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Abstract: In the context of CAD, CAM, CAE, and reverse engineering, the problem of mesh
parameterization is a central process. Mesh parameterization implies the computation of a bijective
map φ from the original mesh M ∈ R3 to the planar domain φ(M) ∈ R2. The mapping may
preserve angles, areas, or distances. Distance-preserving parameterizations (i.e., isometries) are
obviously attractive. However, geodesic-based isometries present limitations when the mesh
has concave or disconnected boundary (i.e., holes). Recent advances in computing geodesic
maps using the heat equation in 2-manifolds motivate us to revisit mesh parameterization with
geodesic maps. We devise a Poisson surface underlying, extending, and filling the holes of the
mesh M. We compute a near-isometric mapping for quasi-developable meshes by using geodesic
maps based on heat propagation. Our method: (1) Precomputes a set of temperature maps (heat
kernels) on the mesh; (2) estimates the geodesic distances along the piecewise linear surface by
using the temperature maps; and (3) uses multidimensional scaling (MDS) to acquire the 2D
coordinates that minimize the difference between geodesic distances on M and Euclidean distances
on R2. This novel heat-geodesic parameterization is successfully tested with several concave and/or
punctured surfaces, obtaining bijective low-distortion parameterizations. Failures are registered in
nonsegmented, highly nondevelopable meshes (such as seam meshes). These cases are the goal of
future endeavors.

Keywords: mesh parameterization; geodesic maps; heat transfer analysis; Poisson fills

1. Introduction

Mesh parameterization is the process by which a piecewise linear surface (i.e., triangular mesh)
M is mapped with the least possible distortion onto a planar (R2) region, via a bijective continuous
function φ : M → R2. The mesh M is supposed to be a connected 2-manifold with border (and
possibly holes).

Mesh parameterization is central in tool path generation for surface machining, texture mapping,
thermoforming of thin layers (metal, leather, plastic, etc.), reverse engineering, finite element remeshing,
facial expressions, morphing, etc.

A geodesic curve between two points of a continuous surface is the shortest path within the surface
joining the two points. The length of such a path is the geodesic (shortest) distance, embedded in
the surface, between those two points.
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Given any two points xi, xj ∈ M, ideal parameterizations of such a surface seek to map them
to φ(xi), φ(xj) ∈ R2 so that the geodesic distance between xi and xj in M matches the Euclidean 2D
distance between φ(xi) and φ(xj) in R2. On the rare occasions that this goal is possible, M is called
a developable surface and φ is an isometric map. When the distortion in such distances is small,
one qualifies M as a quasi-developable surface. This case is sufficiently frequent, since large triangular
meshes can be segmented with a goal being that the resulting submeshes are quasi-developable
or developable.

It is not convenient, when the mesh has holes or concavities in its boundary, to parameterize the
mesh via geodesics. The reason is that mesh points being close neighbors in the surface may be far
apart via geodesic curves due to mesh gaps or concavities.

Mesh parameterization algorithms can be classified depending on the type of distortion
being minimized, as follows: (a) Area-preserving (authalic) algorithms; (b) angle-preserving
(conformal) algorithms; and (c) distance-preserving (isometric) algorithms. The remainder of this
section discusses a summary of recent mesh parameterization algorithms already present in the
literature (Detailed surveys on mesh parameterization algorithms are presented in [1–3]).

1.1. Area-Preserving Mesh Parameterization

Area-preserving (authalic) parameterization algorithms rely on the minimization of an area
preserving continuous cost function. Zou et al. [4] solved a Lie advection problem on the mesh M.
The gradient of the scalar Lie advection field was then added to an initial parameterization φ0 of M,
resulting in an authalic parameterization. Zhao et al. [5] solved an optimal mass transport problem
from the mesh M to its parameterization φ(M). The optimal mass transport poses a partial differential
equation in which the parameterization φ(x) locally preserves the area at every point x ∈ M. Since most
optimal transport methods only parameterize meshes with a connected boundary (i.e., without holes),
Su et al. [6] introduced additional boundary conditions to allow authalic parameterizations of meshes
with more complex topologies.

1.2. Angle-Preserving Mesh Parameterization

Angle-preserving (conformal) optimization aims to minimize the parameterization angle
distortion. Since this objective can be achieved by collapsing all triangles to a single point,
these algorithms rely on constraining the parameterized boundary to a region in R2. Disk geometries
are usually used in this context [7,8] however, other geometries such as squared domains have also
been proposed [9,10]. The imposed boundary restrictions in these constrained optimization algorithms
induce additional distortion in the resulting parameterization.

Free boundary algorithms allow unrestricted boundary parameterizations, producing less
distorted maps. Sawhney and Crane [11] presented an algorithm in which the mesh boundary
is mapped to R2 according to its shape. The parameterized boundary is then used as a constraint to
produce a boundary-free parameterization. Starting from a disk parameterization, Bright et al. [12]
performed nonlinear optimization while unconstraining the boundary edges of the parameterized
mesh. The resulting parameterization allows the (initially mapped to disk) boundary to move freely
in the parameter space. Smith and Schaefer [13] presented a mesh parameterization method which
introduced a barrier function in its optimization process. The introduced barrier function penalizes
nonadjacent triangle overlaps, which guarantees global bijectiveness in the resulting parameterization.

Dimensionality reduction is a superset of mesh parameterization, in which a d-manifold
embedded in a higher dimensional space RD, is parameterized to its corresponding Rd domain. As a
consequence, these algorithms have been applied successfully in mesh parameterization applications.
Such algorithms include Laplacian Eigenmaps [14] and Hessian Locally Linear Embedding [15].
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1.3. Distance-Preserving Mesh Parameterization

By definition, a distance-preserving (isometric) mapping is a function that simultaneously
preserves areas and angles. Mejia et al. [16] presented a nonlinear minimization algorithm for
area-angle (isometry) preservation. The minimization function is a linear combination of area and
angle distortion, and the weighting parameters for each distortion term are adjusted by the user.
The authors pointed out that the algorithm performs better when the angle-preserving term is
preponderant over the area-preserving one. Similarly, Yu et al. [17] used polar factorization to introduce
area-angle preserving mappings, in which area distortion increases as angle distortion decreases. ARAP
(As Rigid As Possible) algorithms divide the parameterization into two optimization steps—local
parameterization and global parameterization—performing these steps iteratively one after another
until convergence [18–20]. These algorithms produce different bijective parameterizations, but since
the weighting parameters are nonoptimized (as they are user-defined), the resulting parameterization
is rarely the optimal distance-preserving map.

Ruiz et al. [14] used a dimensionality-reduction geodesic-based algorithm (Isomap) for the
computation of isometric parameterization of quasi-developable meshes. However, in addition to the
classic nonconvex parameterization problems, such algorithms estimate geodesics using shortest-path
graph algorithms which introduce additional distortions in the resulting parameterization. Li et al. [21]
presented a geodesic approximation approach in which cutting planes are intersected with the mesh to
estimate geodesic paths. This approach solves the problem of nonconvex surfaces and distortion errors
induced by mesh graph approximation. However, the method is limited to geodesic curves embedded
in R2 (i.e., the cutting plane).

1.4. Conclusions of the Literature Review

Most of the distance-preserving parameterization algorithms rely on weighting angle vs.
area distortion. Such a weighting is defined by the user and drastically changes the resulting
parameterization, not providing the optimal isometric mapping. Geodesic-based parameterization
algorithms solve this problem by directly minimizing the distance distortion. However, current
geodesic-based algorithms rely on shortest-path graph algorithms for geodesics estimation, introducing
unnecessary distortion in the resulting parameterization. In addition, estimation of geodesics fails
when the surface is nonconvex (such as surfaces with holes and boundary concavities).

To overcome these problems, this manuscript presents a novel heat-geodesic mesh
parameterization algorithm. Our algorithm computes a set of temperature maps (heat kernels)
on the mesh M, which are then used to retrieve the set of point-to-point geodesic distances on
the discrete mesh. Afterwards, a near-isometric parameterization is obtained by minimizing the
difference between the parameterization Euclidean distances and their corresponding geodesics.
Since our method relies on finite element mesh discretization to estimate the temperature maps and
geodesics, our geodesics estimation is unaffected by mesh-graph topology (as opposed to shortest-path
graph algorithms). To overcome the nonconvexity problem, our algorithm uses Poisson surface
reconstruction [22], in which the surface holes and boundary concavities are temporarily filled for
parameterization. The resulting parameterization for the Poisson reconstructed surface is trimmed
with the original boundary of M, producing a trimmed surface. The implementation and integration
of these different techniques provide a novel geodesic-based mesh parameterization algorithm which
is (1) unaffected by mesh holes and/or concavities and (2) less sensitive to mesh graph topology.

2. Methodology

Consider M = (X, T ) (with point set X = {x1, x2, · · · , xn} and triangle set T = {t1, t2, · · · , tm}),
a connected 2-manifold with border (and possibly holes) embedded in R3. The problem of mesh
parameterization consists of finding a set of points Φ = {φ1, φ2, · · · , φn} ⊂ R2 such that φi is the image
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of xi ∈ M under the image of a homeomorphism φ : M→ R2 (i.e., φi = φ(xi)). The function φ must
satisfy the following conditions:

1. Continuity: If ti ∈ T and tj ∈ T (ti 6= tj) are adjacent triangles in M, then φ(ti) and φ(tj) are
adjacent in φ(M).

2. Local bijectiveness: All mapped triangles φ(M) share the same orientation in R2.
3. Global bijectiveness: Triangles in φ(M) do not overlap each other. This can happen even if all

triangles share the same orientation as illustrated in [13].

In addition, define g : M × M → R+ as the geodesic distance function in M. If g(xi, xj) =

‖φi − φj‖ (xi, xj ∈ M), then φ is an isometric mapping (i.e., φ preserves geodesic distances) and M is a
developable surface.

As most of the surfaces are not developable in practice, we aim to find the discrete mapping Φ
that minimizes the difference between these two distances as follows:

min
Φ

n

∑
i=1

n

∑
j=1

∥∥‖φi − φj‖ − g(xi, xj)
∥∥2

s.t.
n

∑
i=1

φi = 0,

(1)

where the restriction ∑n
i=1 φi = 0 indicates that the parameterization is mean centered, i.e., the center

of mass of the parameterization points is 0 ∈ R2. Such a restriction is introduced to obviate all the
possible translations of the same solution.

2.1. Algorithm Overview

Our mesh parameterization algorithm aims to retrieve a parameterization φ(M) which highly
preserves the geodesic distances of M as Euclidean distances. In order to estimate the geodesic
distances g in M, the heat-based geodesics algorithm presented in [23] is implemented. Afterwards,
we use classic multidimensional scaling to retrieve the 2D coordinates of the parameterization φ from
the computed geodesic distances. In the case that M presents holes or concavities, our algorithm
applies Poisson surface reconstruction [22] and computes a parameterization on a trimmed surface
instead. A summary of the algorithm is presented in Figure 1.

The remainder of this section details the steps to solve Equation (1), and the details of our mesh
parameterization algorithm. The algorithm was implemented in MATLAB R© [24], except for the
Poisson Surface Fills which were implemented in C++ using the PCL library [25]. Figures including
triangular meshes, scalar fields, vector fields, and 2D parameterizations were produced in MATLAB R©.
Figures including texture maps on the surface were produced using MeshLab [26].
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Φ ⊂ ℝ2: Parameterization of 𝑀

𝑀: Reference mesh

1. Does 𝑀 have
concavities or holes?

2. Compute underlying
Poisson surface

𝑀∗ ← 𝑝𝑜𝑖𝑠𝑠𝑜𝑛_𝑓𝑖𝑙𝑙 𝑋

5. For each
𝑥𝑖 ∈ 𝑋

6. Compute heat kernel of 𝑥𝑖 and its
corresponding normalized heat flux
𝑈𝑖 ← ℎ𝑒𝑎𝑡_𝑘𝑒𝑟𝑛𝑒𝑙 𝐿,𝑀, Δ𝑡, 𝑇, 𝑖
𝐻𝑖 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_ℎ𝑒𝑎𝑡 𝑈𝑖

𝑖
+
1

3. Initialize simulation parameters

Δ𝑡 ← max ቚ𝑥𝑖 − 𝑥𝑗 𝑥𝑖 , 𝑥𝑗 ∈ 𝐸𝑑𝑔𝑒𝑠(𝑀)

𝑇 ← Δ𝑡

4. Pre-compute Laplace-Beltrami and Mass matrices
𝐿 ← 𝑙𝑎𝑝𝑙𝑎𝑐𝑒_𝑏𝑒𝑙𝑡𝑟𝑎𝑚𝑖 𝑀
𝐵 ← 𝑚𝑎𝑠𝑠_𝑚𝑎𝑡𝑟𝑖𝑥 𝑀
𝐿, 𝐵 ← 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦_𝑓𝑎𝑐𝑡 𝐿, 𝐵

7. Estimate geodesic distances for 𝑥𝑖
𝐺𝑖 ← 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐_𝑓𝑟𝑜𝑚_ℎ𝑒𝑎𝑡 𝐿, 𝐵, 𝐻𝑖

8. Compute mean centered squared geodesics

𝐶 ← −
1

2
𝐼𝑛 −

1

𝑛
𝑂𝑛 𝐺2 𝐼𝑛 −

1

𝑛
𝑂𝑛

9. Compute largest eigenvalues (and eigenvectors) of 𝐶
𝜆1, 𝑉1, 𝜆2, 𝑉2 ← 𝑒𝑖𝑔𝑠 𝐶

10. Retrieve near-isometric parameterization of 𝑀

Φ ← 𝜆1𝑉1, 𝜆2𝑉2

No

Yes

𝑀∗: Underlying mesh

Δ𝑡: Time step size
𝑇: Simulation time

𝐿: 𝑛 × 𝑛 Laplace-Beltrami matrix
𝐵: 𝑛 × 𝑛 mass matrix

𝑥𝑖 ∈ 𝑀

𝑈𝑖: Discrete heat kernel for 𝑥𝑖
𝐻𝑖: Normalized heat vector

field for kernel 𝑢𝑖

𝐺: 𝑛 × 𝑛 matrix of geodesic distances in 𝑀

𝐶: 𝑛 × 𝑛 matrix of squared mean
centered geodesics

𝜆1, 𝜆2: Largest eigenvalues of 𝐶
𝑉1, 𝑉2: Eigenvectors for 𝜆1 and 𝜆2

Figure 1. Scheme of our heat-geodesic mesh parameterization algorithm.

2.2. Mesh Heat Kernels

A heat kernel of a point xi ∈ M is a function ui : M × (0, T] → R that satisfies the following
partial differential equation [27]:

∂ui(x, t)
∂t

+ ∆ui(x, t) = 0, x ∈ M, t ∈ (0, T],

∂u(x, t)
∂n

∣∣∣∣
∂M

= 0,

ui(x, 0) = δxi (x),

(2)

where ∆ is the Laplace–Beltrami operator, ui is the temperature distribution (heat kernel) associated to
the source point xi, x ∈ M, t ∈ (0, T] are the spatial and time coordinates, respectively, and T > 0 is
the simulation time. The term ∂u(x,t)

∂n

∣∣∣
∂M

= 0 corresponds to the Neumann boundary condition

(no boundary heat flux). Finally, the term ui(x, 0) = δxi (x) corresponds to Dirac delta initial
conditions, i.e.,

δxi (x) =

{
∞ if x = xi,

0 otherwise∫
M

δxi = 1.

(3)
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The above initial conditions dictate initial infinite temperature at vertex xi and 0 everywhere else.
After some timem t > 0 has passed, heat dissipates from xi as illustrated in Figure 2.

Source point 𝑥𝑖

Figure 2. Heat kernel ui(x, t) for the vertex source xi (t > 0). Heat dissipates from xi.

Equation (2) can be solved using a Finite Element discretization scheme, as follows:

(∆tL + B)U(t+∆t)
i = BU(t)

i , (4)

where ∆t is the time step, U(t)
i = {u(t)

i1 , u(t)
i2 , · · · , u(t)

in } is the vector of temperatures values (u(t)
ij = ui(xj, t)),

and L and B are the n× n Laplace–Beltrami and mass (sparse and symmetric) matrices, respectively.
For a given edge eij = (xi, xj), the Laplace–Beltrami matrix L is defined as follows:

Lij =


cot αij+cot βij

2 , eij ∈ Edges(M)

−∑k∈E∗i
Lik, i = j

0, otherwise

(5)

where αij, βij ∈ (0, π) are the two opposite angles to the edge eij, and S∗i = {k|eik ∈ Edges(M)} is
the index set of all incident edges to the vertex xi ∈ X. The entries Lij of the matrix L are known as
cotangent weights [28].

Similarly, the mass matrix B is defined as follows:

Bij =


|t1|+|t2|

12 , t1, t2 ∈ T adjacent triangles to eij ∈ Edges(M)

∑k∈S∗i
Bik, i = j

0, otherwise,

(6)

where t1, t2 ∈ T are the pair of triangles adjacent to the edge eij and |tl | is the area of the triangle tl
(l = 1, 2).

For each vertex xi ∈ M, Equation (4) is solved for Ui using a sparse Cholesky linear solver.
It is worth noting that for every xi and t ∈ (0, T], the matrices ∆tL and B are the same. As a
consequence, these matrices are prefactored only once using Cholesky factorization, which speeds up
the computation of the heat kernels.

Finally, the simulation parameters ∆t, T are chosen according to [23]:

∆t =
{
‖xi − xj‖

∣∣ (xi, xj) ∈ Edges(M)
}

,

T = ∆t,
(7)
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with ∆t computed as the magnitude of the largest edge in M, and T is equal to ∆t. These values have
provided better results in our parameterization experiments than other values.

2.3. Heat-Based Geodesic Distance

The vector field −∇ui(x, t) (∇: gradient operator on M) describes the heat flux on M for the
respective heat kernel ui. The normalized heat flux vector field Hi is defined as follows:

~Hi(x, t) = − ∇ui(x, t)
‖∇ui(x, t)‖ . (8)

It is worth noting that the magnitude of the vector field ~Hi is 1 everywhere (‖~Hi(x, t)‖ = 1).
In addition, as illustrated in Figure 3, the temperature contours are perpendicular to the geodesic paths
from xi ∈ M, and the corresponding vector field points in the same direction as such paths.

The geodesic field g(xi, xj) satisfies the following differential equation [23]:

∆g(xi, x) = lim
T→0
∇ · ~Hi(x, T), (9)

where ∇ · ~Hi(x, T) is the divergence field of the normalized heat flux. Similar to Equation (2),
Equation (9) is discretized using the same Finite Element scheme, as follows:

LGi = lim
T→0

BK(T)
i , (10)

where Gi = {gi1, gi2, · · · , gin} is the vector of geodesic distances gij = g(xi, xj) and K(T)
i =

{k(T)i1 , k(T)i2 , · · · , k(T)in } is the divergence field of the normalized gradient k(T)ij = ∇ · ~Hi(xj, T) [23].
Figure 4 plots the estimated geodesic distance field g(xi, x) for the vertex xi.

Figure 3. Normalized heat flux field ~Hi(x, t). The vector field is normalized and points in the direction
of the geodesic paths from xi ∈ M.
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Source point 𝑥𝑖

Figure 4. Geodesic field g(xi, x) for the vertex xi, computed from its respective heat kernel ui(x, T).

2.4. Multidimensional Scaling (MDS)

After the geodesic field gij = g(xi, xj) has been estimated on M, the minimization problem
in Equation (1) can be solved. Classic multidimensional scaling poses an equivalent minimization
problem [29]:

min
Φ

∑
ij

[
1
n

(
∑
kl

g2
kl

)
− g2

ij − 2φi · φj

]2

. (11)

Let C be the symmetric, semidefinite positive matrix whose entries contain the mean centered
squared geodesics (i.e., Cij = − 1

2 [g
2
ij −

1
n (∑kl g2

kl)]). In matrix form, C is equivalent to

C = −1
2

(
In −

1
n

Jn

)
G2
(

In −
1
n

Jn

)
, (12)

where In, Jn are the n × n identity and all-ones matrices, respectively, and G2 is the n × n
symmetric matrix whose entries contain the squared geodesic distances in M, i.e., G2

ij = g2
ij. Then,

Equation (11) becomes:

min
Φ
‖C−ΦΦT‖2

F (13)

with ‖A‖2
F = ∑ij A2

ij as the (squared) Frobenius norm of A.
Finally, Equation (13) can be solved by an eigendecomposition of C as follows [29]. Let λ1

and λ2 be the largest positive eigenvalues of C, with respective n × 1 eigenvectors V1 and V2.
The near-isometric parameterization of M becomes

Φ = [
√

λ1V1,
√

λ2V2], (14)

where
√

λ1V1 are the discrete u-coordinates and
√

λ2V2 are the discrete v-coordinates of the
parameterization Φ = {φ1, φ2, . . . , φn} ⊂ R2. Figure 5 plots the resulting parameterization using
MDS on the estimated geodesic fields G.
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Figure 5. Multidimensional scaling (MDS) parameterization Φ = [
√

λ1V1,
√

λ2V2] from the estimated
geodesic distances.

2.5. Poisson Mesh Reconstruction

In the case that M is nonconvex (i.e., it has holes or concavities), we seek to compute an underlying
extending surface M∗. Such a surface contains the points in M, and fills the holes and concavities by
extending M in such areas (M ⊂ M∗). As an example, a geodesic path in a nonconvex M circles a
given hole (Figure 6a). On the other hand, the same geodesic path in the extended surface M∗ crosses
through the hole (Figure 6b).

(a) (b)

Figure 6. Our algorithm computes an underlying Poisson surface M∗ to fix the geodesic paths on
nonconvex mesh M. (a) Geodesic path on raw mesh M. (b) Geodesic path on M with the help of
underlying Poisson surface.

To compute the surface M∗, our parameterization algorithm uses Poisson surface
reconstruction [22] from the PCL library [25]. Define χ : R3 → R as an indicator function such
that χ(x) = 1 if x ∈ R3 is “inside” the solid defined by M∗; and χ(x) = 0 if x is “outside” such solid.
The surface M∗ is composed by the points in between, as follows [22]:

M∗ =

{
p ∈ R3

∣∣∣ χ(p) =
1
n ∑

x∈M
χ(x)

}
. (15)
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The indicator function χ is computed by solving the following partial differential equation in
R3 [22]:

∆χ(x) = ∇ · ~N(x), (16)

where ∆ and ∇ are the R3 Euclidean Laplacian and gradient operators, respectively. It is worth noting
that these Laplacian and gradient operators are different from the 2-manifold version presented in
Sections 2.2 and 2.3. ~N : R3 → R3 is a vector field in R3 whose value ~N(x) is the normal vector to the
original surface M if x ∈ M, and ~N(x) = 0 everywhere else.

To solve Equation (16), the PCL library uses a hierarchical 3D spatial discretization and a Finite
Differences approach [25].

Figure 7 plots the Poisson surface filling M∗ for a given nonconvex mesh M. The resulting geodesic
field (Figure 8) is distributed along the original mesh M and its extents M∗ −M. The corresponding
parameterization of the underlying Poisson surface M∗ (Figure 9a) is finally trimmed in order to
retrieve the final parameterization Φ of M (Figure 9b). Figure 10 plots the chessboard texture maps for
both parameterization without Poisson filling (Figure 10a) and parameterization with Poisson surface
filling (Figure 10b). As illustrated, using Poisson filling reduces parameterization distortions close to
mesh holes and boundary concavities.

(a) (b)

Figure 7. Raw mesh M and its underlying Poisson surface approximation M∗. (a) Original mesh M.
(b) Poisson surface M∗ underlying the raw mesh M∗.

Source point 𝑥𝑖

Figure 8. Geodesic distance estimation on the Poisson surface M∗ approximating raw mesh M.
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(a) (b)

Figure 9. Parameterization of the Poisson surface M∗ and its corresponding trimmed parameterization Φ.
(a) Mesh parameterization of the Poisson surface M∗. (b) Trimmed parameterization Φ.

High distortion close 
to the boundary

(a)

No distortion at 
the boundary or 

interior of 𝑀

(b)

Figure 10. Chessboard texture maps from our heat-geodesic based parameterization. (a) Texture on raw
mesh M, distorted at holes and boundary concavities. (b) Texture using underlying Poisson surface
M∗, undistorted.

3. Results

To test our mesh parameterization algorithm, we run tests with several parameterizable surfaces.
Section 3.1 presents a comparison of our mesh parameterization algorithm without Poisson surface
filling vs. Poisson surface filling, for quasi-developable nonconvex meshes. Section 3.2 presents
parameterization results for some challenging, strongly nondevelopable data sets. Finally, Section 3.3
presents the application of our parameterization algorithm for the reverse engineering of a scanned
cow vertebra.

3.1. Nonfilling vs. Poisson Filling Parameterization

Figure 11 plots the parameterization results (2D Φ coordinates and 3D texture map) for the Mask
data set. Without using Poisson surface reconstruction, the resulting parameterization is bijective with
relatively low distortion, except for the eye holes (Figure 11a). However, such a parameterization is
improved by applying the Poisson reconstruction, reducing the distortion close to mesh holes and
boundary concavities (Figure 11b).
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Figure 11. Data set Mask. Hole-distorted and undistorted heat-geodesic parameterizations.
(a) Parameterization of M. 3D texture map (left) and 2D Φ coordinates (right). Distorted at holes and
concavities. (b) Undistorted parameterization with underlying surface M∗. 3D texture map (left) and
2D Φ coordinates (right).

A more extreme case is illustrated in Figure 12, with the S-trimmed-on-cone data set from [14].
Since the S shape is trimmed on a cone, M is a fully developable surface. Yet, the heat-geodesic
parameterization on M fails to compute a bijective parameterization (Figure 12a). Application
of Poisson (extended underlying surface M∗) filling (Figure 12b) solves this issue, resulting in a
nondistorted bijective parameterization. This case illustrates (a) the vulnerability of geodesic-based
parameterizations in the presence of mesh holes or concavities at mesh borders, (b) the capacity of the
underlying Poisson extended surface to prevent (a), (c) the natural manner in which geodesic curves
isometrically parameterize a developable surface.

𝑢

𝑣

𝑥

𝑦

𝑧

(a)

𝑢

𝑣

𝑥

𝑦

𝑧

(b)

Figure 12. Data set S-trimmed-on-cone. Nonbijective parameterization using raw mesh M. Bijective
isometric parameterization using underlying Poisson mesh M∗. (a) Nonbijective parameterization of
M. 3D texture map (left) and 2D Φ coordinates (right). (b) Undistorted and bijective parameterization
with underlying surface M∗. 3D texture map (left) and 2D Φ coordinates (right).

3.2. Parameterization of Strongly Nondevelopable Meshes

In this section, the public data sets Foot, Gargoyle, and Cow are parameterized with our heat-based
geodesics algorithm. These benchmark datasets contain an artificially introduced border [30],
which allows their parameterization. Figure 13a,b plot the parameterization results for the seam Foot
and Gargoyle, respectively. The resulting parameterization is bijective, with some noticeable distortion
(e.g., in the Gargoyle head). Figure 13c plots our parameterization results for the seamed Cow, which is
not bijective in the head, legs, and tail.
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Figure 13. Heat-geodesic parameterization of seam meshes [30]. The strong nondevelopability of the
meshes produces high parameterization distortions and in some cases nonbijectiveness. (a) Data set
Foot. Bijective parameterization. (b) Data set Gargoyle. Bijective parameterization. (c) Data set Cow.
Nonbijective parameterization near the legs and tail.

It is worth noting that although parameterizable, these benchmark data sets are strongly
nondevelopable without a proper mesh presegmentation. This fact is illustrated in the next section.

3.3. Reverse Engineering of Cow Vertebra

For this section, the vertebra of a cow is scanned using a 3D optical scanner. The scanned
mesh is closed and therefore accepts no (bijective) parameterization. The closed mesh is segmented
into quasi-developable meshes using a heat-based segmentation approach [31]. Figure 14 plots the
parameterization results for the segmented mesh. Each submesh bijective parameterization presents
low distortion, enabling further reverse engineering operations such as NURBs reparameterization [14],
finite element analysis, structural optimization, and/or dimensional inspection [31].
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Figure 14. Cow Vertebra data set. Undistorted parameterization using heat-based geodesic maps.
Segmentation by Mejia et al. [31].

4. Conclusions

This article presents the implementation of a novel application of heat propagation in 2-manifolds
used for mesh parameterization. The temperature contours for the heat kernels computed on the
mesh are perpendicular at each point to the geodesic curves in the surface. This principle permits
determination of geodesic maps in the mesh and in particular vertex-to-vertex geodesic distances.
Although Finite Element methods produce better results as the mesh resolution increases (higher
polygon count), the geodesics estimation method still produces robust results for low polygon count
meshes as each geodesic path traverses across the mesh faces (contrary to graph algorithms which
traverse the mesh graph). A quasi-isometric bijective function (i.e., the parameterization) is synthesized
to map the 3D mesh to the parameter (2D) space. This parameterization is near isometric in the sense
that geodesic distance on the mesh between any two points on the mesh approximates the Euclidean
distance between their images in the parametric space. This approach is obviously limited to meshes
that are quasi-developable or developable, since mesh developability is necessary for the existence of
an isometric parameterization for it.

Our approach circumvents the weakness of geodesic maps in the presence of mesh interruptions
(boundary concavities and mesh holes) by devising an underlying continuous Poisson surface
that approximates the input mesh but contains no such interruptions. This underlying surface
allows for geodesic maps to be computed on it, which are also valid in the input mesh. In this
manner, the parameterization computed for the Poisson surface is valid for the input mesh. Finally,
the boundaries of the input mesh are explicitly marked on the parameterization to obtain a trimmed
surface or FACE in the Boundary Representation jargon.

Future work is required in these aspects—(a) to eliminate redundant computation that is present in
the construction of heat-based geodesic maps and (b) to use failures in the bijectiveness of the computed
parameterizations to force mesh segmentation, when the input mesh is strongly nondevelopable.
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Abbreviations

The following abbreviations are used in this manuscript:

MDS: Multidimensional scaling.
M: Triangular mesh M = (X, T ) of a connected 2-manifold with border (and possibly holes), embedded

in R3. M is represented as a set of points X = {x1, x2, . . . , xn} ⊂ R3 and a set of oriented triangles
T = {t1, t2, . . . , tm}.

M∗: Triangular mesh M∗ ⊂ R3 of a connected 2-manifold with border (but without holes). M∗ is an
extension of M (M ⊂ M∗).

∆t, T: Time step size ∆t and total simulation time T parameters defined for the heat transfer simulations
on M.

φ: Continuous and bijective function (homeomorphism) φ : M→ R2 that maps M to a planar region in
R2. In this manuscript, φ is a nearly-isometric map (i.e., highly preserves distances).

g: Geodesic distance function g : M×M→ R+ defined on M. gij = g(xi, xj).
δxi Dirac delta (temperature) distribution δxi : M→ [0, ∞] associated to the source point xi, such that

the temperature at xi is infinite and 0 everywhere else.
ui: Heat kernel function ui : M× (0, T]→ R associated to vertex xi ∈ M. ui(x, t) is the temperature at

the point x, t, due to an initial infinite-heat point-source δxi .
χ: Continuous function χ : R3 → that indicates if a point p ∈ R3 is “inside” (χ(p) = 1), “outside”

(χ(p) = 0), or “in-between” (χ(p) = 1
n ∑x∈M χ(x)) a solid defined by M∗.

~Hi: Vector field ~Hi : M → R3 defined on M. ~Hi(x, t) = − ∇ui(x,t)
‖∇ui(x,t)‖ is the normalized heat flux for the

heat kernel ui. ‖~Hi(x, t)‖ = 1.
~N: Vector field ~N : R3 → R3 defined on R3. For every x ∈ M, ~N(x) is the normal vector to the surface

M at x. For any x /∈ M, ~N(x) = 0.
Φ: Discrete parameterization Φ = {φ1, φ2, . . . φn} ⊂ R2 of M such that φi = φ(xi).
L, B: n× n Laplace–Beltrami L and mass B matrices, respectively. L and B are the sparse and symmetric

matrices that approximate the Laplace–Beltrami operator on the triangular mesh M.

U(t): n× n matrix with the discrete heat kernels maps associated to each vertex in M, i.e., U(t)
ij = ui(xj, t).

K(t): n× n matrix of the divergence fields of all heat kernels U(t). K(t)
ij = ∇ · ~Hi(xj, t).

G, G2: n × n matrices of geodesic and squared geodesic distances, respectively, defined on M. Gij =

g(xi, xj), G2
ij = g(xi, xj)

2.

C: n× n symmetric matrix whose entries contain the mean centered squared geodesic distances in M,
i.e., Cij = − 1

2 [g
2
ij −

1
n (∑kl g2

kl)]. C is semidefinite positive.

In, Jn: n× n identity In and all-ones Jn matrices.
λ1, V1: Largest (positive) eigenvalue λ1 of the semidefinite positive matrix C and its corresponding n× 1

eigenvector V1.
√

λ1V1 are the discrete u-coordinates of the parameterization Φ ⊂ R2.
λ2, V2: Second largest (positive) eigenvalue λ2 of the semidefinite positive matrix C and its corresponding

n× 1 eigenvector V2.
√

λ2V2 are the discrete v-coordinates of the parameterization Φ ⊂ R2.
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