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Abstract
Point-cloud-to-mesh registration estimates a rigid transformation that minimizes the distance between a point sample of a sur-
face and a reference mesh of such a surface, both lying in different coordinate systems. Point-cloud-to-mesh-registration is
an ubiquitous problem in medical imaging, CAD CAM CAE, reverse engineering, virtual reality and many other disciplines.
Common registration methods include Iterative Closest Point (ICP), RANdom SAmple Consensus (RANSAC) and Normal Dis-
tribution Transform (NDT). These methods require to repeatedly estimate the distance between a point cloud and a mesh, which
becomes computationally expensive as the point set sizes increase. To overcome this problem, this article presents the imple-
mentation of a Perfect Spatial Hashing for point-cloud-to-mesh registration. The complexity of the registration algorithm using
Perfect Spatial Hashing is O(NY × n) (NY : point cloud size, n: number of max. ICP iterations), compared to standard octrees
and kd-trees (time complexity O(NY log(NT )×n), NT : reference mesh size). The cost of pre-processing is O(NT +(N3

H)
2) (N3

H :
Hash table size). The test results show convergence of the algorithm (error below 7e-05) for massive point clouds / refer-
ence meshes (NY = 50k and NT = 28055k, respectively). Future work includes GPU implementation of the algorithm for fast
registration of massive point clouds.

CCS Concepts
•Theory of computation → Convex optimization; Computational geometry; •Computing methodologies → Mesh models;
Point-based models; •Applied computing → Computer-aided design;

1. Introduction1

Point set registration is ubiquitous in Reverse Engineering, Medical2

Imaging, Visual (Dimensional) Inspection, Robotics, among other3

disciplines.4

Consider two point set samples of an object, each one conducted5

in its own coordinate system. The points in one set do not exactly6

correspond to object locations sampled in the other set. Moreover,7

parts of the object visible in one coordinate system may be unac-8

cessible for sample in the other coordinate system (e.g. two clipped9

depth scans of the same object). The point set registration problem10

consists of finding a rigid transformation that rotates and translates11

one point set onto the other, producing the best possible matching12

between the transformed and the static point sets.13

Point set registration is strongly qualified by the underlying14

structure of the point sets. Registration of point samples of object15

surface is very different from registration of point sets of object16

interior samples. Registration of point samples from an object sur-17

face is very different from registration of point samples obtained18

from the interior of the same object (such as the volumetric point19

† Corresponding Author

sets obtained from Computed Tomography Scans) [SK15]. It is an20

important advantage the fact that a 2-manifold structure (i.e. non21

self-intersecting surface) might be recognized as underlying the22

point sets. The present publication refers to registration between23

a point set which is optically sampled on an object surface vs. a tri-24

angular mesh (i.e. a planar triangular graph) obtained from a CAD25

representation of the object. The problem of point-cloud-to-mesh26

registration is relevant in CAD CAM CAE applications where the27

CAD (or triangular mesh) model of the object to register is known28

a priori. These applications include (but are not limited to) Di-29

mensional Inspection [SSB18, MPSRS∗19] and Robotic Bin Pick-30

ing [BG10].31

Within point-cloud-to-mesh registration, the sub-problem of32

point-cloud-to-mesh distance is central and heavily contributes to33

the computing expenditure. For the later problem, existing liter-34

ature relies on spatial partition structures (such as octrees or kd-35

trees), which produce logarithmic search times. Given the massive36

amount of points of the sets to be registered, it is of interest to37

find a more economic strategy. Therefore, this manuscript presents38

the implementation of a point-cloud-to-mesh registration algorithm39

based on a Spatial Hashing data structure. This Spatial Hashing40

structure provides constant time access (O(1)) to the list of close41
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triangles to a given point p. Consequently, the point-cloud-to-mesh42

registration based on Perfect Spatial Hashing is significantly faster43

than its hierarchical-based counterparts for massive point sets.44

In this manuscript, Section 2 presents a literature review of rele-45

vant approaches. Section 3 conveys the methodology applied. Sec-46

tion 4 discusses the results obtained with several data sets. Section47

5 concludes the manuscript and mentions possible related future48

enhancements to the present approach.49

2. Literature Review50

The problem of point cloud registration has gotten a lot of re-51

search interest due to its relevancy in many engineering areas.52

Refs. [PCS15, TCL∗13] present a survey on point cloud registra-53

tion algorithms. The Iterative Closest Point (ICP) algorithm is one54

of the most widely used method for mesh registration in the such55

literature. The algorithm consists of computing the closest points56

(correspondences) between the point cloud to register and the ref-57

erence mesh. Such a procedure is performed iteratively until a con-58

vergence criteria is met [BM92]. The ICP extends the quaternion59

method [Hor87] for correspondent point-to-point registration.60

To avoid local minima, the ICP requires the point-cloud-to-61

register and the reference mesh to be locally close enough. User-62

assisted alignment of correspondences is used to compute a pre-63

registration of the point cloud, which is finally registered by the64

ICP [SSB18]. Other ICP variations include feature-based mesh reg-65

istration, in which some key points are automatically matched be-66

tween the point-cloud-to-register and the reference mesh [PCS15].67

These feature-based registration methods rely on spherical harmon-68

ics [SLW02] or surface signatures [YF02].69

The main problem with ICP registration is the computation of70

correspondences (set of closest points from the reference mesh to71

the point cloud to register). The most naive approach is the ex-72

haustive search, which is quadratic in time complexity O(NY ×NT )73

(NY is the point-cloud-to-register size and NT is the number of tri-74

angles in the reference mesh) [JH02]. Thus, spatial partitions of75

the domain are usually used to reduce the computational cost of76

the registration. Approaches to such spatial partitions include kd-77

trees [WGG11], heuristic search [JH02] R-trees [GZZ∗12] and oc-78

trees [EBN13], whose search complexity becomes O(NY log(NT )).79

Refs. [DI13, DI18] use 1-D hash tables to index octree entries, re-80

ducing the octree search to O(NY log(log(NT ))). Ref. [YB07] com-81

putes a regular grid that encloses the reference mesh, reducing the82

registration search complexity to linear O(NY ). However, this last83

approach demands excessive storage resources as the full rectangu-84

lar grid needs to be stored.85

Other algorithms for cloud-to-mesh registration have been pre-86

sented in the literature. RANdom SAmple Consensus (RANSAC)87

is a registration algorithm which takes many different sets of sam-88

ples from the point cloud to register, and then fits a different model89

to each of these sets. The algorithm returns the best fitted model90

according to the optimization criteria [FRS07]. The Normal Distri-91

bution Transform (NDT) algorithm computes a 3D grid enclosing92

the point cloud to register and the reference mesh, which are used to93

compute a spatial probability distribution function. The registration94

of the obtained probability functions is perfromed performed using95

the Hessian matrix method [UT11]. RANSAC and NDT methods96

have shown to perform faster than standard ICP methods. However,97

their result is non-deterministic and highly sensitive to algorithm98

parameters. A full review on mesh registration algorithms is pre-99

sented in [PCS15, CCL∗18].100

2.1. Conclusions of the Literature Review101

Current mesh registration algorithms rely on spatial partitions of102

the 3D domain to search the cloud-to-mesh closest points. Most103

of these algorithms are linear-logarithmic. (O(NY log(NT )×n), NY104

being the point cloud size, NT being the reference mesh size and105

n being the number of maximum iterations for the registration)106

in their computation time complexity [JH02]. Other attempts107

have reduced the search complexity up to O(NY log(log(NT ))×n)108

[DI13,DI18]. However, as the point cloud and reference mesh sizes109

increase, the registration problem becomes quite unfeasible. Other110

alternatives to ICP include RANSAC [FRS07] and NDT [UT11]111

registration, which only require to query a subset of the input point112

cloud. However, these methods are non-deterministic, and their113

result is highly sensitive to algorithm parameters. Table 1 summa-114

rizes the mesh registration algorithms presented in the literature115

with their respective time complexity.116

To overcome these problems, this manuscript presents the inte-117

gration and implementation of a Perfect Spatial Hashing [LH06]118

data structure into the ICP registration process. Given a point to119

be registered, the Perfect Spatial Hashing defines a hash function120

which returns the closest point from the reference mesh in con-121

stant time. As a consequence, the complexity of our registration122

algorithm is O(NY × n), improving previous spatial partition ap-123

proaches. In contrast to the discretization presented in [YB07],124

the Spatial Hash partition reduces significantly the storage require-125

ments of the data structure, as the Hash table is optimized to reach126

the smallest size possible, at the cost of some pre-processing time.127

3. Methodology128

Given a point cloud to register Y = {y1,y2, . . . ,yNY } and a129

reference triangle mesh M = (T,P) (T = {t1, t2, . . . , tNT }, P =130

{p1, p2, . . . , pNP}, the mesh registration problem consists of finding131

a rigid transformation (rotation R∈ SO(3) and translation p0 ∈R3)132

that minimizes the distance between the point cloud Y and the ref-133

erence mesh M:134

min
R,p0

NY

∑
i=1

d(Ryi + p0,M)2 (1)

where d(y∗i ,M) is shortest distance between the registered point135

y∗i and the mesh M. The registered point cloud is the set of points136

Y∗ = {y∗1 ,y∗2 , . . . ,y∗NY
} such that y∗i = Ryi + p0.137

The following sections describe the Iterative Closest Point (ICP)138

algorithm [BM92] that solves the above minimization problem and139

the integration of Perfect Spatial Hashing [LH06] in the registration140

process.141

3.1. Mesh Registration of Correspondences142

Let xi ∈M be the closest point to the registered point y∗i (see Fig. 1).143

The set X = {x1,x2, . . . ,xNY } is a resample of M, known as the set144
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Table 1: Summary of closest point search algorithms in the literature. NY is the point-cloud-to-register size and NT is the reference mesh
size.

Reference Computational Complexity
K-d tree search [WGG11] O(NY log(NT ))
Heuristic search [JH02] O(NY log(NT ))

R-tree search [GZZ∗12] O(NY log(NT ))

Octree search [EBN13] O(NY log(NT ))
Hash-Octree search [DI13, DI18] O(NY log(log(NT )))

Cubic grid search [YB07] O(NY )

Perfect Spatial Hashing (this manuscript) O(NY )

of correspondences of Y . As a consequence, Eq. 1 becomes:145

min
R,p0

NY

∑
i=1
‖Ryi + p0− xi‖2 (2)

𝑦𝑖
∗ ∈ ത𝑌

𝑥𝑖

Figure 1: Registered point y∗i and its correspondent (closest) point
xi ∈M. xi does not belong to the original discretization of M.

It is worth noting that X and Y share the same number of points146

(|X | = |Y | = NY ) and the set X does not contain the same points147

as the initial discretization of M (i.e. X 6= P). In addition, since148

the solution Y∗ is an unknown of the problem, the set X is not149

known a priori. However, an estimation of X can be computed using150

the initial point set Y . Such an estimation is discussed later in this151

section.152

The minizimation problem presented in Eq. 2 becomes the fol-153

lowing maximization problem [BM92]:154

max
R

NY

∑
i=1

(yi−µy)
T R(xi−µx) (3)

and the optimal solution to p0 becomes:155

p0 = µx−Rµy (4)

where µx ∈ R3 and µy ∈ R3 are the centroids of the point clouds156

X and Y , respectively. Let S be the 3× 3 cross-covariance matrix157

between X and Y , defined as follows:158

S =
NY

∑
i=1

(xi−µx)(yi−µy)
T (5)

The rotation R can be expressed as a unit quaternion q̇ ∈ R4,159

‖q̇‖= 1. Using quaternion algebra [Hor87], Eq. 3 becomes:160

max
‖q̇‖=1

NY

∑
i=1

q̇T Qiq̇ = max
‖q̇‖=1

q̇T Qq̇ (6)

where q̇ ∈ R4 is the unit quaternion (‖q̇‖ = 1) representation of161

R and Qi is the 4× 4 symmetric matrix associated to the cross-162

covariance (xi−µx)(yi−µy)
T . The matrix Q (Q = ∑i Qi) is defined163

in terms of the cross-covariance matrix S as follows [Hor87]:164

Q=


S00 +S11 +S22 S12−S21 S20−S02 S01−S10

S12−S21 S00−S11−S22 S01 +S10 S02 +S20
S20−S02 S01 +S10 S11−S22−S00 S12 +S21
S01−S10 S02 +S20 S12 +S21 S22−S00−S11


(7)

Finally, Eq. 6 has the form of a Rayleigh quotient, thus becom-165

ing an eigenvector problem. The optimal rotation q̇ that registers166

the set of correspondences X ,Y is the eigenvector of the matrix Q,167

corresponding to its largest eigenvalue.168

3.2. Iterative Closest Point169

As previously discussed, the set of correspondences X is not known170

a priori since the solution y∗i = Ryi + p0 is not known. The ICP171

algorithm [BM92] proposes to estimate a sequence of correspon-172

dences X (k) based on a previous known point cloud Y (k−1). The173

correspondent point x(k)i ∈M is the closest point in M to the point174

y(k−1)
i :175

x(k)i = arg min
x∈M
‖x− y(k−1)

i ‖ (8)

In Eq. 8 it is reasonable to assume that ‖x(k)i −y(k−1)
i ‖< ∆, with176

∆ > 0 being a distance threshold. This assumption means that the177

point cloud Y (k−1) is locally close enough to the reference mesh178

M (i.e., d(y(k−1)
i ,M) < ∆). Any point y(k)i not satisfying such as-179

sumption is discarded from Y (k−1). Such an assumption is made180

in order to: (1) avoid falling in local minima and, (2) filter outliers181

from Y (k−1) [BM92]. Other methods already presented in the liter-182

ature can be used as a pre-processing to guarantee that most of the183

points in Y satisfy the previous assumption before our algorithm184

starts [SSB18].185

With such a set of correspondences, it is possible to solve the186

optimization problem presented in Eq. 2, which becomes:187

min
R(k),p(k)0

NY

∑
i=1
‖R(k)y(k−1)

i + p(k)0 − x(k)i ‖
2 (9)

submitted to CEIG – Spanish Computer Graphics Conference (2019)

Draf
t - 

Draf
t - 

Draf
t - 

Draf
t 



4 D. Mejia-Parra, J. Lalinde-Pulido, J.R. Sánchez, O. Ruiz-Salguero & J. Posada / Perfect Spatial Hashing for Point-cloud-to-mesh Registration

where R(k) ∈ SO(3), p(k)0 ∈R3 originate the rigid transformation at188

the current iteration k. Finally, the point cloud Y (k) is updated by189

using the obtained transformation:190

y(k)i = R(k)y(k−1)
i + p(k)0 (10)

The sequences Y (k), R(k) and p(k)0 have been proved to converge to191

the optimal solution Y∗, R and p0, respectively [BM92]:192

y∗i = lim
n→∞

y(n)i

R = lim
n→∞

n

∏
i=0

R(k)

p0 = lim
n→∞

[
n−1

∑
k1=0

(
n

∏
k2=k1+1

R(k2)

)
p(k1)

0

]
+ p(n)0

(11)

The ICP works iterating over k = 1,2, . . . ,n for the previous se-193

quences, until either one of the following criteria is satisfied:194

1. Max. number of iterations n reached.195

2. Approximation error below a given threshold196

(∑i
‖y(k)i −y(k−1)

i ‖2

NY
< ε)197

The algorithm is initialized from the original point cloud Y (0) = Y ,198

and the identity transformation R(0) = I3×3, p(0)0 = 03×1. Fig. 2199

summarizes the mesh registration algorithm. The most expensive200

procedure in the ICP algorithm is the computation of the cloud-to-201

mesh distance (steps 4 and 5), which computed by an exhaustive202

search drives the complexity of the registration to O(NY ×NT ×n),203

with NY being the point cloud size, NT being the number of tri-204

angles in the mesh M and n being the maximum number of ICP205

iterations. It is common in the literature to use hierarchical parti-206

tion structures (such as kd-trees and octrees) which improve such207

a search to O(NY log(NT )× n). Our registration algorithm imple-208

ments instead a Perfect Spatial Hashing strategy (step 1), whose209

search complexity is constant (O(1)) [LH06]. As a consequence,210

the overall time complexity of our mesh registration algorithm be-211

comes O(NY ×n). The following sections discuss the construction212

of the Spatial Perfect Hash and the distance computation.213

3.3. Perfect Spatial Hash214

Given a triangular mesh M ⊂ R3, consider V ⊂ P(R3) (P(·) is215

the power set) as a rectangular prism, oriented along the coordinate216

axes, which contains M and is the union of small (disjoint) cubic217

cells (voxels vi jk) of side length ∆ (Fig. 3):218

V =
{

vi jk|i ∈ [0,NV )∧ j = [0,NV )∧ k ∈ [0,NV )
}

(12)

where each voxel vi jk is also oriented along the coordinate axes,219

and the interiors of two different voxels never intersect.220

The size of the previous spatial partition is |V | = N3
V , with i <221

NV , j < NV and k < NV being the 3D indices of each voxel. Define222

D(vi jk) as the triangles of M that intersect vi jk (Fig. 4), i.e.:223

D(vi jk) = {t ∈ T |t ∩ vi jk 6= ∅} (13)

Finally, the set VM ⊂V is the set of voxels vi jk ∈V that intersect224

at least one triangle of M, i.e. VM = {vi jk ∈ V |D(vi jk) 6= ∅}. It is225

1. Compute Spatial Hash
𝐻 ← 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_ℎ𝑎𝑠ℎ 𝑀, Δ

2. Initialize Algorithm
𝑅 ← 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦_𝑚𝑎𝑡𝑟𝑖𝑥 3
𝑝0 ← 03×1
𝑘 ← 1

6. Compute point cloud centroids and cross-covariance
𝜇𝑥 ← 𝑚𝑒𝑎𝑛 𝑋
𝜇𝑦 ← 𝑚𝑒𝑎𝑛 𝑌

𝑆 ← 𝑐𝑟𝑜𝑠𝑠_𝑐𝑜𝑣 𝑋, 𝑌

3. While
𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 = 𝑓𝑎𝑙𝑠𝑒

4. For each
𝑦𝑖 ∈ 𝑌

7. Compute optimal rigid tranformation
ሶ𝑞 ← 𝑜𝑝𝑡𝑖𝑚𝑎𝑙_𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 𝑆

𝑅 𝑘 ← 𝑞𝑢𝑎𝑡2𝑟𝑜𝑡 ሶ𝑞

𝑝0
𝑘
← 𝜇𝑥 − 𝑅𝜇𝑦

8. Update solution

𝑅 ← 𝑅 ∗ 𝑅 𝑘

𝑝0 ← 𝑅 𝑘 𝑝0 + 𝑝0
𝑘

𝑌 ← 𝑅 𝑘 𝑌 + 𝑝0
𝑘

𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎. 𝑢𝑝𝑑𝑎𝑡𝑒()

5. Compute closest point 𝑥𝑖 ∈ 𝑀
𝑥𝑖 ← 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑝𝑜𝑖𝑛𝑡 𝐻, 𝑦𝑖

• 𝑀: Reference mesh
• 𝑌: Point cloud to register
• Δ: Distance threshold

• 𝐻: Spatial Hash table

• 𝑅, 𝑝0: Identity transformation
• 𝑘: Current iteration

• 𝑋, 𝑌 : Set of correspondences

• 𝜇𝑥 , 𝜇𝑦 ∈ ℝ3

• 𝑆 ∈ ℝ3×3

• 𝑅 𝑘 , 𝑝0
𝑘

: Rigid transformation for
current iteration

• Optimal rigid transformation 𝑅, 𝑝0
• Registered point cloud 𝑌 ← 𝑅𝑌 + 𝑝0

𝑖
+
1

𝑘
←
𝑘
+
1

Figure 2: Scheme of the Iterative Closest Point mesh registration
algorithm. Our registration uses Perfect Spatial Hashing to com-
pute the cloud-to-mesh distances.

worth noting that the set size |VM | is much more smaller than the226

full grid size |V | (Fig. 3).227

A Perfect Spatial Hash table H : N3→P(T ), is a 3D table with228

indices hi,h j,hk. Each entry H[hi,h j,hk] contains the set of trian-229

gles associated to the voxel h−1(hi,h j,hk), i.e.:230

H[h(vi jk)] = H[hi,h j,hk] = D(vi jk) (14)

where h : VM → N3 is a function which takes a voxel vi jk and re-231
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Figure 3: Full min-max voxel set V (gray). Non triangle-empty
voxel set VM (red). Triangle mesh M (blue). |VM |<< |V |.

Figure 4: Set of triangles D(vi jk) (dark blue) that intersect the
voxel vi jk (red)

turns its respective position indices hi,h j,hk in the Hash table H.232

h is known as the hash function of H. The Perfect Spatial Hash is233

denoted as (H,h).234

The objective of the Perfect Spatial Hash is to produce a ta-235

ble H which stores the information VM , and its respective hash236

function h. A trivial hash function would be the identity function237

h(vi jk) = [i, j,k] (implicitly used by [YB07]). However, such a238

function implies storing the full rectangular prism V in the table239

H (|H| = |V | >> |VM |), and the content of most of the table cells240

would be empty (most cells of V are empty, Fig. 3). Instead, the241

Perfect Spatial Hash [LH06] aims to produce the smallest table H242

possible able to store the set VM , such that |VM | ≤ |H|<< |V | (ide-243

ally, |H|= |VM |).244

The Perfect Spatial Hashing (H,h) satisfies by definition the fol-245

lowing conditions:246

1. The function h is bijective. As a consequence, there are no col-247

lisions in the table H (i.e. different voxels in VM never point to248

the same cell of H).249

2. The size of H is greater or equal than the size of VM (|H| >250

|VM |).251

In addition, (H,h) should satisfy (by construction) the following252

conditions:253

1. The size of H is smaller than the size of V (|H|< N3
V ).254

2. Evaluation of the hash function h should be O(1).255

The first step to build the Spatial Hash (H,h) is to compute the256

table size |H| = N3
H , as the smallest table size able to store the set257

VM :258

NH = arg min
NH∈N

|VM | ≤ N3
H (15)

The hash function h is then defined as a sum of an auxiliar func-259

tion f and a displacement Φ [LH06]:260

h(vi jk) = f (vi jk)+Φ[g(vi jk)] (16)

The auxiliar function f : VM → N3 is defined as:261

f (vi jk) = [ fi, f j, fk] = [i, j,k] mod NH (17)

By taking the modulo of each of the voxel indices, the values of262

the function f are guaranteed to never exceed the size of the Hash263

table H (i.e. fi < NH , f j < NH and fk < NH ). The function f is not264

bijective as NH ≤ NV . As a consequence, an auxiliar 3D table Φ is265

computed as follows:266

Let Φ◦g : VM → N3 be an (auxiliar) 3D table of size N3
Φ,NΦ 6=267

NH , and its corresponding auxiliar function g : VM → N3. The ob-268

jective of the table Φ,g is to provide a translation term Φ[g(vi jk)] =269

[φi,φ j,φk] such that f (vi jk)+Φ[g(vi jk)] is bijective, guaranteeing270

that there are no collisions in H.271

Similar to the auxiliar function f , the function g is defined as:272

g(vi jk) = [gi,g j,gk] = [i, j,k] mod NΦ (18)

where gi < NΦ, g j < NΦ and gk < NΦ indicate the position of the273

voxel vi jk in the auxiliar table Φ, i.e. [φi,φ j,φk] = Φ[gi,g j,gk]. It is274

worth noting that, by construction, f 6= g (since NΦ 6= NH ).275

Fig. 5 illustrates the aforementioned translation Φ. In the exam-276

ple, the non-empty voxels v11 and v33 map to the same f value.277

However, the same voxels map to a different g value. The Φ ta-278

ble stores the respective translations φ11 = [0,0] and φ33 = [1,1].279

The Perfect Hash Table presents no collisions as the hash func-280

tion is bijective (h11 = [1,1], h33 = [0,0]). Finally, storing the Hash281

table H and the auxiliar table Φ is cheaper than storing the full282

discretization V (|H|+ |Φ|< |V |).283

The table Φ and its size NΦ is computed using an heuristic ap-284

proach as described in Ref. [LH06], as follows:285

1. Locate all collisions in f .286

2. Initialize the size of Φ as NΦ← ceil( 3
√
|VM |/6).287
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𝑣11

𝑣33
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3

𝐷 𝑣33

𝐷 𝑣11

−1
−1

0
0

Square grid 𝑉 (𝑁𝑉 = 4)

0 1

0

1

0 1 2

0

1

2

Auxiliar table Φ (𝑁Φ = 3)

Perfect Spatial Hash 𝐻 (𝑁𝐻 = 2)

𝑓 =
1
1

𝑓 𝑣𝑖𝑗 =
𝑖
𝑗
mod 𝑁𝐻

𝑔33 =
0
0

𝑔11 =
1
1

𝑔 𝑣𝑖𝑗 =
𝑖
𝑗
mod 𝑁Φ

ℎ 𝑣𝑖𝑗 = 𝑓 𝑣𝑖𝑗 +Φ 𝑔 𝑣𝑖𝑗

ℎ33 ℎ11

𝜙11𝜙33

Figure 5: Perfect Spatial Hash 2D example. The auxiliar function
f is not bijective, but the Hash function h is.

3. Initialize Φ as an empty N3
Φ 3D table.288

4. Locate all free indices of f (i.e. f (vi jk) is undefined).289

5. For each collision f (vi jk), set Φ[g(vi jk)] as c− f (vi jk), where290

c = [ci,c j,ck] ∈ N3 is a free index in f .291

6. If there are no collisions in f +Φ, return Φ.292

7. Otherwise, increase NΦ and go to step 3.293

In the previous heuristic, it is worth noting that there is no theo-294

retical guarantee that the computed Perfect Spatial Hash (H and Φ)295

is smaller than the full grid V . In fact, it is possible that |H|+ |Phi|296

is larger than |V |. However, our experiments and the experiments297

presented in [LH06] have shown that the Perfect Spatial Hash is al-298

ways smaller than the full grid discretization (i.e., |H|+ |Φ|< |V |).299

300

After Φ, h and NH have been computed, the table H is filled301

with the elements of the set VM . At this point, the function h is302

guaranteed to be bijective and as a consequence, H presents no303

collisions. Fig. 6 summarizes the algorithm to compute the Perfect304

Spatial Hashing.305

For the computation of the set of voxels that intersect the trian-306

gulation (i.e. VM), our algorithm traverses each triangle of the mesh307

as illustrated in steps 2-3 of Fig. 6. The triangle-voxel intersection308

for each ti ∈ T is implemented as follows: (1) all the voxels that309

intersect the bounding box of ti are computed and then, (2) all the310

voxels inside the bounding box that also intersect the plane defined311

by ti are kept, discarding the non-intersecting ones.312

From the algorithm presented in Fig. 6, steps 2-3 are O(NT ),313

steps 7-8 are O((N3
H)

2) and steps 10-11 are O(N3
H). Therefore,314

the computational cost for the Perfect Spatial Hash construction315

is O(NT +(N3
H)

2). Such a cost becomes reasonable for large point316

cloud and reference mesh sizes as this pre-processing is performed317

only once. In addition, the storage complexity of the Perfect Spa-318

tial Hash is O(N3
H +N3

Φ), which is considerably less expensive than319

storing the full grid O(N3
V ) (such as in Ref. [YB07]).320

6. Initialize auxiliar function 𝑔

𝑁Φ ← 𝑐𝑒𝑖𝑙
3 𝑚

6

𝑔 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁Φ

1. Compute the cube containing the mesh
𝑉 ← 𝑐𝑢𝑏𝑖𝑐_𝑔𝑟𝑖𝑑 𝑀, Δ

• 𝑀 = 𝑇, 𝑃 : Triangle mesh
• Δ: Voxel side length

• 𝑉: Cubic grid

2. For each
𝑡𝑖 ∈ 𝑇

3. Compute the set of voxels 𝑣𝑖𝑗𝑘 ⊂ 𝑉 that intersect 𝑡𝑖
𝐷 𝑣𝑗𝑘𝑙 ← 𝑡𝑟𝑖_𝑣𝑜𝑥_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑉, 𝑡𝑖

• Set of voxels that intersect 𝑀:

𝑉𝑀 = 𝑣𝑖𝑗𝑘 ∈ 𝑉 | 𝑣𝑖𝑗𝑘 ∩𝑀 ≠ ∅

• Set of triangles that intersect 𝑣𝑖𝑗𝑘:

𝐷 𝑣𝑖𝑗𝑘 = 𝑡 ∈ 𝑇 | 𝑡 ∩ 𝑣𝑖𝑗𝑘 ≠ ∅

4. Compute the size of 𝑉𝑀, and size of Hash table 𝐻
𝑚 ← 𝑠𝑖𝑧𝑒 𝑉𝑀
𝑁𝐻 ← 𝑐𝑒𝑖𝑙 3 𝑚

• 𝑉𝑀 = 𝑚
• 𝐻 = 𝑁𝐻

3

5. Compute auxiliar function 𝑓
𝑓 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁𝐻

7. While
𝑓 𝑣𝑖𝑗𝑘 + Φ 𝑔 𝑣𝑖𝑗𝑘 is not bijective

• Auxiliar function 𝑓

• Initial auxiliar function 𝑔

8. Compute auxiliar table Φ
Φ ← 𝑏𝑢𝑖𝑙𝑑_𝑎𝑢𝑥_𝑡𝑎𝑏𝑙𝑒 𝑉𝑀 , 𝑓, 𝑔

• Auxiliar table Φ
• Bijective hash function

ℎ 𝑣𝑖𝑗𝑘 = 𝑓 𝑣𝑖𝑗𝑘 +Φ 𝑔 𝑣𝑖𝑗𝑘

10. For each
𝑣𝑖𝑗𝑘 ∈ 𝑉𝑀

9. Initialize Hash table 𝐻
𝐻 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑁𝐻

11. Fill the Hash table 𝐻
𝐻 ℎ 𝑣𝑖𝑗𝑘 ← 𝐷 𝑣𝑖𝑗𝑘

• Empty Hash table 𝐻

• Perfect Hash table 𝐻

• Perfect Hash function ℎ 𝑣𝑖𝑗𝑘

𝑖
←
𝑖
+
1

𝑢
𝑝
𝑑
𝑎
𝑡𝑒

𝑁
Φ

𝑣
𝑖𝑗
𝑘
←
𝑉 𝑀

.𝑛
𝑒𝑥
𝑡_
𝑣
𝑜
𝑥
𝑒𝑙
()

Figure 6: Algorithm scheme for the construction of the Perfect
Spatial Hash H,h

3.4. Point-to-mesh Distance Computation321

Given a point yi ∈Y , it is necessary to locate its closest point xi ∈M322

(as per Eq. 8, Fig. 1). This problem is equivalent to find the closest323

triangle t ∈ T to yi, and then find the closest point xi ∈ t j to yi, as324

described below.325

Given any triangle t ∈ T , the distance from a point yi ∈ Y to t is326
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defined as follows:327

d(yi, t) = min
α,β∈R

‖αq0 +βq1 +(1−α−β)q2− yi‖

s.t.

α+β≤ 1

α,β≥ 0

(19)

where q0, q1 and q2 are the vertices of the triangle t, and α, β,328

(1−α−β) are their corresponding barycentric coordinates, respec-329

tively. Therefore, the closest point q∗ ∈ t to yi is defined as the point330

q∗ = αq0 +βq1 +(1−α−β)q2 that minimizes Eq. (19). The clos-331

est point xi ∈M to yi is defined as:332

xi = arg min
q∗∈M

‖yi−q∗‖ (20)

A naive evaluation of Eq. 20 requires searching the closest trian-333

gle t through the full mesh M. However, the Perfect Spatial Hash H334

reduces such an evaluation by only requiring to evaluate triangles335

that are already close to yi. Let v jkl ∈ V be the voxel that contains336

the point yi. The Hash cell H[h(v jkl)] stores the set of triangles337

D(v jkl) that intersect v jkl (as illustrated in Fig. 4).338

Let B jkl ⊂V be the set of adjacent voxels to v jkl (v jkl included).339

The set of closest triangles to yi can be extracted from the inter-340

section between B jkl and M, i.e. the set H[h(B jkl)] (see Fig. 7).341

Therefore, Eq (20) is equivalent to:342

xi = arg min
q∗∈H[h(B jkl)]

‖yi−q∗‖ (21)

where clearly |H[h(B jkl)]| << T . Since each voxel side size is ∆,343

the set B jkl is guaranteed to contain a triangle whose distance to yi344

is less than ∆ (if such triangle exists in M). It is worth noting that if345

such triangle does not exist, then d(yi,M)> ∆, and the registration346

algorithm treats yi as an outlier (as discussed at the beginning of347

Sect. 3.2) [BM92].348

Reference mesh 𝑀 = (𝑇, 𝑃)

𝐵𝑗𝑘𝑙: Voxels adjacent to 𝑣𝑗𝑘𝑙

Point 𝑦𝑖 ∈ 𝑌

Voxel 𝑣𝑗𝑘𝑙 containing 

the point 𝑦𝑖

Set of triangles 𝐻 ℎ(𝐵𝑗𝑘𝑙) ⊂ 𝑇

Figure 7: The closest point of M to yi is in the set B (|B|<< |T |). B
is the set of triangles that intersect v jkl and all its adjacent voxels.

The algorithm for computing the closest point xi is summarized349

as follows:350

1. Compute the voxel v jkl that contains the point to register yi (i.e.,351

yi ∈ v jkl).352

2. Compute the set of voxels B jkl , adjacent to v jkl (as illustrated in353

Fig. 7).354

3. Compute the Hash indices h(B jkl) as per Eq. (16).355

4. Extract from the Spatial Hash, the triangles H[h(B jkl)] closest356

to yi (Fig. 7).357

5. Compute the closest triangle t ∈ H[h(B jkl)] as per Eq. 19.358

6. Compute xi as per Eq. (21).359

Since the evaluation of h in Eq. (16) and the access to the table360

H is O(1), the computational cost of the above algorithm is O(1).361

4. Results362

Three Four different models have been used to test our registra-363

tion algorithm: Gargoyle, Dragon and Buddha Gargoyle, Dragon,364

Buddha and Lucy [CL96]. The point-cloud-to-register is extracted365

from the original model by computing a uniform re-sample of each366

model surface. Figs. 8(a), 8(c) and 8(e) 8(a), 8(c), 8(e) and 8(g)367

plot the unregistered point-clouds of each model, respectively. As368

mentioned in Sect. 3.2, the point-cloud-to-register should be close369

enough to the reference mesh to avoid falling into a local min-370

ima solution [BM92]. Figs. 8(b), 8(d) and 8(f) 8(b), 8(d), 8(f) and371

8(h) plot the result of our registration process for each model, re-372

spectively. The registration algorithm minimizes the point-cloud-373

to-mesh distance as per Eq. (1).374

Table 2 shows Spatial Hashing and ICP convergence results of375

our registration algorithm. The 3 4 point-clouds-to-register are of376

size NY = 50k, while the size of the reference meshes (NT ) is377

20k, 871.4k and 1631.6k for the Gargoyle, Dragon and Buddha,378

20k, 871.4k, 1631.6k and 28055.7k for the Gargoyle, Dragon, Bud-379

dha and Lucy, respectively. The smallest Spatial Hash constructed380

is for the Gargoyle dataset, consisting of a N3
H = 512 Hash ta-381

ble and a N3
Φ = 1.3k3 auxiliar table, and the largest Spatial Hash382

is constructed for the Dragon Lucy (N3
H = 5.8k3 Hash table and383

N3
Φ = 2.2k3 auxiliar table). The convergence error is measured as384

the difference between the last iteration and the previous iteration385

∑i ‖y
(n)
i −y(n−1)

i ‖2

NY
, as discussed in Sect. 3.2. All the three 4 test cases386

converge at 34, 19 and 30 34, 19, 30 and 53 ICP iterations (n),387

respectively, with an error below 7e-05.388

Table 2: Perfect Spatial Hashing and ICP convergence results for
the 4 datasets presented in Fig. 8

Dataset NY NT N3
H N3

Φ
n ∑i ‖y(n)i −y(n−1)

i ‖2

NY

Gargoyle 50k 20k 512 1.3k 34 6.20e-05
Dragon 50k 871.4k 2.1k 4.9k 19 5.87e-05
Buddha 50k 1631.6k 3.4k 1.3k 30 6.06e-05

Lucy 50k 28055.7k 5.8k 2.2k 53 5.97e-05

5. Conclusions389

This manuscript presents the implementation of a Perfect Spatial390

Hash Hashing for point-cloud-to-mesh registration. The registra-391

tion algorithm uses the Perfect Spatial Hashing data structure to392

aid the computation of point-to-mesh distance of the Iterative Clos-393

est Point (ICP) algorithm. Compared to standard spatial partition394

techniques (such as octrees and kd-trees), our algorithm reduces395
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the closest-point-search complexity from logarithmic (O(log(NT )),396

NT : reference mesh size) to constant O(1) complexity. As a con-397

sequence, the cost of the mesh registration algorithm becomes398

O(NY ×n) (NY : point-cloud-to-register size, n: number of max. ICP399

iterations). The cost of pre-processing (pre-computation of the Per-400

fect Spatial Hashing) is O(NT +(N3
H)

2) (N3
H : Hash table size). Our401

algorithm is able to register a point cloud of size NY = 50k against a402

mesh of size NT = 1631.6k, converging with an error below 7e-05.403

5.1. Future Implementation on GPU404

The main shortcoming of our point-cloud-to-mesh registration al-405

gorithm lies in the construction of the Perfect Spatial Hashing com-406

putational cost, as the worst case scenario complexity is squared in407

the size of the Hash table (O((N3
H)

2), see Sect. 3.3). To mitigate this408

problem, we intend to implement Perfect Spatial Hash mesh reg-409

istration in a Graphic Processing Unit (GPU) parallelization archi-410

tecture. By taking advantage of Graphics Processing Units (GPUs),411

the Hash structure can be computed in a more efficient way, reduc-412

ing the pre-processing time [LH06]. In addition, the independence413

in the computation of the closest point (Eq. (21)) between any two414

different points yi,y j ∈ Y permits an implementation following a415

highly parallelizable approach, resulting in fast registration of con-416

siderably larger point clouds.417

Additional considerations for future research also include: (1)418

updating the Spatial Hash Table in the case of small rigid transfor-419

mations or shape deformations, without requiring to rebuild again420

the complete Spatial Hash.421

Glossary422

ICP: Iterative Closest Point.
M: Triangular mesh M = (T,P) of a 2-manifold

embedded in R3, defined by the triangle set
T = {t1, t2, · · · , tNT } and the point set P =
{p1, p2, · · · , pNP}. M is the reference mesh for reg-
istration.

Y : Point cloud to register Y = {y1,y2, · · · ,yNY }. Y is a
noisy sample of M, conducted in an unknown coor-
dinate system.

R, p0: Rigid transformation R ∈ SO(3) (Special Orthogo-
nal Group), p0 ∈ R3, that matches the coordinate
system of Y to the coordinate system of M.

Y∗: Rigidly transformed point cloud Y∗ =
{y∗1 ,y∗2 , · · · ,y∗NY

}, such that y∗i = Ryi + p0.
X : Point cloud X = {x1,x2, · · ·xNY } sampled from M,

such that xi is the closest point in M to yi (|X |= |Y |).
X is the set of correspondences of Y .

µx, µy: Centroids µx,µy ∈ R3 of the point sets X and Y , re-
spectively.

S: 3×3 matrix of cross-covariances between X and Y .
q̇: Unit quaternion q̇ ∈ R4 (‖q̇‖ = 1), equivalent to the

rotation matrix R.
Y (k),X (k): Values for the points sets Y , X at the current ICP

iteration k.
R(k), p(k)0 : Values for the rigid transformation R, p0 at the cur-

rent ICP iteration k.

423

n: Maximal Number of iterations n > 0 allowed by the
ICP algorithm.

∆: Distance below which a point yi ∈ Y is not consid-
ered an outlier w.r.t. mesh M (i.e. d(yi,M)< ∆).

P(A): Power set of A, defined as all the subsets of A.
P(A) = {a|a⊂ A}.

vi jk: A cubic cell (i, j,k) ∈ N3, of side length ∆, oriented
along the coordinate axes.

V : Rectangular prism V ⊂ P(R3) oriented along the
coordinate axes, defined as a set of disjoint voxels
vi jk that build the bounding box of M. |V |= N3

V .
D(vi jk): Set of triangles in M that intersect voxel vi jk ∈ V .

D : V →P(T ).
VM : Set of voxels vi jk ∈ V that intersect at least one tri-

angle of M (i.e. D(vi jk) 6= ∅).
H: Perfect Spatial Hash table H :N3→P(T ). H is a 3D

table where each entry H[hi,h j,hk] stores a subset of
triangles D(vi jk). |H|= N3

H .
h: (Bijective) Hash function h : VM→ N3 of H. h takes

a voxel vi jk ∈ VM and returns the respective indices
hi,h j,hk in H, such that H[hi,h j,hk] = D(vi jk).

f ,g: Auxiliar functions f ,g : VM → N3 used by the func-
tion h to compute a bijective mapping.

Φ: Auxiliar 3D table table Φ : N3 → N3 used by the
function h to compute a bijective mapping. |Φ| =
N3

Φ.
q0,q1,q2: Vertices of triangle t j ∈ T with qi ∈ P.
α,β: Barycentric coordinates on a triangle t ∈ T with

α,β≥ 0, and α+β≤ 1.
B jkl : Set B jkl ⊂V of all adjacent voxels to v jkl (including

v jkl).

424

425
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(a) Gargoyle mesh and unregis-
tered point cloud

(b) Gargoyle point cloud registra-
tion

(c) Dragon mesh and unregistered
point cloud

(d) Dragon point cloud registration

(e) Buddha mesh and unregistered
point cloud

(f) Buddha point cloud registration

(g) Lucy mesh and unregistered
point cloud

(h) Lucy point cloud registration

Figure 8: Point-cloud-to-mesh registration of 4 different models:
Gargoyle, Dragon, Buddha and Lucy [CL96]. The registration al-
gorithm minimizes the cloud-to-mesh distance.
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