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a b s t r a c t 

Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective parameteri- 

zations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation methods use 

either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-based segmenta- 

tions produce large sub-meshes which reject parameterizations. Geometry-based segmentations are very 

sensitive to local variations in dihedral angle or curvatures, thus producing an exaggerated large number 

of small sub-meshes. Although small sub-meshes accept nearly isometric parameterizations, this signifi- 

cant granulation defeats the intent of synthesizing a usable Boundary Representation (compulsory for RE). 

In response to these limitations, this article presents an implementation of a hybrid geometry / topology 

segmentation algorithm for mechanical workpieces. This method locates heat transfer constraints (topo- 

logical criterion) in low frequency neighborhoods of the mesh (geometric criterion) and solves for the 

resulting temperature distribution on the mesh. The mesh partition dictated by the temperature scalar 

map results in large, albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark 

repository and physical piece scans data. The experiments are successful, except for the well - known 

cases of topological cylinders, which require a user - introduced boundary along the cylinder generatri- 

ces. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the context of Computer Aided Design / Manufacturing / En- 

gineering (CAD/CAM/CAE) and the emerging Industry 4.0 frame- 

work, RE encompasses (re-)design, manufacturing, simulation, etc. 

[1] . Typical RE processes ( Fig. 1 ): (1) tessellate the point cloud of 

the scanned model, (2) clean the raw triangular mesh (smoothing, 

filling, non-manifold repair, decimation, etc.), (3) build the Bound- 

ary Representation (B-Rep) of the mesh, (4) segment the mesh, (5) 

fit the resulting partition with parametric surfaces (analytic and / 

or freeform surfaces), (6) build the B-Rep of the reconstructed CAD 

model, and (7) conduct the engineering analysis. RE applications 

include (but are not limited to) Finite Element Analysis (FEA) [2,3] , 

Structural Optimization [4,5] and Dimensional Analysis [6,7] . 

Mesh segmentation / parameterization plays a crucial role in RE 

(steps 4–5) for the adequate geometric modeling of the workpiece. 

� This article was recommended for publication by Jun-Hai Yong. 
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The mesh segmentation / parameterization problem is defined as 

follows: 

Given: A 2-manifold triangular mesh M (or simply, “mesh”) 

embedded in R 

3 . Goal: (i) to partition (i.e., segment) the tri- 

angle set M into a set of disjoint and connected sub-meshes 

{ M 1 , M 2 , . . . , M k } which together compose the original mesh, and 

(ii) to compute a bijective parameterization ψ i : M i → R 

2 for each 

sub-mesh M i . The segmentation step (i) must favor the parameteri- 

zability of the computed sub-meshes while retaining feature (func- 

tional) surfaces of the scanned workpiece. 

Mesh segmentation algorithms can be classified depending on 

the surface features used to divide the mesh: 

1. Geometry-based segmentation captures locally geometric fea- 

tures of the surface (sharp edges, principal curvatures, sur- 

face normals, etc.) and partitions the surface using this infor- 

mation. This type of segmentation is ideal for CAD meshes 

that present clear sharp transitions between sub-meshes. How- 

ever, geometric criterion alone applied to noisy or imperfect 

meshes results in over-segmentation ( Fig. 2 ). If the workpiece 

https://doi.org/10.1016/j.cag.2018.03.004 
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Fig. 1. The current RE workflow is user-intensive [8] . 

Fig. 2. Dihedral segmentation produces over-segmentation due to surface imperfec- 

tions and surface blends. 

Fig. 3. Topology vs. user - based segmentations [8] . 

is smooth, geometric segmentation produces large and (likely) 

non-parameterizable sub-meshes. 

2. Topology-based segmentation relies on the spectra (eigen- 

pairs) of any Laplacian operator computed on the mesh graph. 

This type of segmentation is common in Computer Graphics ap- 

plications. However, this segmentation usually results in non- 

parameterizable sub-meshes ( Fig. 3 (a)). 

3. Interactive segmentation is the most common practice by RE 

software (such as Geomagic ® and Polyworks ®, Fig. 3 (b)). The 

current state-of-the-art segmentation approaches still demand 

expensive user interaction in order to achieve suitable segmen- 

tations for parameterization and B-Rep reconstruction ( Fig. 1 ). 

Having the mesh segmented, the construction of the B-Rep be- 

comes straightforward if a bijective parameterization of each sub- 

mesh is computed. A trimmed NURBS (Non-Uniform Rational B- 

Splines) surface can be fitted by Least Squares [9] or Radial Ba- 

sis Functions (RBFs) [10] to each sub-mesh. The fitted surfaces and 

their trimming curves can be oriented and related to each other by 

their adjacency graph in order to produce the reconstructed B-Rep 

model [11] . 

This manuscript presents a hybrid mesh segmentation / param- 

eterization algorithm for RE, as follows: (i) A set of heat transfer 

equations are defined on the mesh. The topology of the mesh is 

captured by the Laplace–Beltrami operator inherent in the differen- 

tial equation for heat transfer. (ii) Temperature constraints are im- 

posed on a subset of vertices (mesh seeds), acting as heat sources 

and sinks. The local geometry of the mesh is captured by choos- 

ing the mesh seeds according to a dihedral angle criterion. (iii) To 

avoid over-segmentation, seeds that produce small sub-meshes are 

ignored. The temperature fields are used to re-compute the seg- 

mentation without these small sub-meshes. (iv) The parameteriza- 

tion of each sub-mesh is thereafter computed by a Hessian-based 

parameterization [12] . 

The contribution of this manuscript resides in the mixed topol- 

ogy (temperature) / geometry (dihedral) nature of the segmenta- 

tion algorithm. Our algorithm not only pursues mesh parameteriz- 

ability but also a functional partition of scanned mechanical work- 

pieces, without resorting to over-segmentation. The algorithm al- 

lows (almost) automatic processing of 3D meshes from scanned 

workpieces, improving the RE workflow. 

The remainder of this manuscript is organized as follows: 

Section 2 reviews the relevant literature. Section 3 describes the 

mesh segmentation algorithm. Section 4 discusses the implemen- 

tation details of the algorithm. Section 5 presents and discusses re- 

sults of the conducted experiments. Section 6 concludes the paper 

and introduces what remains for future work. 

2. Literature review 

Mesh segmentation algorithms can be classified depending on 

the mesh properties used to partition the mesh as follows: 

2.1. Geometry-based segmentation 

Geometry-based segmentation approaches compute local geo- 

metric properties (e.g., dihedral angle, curvature, frequency, [8,13] ) 

and use region-growing algorithms to lump property - homoge- 

neous regions ( Fig. 2 ). 

Shape recognition algorithms partition the surface by matching 

analytic shapes to the mesh [14–16] . One of these analytic shapes 

(plane, sphere, cylinder or cone) is registered to each mesh vertex 

according to the local geometric information (such as curvature). 
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A clustering or region growing algorithm is finally applied to com- 

pute the mesh segmentation. 

Geometry-based segmentation algorithms (1) require several 

post-processing due to over-segmentation, (2) do not favor func- 

tional or feature segmentation, and (3) are highly sensitive to 

noise. Mesh smoothing may be used to reduce noise previous to 

segmentation [13] . 

2.2. Topology-based segmentation 

In spectral analysis, a mesh topology operator matrix (e.g., ad- 

jacency or Laplacian) is estimated on the mesh graph in order 

to extract and analyze its spectra (eigenpairs) [17] . A partition 

of the first non-constant Laplacian (Fiedler) eigenvector reflects a 

possible segmentation of the mesh [8,18] . A central pre-condition 

for spectral methods is the edge length homogeneity through the 

mesh. To improve the robustness of the spectral segmentation, 

Refs. [19,20] segment similar meshes simultaneously by introduc- 

ing edge correspondences between meshes, while Ref. [21] cap- 

tures images of the same mesh from different perspectives in order 

to correlate the mesh edges. 

Ref. [22] computes an edge weighted Laplacian which includes 

information about concave regions. Chosen Laplacian eigenvectors 

are merged into a single scalar field whose partition segments 

the mesh. Ref. [23] introduces Secondary Laplacian and Giaquinta–

Hildebrant operators which locally capture geometric properties 

(e.g., principal curvatures), thus allowing to infer 3D concavities 

/ convexities. Ref. [24] computes the spectra of a weighted dual 

graph Laplacian. The dual Laplacian encodes the topology of the 

mesh in terms of the connectivity of the triangles (instead of the 

points connectivity). The weighting scheme incorporates dihedral 

angles, which improves the sub-mesh definition. 

Heat-based algorithms are an alternative approach for topologic 

segmentation, defining and solving different heat transfer equa- 

tions on the mesh. The topology of the mesh is captured by the 

Laplace–Beltrami operator, present in the heat equation. The re- 

sulting segmentation is obtained from the computed temperature 

fields on the mesh. Ref. [25] presents an interactive segmenta- 

tion algorithm where the user draws lines perpendicular to poten- 

tial sub-mesh boundaries. The algorithm defines temperature con- 

straints according to these user strokes. The algorithm computes 

the constrained temperature fields and produces the segmentation 

based on the temperature contours. 

Heat kernels are specific solutions to the heat transfer prob- 

lems with unique point sources. These heat kernels can be com- 

puted by means of the eigenvectors of the Laplace–Beltrami oper- 

ator [26,27] . Refs. [28,29] compute the heat potential (tendency to 

attract heat) of each mesh point in order to identify crucial heat 

sources which are then used to compute the heat kernels and the 

underlying segmentation. 

In general, topology-based methods present several short- 

comings: (1) they produce large sub-meshes which are non- 

parameterizable, and (2) they usually require heavy user interac- 

tion in selection of eigenpairs (spectral) or heat sources (heat- 

based) on the mesh, critical for the quality of the segmentation 

[30] . 

2.3. Mesh segmentation in RE 

RE workflow currently requires intensive, costly user input 

( Fig. 1 ). Commercial tools include PolyWorks ® [4] , RapidWorks ®

[6] and Geomagic ® [8] . Refs. [2,31] apply RE to run FEA on scanned 

turbine blades. The turbine blades are manually divided into sec- 

tions prior to digitizing. Ref. [11] uses the dihedral angle and cur- 

vature scalar fields on the mesh to segment it, seeking to optimally 

fit analytic shapes (sphere, cylinder, cone, etc.). Refs. [9,32] fit 

freeforms to growing sub-meshes, with Ref. [32] favoring rectan- 

gular ones. A common approach to represent an unknown model 

is to fit rectangular NURBs patches to the whole mesh [32] . These 

small NURBs patches have the advantage to produce low-distortion 

parameterizations, even in the case of complex geometries where 

such parameterization can be optimized to produce the smallest 

distortion [33,34] . However, such patches usually lack from the 

functional information of the source CAD model (see Fig. 3 (b)). 

2.4. Conclusions of the literature review 

Current state-of-the-art segmentation algorithms are not fully 

suitable for RE applications. Geometry-based segmentation algo- 

rithms produce over-segmentation on scanned workpieces due to 

surface imperfections and surface blends between sub-meshes. On 

the other hand, topology-based algorithms result in parameteriza- 

tion - hostile segmentations. Therefore, the current RE workflow 

demands massive user input in order to produce usable B-Reps, re- 

quiring between 25–150 h of interactive work for a single scanned 

workpiece [4,8] . 

To overcome these problems, this article presents an automatic 

mesh segmentation algorithm for RE: (1) Our algorithm defines 

several constrained heat transfer problems on the mesh for seg- 

mentation. Temperature constraints are located automatically using 

a dihedral criterion. To avoid over-segmentation, constraints that 

produce small sub-meshes are removed. Therefore, our algorithm 

favors sub-meshes parameterizability by capturing local geomet- 

ric features (dihedral angle) and avoids over-segmentation by cap- 

turing topological mesh features (temperature fields). (2) The sub- 

meshes are parameterized with a Hessian-based parameterization 

algorithm [12] . Results are presented for meshes collected from a 

3D optical scanner and public benchmarks. 

3. Methodology 

To compute the segmentation of the mesh M , we extend the 

heat-based approach presented in Ref. [25] , making the segmenta- 

tion procedure completely automatic (in the sense that it does not 

require user interaction) as follows ( Fig. 4 ): (1) instead of man- 

ually selecting a heat source and a heat sink to split the mesh 

into two sub-meshes, our segmentation algorithm locates simul- 

taneously the set of all heat sources and sinks S . Such heat sources 

and sinks (mesh seeds) are located automatically by a dihedral an- 

gle criterion which captures the local geometry of the mesh. (2) 

These heat sources / sinks are used to define a set of heat trans- 

fer differential equations on the whole mesh. Therefore, for each 

heat source S i ⊂ S , a mesh temperature field u i is found. (3) The 

computed temperature fields are compared for each vertex in or- 

der to define a unique pre-segmentation of M . (4) Seeds that pro- 

duce small sub-meshes are removed to avoid over-segmentation, 

resulting in a new set of temperature fields. (5) Finally, these new 

temperature fields define the final segmentation of M . In addition, 

an almost automatic parameterization algorithm proceeds as fol- 

lows: (6) Artificial boundaries are manually (interactively) intro- 

duced only in the case of cylinder-like sub-meshes to allow their 

parameterization. (7) The parameterization of each sub-mesh is 

computed with a Hessian-based parameterization algorithm [12] . 

3.1. Automatic placement of mesh seeds 

One of the crucial requisites in mesh parameterization resides 

in the parameterizability of the resulting segmentation. Such pa- 

rameterizability is hindered by high frequency zones and favored 

by low frequency zones. Our algorithm locates a set of mesh seeds 

S in the low frequency neighborhoods of the mesh. These mesh 

seeds will expand the different sub-meshes of the segmentation 
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Fig. 4. Overall scheme of the segmentation algorithm. 

by propagating heat through the whole mesh (discussed in subse- 

quent sections). We identify such low frequency zones by a dihe- 

dral angle criterion as follows: 

1. Set a dihedral angle threshold θ threshold → 0 

2. For each vertex x i ∈ M : 

(a) Compute the incident edges E i = e 1 , e 2 , . . . on x i . 

(b) Compute the dihedral angle θ j of each incident edge e j ∈ E i . 

(c) If π − θ j > θthreshold (for any incident edge e j ), then skip the 
current vertex. 

(d) Else, insert the current vertex x i in the list of the mesh seeds 

S . 

A vertex is considered as a low frequency vertex if and only if none 

of its incident edges is sharp ( Fig. 5 ). An edge is sharp (non-planar) 

if π − θ j is larger than the dihedral threshold θ threshold . Therefore, 

θ threshold → 0 can be seen as the maximum non-coplanarity be- 

tween two adjacent triangles in a low frequency zone. 

Our algorithm ensures that adjacent low frequency mesh ver- 

tices lie in the interior of a common sub-mesh by grouping them 

into a subset of mesh seeds S i ⊂ S ( Fig. 6 (a)). 

3.2. Heat transfer with temperature constraints 

The following partial differential equation describes the steady 

heat transfer phenomenon without heat sources on the mesh M : 

�u (x ) = 0 , (1) 

where � is the Laplace–Beltrami operator and u ( x ) is the tem- 

perature distribution along the surface. We impose a temperature 

value ( u (S i ) = 1 ) on a subset of mesh seeds (heat sources) S i ⊂ S , 

and temperature value ( u (S j ) = 0 ) at the remaining seed sets (heat 

sinks) S j ⊂M , i � = j . Each subset of sources S i will define a sub- 

mesh M i of the segmentation. Therefore, for each sub-mesh M i , the 

Fig. 5. Examples of low and high frequency vertex for selection of mesh seeds 

based on a dihedral criterion. 

Fig. 6. Mesh seeds are located at low frequency zones. Each seed group defines a 

temperature field on the mesh. 



D. Mejia et al. / Computers & Graphics 73 (2018) 47–58 51 

following constrained heat problem arises: 

�u i (x ) = 0 

s.t. 

u i (S i ) = 1 , 

u i (S j ) = 0 , i � = j (2) 

For each heat source S i , its corresponding temperature field 

u i ( x ) is obtained by propagating the thermal energy through the 

whole mesh M ( Fig. 6 (b)). The temperature solution u i ( x ) is directly 

related to the sub-mesh M i , achieving maximum value ( u = 1 ) at 

the defined heat sources S i and minimum value ( u = 0 ) at the re- 

maining heat sinks S j , i � = j . 

The FEA Method is implemented to estimate � numerically. 

Therefore, � is approximated by the FEA matrix L , defined as 

[35,36] : 

L i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

3 

A i 
w i j , if (x i , x j ) is an edge of M 

− 3 

A i 

∑ 

x k ∈ N i w ik , if i = j 

0 , otherwise 

, (3) 

where N i is the neighborhood of x i , w i j = 

cot αi j + cot βi j 

2 is the cotan- 

gent weight of edge ( x i , x j ), αij and β ij are the angles opposite to 

edge ( x i , x j ), and A i is the area of all the triangles incident to ver- 

tex x i . An n ×n linear system of equations A U i = B i arises for each 

heat source S i , with: 

A = 

[ 

L 
I S i 
I S j 

] 

, and B i = 

[ 

0 
1 
0 

] 

, (4) 

where L is the FEA matrix for all the nodes with unknown tem- 

perature in M (i.e., rows associated to mesh sources and sinks are 

excluded from L ), I S i , I S j are the constraints matrices for the cur- 

rent heat sources S i and heat sinks S j , respectively (i.e., entry kl 

of matrix I S is 1 if constraint k fixes the temperature for the heat 

source / sink x l , 0 otherwise). 

Our algorithm simultaneously solves several heat transfer prob- 

lems (one for each group of seeds S i ). The matrix A is common to 

all of them and it is computed and prefactored once. The linear 

system defined by Eq. (4) is then solved using sparse Cholesky fac- 

torization, which in most cases can be solved in nearly linear time 

O(n ) [37,38] . The following section describes how to combine the 

different tem perature fields to obtain a single segmentation field. 

3.3. Heat-based mesh segmentation 

At this point, each vertex x i in the mesh has an associated set 

of temperature values u 1 (x i ) , u 2 (x i ) , . . . from the temperature fields 

generated by each set of mesh seeds S 1 , S 2 , . . . . The segmentation 

of M is achieved by computing the maximum temperature value 

at each vertex and its corresponding seed group. Thus, each sub- 

mesh M i is composed by the subset of vertices whose maximum 

temperature is u i ( x ): 

M i = 

{
x k ∈ M | u i (x k ) > u j (x k ) , i � = j 

}
(5) 

This construction guarantees that the set of heat sources S i belongs 

to the sub-mesh M i , assigning low frequency areas to the same 

sub-mesh. Heat propagates smoothly from these zones to higher 

frequency zones, defining the sub-mesh boundaries. 

3.4. Discarding small seed groups 

In RE, the mesh M presents surface imperfections due to manu- 

facturing imperfections and / or RE pre-processing results (such as 

data acquisition, surface meshing, mesh filtering, mesh decimation, 

Fig. 7. To parameterize cylinder-like sub-meshes, an artificial boundary (red) is 

manually introduced using a cylinder generatrix. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.). 

etc). Such imperfections and mesh noise produce small groups of 

seeds that lead the heat algorithm to an over-segmentation of the 

surface. A second heat - based segmentation is then executed ex- 

cluding noise - originated seeds. An overview of the method fol- 

lows: 

1. Locate the initial heat seeds on low frequency neighborhoods. 

2. Find the mesh temperature fields and segment accordingly. 

3. Compute the area of each sub-mesh. 

4. Given the sub-mesh with the largest area A largest , locate all the 

sub-meshes with an area below ε ·A largest (small sub-meshes). 

5. Discard seeds in small sub-meshes. 

6. Re-compute the temperature fields with the surviving seeds. 

7. Re-compute the segmentation with the new temperature fields. 

The area percentage parameter 0 ≤ ε ≤1 measures the mini- 

mum sub-mesh size (relative to the largest sub-mesh) allowed 

by the segmentation. Triangles belonging to small sub-meshes in 

the over-segmentation are appended to the largest sub-meshes by 

temperature propagation as discussed in Section 3.3 . 

3.5. Segmentation of cylinder-like sub-meshes 

In the well known case of cylinder-like sub-meshes, our seg- 

mentation algorithm produces parameterization - hostile surfaces. 

However, such surfaces can be made parameterizable by manually 

making a generatrix of the cylinder a mesh boundary ( Fig. 7 ), as 

follows: 

1. The user selects the start and end vertices of the generatrix. 

2. A shortest path (Dijkstra) algorithm computes the path that 

links the start and end vertices. 

3. Our algorithm generates a new B-Rep of the sub-mesh intro- 

ducing the computed trajectory as sub-mesh boundary. 

Other authors have addressed the problem of fitting closed 

cylinders using least squares minimization [9,11] . However, our ap- 

proach comprises not only standard cylinders but also their topo- 

logical equivalents (with and without holes). 

3.6. Hessian-based mesh parameterization 

To compute the parameterization ψ ⊂ R 

2 of M , a Hessian-based 

mesh parameterization algorithm [12] is applied on each sub- 

mesh M i . This Hessian mesh parameterization algorithm applies 

the main concepts of Hessian Locally Linear Embedding (HLLE) 

[39] (a Dimensional Reduction algorithm) on triangular meshes. 

According to [12,39] , a parameterization of M i is given by the 

first 2 non-constant eigenvectors of the Hessian functional H, de- 

fined as: 

H f = 

∫ 
M i 

‖ H 

tan 
x f‖ 

2 
F dA ≈ f T Kf , (6) 
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Fig. 8. Acquisition of 3D point cloud data through an optical 3D scanner. 

Fig. 9. Datasets (point clouds) obtained with an optical scanner. 

where f ∈ C 2 (M i ) is a smooth function defined on M i , ‖ · ‖ F is the 
Frobenius norm, dA is the surface differential, f = { f 1 , f 2 , . . . , f n } 
are the values of f ( x j ) at each vertex x j ∈ M i , and K = (K 1 + 

K 2 . . . , K n ) is the discrete Hessian estimator (matrix). This ma- 

trix is semidefinite-positive [12,39] . Therefore, the parameteriza- 

tion ψ i ( M i ) is extracted by computing the first two eigenvectors 

of K with the smallest non-zero eigenvalue. Such eigenvectors cor- 

respond to an orthogonal basis for all linear functions (and as a 

consequence, a basis for all parameterizations) defined on M i . 

4. Implementation of the algorithm 

To test our algorithm in a real RE context, different engineer- 

ing pieces have been scanned with an optical 3D scanner ( Fig. 8 ). 

The RE result for these pieces is used in real engineering contexts. 

The optical 3D scanner produces point cloud data for each work- 

piece. Fig. 9 plots the datasets obtained by scanning (a) a knob, (b) 

a tripod joint, and (c) a rocker arm base. These datasets were user 

- processed in Geomagic ® Design TM to ensure manifold properties 

(pre-condition for segmentation and parameterization). 

Fig. 10. Input meshes for our segmentation algorithm. These meshes are the result 

of manual preprocessing with commercial software (Geomagic ®). 

Fig. 11. Discarding mesh seeds. The initial seed groups produce over-segmentation 

due to surface imperfections (a–b). After discarding small seed groups, such over- 

segmentation is removed (c–d). 

Fig. 10 plots the resulting meshes after the interactive process- 

ing. Large holes have been left in the mesh. These meshes are the 

actual input for our segmentation algorithm. 

Fig. 11 plots the seed groups processing for the Knob mesh. 

The initial mesh seeds are computed with a θthreshold = 

1 
20 π ra- 

dians (see Table 1 ), since this value has shown to consistently 

capture flat zones in all of our experiments. Several small seed 

groups arise due to isolated low frequency points inside high fre- 
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Table 1 

Default parameter values for our segmentation 

algorithm. 

Parameter Value 

θ threshold 
1 
20 

π radians 

ε 5% 

Fig. 12. Sub-mesh sizes for the initial segmentation of the knob mesh. The red line 

plots the area threshold ( ε = 5% ) used to discard small sub-meshes from the final 

segmentation. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.). 

quency zones ( Fig. 11 (a)). The temperature-based segmentation us- 

ing these seeds results in an over-segmentation of the surface 

( Fig. 11 (b)). Small (noise-generated) sub-meshes are then discarded 

by the algorithm (as discussed in Section 3.4 ), no longer receiv- 

ing heat seeds and therefore being absorbed in natural form by 

large meshes when the heat algorithm is run again. After apply- 

ing seeds processing, the remaining seeds capture the local flat 

geometry of the mesh and the high frequency seeds disappear 

( Fig. 11 (c)). The final temperature-based segmentation preserves 

the geometric properties from the dihedral criterion in low fre- 

quency zones while producing a smooth transition between sub- 

meshes, avoiding mesh over-segmentation ( Fig. 11 (d)). Fig. 12 plots 

the distribution of the sub-mesh sizes (sorted by surface area) and 

the area threshold used to discard small sub-meshes. In all our 

conducted experiments we choose an area threshold parameter of 

ε = 5% (see Table 1 ) as we have identified that it consistently dif- 

ferentiates large (albeit parameterizable) sub-meshes ( Fig. 11 (d)) 

from small (noise-generated) ones ( Fig. 11 (b)). The initial segmen- 

tation of the knob produces 300 sub-meshes while the final seg- 

mentation produces only 15 sub-meshes. Decreasing the value of 

ε in Fig. 12 would increase the likelihood of over-segmentation. 

On the other hand, increasing its value could lead the algorithm 

to merge large sub-meshes and produce non-parameterizable seg- 

mentations. The user may, of course, change the cutting value 

(upon examination of the distribution exemplified in Fig. 12 ), rein- 

forcing or decreasing the absorption of small sub-meshes into the 

larger ones. 

Fig. 13 plots the final segmentation results for each mesh. The 

computed sub-meshes present low frequencies while sub-mesh 

boundaries are located in high frequency zones. The segmentation 

is controlled by the area percentage parameter ε (taken as ε = 5% 

in all our experiments), discarding noise - related sub-meshes as 

discussed in Section 3.4 . Our algorithm produces parameterization 

- friendly segmentations while keeping a relatively low number of 

Fig. 13. Temperature-based segmentation. The dihedral criterion captures the local 

mesh geometry while the temperature approach produces smooth transitions be- 

tween sub-meshes. 

Fig. 14. Knob Hessian parameterization. 

sub-meshes (15 sub-meshes for the knob - Fig. 13 (a), 13 for the 

tripod joint - Fig. 13 (b), and 27 for the rocker arm base - Fig. 13 (c), 

respectively.). 

Hessian parameterization is then applied on each sub-mesh. 

Fig. 14 plots the 2D parameterization of each of the knob sub- 

meshes. Such parameterization is completely bijective (i.e., no tri- 

angle flips nor surface overlaps occur in the parametric space). 
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Fig. 15. Chessboard texture applied on each sub-mesh. The resulting parameteriza- 

tion is bijective for all the scanned models. 

Fig. 15 plots the chessboard textures applied on the resulting 

segmentation using the computed Hessian parameterization. The 

distortion of the chessboard squares represents the distortion of 

the computed parameterization. In the case of the tripod joint 

( Fig. 15 (b)), artificial boundaries have been introduced manu- 

ally on the cylinder-like sub-meshes as discussed in Section 3.5 . 

Fig. 15 displays (using chessboard textures) the computed bijective 

Hessian parameterizations of the sub-meshes. The special segmen- 

tation case of topological cylinders (e.g., tripod joint, Fig. 15 (b)) 

currently requires the manual creation of a boundary along a cylin- 

der generatrix (discussion in Sect. 3.5 ). 

5. Results and benchmarking 

This section presents a comparison of our segmentation al- 

gorithm against several state-of-the-art algorithms and commer- 

cial CAD software. Section 5.1 presents a standard benchmarking 

using datasets and algorithms from the National Design Repos- 

itory [40] and the Princeton Benchmark Repository [41] , which 

are standard in the mesh segmentation literature. Afterwards, 

Section 5.2 compares our algorithm against recent algorithms from 

the literature and some commercial software using our in-house 

scanned pieces (introduced in Section 4 ). 

5.1. Standard benchmarking 

Fig. 16 plots our segmentation results compared with the Cross 

Boundary Brushes algorithm results [25] for some CAD models 

from the National Design Repository [40] . Both methods use a 

heat-based approach to capture geometric features of each CAD 

model. However, Cross Boundary Brushes is completely interactive, 

requiring user input for each computed sub-mesh. CAD models 

usually present several geometric features which require moderate 

segmentation sizes ( > 10 sub-meshes). Therefore, interactive user 

Table 2 

Number of sub-meshes for the segmentation results of the Princeton Benchmark. 

Algorithm \ Dataset Flange Cup 

Random cuts [42] 7 4 

Random walks [43] 5 3 

Fitting primitives [44] 8 6 

Our (Temp-Geom) algorithm 21 5 

Table 3 

Number of sub-meshes for the segmentation results of our scanned models using 

state-of-the-art algorithms and commercial software. 

Algorithm \ Dataset Knob Tripod joint Rocker arm base 

Contour Based Segmentation [13] 6 9 11 

Autodesk ® 3ds Max ® 6216 5633 11,772 

Geomagic ® Design TM 40 26 115 

Our (Temp-Geom) algorithm 15 13 27 

input may become unreliable in such cases. In contrast, our algo- 

rithm produces similar segmentation results and parameterizable 

sub-meshes without requiring any user input. 

Fig. 17 plots segmentation results of our algorithm and some 

automatic algorithms from the Princeton Benchmark [41] . Our al- 

gorithm is able to capture the geometric features of the surface 

for the flange dataset ( Fig. 17 (d)) while other algorithms struggle 

to capture such features, grouping different surfaces (such as the 

cylinders, cones and the plane on the flange orifices) into the same 

sub-mesh ( Figs. 17 (a)–17 (c)). As a consequence, our algorithm 

produces more sub-meshes (21) than the benchmark algorithms 

( < 10), which in a RE context is preferable to allow easy param- 

eterization of each of the flange sub-meshes (see Table 2 ). On the 

other hand, our segmentation of the cup dataset ( Fig. 17 (d)) results 

in a similar number of sub-meshes (see Table 2 ), and it is in agree- 

ment with the rest of the benchmarking algorithms ( Figs. 17 a–

17 (c)), correctly segmenting the cup model into its meaningful 

parts ( Fig. 17 (d)). 

Our segmentation algorithm is designed to work on scanned 

meshes of mechanical pieces. As a consequence, our algorithm be- 

haves unexpectedly if applied to organic meshes. Fig. 18 illustrates 

this fact by applying our algorithm to a human mesh. The result is 

a bad segmentation with features not being characterized by our 

algorithm (such as head, hands or leg), and also each sub-mesh is 

non-parameterizable. Despite of the topology (heat-based) compo- 

nent of the algorithm, such a result is mainly due to the dihedral- 

criterion used to place the temperature seeds on the mesh (see 

Section 3.1 ). This problem can be addressed by changing the ap- 

proach to define these seeds, which is left for future work. 

5.2. RE benchmarking 

Fig. 19 plots the segmentation results of the scanned mechani- 

cal workpieces (introduced in Section 4 ) using state-of-the-art seg- 

mentation techniques. Fig. 19 a plots the segmentation result us- 

ing our implementation of the Contour Based automatic algorithm 

[13] . The resulting segmentation captures some of the surface fea- 

tures of the tripod joint and rocker arm meshes. However, sub- 

mesh boundaries are non-smooth and do not capture the real 

boundaries of the workpiece surfaces. The number of sub-meshes 

is relatively low (see Table 3 ) for each segmented piece, grouping 

several feature surfaces of the workpiece in the same sub-mesh, 

which difficults the parameterization step of the RE process. The 

segmentation of the knob mesh is undesirable in the context of 

RE. 

Figs. 19 (b)–19 (c) plot the automatic segmentation results of 

the scanned workpieces using commercial CAD software. The 

Autodesk ® 3ds Max ® result is able to locate the different fea- 
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Fig. 16. Standard benchmarking. Segmentation results of the Cross Boundary Brushes method [25] (above) vs. our automated method (below). Meshes from the National 

Design Repository [40] . 

Fig. 17. Standard benchmarking. Segmentation results for the flange and cup models. Meshes from the Princeton Benchmark [41] . 

Fig. 18. Non-parameterizable segmentation of an organic mesh with our algorithm. 

Human mesh from the Princeton benchmark [41] . 

ture surfaces of the CAD meshes. However, it produces an ex- 

cessive amount of sub-meshes ( > 10 0 0, see Table 3 ) which are 

for the most part product of mesh noise and blending surfaces. 

On the other hand, the Geomagic ® Design TM result captures not 

only feature surfaces but also blending surfaces (which dictate 

smooth transitions between feature surfaces) while ignoring the 

mesh noise. Such a result is highly desirable in a RE context to 

reconstruct the analytic surfaces of the scanned model. However, 

these blending surfaces can produce over-segmentation at some 

degree as illustrated in the rocker arm of Fig. 19 (c), which has 

115 sub-meshes. Our algorithm solves this problem by merging the 

blending surfaces into the feature surfaces ( Fig. 19 (d)), reducing 

this number to 27 [10] while keeping the segmentation parame- 

terizable. 

Table 4 presents the main advantages and disadvantages of all 

the segmentation algorithms used in this manuscript. Our algo- 

rithm provides an automatic alternative to mesh segmentation of 

mechanical pieces for RE, avoiding over-segmentation even in the 

presence of blending surfaces and mesh noise (natural to scanning 

devices and manufacture defects). It is worth to note that in the 

general context of mesh segmentation, an algorithm is considered 
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Fig. 19. Comparison of results: (a) state-of-the-art competitor [13] , (b–c) commercial tools, (d) our algorithm. Datasets: in-house scanned mechanical pieces. 

Table 4 

Advantages and disadvantages of each segmentation algorithm. 

Algorithm Advantages Disadvantages 

Cross Boundary Brushes [25] 1. Works on both mechanical and organic meshes 

2. Smooth sub-mesh boundaries 

1. Non-automatic (requires heavy user interaction) 

Random Cuts [42] 1. Avoids over-segmentation 

2. Smooth sub-mesh boundaries 

1. Non-automatic (requires user interaction) 

2. Non-parameterizable sub-meshes 

Random Walks [43] 1. Automatic segmentation 

2. Works on both mechanical and organic meshes 

3. Avoids over-segmentation 

4. Smooth sub-mesh boundaries 

1. Non-parameterizable sub-meshes 

Fitting Primitives [44] 1. Automatic segmentation 

2. Smooth sub-mesh boundaries 

3. Parameterizable sub-meshes for RE 

1. Does not work properly on organic meshes 

2. Does not work properly on mechanical meshes 

composed by several freeform surfaces 

Contour Based Segmentation 

[13] 

1. Works on both mechanical and organic meshes 

2. Avoids over-segmentation 

1. Non-parameterizable sub-meshes 

2. Non-smooth sub-mesh boundaries 

Autodesk ® 3ds Max ® 1. Automatic segmentation 

2. Parameterizable sub-meshes 

1. Does not work properly on organic meshes 

2. Over-segmentation 

Geomagic ® Design TM 1. Automatic segmentation 

2. Smooth sub-mesh boundaries 

3. Parameterizable sub-meshes for RE 

1. Does not work properly on organic meshes 

2. Over-segmentation on meshes with a lot of small 

features (such as blending surfaces) 

Our (Temp-Geom) algorithm 1. Automatic segmentation 

2. Avoids over-segmentation 

3. Smooth sub-mesh boundaries 

4. Parameterizable sub-meshes for RE 

1. Does not work properly on organic meshes 

2. Ignores small feature surfaces 

to be automatic if it does not require interactive input of the user 

to compute the result. However, it is very common for automatic 

algorithms (including ours, see Table 1 ) to require the use of at 

least one input parameter (prior to segmentation) which is used 

by the algorithm to internally perform numerical decisions during 

the segmentation. 

6. Conclusions and future work 

This manuscript presents an algorithm for automatic mesh seg- 

mentation of 3D meshes of digitized mechanical pieces for RE ap- 

plications. The implemented algorithm articulates a dihedral / heat 

transfer-based segmentation with a Hessian-based parameteriza- 

tion. 
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Compared to similar approaches, our method improves the RE 

workflow with an automatic hybrid geometry / topology approach 

which segments triangular meshes acquired from scanned me- 

chanical models. The geometric component of the algorithm (i.e., 

dihedral criterion) favors the parameterizability of the resulting 

partition. On the other hand, the topologic component (captured 

by the temperature fields) favors smooth transitions between sub- 

meshes and avoids over-segmentation. The experiments were con- 

ducted on data acquired by a 3D optical scanner and from public 

repositories, and yet resulted in sets of fully parameterizable sub- 

meshes. 

Ongoing work addresses: (1) Detection of cylinder-like sub- 

meshes and automatic computation of virtual boundaries as our 

algorithm currently requires user guidance to parameterize such 

cases. (2) Design of an alternative method to compute temper- 

ature seeds in the mesh to allow the segmentation of organic 

meshes. (3) Triangle negotiation / splitting between adjacent sub- 

meshes in order to produce smoother sub-mesh boundary curves, 

in preparation of cleaner B-Reps. (4) Definition of a consistent 

topology (SHELL, FACES, LOOPS, EDGES and VERTICES) and geom- 

etry (freeform curves and surfaces) which together compose the 

final B-Rep of the reconstructed model. 
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