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01510 Miñano, Álava (Spain)

Abstract

In the context of Computer Simulation, the problem of heat transfer analysis
of thin plate laser heating is relevant for downstream simulations of machin-
ing processes. Alternatives to address the problem include (i) numerical
methods, which require unaffordable time and storage computing resources
even for very small domains, (ii) analytical methods, which are less expen-
sive but are limited to simple geometries, straight trajectories and do not
account for material non-linearities or convective cooling. This manuscript
presents a parallel efficient analytic method to determine, in a thin plate
under convective cooling, the transient temperature field resulting from ap-
plication of a laser spot following a curved trajectory. Convergence of both
FEA (Finite Element Analysis) and the analytic approaches for a small pla-
nar plate is presented, estimating a maximum relative error for the analytic
approach below 3.5% at the laser spot. Measured computing times evidence
superior efficiency of the analytic approach w.r.t. FEA. A study case, with
the analytic solution, for a large spatial and time domain (1m × 1m and
12 s history, respectively) is presented. This case is not tractable with FEA,
where domains larger than 0.05m× 0.05m and 2 s require high amounts of
computing time and storage.
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Abbreviations

FEA Finite Element Analysis.
a, b, ∆z Width (m), height (m) and thickness (m) of the plate.
x, t Spatial x = [x, y] ([m,m]) and temporal t ≥ 0 (s) coor-

dinates.
u = u(x, t) Temperature distribution along the plate at a given time

(K).
ρ Plate density (kg/m3).
cp Plate specific heat (J/(kg ·K)).
k Plate thermal conductivity (W/(m ·K)).
R Plate reflectivity i.e., portion of the laser energy that is

not absorbed by the plate (0 ≤ R ≤ 1).
q = q(u) Heat loss due to convection at the thin plate surface

(W/m2).
h Convection coefficient at the plate surface (W/(m2 ·K)).
u∞ Temperature of the plate surrounding medium (K).
x0 = x0(t) Laser spot center location at a given time [x0(t), y0(t)]

([m,m]).
f = f(x,x0) Laser power density model (W/m2). There are four types

in this manuscript: circle-shape (fcircle), square-shape
(fsquare), Gaussian (fGaussian) and Dirac delta (fDirac).

P Laser power (W ).
~v = [vx, vy] Laser scanning speed (m/s).
r Circle-shape laser spot radius (m).
∆x Square-shape laser spot edge length (m).
σ Parameter of the Gaussian laser model (m).
Xi = Xi(x) i-th Fourier basis function in the x-axis.
Yj = Yj(y) j-th Fourier basis function in the y-axis.
Θij = Θij(t) ij-th Fourier coefficient for the temperature solution u.
(Ω,X) Finite element discretization of the problem. Ω =

{Ω1,Ω2, . . . ,Ωm}, X = {x1,x2, . . . ,xn}.
∆t Timestep size for the time discretization in FEA.
U(t) Nodal values of the temperature for the

FEA discretization of the problem. U(t) =
[u(x1, t), u(x2, t), . . . , u(xn, t)]

T .
F(t) Nodal values of the laser source for the

FEA discretization of the problem. F(t) =
[f(x1, t), f(x2, t), . . . , f(xn, t)]

T .
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1. Introduction

Thin plate laser heating is an important manufacturing process in which
a high powered laser source (such as a CO2 or Nd-YAG laser) is applied to
locally heat, melt and/or remove the plate material. Applications include
metal plate alloying, drilling, forming, bending and cutting.

Numerical computer simulations of laser applications consume large com-
puting resources, even for very small domains. On the other hand, analytic or
closed form formulations require much less computer resources, at the price of
lower precision and significant restrictions on the application circumstances.
However, these analytic solutions become appealing as they may produce
economic forecasts of the overall heating process, for specific study cases.

This manuscript presents an efficient analytic solution for the time history
of the temperature field of thin rectangular flat plates heated by a constant
speed laser spot. Unlike other analytic methods, our solution considers con-
vective energy exchange and piecewise linear curved trajectories. It handles
time and space domains sizes significantly larger than the feasible for FEA.
Our method uses Fourier coefficients to find a solution in the frequency do-
main and maps it back to the time-space domain. We compute the solution
for timestep tn and trajectory piece x0(tn) based on timestep tn−1 and tra-
jectory piece x0(tn−1). The presented algorithm enables easy parallelization
resulting in further improvement in the overall efficiency for larger space
and/or time domains

This article is organized as follows: Sect. 2 reviews the relevant literature.
Sect. 3 describes the methodology. Sect. 4 presents and discusses results
of the conducted experiments. Sect. 5 concludes the paper and introduces
what remains for future work.

2. Literature review

This section discusses the state of the art for the simulation of the laser
heating problem. Sect. 2.1 reviews the literature concerning numerical ap-
proaches to the problem solution while Sect. 2.2 discusses the analytic ap-
proaches. Sect. 2.3 concludes the literature review.

2.1. Numerical methods for laser heating simulation

FEA is one of the most important numerical tool for thermodynamic
analysis of metal plates under laser heating. Yan et al. [1], Joshi et al. [2]

4- fi
rs

t d
ra

ft 
- F

irs
t d

ra
ft 

- 



perform a parametric study on a rectangular plate using FEA in order to
measure the impact of laser speed, laser spot radius and laser power on the
plate temperature distribution during laser heating. Hagenah et al. [3] per-
forms and statistically validates the parametric analysis using ANOVA tests.
Yilbas and Akhtar [4], Yilbas et al. [5] solve a thermal/stress model with
FEA in order to study the plate deformations due to the high temperature
gradients. Kadri et al. [6] compare FEA with trained ANN (Artificial Neural
Networks) for predicting thermal stresses in laser cutting of glass sheets.

Akhtar et al. [7], Yilbas et al. [8] simulate rectangular cuts with laser
using FEA, while Akhtar [9], Yilbas et al. [10] perform the same analysis
for circular and triangular cuts respectively. The enthalpy method is used to
account for non-linearites of the material as well as phase changes that induce
material melting. Experimental validation of the estimated temperature is
presented using thermocouples.

Roberts et al. [11] investigate the laser heating problem using the element
birth and death method in order to account for material non-linearities. For
accounting material removal in the FEA models, Akarapu et al. [12], Nyon
et al. [13], Fu et al. [14] incorporate a temperature-threshold approach which
removes melted elements from the plate mesh during the simulation.

Aside from FEA, other numerical methods have been used for simula-
tion of laser heating processes. Modest [15, 16], Han and Na [17], Xu et al.
[18] use the Finite Differences Method (FDM) for the analysis of laser heat-
ing phenomenon while Kim [19, 20] employs a Boundary Element Method
(BEM) approach. Recently, the Finite Volume Method (FVM) has been
incorporated for the simulation of the laser heating problem [21, 22].

Despite the modeling complexity that can be reached with numerical
tools, these approaches are highly sensitive to spatial and time discretizations
of the plate [23, 24, 25]. Therefore, such approaches are currently unusable
in industrial scenarios where fast decisions must be made for large plates and
complex laser trajectories.

2.2. Analytic methods for laser heating simulation

Analytic (or semi-analytic) solutions to the problem have been also pro-
posed in the literature of laser heating simulation. Modest and Abakians
[26] develop an ordinary non-linear differential equation which is then solved
numerically for the laser heating problem. Zimmer [27] solves a 1D laser
heating problem for solid-liquid interfaces using the Laplace transform. Mul-
lick et al. [28] develop a non-linear analytic model which is solved iteratively
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to estimate the plate temperature in underwater laser cutting. The model is
then validated numerically and statistically [29]. Jiang and Dai [30] present
an analytic solution for the thermal/stress equations by means of Fourier
series. Winczek [31] presents an analytic solution for the 3D laser heating
problem for piecewise linear trajectories by a superposition of fundamental
solutions in a semi-infinite domain. Convective heat losses are omitted at
the plate surface and the plate is assumed with infinite depth.

Analytic approaches provide computationally faster results than numer-
ical approaches. However, they are very limited in model assumptions [32].
Such limitations include: linear laser trajectories, 1D and 2D rectangular do-
mains, constant material properties and null convection on the plate surface.

2.3. Conclusions of the literature review

As discussed above, numerical tools are impractical for industrial sce-
narios [24, 25] where decisions must be made on large plate sizes. Current
analytic approaches partially overcome this problem by providing fast so-
lutions at the cost of limitations such linear trajectories, no convection at
the plate surface and material properties independent of the temperature.
However, they only work for linear trajectories on the plate.

This manuscript presents an analytic solution for the 2D laser heating
of rectangular thin plates problem. Our algorithm: (1) acts recursively in
the time domain calculating the Fourier solution for time tn using the co-
efficients from timestep tn−1, (2) allows parallelization for computing the
Fourier coefficients of timestep tn. Features (1) and (2) are the basis for the
algorithm low computational cost. Our analytic approach covers larger space
and time domains than the ones achieved by FEA methods. A study case is
presented in order to compare the convergence rate and execution times of
the algorithm vs. FEA in a MATLAB implementation.

To illustrate the capabilities of the implemented approach, a study case
for a large plate (1m2, 12 s history) is presented. Table 1 presents an ap-
praisal of this manuscript contributions versus other approaches in the cur-
rent literature.

3. Methodology

This section discusses the methodology for our analytic solution to the
laser heating problem and poses a study case. Sect. 3.1 introduces the
theoretical model and assumptions for the heat transfer analysis. Sect. 3.2
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Ref. Curved
Laser Tra-
jectory

Convection
at the
Surface

Nonlinear
Thermal
Properties

Large Do-
main Study

Our Analytic
Method

Yes Yes No Yes

[26] No No No No
[27] No No No No
[28] No Yes Yes No
[30] No No No No
[31] Yes No No Yes
FDM [18] No Yes No No
BEM [20] No Yes No No
FEA [5] Yes Yes Yes No
FVM [22] No Yes Yes No

Table 1: Comparison of the contributions and drawbacks of our analytic method and some
state of the art methodologies.

presents the analytic solution to the problem. Sect. 3.3 discusses about
the different laser models. Sect. 3.4 describes the implementation details of
the solution. Sect. 3.5 briefly discusses the FEA approach used to validate
numerically the analytic solution. Finally, Sect. 3.6 presents a simulation
case of study.

3.1. Heat equation for the thin plate laser heating problem

In the case of metal plates, it is reasonable to ignore heat transfer through
the plate thickness (i.e. using a 2D model ∇ · k∇ = k ∂2

∂x2 + k ∂2

∂y2 ) due to the

relative size of the plate thickness w.r.t. its width and height (∆z → 0) and
the high thermal conductivity. According to Ref. [33], heat transfer in a 2D
plate subject to a continuous laser source satisfies the following PDE with
initial and boundary conditions:

ρcp
∂u

∂t
−∇ · (k∇u) =

f − q
∆z

q = h(u− u∞)

u|x=0 = u|x=a = u|y=0 = u|y=b = u∞

u(x, 0) = u∞

(1)

7- fi
rs

t d
ra

ft 
- F

irs
t d

ra
ft 

- 



Figure 1: Schematic of the laser heating model. A laser passes an amount of energy f at
a plate location x0 while the plate cools down due to convection q at the surface.

where ρ, cp and k are the material density, specific heat and thermal con-
ductivity respectively (assumed constant in this manuscript). u is the tem-
perature distribution on the plate. f is the laser surface power density of
the laser (discussed in Sect. 3.3) and q is the heat loss due to convection
at the plate surface. The plate initial temperature is assumed at constant
ambient temperature u∞ and the 2D borders of the plate are assumed at am-
bient temperature for the whole simulation. An scheme of the laser heating
problem is depicted in Fig. 1.

3.2. Analytic solution of the problem

Following the same procedure as in [30], the following analytic solution
for the temperature distribution can be derived for Eq. (1):

u(x, t) = u∞ +
∞∑
i=1

∞∑
j=1

Θij(t)Xi(x)Yj(y) (2)

with Fourier basis functions:

Xi(x) = sin
iπx

a

Yj(y) = sin
jπy

b

(3)

and their respective Fourier coefficients Θij(t). The value for these coefficients
is given below.
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3.2.1. Fourier Coefficients

The closed form of the Fourier coefficients Θij(t) from Eq. (2) can be
derived using separation of variables [30]:

Θij(t) =
4

abρcp∆z

∫ t

t0

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(t−τ)dxdydτ (4)

where ωij are the eigenvalues of Eq. (3) for the current operator (Eq. (1))
defined as:

ωij =
k

ρcp

(
i2π2

a2
+
j2π2

b2

)
+

h

ρcp∆z
(5)

The curved trajectory x0(t) is discretized into a sequence of linear tra-
jectories x0(t) = [x0(t0),x0(t1), · · · ,x0(tn)]. Therefore, Eq. (4) becomes:

Θij(tn) =
4

abρcp∆z

n∑
l=0

e−ωij(tn−tl)∫ tl

tl−1

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(tl−τ)dxdydτ

(6)

Such discretization allows to compute easier the integral term in Eq. (4)
for the nonlinear laser trajectory as a sum of linear laser trajectories.

3.2.2. Recursive Fourier Coefficients

Eq. (6) can be rewritten in recursive form as follows:

Θij(tn) =Θij(tn−1)e−ωij(tn−tn−1)+

4

abρcp∆z

∫ tn

tn−1

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(tn−τ)dxdydτ
(7)

where Θij(tn−1) are the Fourier coefficients of a previous timestep solution
(recursive term). In the time domain, the term Θij(tn), for time tn can be
economically solved in recursive manner by using the term Θij(tn−1) instead
of computing the whole history. Furthermore, since the laser trajectory has
been discretized into linear paths, the integral term in Eq. (7) accounts for
a linear laser trajectory at time tn. Therefore, such integral can be solved
easier than using a nonlinear path.

9- fi
rs

t d
ra

ft 
- F

irs
t d

ra
ft 

- 



3.3. Laser source models

Eq. (7) requires evaluating the following integral for the laser beam
source: ∫ tn

tn−1

∫ b

0

∫ a

0

f(x,x0)Xi(x)Yj(y)e−ωij(tn−τ)dxdydτ (8)

The value of such integral depends on the laser model used. The most
common models used are: circle-shape laser model (fcircle, Fig. 2(a)), square-
shape laser model (fsquare, Fig. 2(b)), Gaussian laser model (fGaussian, Fig.
2(c)) and Dirac delta laser model (fDirac). Each of these models are presented
below:

fcircle(x,x0) =

{
P (1−R)
πr2 , ‖x− x0‖ < r

0, otherwise

fsquare(x,x0) =


P (1−R)

∆x2 , |x− x0| < ∆x
2

and

|y − y0| < ∆x
2

0, otherwise

fGaussian(x,x0) =
P (1−R)

πσ2
e

(
− ‖x−x0‖

2

σ2

)

fDirac(x,x0) = lim
σ→0

fGaussian(x,x0)

(9)

Solution for Eq. (8) is presented in the Appendix for an fsquare laser
source and an fDirac laser source. For the other two laser models, Table 2
presents an equivalence between laser parameters such that the overall input
energy

∫ b
0

∫ a
0
f(x,x0)dxdy and the power density peak maxx f(x,x0) of the

laser beam are the same independently of the model. As the laser spot
becomes smaller, all the energy input localizes in a smaller area despite the
chosen model as illustrated in Fig. 3. Therefore, for relatively small laser
spots (w.r.t. the 2D plate size), the heat transfer phenomenon described in
Eq. (1) should behave similarly for all the laser models.

3.4. Algorithm overview

To apply the analytic solution posed in Eq. (2), the curved laser tra-
jectory x0(t) is discretized into a sequence of linear trajectories x0(t) =
[x0(t0),x0(t1), · · · ,x0(tn)]. Such discretization is achieved by uniformly sam-
pling the parametric trajectory such that the timestep remains constant
through the whole simulation. Afterwards, Eq. (7) is applied recursively
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(a) Circle-shape laser beam model fcircle
distribution.

(b) Square-shape laser beam model
fsquare distribution.

(c) Gaussian laser beam model fGaussian

distribution.

Figure 2: Laser model distribution for the different laser beam models: fcircle, fsquare and
fGaussian.

Model Parameter Value
Circle-shape r
Square-shape ∆x ∆x = r

√
π

Gaussian model σ σ = r
Dirac laser r → 0

Table 2: Equivalence table between laser model parameters.

11- fi
rs

t d
ra

ft 
- F

irs
t d

ra
ft 

- 



(a) Laser power density distribution for a
spot radius r = a/10.

(b) Laser power density distribution for a
spot radius r = a/100.

Figure 3: Distribution of the laser power densities for the different laser models along the
x-axis using different laser spot sizes.

on the sequence of linear trajectories in order to compute the Fourier coeffi-
cients at each timestep. Since u(x, t0) = u∞, the algorithm is initialized by
setting Θij(t0) = 0. Finally, the temperature solution u(x, tl) at any timestep
tl can be recovered by applying Eq. (2). The infinite sum is truncated in
order to obtain an approximate solution. Fig. 4 presents an overview of the
algorithm.

3.5. Numerical Comparison with FEA

In order to validate numerically the implemented approach, FEA is used
to simulate the laser heating problem. The FEA linear system of equations
that arises for Eq. (1) is:[(

ρcp
∆t

+
h

∆z

)
M + kL

]
U(t+∆t) = M

(
ρcp
∆t

U(t) +
1

∆z

∫ t+∆t

t

F(τ)dτ +
h

∆z
u∞

)
(10)

where:

Lij =
∑

Ωk∈Ω

∫
Ωk

∇φi · ∇φjdA

Mij =
∑

Ωk∈Ω

∫
Ωk

φiφjdA

(11)

are the Laplace-Beltrami (stiffness) and norm (mass) matrices respectively.
Ω = {Ω1,Ω2, . . . ,Ωm}, X = {x1,x2, . . . ,xn} is a discretization of the plate
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Figure 4: Diagram of the analytic approach algorithm.

into finite elements. φi = φi(x) is the interpolation function associated to the
node xi. U(t) = [u(x1, t), u(x2, t), . . . , u(xn, t)]

T and F(t) = [f(x1, t), f(x2, t), . . . , f(xn, t)]
T

are the nodal values of the temperature and the laser source respectively. Fi-
nally, ∆t is the timestep size.

To carry out the comparison of our analytic algorithm with FEA, a small
study case (which can be solved accurately with FEA) is simulated with both
approaches: a 0.01m × 0.01m × 0.001m AISI 304 steel plate (Table 3) is
heated by a P = 100W , r = 0.0003m squared laser source (fsquare) which
follows the trajectory depicted in Fig. 5 at constant speed ‖~v‖ = 0.1m/s.
To discretize the plate, triangular elements are used with linear interpolation
(Fig. 6). A timestep ∆t = 0.0012 s is chosen for the time discretization.

3.6. Experimental setup

To test the implemented algorithm, a simulation study case with a rel-
atively large plate is presented (computationally impractical for FEA). A
1m× 1m× 0.001m AISI 304 steel plate (Table 3) is heated by a P = 100W
point laser source (fDirac) that follows the trajectory depicted in Fig. 5 at
constant speed ‖~v‖ = 0.1m/s. The surface of the plate is surrounded by air,
which cools the plate by natural convection. Ambient temperature is set at
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Parameter Value
ρ 8030 kg/m3

cp 574 J/(kg ·K)
k 20W/(m ·K)
R 0
h 20W/(m2 ·K)
u∞ 300K

Table 3: Physical parameters for simulation of laser heating of an AISI 304 steel plate
(Ref. [4]). Natural convection due to surrounding air is considered.

Figure 5: Trajectory of the laser on the plate surface (from A to B).
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Figure 6: Triangular mesh discretization of the plate for FEA.

300K.

4. Results and discussion

This section presents and discusses a numerical comparison of the im-
plemented analytic method against FEA for a small plate study case (Sect.
4.1). Sect. 4.2 presents results of our analytic algorithm for a large plate
study case, where current FEA becomes impractical computationally. Fi-
nally, Sect. 4.3 compares measured execution times for the analytic (serial
and parallel implementation) and FEM approaches.

4.1. Numerical comparison of the analytic solution vs. FEA

This section presents the numerical results of the study case presented
and discussed in Sect. 3.5. These results are used to compare the analytic
approach with FEA. Fig. 7(a) plots the plate temperature distribution at
the end of the simulation (t = 0.12 s) estimated with our analytic approach.
For this particular case, Eq. 2 is truncated at 200× 200 Fourier terms since:
(1) the error of the solution does not change significantly with more Fourier
terms, and (2) such error is tolerable (below 3.5%). Fig. 7(b) plots the FEA
temperature at the same simulation time. A timestep of ∆t = 0.0012 s is
used and the triangular mesh in Fig. 6 is for both FEA and our analytic
solution (as per Eq. (2)). Fig. 7(c) plots the relative error distribution
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(a) Analytic temperature distribution at
t = 0.12 s.

(b) FEA temperature distribution at t =
0.12 s.

(c) Relative error of the analytic solution
vs. FEA. The maximum relative error is
3.43%.

Figure 7: Temperature and error distribution for a small plate (0.01m×0.01m×0.001m)
obtained by the analytic and FEA approaches.

of the analytic temperature considering the FEA solution as reference. A
maximum relative error of 3.43% is measured around the laser spot.

Fig. 8(a) plots the maximum relative error of the analytic solution as
a function of the number of Fourier terms in Eq. (2). The analytic solu-
tion stabilizes above 100 × 100 Fourier terms for the current study case (a
relative error of ≈ 3.5%). Fig. 8(b) shows, in contrast, that the FEA solu-
tion falls below a relative error of 2% for mesh sizes above 10000 nodes. A
FEA solution with a high resolution mesh (> 50K mesh nodes) is used as
reference temperature in both cases (MATLAB adaptive remeshing used).
This relative analysis is only applicable to the described study case, as the
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(a) Error of our analytic solution as a func-
tion of the number of Fourier terms.

(b) Error in the FEA solution as a function
of the number of nodes.

Figure 8: Maximum relative error evolution for the analytic and FEA methods for the
study case in Sect. 3.5 (the reference solution is a 54K node FEA simulation).

convergence of the problem is dependent on the laser spot radius / plate size
ratio. Larger plates (or smaller laser spots) require more Fourier terms in
the analytic case and larger meshes in the FEA case in order to accurately
simulate the physical phenomenon.

4.2. Experiment results

This section presents the results obtained the analytic approach for the
large study case (1m × 1m × 0.001m) in Sect. 3.6. A point source fDirac
is used to simulate the laser. The Fourier series is set to 2000× 2000 terms.
Fig. 9 presents the evolution of the temperature field on the plate at different
simulation times. Figs. 9(a) and 9(b) plot the temperature at early (t =
0.6189 s) and halfway (t = 6.1892 s) stages respectively while Fig. 9(c) plots
the temperature at the end of the laser trajectory (t = 12.3786 s). The
zoom near the laser spot exhibits the high spatial resolution captured by our
analytic solution.

4.3. Computing times

This section compares the analytic vs. FEA computing times for the case
in Sect. 3.5. In the FEA case, Eq. (10) is implemented in MATLAB and
solved using a linear solver for sparse matrices (sparse Cholesky factorization
library CHOLMOD).

Our analytic solution lends itself for parallel computing. Our algorithm
in Sect. 3.4 requires computing each Fourier coefficient Θij(t) (Eq. (7)) as
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(a) Plate temperature distribution at t =
0.6189 s.

(b) Plate temperature distribution at t =
6.1892 s.

(c) Plate temperature distribution at t =
12.3783 s.

Figure 9: Simulated temperature distribution for the large plate (1m × 1m × 0.001m)
case study at different timestamps.
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Item Specifications
Operating System Microsoft Windows 10 Home Single Language
Processor Intel c©CoreTMi7-4700HQ CPU @2.40GHz

2394 Mhz
Random Access Memory
(RAM)

16.0 GB

Operating System Type 64 bits (x64)
GPU Unit NVIDIA GeForce GTX 760M
Software MATLAB R2014b 64-bit (win64), MATLAB

Parallel Computing Toolbox

Table 4: Hardware and software specifications of the machine used to run FEA and the
analytic simulations in both serial and parallel form.

a sequence of simple operations (such as sums, products and powers) inde-
pendent from each other. These sequences of operations are independent
between Fourier coefficients. In addition, the temperature field from Eq. (2)
describes the temperature at each point x in the domain as a linear combina-
tion of the Fourier basis. Hence, the temperature can be recovered for each
point x in the domain independently of others points. Therefore, we imple-
ment the analytic algorithm using both MATLAB basic operations (serial
implementation) as well as gpuArray operations from the MATLAB Paral-
lel Computing Toolbox (parallel implementation). Table 4 lists the software
and hardware specifications of the machine used to run FEA, as well as the
analytic algorithm in both serial and parallel form. Such configuration is a
low end for numerical computing. This modest demand poses an advantage
for our analytic approach.

Fig. 10 plots the measured execution times for computing the Fourier
coefficients (Eq. (7)) with the analytic approach as a function of the number
of Fourier terms in both serial and parallel implementations for the small
plate case. The temperature recovery step of Eq. (2) is not included in the
measured times. The intersection point between the serial and parallel times
in the plot is near the 60×60 Fourier coefficients and the the gap between the
serial and parallel execution times becomes larger as the number of Fourier
coefficients increases. Therefore, the parallel version of the algorithm be-
comes in fact, significantly faster than the serial one for larger number of
coefficients.

Fig. 11 presents the execution times for FEA and the serial analytic algo-
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Figure 10: Serial and parallel execution times for computing the analytic Fourier solution
(Eq. (7)) vs. number of Fourier coefficients used for the small plate case study (Sect. 3.5).
The temperature recovery step of Eq. (2) is not considered.

rithm as a function of the number of mesh nodes and the number of Fourier
terms (for the analytic case). The measured computation times consider the
computation of the Fourier terms at each timestep and the recovery of the
temperature (as per Eq. (2)) at the end of the simulation in the case of the
analytic approach. However, the meshing step is not taken into account for
measuring analytic or FEA times. Our analytic approach performs signifi-
cantly faster than FEA as the mesh size increases, even for a large number
of Fourier coefficients. Such difference in efficiency becomes crucial as the
problem grows to bigger domains where FEA becomes very expensive com-
putationally. For simplicity of the plot, parallel times are not included in
Fig. 11. However, our experiments showed that the parallel implementation
of the analytic algorithm performs better than the serial one (and therefore,
better than FEA).

5. Conclusions and future work

This paper has presented a parallel efficient analytic solution for the 2D
rectangular plate laser heating problem for curved laser trajectories and con-
vection at the plate surface. Our algorithm discretizes the curved laser tra-
jectory as a piecewise linear trajectory with constant speed. The solution for
timestep tn in the trajectory x0(tn) uses the result accumulated till the previ-
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Figure 11: Execution times for computing the temperature solution with FEA and the
serial analytic approaches w.r.t. the mesh size and the number of Fourier coefficients used
in the analytic approach. Both Fourier computation times (Eq. (7)) and temperature
recovery times (Eq. (2)) are considered. Meshing times are not considered.

ous timestep tn−1. Our analytic solution allows to consider convective energy
into the balance. Although the assumptions of the mathematical model sim-
plify the laser heating phenomenon (constant material properties, no phase
changes and constrained plate and laser geometries), the analytic algorithm
provides an efficient solution to problems that are very expensive computa-
tionally for current FEA methods. Computing times of our algorithm are
significantly lower than the FEA times for the same problem. Numerical
comparison of the analytic method with FEA presents a relative error that
reaches a maximum of 3.5% in very localized areas at the laser spot. Re-
sults for a 1m × 1m × 0.001m AISI 304 steel plate during 12.37 s history
(intractable with FEA) are presented for our analytic method.

Ongoing investigation includes: (1) assessment in industrial environ-
ments, (2) influence of nonconstant material properties, and (3) material
melting and evaporation.
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Appendix

The analytic solution to Eq. (8) for a linear trajectory x0(t) = vt + p
(v = [vx, vy] and p = [px, py]) is presented here for a point source (Dirac
delta) laser beam and a square-shape laser beam.
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Dirac Delta Laser Coefficients

∫ t

t0

∫ b

0

∫ a

0

fDirac(x,x0)Xi(x)Yj(y)e−ωij(t−τ)dxdydτ

= P (1−R)

∫ t

t0

e−ωij(t−τ) sin
iπx0(τ)

a
sin

jπy0(τ)

b
dτ

= P (1−R)[
sin βx sin βy

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ cosαyτdτ

+ sin βx cos βy

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ sinαyτdτ

+ cos βx sin βy

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ cosαyτdτ

+ cos βx cos βy

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ sinαyτdτ

]

(.1)

Square-Shape Laser Coefficients

∫ t

t0

∫ b

0

∫ a

0

fsquare(x,x0)Xi(x)Yj(y)e−ωij(t−τ)dxdydτ

=
P (1−R)

∆x2

∫ t

t0

e−ωij((t−t0)−τ)(∫ x0(τ)+ ∆x
2

x0(τ)−∆x
2

sin
iπx

a
dx

)(∫ y0(τ)+ ∆x
2

y0(τ)−∆x
2

sin
jπy

b
dy

)
dτ

=
abP (1−R)

ijπ2∆x2[
c1c3

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ cosαyτdτ

− c1c4

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ sinαyτdτ

− c2c3

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ cosαyτdτ

+ c2c4

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ sinαyτdτ

]

(.2)
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Where:

c1 = cos βx − cos γx, c2 = sin βx − sin γx,

c3 = cos βy − cos γy, c4 = sin βy − sin γy,

αx =
iπvx
a

, αy =
jπvy
b

,

βx =
iπ(px + ∆x/2)

a
, βy =

jπ(py + ∆x/2)

b
,

γx =
iπ(px −∆x/2)

a
, γy =

jπ(py −∆x/2)

b

(.3)

∫ t

0

e−ω(t−τ) cosατ cos βτdτ

= C
[
α3 sinαt cos βt+ β3 cosαt sin βt+ ω3 cosαt cos βt

− α2β cosαt sin βt+ α2ω cosαt cos βt− αβ2 sinαt cos βt

+ β2ω cosαt cos βt+ αω2 sinαt cos βt+ βω2 cosαt sin βt

+2αβω sinαt sin βt− ωe−ωt(α2 + β2 + ω2)
]

(.4)

∫ t

0

e−ω(t−τ) sinατ sin βτdτ

= −C
[
α3 cosαt sin βt+ β3 sinαt cos βt− ω3 sinαt sin βt

− α2β sinαt cos βt− α2ω sinαt sin βt− αβ2 cosαt sin βt

− β2ω sinαt sin βt+ αω2 cosαt sin βt+ βω2 sinαt cos βt

−2αβω(cosαt cos βt− e−ωt)
]

(.5)

∫ t

0

e−ω(t−τ) cosατ sin βτdτ

= C
[
α3 sinαt sin βt− β3 cosαt cos βt+ ω3 cosαt sin βt

+ α2β cosαt cos βt+ α2ω cosαt sin βt− αβ2 sinαt sin βt

+ β2ω cosαt sin βt+ αω2 sinαt sin βt− βω2 cosαt cos βt

−2αβω sinαt cos βt− βe−ωt(α2 − β2 − ω2)
]

(.6)

C =
1

α4 + β4 + ω4 − 2α2β2 + 2α2ω2 + 2β2ω2
(.7)
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