analytic surfaces of the scanned model. However, these blending surfaces can produce over-segmentation at some degree as illustrated in the Rocker Arm of Fig. 19(c), which has 115 sub-meshes. Our algorithm solves this problem by merging the blending surfaces into the feature surfaces (Fig. 19(d)), reducing this number to 27 [10] while keeping the segmentation parameterizable.

Table 4 presents the main advantages and disadvantages of all the segmentation algorithms used in this manuscript. Our algorithm provides an automatic alternative to mesh segmentation of mechanical pieces for RE, avoiding over-segmentation even in the presence of blending surfaces and mesh noise (natural to scanning devices and manufacture defects). It is worth to note that in the general context of mesh segmentation, an algorithm is considered to be automatic if it does not require interactive input of the user to compute the result. However, it is very common for automatic algorithms (including ours, see Table 1) to require the use of at least one input parameter (prior to segmentation) which is used by the algorithm to internally perform numerical decisions during the segmentation.

6. Conclusions and future work

This manuscript presents an algorithm for automatic mesh segmentation of 3D meshes of digitized mechanical pieces for RE applications. The implemented algorithm articulates a dihedral / heat transfer-based segmentation with a Hessian-based parameterization.

Compared to similar approaches, our method improves the RE workflow with an automatic hybrid geometry / topology approach which segments triangular meshes acquired from scanned mechanical models. The geometric component of the algorithm (i.e. dihedral criterion) favors the parameterizability of the resulting partition. On the other hand, the topologic component (captured by the temperature fields) favors smooth transitions between sub-meshes and avoids over-segmentation. The experiments were conducted on data acquired by a 3D optical scanner and from public repositories, and yet resulted in sets of fully parameterizable sub-meshes.

Ongoing work addresses: (1) Detection of cylinder-like submeshes and automatic computation of virtual boundaries as our
algorithm currently requires user guidance to parameterize such cases. (2) Design of an alternative method to compute temperature seeds in the mesh to allow the segmentation of organic meshes. (3) Triangle negotiation / splitting between adjacent sub-meshes in order to produce smoother sub-mesh boundary curves, in preparation of cleaner B-Reps. (4) Definition of a consistent topology (SHELL, FACES, LOOPS, EDGES and VERTICES) and geometry (freeform curves and surfaces) which together compose the final B-Rep of the reconstructed model.

References

[1] Posada, J, Toro, C, Barandiaran, I, Oyarzun, D, Stricker, D, de Amicis, R , et al. Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Comput Graph Appl 2015;35(2):26-40. doi 10.1109/MCG.2015.45
[2] Chintala, G, Gudimetla, P. Optimum material evaluation for gas turbine blade using reverse engineering (re) and fea. Procedia Eng 2014;97:13321340. doi 10.1016/j.proeng.2014.12.413
[3] Waggoner, T. Exporting solid models into finite element analysis (fea) for reverse engineering of electrical components. In: Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005. 2005, p. 231-235. doi 10.1109/EEIC.2005.1566297
[4] García, MJ, Boulanger, P, Henao, M. Structural optimization of as-built parts using reverse engineering and evolution strategies. Struct Multidiscip Optim 2008;35(6):541-550. doi 10.1007/s00158-007-0122-6
[5] Vučina, D, Pehnec, I. Enhanced Reverse Engineering Using Genetic-Algorithms-Based Experimental Parallel Workflow for Optimum Design. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-205200; 2011, p. 172-183. doi 10.1007/978-3-642-20520-0_18
[6] Asiabanpour, B, Ardis, A, Andrade, AA. A systematic use of reverse engineering in evaluating the overall accuracy of the fabricated parts. Int
■ J Rapid Manuf 2014;4(2-4):165-178. doi 10.1504/IJRAPIDM. 2014. 066006
[7] Mejia, D, Sánchez, JR, Segura, Á, Ruiz-Salguero, O, Posada, J, Cadavid, C. Mesh segmentation and texture mapping for dimensional inspection in web3d. In: Proceedings of the 22 Nd International Conference on 3D Web Technology. Web3D '17; New York, NY, USA: ACM.
(1) ISBN 978-1-4503-4955-0; 2017, p. 3:1-3:4. doi 10.1145/3055624. 3075954
[8] Orozco, S, Formella, A, Cadavid, CA, Ruiz-Salguero, O, Osorno, M. Geometry and topology-based segmentation of 2-manifold triangular

- meshes in r3. Br J Appl Sci Technol 2017;21(1):1-14. doi 10.9734/ BJAST/2017/32827
[9] Wang, J, Gu, D, Yu, Z, Tan, C, Zhou, L. A framework for 3d model reconstruction in reverse engineering. Comput Ind Eng 2012;63(4):11891200. doi $10.1016 / \mathrm{j} . \mathrm{cie}$ 2012.07.009
[10] Ruiz, OE, Mejia, D, Cadavid, CA. Triangular mesh parameterization with trimmed surfaces. Int J Interact Des Manuf (IJIDeM) 2015;9(4):303316. doi $10.1007 / \mathrm{s} 12008-015-0276-1$
[11] Bénière, R, Subsol, G, Gesquière, G, Breton, FL, Puech, W. A comprehensive process of reverse engineering from 3d meshes to cad mod-
- els. Comput Aided Des 2013;45(11):1382-1393. doi $10.1016 / \mathrm{j} . \mathrm{cad}$. 2013.06.004
[12] Mejia, D, Ruiz-Salguero, O, Cadavid, CA. Hessian eigenfunctions for triangular mesh parameterization. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016). ISBN 978-989-758-175-5; 2016, p. 75-82. doi 10.5220/0005668200730080
[13] Rodrigues, RS, Morgado, JF, Gomes, AJ. A contour-based segmentation algorithm for triangle meshes in 3d space. Comput Graph 2015;49:24-35. doi 10.1016/j.cag.2015.04.003
[14] Xiao, D, Lin, H, Xian, C, Gao, S. Cad mesh model segmentation by clustering. Comput Graph 2011;35(3):685-691. doi 10.1016/j.cag. 2011.03.020
[15] Wang, J, Yu, Z. Surface feature based mesh segmentation. Comput Graph 2011;35(3):661-667. doi 10.1016/j.cag.2011.03.016

Fig. 19. Comparison of results: (a) state-of-the-art competitor [13], (b-c) commercial tools, (d) our algorithm. Datasets: in-house scanned mechanical pieces.

Table 4. Advantages and disadvantages of each segmentation algorithm

Algorithm	Advantages	Disadvantages
$\begin{aligned} & \text { Cross Boundary } \\ & \text { Brushes [25] } \end{aligned}$	1. Works on both mechanical and organic meshes 2. Smooth sub-mesh boundaries	1. Non-automatic (requires heavy user interaction)
Random Cuts [42]	1. Avoids over-segmentation 2. Smooth sub-mesh boundaries	1. Non-automatic (requires user interaction) 2. Non-parameterizable sub-meshes
$\begin{aligned} & \text { Random Walks } \\ & \text { [43] } \end{aligned}$	1. Automatic segmentation 2. Works on both mechanical and organic meshes 3. Avoids over-segmentation 4. Smooth sub-mesh boundaries	1. Non-parameterizable sub-meshes
Fitting Primitives [44]	1. Automatic segmentation 2. Smooth sub-mesh boundaries 3. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. Does not work properly on mechanical meshes composed by several freeform surfaces
$\begin{aligned} & \text { Contour Based } \\ & \text { Segmentation } \\ & {[13]} \end{aligned}$	1. Works on both mechanical and organic meshes 2. Avoids over-segmentation	1. Non-parameterizable sub-meshes 2. Non-smooth sub-mesh boundaries
Autodesk ${ }^{\circledR} \quad$ 3ds Max $^{\circledR}$	1. Automatic segmentation 2. Parameterizable sub-meshes	1. Does not work properly on organic meshes 2. Over-segmentation
$\begin{aligned} & \text { Geomagic }^{\circledR} \\ & \text { Design } \end{aligned}$	1. Automatic segmentation 2. Smooth sub-mesh boundaries 3. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. Over-segmentation on meshes with a lot of small features (such as blending surfaces)
Our (TempGeom) algorithm	1. Automatic segmentation 2. Avoids over-segmentation 3. Smooth sub-mesh boundaries 4. Parameterizable sub-meshes for RE	1. Does not work properly on organic meshes 2. Ignores small feature surfaces

[16] Yi, B, Liu, Z, Tan, J, Cheng, F, Duan, G, Liu, L. Shape recognition of cad models via iterative slippage analysis. Comput Aided Des 2014;55:13-25. doi 10.1016/j.cad.2014.04.008
[17] Zhang, H, Van Kaick, O, Dyer, R. Spectral mesh processing. Comput Graph Forum 2010;29(6):1865-1894. doi 10.1111/j.1467-8659. 2010.01655.x
[18] Mejia, D, Ruiz-Salguero, O, Cadavid, CA. Spectral-based mesh segmentation. International Journal on Interactive Design and Manufacturing (IJIDeM) 2017;11(3):503-514. doi 10.1007/s12008-016-0300-0
[19] Golovinskiy, A, Funkhouser, T. Consistent segmentation of 3d models. Comput Graph 2009;33(3):262 - 269. doi 10.1016/j.cag.2009.03. 010
[20] Liu, X, Zhang, J, Liu, R, Li, B, Wang, J, Cao, J. Low-rank 3d mesh segmentation and labeling with structure guiding. Comput Graph 2015;46:99-109. doi 10.1016/j.cag.2014.09.019
[21] Le, T, Bui, G, Duan, Y. A multi-view recurrent neural network for 3d mesh segmentation. Comput Graph 2017;66(Supplement C):103-112. doi https://doi.org/10.1016/j.cag.2017.05.011, shape Modeling International 2017.
[22] Wang, H, Lu, T, Au, OKC, Tai, CL. Spectral 3d mesh segmentation with a novel single segmentation field. Graph Model 2014;76(5):440456. doi 10.1016/j.gmod. 2014.04.009
[23] Liao, T, Li, X, Xu, G, Zhang, YJ. Secondary laplace operator and generalized giaquintahildebrandt operator with applications on surface segmentation and smoothing. Comput Aided Des 2016;70:56-66. doi $10.1016 /$ j.cad.2015.07.009
[24] Zhang, J, Zheng, J, Wu, C, Cai, J. Variational mesh decomposition. ACM Trans Graph 2012;31(3):21:1-21:14. doi 10.1145/2167076. 2167079
[25] Zheng, Y, Tai, CL. Mesh decomposition with cross-boundary brushes. Comput Graph Forum 2010;29(2):527-535. doi 10.1111/j. 1467-8659.2009.01622.x
[26] Gěbal, K, Bærentzen, JA, Aanæs, H, Larsen, R. Shape analysis using the auto diffusion function. Comput Graph Forum 2009;28(5):14051413. doi $10.1111 / \mathrm{j} .1467-8659.2009 .01517 . \mathrm{x}$
[27] Sun, J, Ovsjanikov, M, Guibas, L. A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing. SGP '09; Aire-la-Ville, Switzerland, Switzerland: Eurographics Association; 2009, p. 1383-1392.
[28] Benjamin, W, Polk, AW, Vishwanathan, S, Ramani, K. Heat walk: Robust salient segmentation of non-rigid shapes. Comput Graph Forum 2011;30(7):2097-2106. doi 10.1111/j.1467-8659.2011.02060.x
[29] Fang, Y, Sun, M, Kim, M, Ramani, K. Heat-mapping: A robust approach toward perceptually consistent mesh segmentation. In: CVPR 2011. 2011, p. 2145-2152. doi 10.1109/CVPR. 2011.5995695
[30] Meng, M, Fan, L, Liu, L. A comparative evaluation of foreground/background sketch-based mesh segmentation algorithms. Comput Graph 2011;35(3):650-660. doi $10.1016 / \mathrm{j} . \mathrm{cag} .2011 .03 .038$
[31] Vanco, M, Brunnett, G. Direct segmentation of algebraic models for reverse engineering. Computing 2004;72(1):207-220. doi $10.1007 /$ s00607-003-0058-7
[32] Soni, K, Chen, D, Lerch, T. Parameterization of prismatic shapes and reconstruction of free-form shapes in reverse engineering. Int J Adv Manuf Technol 2009;41(9):948. doi 10.1007/s00170-008-1550-1
[33] Yang, YJ, Zeng, W, Chen, JF. Equiareal parameterizations of nurbs surfaces. Graphical Models 2014;76(1):43-55. doi $10.1016 / \mathrm{j}$. gmod. 2013.10.007
[34] Yang, YJ, Zeng, W, Meng, XX. Conformal freeform surfaces. Computer-Aided Design 2016;81:48-60. doi $10.1016 / \mathrm{j} . \mathrm{cad} .2016$. 09.003
[35] Pinkall, U, Polthier, K. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 1993;2(1):15-36. doi 10.1080/ 10586458.1993 .10504266
[36] Reuter, M, Biasotti, S, Giorgi, D, Patanè, G, Spagnuolo, M. Discrete laplacebeltrami operators for shape analysis and segmentation. Comput Graph 2009;33(3):381 - 390. doi https://doi.org/10.1016/j. cag.2009.03.005 iEEE International Conference on Shape Modelling and Applications 2009.
[37] Spielman, DA, Teng, SH. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing. STOC '04; New York, NY, USA: ACM. ISBN 1-58113-852-0; 2004, p.

81 - 90. doi $10.1145 / 1007352.1007372$
[38] Schmitz, PG, Ying, L. A fast direct solver for elliptic problems on general meshes in 2d. Journal of Computational Physics 2012;231(4):1314 1338. doi https://doi.org/10.1016/j.jcp.2011.10.013
[39] Donoho, DL, Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. P Natl Acad Sci USA 2003;100(10):5591-5596. doi 10.1073/pnas. 1031596100
[40] Regli, WC, Foster, C, Hayes, E, Ip, CY, Mcwherter, D, Peabody, M, et al. National design repository project: A status report. In: International Joint Conferences on Artificial Intelligence (IJCAI) and AAAI/SIGMAN Workshop on AI in Manufacturing Systems. 2001,
[41] Chen, X, Golovinskiy, A, Funkhouser, T. A benchmark for 3d mesh segmentation. ACM Trans Graph 2009;28(3):73:1-73:12. doi 10.1145/ 1531326.1531379
[42] Golovinskiy, A, Funkhouser, T. Randomized cuts for 3d mesh analysis. ACM Trans Graph 2008;27(5):145:1-145:12. doi 10.1145/1409060. 1409098
[43] Lai, YK, Hu, SM, Martin, RR, Rosin, PL. Fast mesh segmentation us ing random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling. SPM '08; New York, NY, USA: ACM.
-ISBN 978-1-60558-106-4; 2008, p. 183-191. doi 10.1145/1364901. 1364927
[44] Attene, M, Falcidieno, B, Spagnuolo, M. Hierarchical mesh segmentation based on fitting primitives. The Visual Computer 2006;22(3):181193. doi $10.1007 / \mathrm{s} 00371-006-0375-\mathrm{x}$

