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Abstract—In the context of lattice manufacturing, the problem

of mechanical and structural characterization of large lattice

domains is relevant. Lattice materials are used in engineering

(e.g. in energy absorption and heat conduction) and biomedical

(e.g. bone implants and artificial tissues) applications. However,

the numerical simulation of large lattice domains is limited

by its complicated geometry, which hinders the meshing stage

and produces intractable finite element meshes. The existing

efforts to simulate large lattice domains are based on the

generation of simplified homogeneous domains equipped with

material properties that approximate the behavior of the lattice

domain equipped with the bulk material. Using this approach,

one can estimate the displacements field over the lattice domain

using a lighter mesh and a cheaper simulation. However, since

stresses are influenced by geometrical conditions, the stresses of

the simplified domain do not match the stresses of the lattice

domain. As a response to this limitation, this article proposes a

methodology based on the systematic use of design of experiments

to devise meta-models to estimate the mechanical response of

lattice domains. The devised meta-models can be integrated

with material homogenization to allow the mechanical charac-

terization of large lattice domains. In this paper, we apply the

proposed methodology to develop meta-models for the estimation

of the von Mises stress in Schwarz Primitive lattice domains.

Results show that the proposed methodology is able to generate

efficient and accurate meta-models whose inputs are based on the

displacements on the boundary of the Schwarz cell. Therefore,

numerical simulations with the homogeneous simplified domain

can be used to feed the meta-models. Additional work is still

required to integrate the developed meta-models with material

homogenization to test large Schwarz Primitive lattice domains

under working loads.

Index Terms—response surface methodology, fractional facto-

rial design, Plackett-Burman design, lattice structure, Schwarz

Primitive

GLOSSARY

AM: Additive manufacturing.
CCF: Central composite face-centered design.
CCI: Central composite inscribed design.
DOE: Design of experiments.
FEA: Finite element analysis.
SIMP: Solid isotropic material with penalization,

which is a topology optimization algorithm.
SSE: Sum of squared errors (SSE > 0).
R2: Coefficient of determination of the linear re-

gression
�
0  R2  1

�
.

⌦,⌦Q: Subsets of R3 that represents the lattice do-
main and the equivalent homogeneous domain,
respectively

�
⌦,⌦Q ⇢ R3

�
.

E,EQ: Young’s moduli of the bulk and equivalent
material, respectively (Pa).

⌫, ⌫Q: Poisson’s ratio of the bulk and equivalent ma-
terial, respectively.

�VM : Von Mises stress (Pa).
L: Length of the Schwarz Primitive cell (L > 0).
⇢: Relative density or volume fraction of a

Schwarz Primitive cell (0  ⇢  1).
t: Iso-value used to generate the Schwarz Primi-

tive cell (t 2 [�3, 3]).

I. INTRODUCTION

Recently, the interest on the development of functionally
optimized and light materials has increased. This progress
has been accompanied by the evolution of manufacturing
technologies (e.g. 3D printing) that have made feasible the
production of complex designs that used to be impossible to
manufacture using subtractive techniques. In this context, the
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numerical analysis of the new shapes and designs is key, since
it reduces the time and money spent in test trials and physical
experimentation.

Lattice structures are a kind of materials that point to-
wards material and functional optimization: (i) the distribution
of void/filled zones can be manipulated, which allows the
optimization of mechanical properties, and (ii) can retain
good mechanical properties while reducing material usage.
However, Finite Element Analysis (FEA) of lattice structures
is limited by their geometrical complexity, which produces
intractable FEA meshes and impedes FEA simulation of large
domains.

This manuscript implements an algorithm to estimate the
stress/strain of lattice domains by systematically using Design
of Experiments (DOE). We apply our algorithm to develop
meta-models to approximate the von Mises stress in Schwarz
Primitive lattice structures. The inputs of the devised meta-
models are displacement-based features that can be obtained
using material homogenization. The integration of the meta-
models and material homogenization is not addressed in this
work.

The remainder of this article is structured as follows:
Section II provides a review of the related literature. Section III
describes our algorithm to develop efficient meta-models for
stress estimation in lattice domains. Section IV presents and
discusses the results of applying the methodology for the
estimation of the von Mises stress in Schwarz Primitive
lattices. Section V concludes the manuscript and suggests
future extensions of this work.

II. LITERATURE REVIEW

A. Material Homogenization in Lattice Structures
Lattice structures are families of materials formed by repet-

itive cells that are uniformly distributed throughout the design
space. The main advantage of lattice structures is not only
that they are lightweight, but also preserve good mechanical
properties. Lattice structures are common in applications for
energy absorption, heat transfer, vibration and acoustic damp-
ing [1]–[3].

The advent of additive manufacturing (or 3D printing)
makes feasible the manufacturing of complex and customized
lattice structures that resemble specific mechanical properties.
Particularly, 3D printed lattice structures serve as customized
bone implants [4], [5] or in other engineering applications to
map the results of structural optimization into manufacturable
(via additive manufacturing techniques) designs [6]–[8].

Material homogenization is the process of obtaining a
homogeneous domain with equivalent properties that approxi-
mates the mechanical behavior of a lattice structure. Material
homogenization alleviates the high computational costs of
FEA simulations with large lattice domains. The simulation
over the homogeneous domain is useful for estimating the
displacement field of the lattice domain [7], [9]. However,
the stress/strain on the homogenized domain differ of the
stress/strain of the lattice domain, due to stress and strains
are geometry-dependent properties.

B. Design of Experiments in FEA Modeling of Lattice Struc-
tures

In our literature survey we found that most finite element
studies on lattice structures comprise domains of no more
than a few hundred unit-cells [10]–[15]. Most analyses use
beam elements to build the FEA model of lattice domains
[10]–[13] with exception of a few studies that use tetrahedral
[14] or shell elements [15]. We found very few studies with
large domain size: Reference [16] presents a methodology to
perform topology optimization on lattice domains with up to
several million unit-cells (hollowed-square unit-cells).

Regarding the combined use of FEA simulations and DOE,
we found that current work can be divided in two groups: (i)
material properties evaluation, including metallic [17], resins
[18] and composite materials [19], and (ii) shape optimization
on mechanical parts, including medical devices [20], [21] and
automobile parts [22]. To the best of our knowledge, the
literature does not address the systematic application of DOE
and material homogenization for stress estimation in the field
of lattice materials.

C. Conclusions of the Literature Review
The literature review has shown that lattice structures are

used in biomedical and engineering applications. Likewise,
additive manufacturing has widen the application range of
lattice structures, allowing the manufacturing of personalized
prosthesis or implants. However, FEA of large lattice struc-
tures is still an open research question. The main limitation
of the simulation of large lattice domains is its elevated com-
putational cost. Its complicated geometry implies the use of
small FEA elements which produces intractable FEA meshes.

To alleviate the computational burden of the simulation of
lattice domains, material homogenization has been applied
to produce simplified regular domains that approximate the
original lattice domain. Despite the displacement field can
be accurately estimated using this approach, the stress tensor
cannot be directly obtained due to the geometric dissimilarities
between the lattice and homogeneous domains.

In this paper, we aim to contribute to the problem of the
estimation of the stresses in large lattice domains. We propose
a methodology that uses DOE for the generation of simple
mathematical expressions (meta-models) to characterize the
stress/strain of lattice domains. The meta-models are designed
so that their inputs can be later calculated by simulating the
homogeneous domain.

Particularly, we develop meta-models to estimate the von
Mises stress of Schwarz Primitive lattice structures using the
strains of the boundary of the cell. The paper covers the whole
pipeline of DOE, starting from a fractional factorial design
for feature selection and the use of Response Surface and
regression methods for obtaining the meta-models.

III. METHODOLOGY

A. Schwarz Primitive Lattice Structures
Schwarz Primitive cells are a kind of lattice structures that

have been used in engineering and biomedical applications,



(a) t = �0.87, ⇢ = 0.25 (b) t = 0, ⇢ = 0.50

(c) t = 0.87, ⇢ = 0.75 (d) t = 3.0, ⇢ = 1.0

Fig. 1. Geometry and relative density of Schwarz Primitive cells for different
isovalues.

and for the generation of manufacturable domains from the
density maps produced by topology optimization [6], [8], [23].
The mechanical advantage of Schwarz Primitive cells is that
they are stiffer than other basic lattice geometries [23].

Periodic domains of Schwarz Primitive cells are generated
as isosurfaces of the scalar function F (x, y, z) in Eq. 1:

F (x, y, z) = cos

✓
2⇡

L
x

◆
+ cos

✓
2⇡

L
y

◆
+ cos

✓
2⇡

L
z

◆
, (1)

where L is the length of the cell [24]. Figure 1 shows the
corresponding relative density ⇢ of different Schwarz Primitive
cells generated with isovalues t 2 {�0.87, 0.0, 0.87, 3.0}. The
relative density ⇢ is the percentage of volume occupied by the
cell with respect to the volume of the lattice L3. Notice that
larger isovalues produce cells with larger relative densities.

B. Generation of Meta-models using DOE
DOE is a well-established methodology based on statistical

techniques that allows the analysis of complex processes and
systems. The attractiveness of DOE lies on its ability to pro-
duce valuable conclusions while reducing the experimentation
efforts [25], [26].

Particularly, we were interested in estimating the von Mises
stress in Schwarz Primitive domains. The von Mises stress
�VM is a material failure criterion defined as per Eq. 2:

�VM =
q
�2
1 + �2

2 + �2
3 � (�1�2 + �1�3 + �2�3), (2)

where �1,�2,�3 are the principal stresses. The criterion
states that, for preventing failure, the von Mises stress must
be below the tensile strength of the material.

In general, the process of meta-model development is di-
vided into three steps: (1) identification of potential features
(or factors) that affect the response variable, (2) selection of
the main factors, that is, the factors that have most influence
on the response variable, and (3) development of simple
mathematical expressions that relates the main factors and the
response variable (i.e. meta-models). Figure 2 shows the work-
flow for the development of meta-models for lattice structures.
Below, we describe the general procedure to obtain meta-
models using a DOE-based methodology and its application
for the estimation of the von Mises stress in Schwarz Primitive
lattices.

1) Factors identification: at this stage the analyst
has to determine the features (or factors) FV =
{f1, f2, · · · , fn} that affect the process and can be
controlled. The process of factors identification depends
on the expertise of the analyst to decide which are the
factors that can characterize the response variable.
In our case, one of the goals was to develop meta-models
that could be linked with material homogenization.
Therefore, our factors had to be based on the displace-
ment field, so that they could be retrieved from the FEA
simulation over the homogeneous domain ⌦Q. Our set
of factors were the strains "ij at the flat faces (extreme
faces) of the boundary of a single Schwarz Primitive
cell. For convenience, the flat faces were denoted as
{X,�X,Y,�Y, Z,�Z}, where {�X,�Y,�Z} are the
flat faces at x = 0, y = 0, z = 0. Similarly, {X,Y, Z}
are the flat faces at x = L, y = L, z = L. We defined
the strains at the flat faces as per Eq. 3:

"ij = sgn(i) · Uij � U�jj

L
,

i = ±X,±Y,±Z, j = x, y, z,
(3)

where Uij represents the average displacement in j
direction of the face i. For instance, U�Xy is the
displacement in y direction of the flat face at x = 0.
Therefore, "ij is a measure of the strain of the face i
in j direction. Observe that, based on Eq. 3, "�Xx =
"�Y y = "�Zz = 0. This is necessary to avoid the
introduction of strains due to pure translation. Our work
is limited to the elastic zone of the material. Therefore,
the range of the variables is "ij 2 [�0.007, 0.007].

2) Factors selection: the goal at this stage is to select the
most relevant factors from the initial set of potential
factors. In the context of DOE, full or fractional factorial
designs are the preferred tools for factor selection. Since
we were addressing a problem with a large number of
factors (15), we used a special fractional factorial design:
the Plackett-Burman design. In our case, the selected
factors were then used to develop meta-models for the
estimation of the von Mises stress for Schwarz Primitive
lattice structures. The results of the Plackett-Burman
design were analyzed in R [27].



3) Meta-model development: the goal at this stage is to
develop efficient and simple mathematical expressions
that expresses our response variable y as a function of
the selected factors xi. The outcome of this stage is a
mathematical expression of this type (Eq. 4):

ŷ = �0 +
X

i

�ixi +
X

ij

�ijxixj , (4)

where ŷ is the predicted value of the response variable
y and xi are the input variables.
We used Response Surface methodologies (e.g. Central
Composite designs or Box-Behnken design) to imple-
ment efficient designs that allowed the realization of
the meta-models. We used regression analysis to esti-
mate up-to second-order meta-models. The coefficients
(�i,�ij) of the meta-models were estimated with the
method of least squares in R [27]. We devised meta-
models for Schwarz Primitive cells of relative densities
⇢ = 0.25, 0.5, 0.75, 1.0.

Fig. 2. Work-flow for the development of meta-models to approximate the
mechanical response of lattice domains.

IV. RESULTS

A. Material Homogenization in Lattice Structures
We implemented the numerical homogenization procedure

presented in [28] to obtain the equivalent homogeneous prop-

TABLE I
RESULTS OF NUMERICAL HOMOGENIZATION OF SCHWARZ PRIMITIVE

CELLS: YOUNG’S MODULUS AND POISSON’S RATIO.

Fig.
number

Rel.
density

Equivalent Young’s
modulus

�
EQ

� Equivalent Poisson’s
ratio

�
⌫Q

�

Fig. 1(a) 0.25 7.5 GPa 0.05
Fig. 1(b) 0.50 35.0 GPa 0.17
Fig. 1(c) 0.75 71.0 GPa 0.25
Fig. 1(d) 1.0 114.0 GPa 0.33

erties for the Schwarz Primitive cells in Fig. 1. The length
of each cell was L = 2⇡ cm. We chose the Titanium alloy
Ti-6Al-4V as bulk material, with properties: Young’s modulus
E = 114 GPa and Poisson’s ratio ⌫ = 0.33. The obtained
equivalent properties for Schwarz Primitive cells at densities
0.25, 0.5, 0.75, and 1.0 are given in Table I.

To evaluate the results of the homogenization procedure,
we executed a compression test on a domain of eight Schwarz
Primitive cells of density ⇢ = 0.5 (Fig. 3(a)). The compression
load was 10 kN. We retrieved and compared the results of
the x, y, and z displacements for (i) the lattice domain with
the bulk material, and (ii) the homogeneous domain with the
equivalent properties.

Results in Figs. 3(b)–3(g) show the agreement between the
displacement fields of the lattice and homogeneous domains. It
is important to remark that the FEA mesh of the lattice domain
was composed by 132000 elements while the FEA mesh of the
homogeneous domain had 8000 elements. This result shows
the computational burden of simulating lattice domains, which
encourages the use of more efficient approaches to estimate
the mechanical response of large lattice domains, which could
not be analyzed using conventional techniques.

B. Generation of the Meta-models
1) Selection of the Input Variables: We aimed to select the

most relevant factors from the initial set of potential ones
(Eq. 3). We used a Plackett-Burman design for this task.
Initially, there were 15 factors defined on the flat faces of
the Schwarz cell: (a) three normal strains

{"Xx, "Y y, "Zz}, (5)

and (b) twelve shear strains

{"Xy, "Xz, "�Xy, "�Xz, "Y x, "Y z,

"�Y x, "�Y z, "Zx, "Zy, "�Zx, "�Zy}.
(6)

Given the number of factors (15 in total), we used a
Plackett-Burman design with 20 runs. We executed the simu-
lations with the cells of density ⇢ = 0.25, 0.5, 0.75 and side
length L = 10 mm (Fig. 1). The cell of relative density ⇢ = 1.0
represented a special case due to its geometry, which did not
allow the application of simultaneous normal and shear strains.
Consequently, a different treatment was necessary to obtain the
required meta-models (see Section IV-B2).

We evaluated the results of the Plackett-Burman design
using (1) Bayes discrimination model determination [25],



(a) Domain and boundary conditions. (b) Lattice domain. Y displacement. (c) Homogeneous domain. Y displacement.

(d) Lattice domain. X displace-
ment.

(e) Homogeneous domain. X dis-
placement.

(f) Lattice domain. Z displacement. (g) Homogeneous domain. Z dis-
placement.

Fig. 3. Comparison of the displacement fields among the lattice and homogeneous domains for eight Schwarz Primitive cells.

and (2) Daniel’s and Lenth’s plots [26]. The analyses were
implemented in R, with the package BsMD [29]. The results
of these statistical analyses (provided in Fig. 4) show the
similarity of the effects of all factors on the behavior of the
von Mises stress in Schwarz Primitive domains. Based on
this result, we conclude that all factors are relevant (no factor
excels over the others) and they all have to be considered to
build the meta-models. The development of the meta-models
for the cells of density ⇢ = 0.25, 0.5, 0.75 is presented in
Section IV-B3.

2) Meta-models for Schwarz Primitive Cell with Relative
Density ⇢ = 1.0: Due to the cubic shape of the Schwarz
Primitive cell of density ⇢ = 1.0, it was not possible to
apply both normal and shear strains boundary conditions on
the cell. Consequently, we devised the meta-models using only
the normal strains (Eq. 5). For this task, we used the Response
Surface methodology, specifically the Central Composite Face-
centered (CCF) design. We fitted (1) first-order, (2) first-order
plus iterations, and (3) second order models in terms of the
normal strains "Xx, "Y y , and "Zz of the form

�̂VM = �0 +
3X

i=1

�i"ii +
3X

i<=j

�ij"ii"jj . (7)

The value of the variables "ij was coded in the range
[�1, 1] to be in concordance with the procedures found in
the literature [26]. Figure 5 shows the relation between the

fitted and experimental values of the von Mises stress for 100
random simulations. For the simulated data, we calculated (1)
the average of the relative error and (2) the sum of square
errors (SSE) with the formula (Eq. 8)

SSE =
X

(�VM � �̂VM )2 , (8)

where �VM is the experimental von Mises stress and
�̂VM is the predicted value. The corresponding values of the
coefficients �ij , R2, SSE and the average relative error are
given in Table II.

It is clear that the first-order and first-order plus interactions
models do not fit well the data (the coefficient of determination
R2 is very low). For the second-order model, the coefficient
of determination is very high R2 = 0.95. However, Fig. 5(c)
shows a clear trend in the error of the model. This trend
becomes more obvious when plotting the residuals of the
second-order model for the random simulations (Fig. 5(d)).

Due to the observed trend in the residuals of the second-
order model, we developed meta-models for the square of the
von Mises stress �2

VM . No further simulations were required
for this task. It was only necessary to perform the regression
analysis using �̂2

VM instead of �̂VM as the response variable
in Eq. 7. The resultant meta-models and its performance are
presented in Table III. Figure 6 depicts the predicted vs. the
experimental values for �2

VM . The first-order and first-order
plus iterations models do not fit the data and can be discarded.



(a) Cell with ⇢ = 0.25. Bayesian analysis.
Posterior probabilities.

(b) Cell with ⇢ = 0.5. Bayesian analysis.
Posterior probabilities.

(c) Cell with ⇢ = 0.75. Bayesian analysis.
Posterior probabilities.

(d) Cell with ⇢ = 0.25. Daniel’s plot. (e) Cell with ⇢ = 0.5. Daniel’s plot. (f) Cell with ⇢ = 0.75. Daniel’s plot.

(g) Cell with ⇢ = 0.25. Lenth’s plot. (h) Cell with ⇢ = 0.5. Lenth’s plot. (i) Cell with ⇢ = 0.75. Lenth’s plot.

Fig. 4. Results of the Plackett–Burman design for the Schwarz Primitive cells of relative density ⇢ = 0.25, ⇢ = 0.5 and ⇢ = 0.75. Bayesian analysis,
Daniel’s plot and Lenth’s plot.

TABLE II
SCHWARZ PRIMITIVE CELL OF DENSITY ⇢ = 1.0. FITTED MODELS FOR THE VON MISES STRESS �V M .

Model �0 �1 �2 �3 �12 �13 �23 �11 �22 �33 R2 SSE Avg. Rel. Error
First–order 0.8 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A 0.00 12 126%
First–order +
interactions

0.8 0.0 0.0 0.0 �0.3 �0.3 �0.3 N/A N/A N/A 0.71 7 87%

Second–order 0.8 0.0 0.0 0.0 �0.3 �0.3 �0.3 0.2 0.2 0.2 0.95 0.8 28%

On the other hand, it is noticeable the perfect fit of the second-
order model. When expanding the mathematical formulation
of the second-order model, we find that it has the following
shape

�̂V M =
r

0.4
⇣
"2Xx + "2Y y + "2Zz �

�
"Xx"Y y + "Xx"Zz + "Y y"Zz

�⌘
,

(9)

which is very similar to the formula for computing the
von Mises stress in Eq. 9 using the principal stresses. This
similarity is explained by the fact that the load directions
coincide with the principal directions because only normal
strains are being considered on a cubic geometry.

3) Meta-models for Schwarz Primitive Cell with Relative
Density ⇢ = 0.25, 0.5, 0.75: So as for the cell of density ⇢ =
1.0, we generated meta-models using the Response Surface
methodology. This methodology is well-suited only when the
number of input factors is small (< 5). Therefore, we could

not use the strains ✏ij at the flat faces of the boundary of the
cell as direct inputs of the meta-models. We took advantage
of the geometrical (cubic) symmetry of the Schwarz Primitive
cells and defined two new variables X1 and X2 in terms of
the strains on the flat faces "ij :

X1 = |"Xx|+ |"Y y|+ |"Zz|, (10)

X2 =|"Xy|+ |"Xz|+ |"�Xy|+ |"�Xz|+
|"Y x|+ |"Y z|+ |"�Y x|+ |"�Y z|+
|"Zx|+ |"Zy|+ |"�Zx|+ |"�Zy|.

(11)

We used the Central Composite Inscribed (CCI) design and
the CCF designs [26] to generate several meta-models for the
estimation of the von Mises stress of the cell. The absolute
value of the variables "ij was coded in the range [�1, 1] to
be in concordance with the values in the literature [26]. The



(a) CCF. First-order model. (b) CCF. First-order model plus in-
teractions.

(c) CCF. Second-order model. (d) CCF. Residuals of the second-
order model.

Fig. 5. Evaluation of the fitted models for the Schwarz Primitive cell of density ⇢ = 1.0 for the von Mises stress. Fitted values vs. Experimental values.

TABLE III
SCHWARZ PRIMITIVE CELL OF DENSITY ⇢ = 1.0. FITTED MODELS FOR THE SQUARE OF THE VON MISES STRESS �2

V M .

Model �0 �1 �2 �3 �12 �13 �23 �11 �22 �33 R2 SSE Avg. Rel. Error
First–order 0.8 0.0 0.0 0.0 N/A N/A N/A N/A N/A N/A 0.00 19 160%
First–order +
interactions

0.8 0.0 0.0 0.0 �0.4 �0.4 �0.4 N/A N/A N/A 0.57 14 128%

Second–order 0.0 0.0 0.0 0.0 �0.4 �0.4 �0.4 0.4 0.4 0.4 1.0 0 0%

(a) CCF. First-order model. (b) CCF. First-order model plus interactions. (c) CCF. Second-order model.

Fig. 6. Evaluation of the fitted models for the Schwarz Primitive cell of density ⇢ = 1.0 for the square of the von Mises stress. Fitted values vs. Experimental
values.

resultant meta-models for the cells of relative density ⇢ =
0.25, 0.5, 0.75 are listed in Tables IV–VI.

We evaluated the models using simulated data. We run 100
random simulations varying the values of the strain at the
flat faces of the cell ("ij). Figures 7–9 show the graph of
the predicted value of the von Mises stress (�̂VM ) vs. the
experimental value (�VM ). The red lines correspond to the
interval of 99% of confidence using the standard deviation of
each model.

Tables IV–VI report the SSE, the average of the relative
error and the coefficient of determination R2 for each model.
In general, the R2 of all models indicate a good fitting for the
data used for adjusting the model. However, the data shown in
Figs. 7–9 and the reported values of the SSE and the average
relative error reveal that in both cases (CCI and CCF), the
first-order and the first-order plus interactions models excel
the second-order models.

V. CONCLUSIONS

This article presents a methodology to generate efficient
meta-models to approximate the mechanical response of lattice
materials using design of experiments. Particularly, the paper
develops meta-models for the estimation of the maximum von
Mises stress of Schwarz Primitive cells with relative densities
⇢ = 0.25, 0.5, 0.75, 1.0. The meta-models are obtained after

conducting Plackett-Burman designs and Response Surface
methodology. We obtained meta-models that fit adequately the
data used for their generation. In the future, with the help
of material homogenization, these meta-models could be used
for estimating the von Mises stress of large Schwarz Primitive
lattice domains composed cells under different loads (tension,
compression, shear).

Our case study considers as features only the average strains
in the flat faces of the boundary of each Schwarz Primitive
cell. However, other features (e.g. the strain of the center of
mass) can be evaluated. The selection of the best features to
approximate the von Mises stress of Schwarz Primitive cells
needs to be further investigated.
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TABLE IV
SCHWARZ PRIMITIVE CELL OF DENSITY ⇢ = 0.25. FITTED MODELS FOR THE VARIABLES X1 AND X2 .

Model �0 �1 �2 �12 �11 �22 R2 SSE Avg. Rel. Error
CCF First–order 9.6 0.9 0.5 N/A N/A N/A 0.94 627 18%

First–order + interactions 9.6 0.9 0.5 �0.04 N/A N/A 0.98 627 18%
Second–order 8.7 0.9 0.5 �0.04 0.02 0.008 0.99 850 20%

CCI First–order 9.1 0.5 0.3 N/A N/A N/A 0.98 710 19%
First–order + interactions 9.1 0.5 0.3 �0.01 N/A N/A 0.98 709 19%
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