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Abstract—In the context of numerical methods, the problem

of frequency-domain (spectral) simulations is crucial for the

solution of Partial Differential Equations. Fast Fourier Transform

(FFT) algorithms significantly reduce the computational cost

of such simulations and enable parallelization using Graphics

Processing Units (GPUs). In the particular subdomain of laser

heating/cutting of rectangular metal plates, fast simulation is

required for tool path planning, parameter optimization and

additive manufacturing. The currently used methods include

frequency-domain analytic solutions for single-beam and multi-

beam laser heating. However, the problem of formulating these

spectral problems in terms of Fourier methods and implementing

them in efficient manner remains. To overcome these limitations,

this article presents two different schemes that translate the

problem of laser beam heating of metal plates into equivalent

FFT problems. The results show significant improvements in

terms of executions times, being 100⇥ faster than current state-

of-the-art algorithms. Future work needed involves the inclusion

of stress analysis, complex plate geometries and non-constant

material properties for the plate.

Index Terms—Fast Fourier Transform, Discrete Sine Trans-

form, heat transfer, laser heating, thin metal plate, GPU

I. INTRODUCTION

Spectral analysis and spectral methods are competitive
alternatives to numerical simulations of physical phenomena
(e.g. acoustics, heat transfer, structural analysis and elec-
tromagnetism). Spectral methods provide frequency-domain
solutions (infinite sum of trigonometric functions) to the
Partial Differential Equations that model the aforementioned
phenomena. The Discrete Fourier Transform (DFT) and the
Fast Fourier Transform (FFT) are the key algorithms that
retrieve the original spatial-based solution with low computa-
tional demand. The FFT is a widely used algorithm not only
in the context of PDEs simulation, but also signal analysis and
image processing.

In recent years, frequency-based methods have been devel-
oped for heat transfer simulation of the laser heating/cutting
problem in rectangular plates. These solutions have shown to
be significantly faster than standard numerical methods (such
as Finite Element Methods) after some model simplifications.

They also allow to zoom into asynchronous time intervals
without computing or storing the complete history of the
solution. Fast simulation of laser heating/cutting problems is
crucial for many different engineering problems, such as: tool
path planning, laser parameter optimization, waste minimiza-
tion, additive manufacturing, etc.

The aforementioned methods for laser heating/cutting sim-
ulation allow simulation of complex laser trajectories on the
plate, and they even allow the introduction of multiple laser
beams simultaneously. However, there are not, in the current
state of the art, FFT-based solutions to the laser heating/cutting
problem.

This manuscript presents two different schemes that cast
the laser heating/cutting problem into a DST (Discrete Sine
Transform) and DFT ones, respectively. Such a casting enables
the use of FFT libraries both in CPU and GPU programming
environments, significantly improving the efficiency of exist-
ing methods.

The remainder of this manuscript is organized as follows:
Sect. II discusses the relevant literature. Sect. III presents the
methodology. Sect. IV discusses the results. Finally, Sect. V
presents the conclusions and discusses the future work.

II. LITERATURE REVIEW

A. Laser Heating/Cutting Simulation

Finite Element Analysis (FEA) is one of the most used
methods for thermodynamic simulation of laser heating/cutting
of metal plates. Using non-linear FEA, Ref. [1] simulates trian-
gular cuts for residual stress analysis. Similarly, Refs. [2], [3]
perform the same non-linear FEA analysis for rectangular cuts,
and Ref. [4] studies circular cuts using the same approach.
In order to account for laser ablation (material melting and
evaporation), different methods such as enthalpy method [1]–
[4], element birth and death [5], volume fractions [6], and
temperature thresholds [7]–[9] have been presented.

Other numerical methods include Finite Differences [10]–
[12], Boundary Elements [13], [14] and Finite Volumes [15],
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[16]. However, numerical methods are computationally ex-
pensive in general, limiting their application to small plate
geometries, simple laser trajectories, requiring full time history
simulations.

Analytic methods provide significantly faster computations
at the cost of some model simplifications. Ref. [17] presents
a uni-dimensional analytic model for laser drilling processes
when the laser beam is static. Ref [18] presents a solution for
a moving laser on an infinite 2D plate. Ref. [19] presents
a frequency-based solution for rectangular plates when the
moving laser follows a straight path. Similarly, Refs. [20],
[21] present a frequency-based solution for arbitrary laser
trajectories. Finally, Ref. [22] extends the previous frequency-
based solutions to multiple laser beams simultaneously heating
the plate surface.

B. FFT-based Laser Heating Simulation
FFT-based methods are relevant in the solution of physical

problems by solving the inherent Partial Differential Equation
(PDE) in the frequency domain. As a consequence, these
methods have been successfully implemented in the simulation
of different physics phenomena. For example, in the context of
heat transfer analysis, Ref. [23] presents an FFT based method
for the solution of the thermoelastic equation on infinite
domains, while Ref. [24] applies the FFT to the solution of
a heat transfer problem that arises in treatments of tissue
with cancer. In structural analysis, Refs. [25]–[28] develop
FFT-based methods for the solution of different elasticity and
plasticity problems, and Ref. [29] presents a FFT-based solver
for fluid mechanics. Other applications of the FFT include
electromagnetism [30], 1D signal processing [31], and 2D
image processing [32].

As discussed previously, Refs. [19]–[22] solve the problem
of laser heating simulation in the frequency domain. However,
none of these references are able to cast their problems into
the FFT domain.

C. Conclusions of the Literature Review
Current analytic methods for laser heating/cutting simu-

lation already provide fast solutions to the problem in the
frequency domain. However, these methods perform direct
evaluation of the Fourier transform, whose computational
complexity for a 2D plate becomes O(M2N2) (with M2

⇥N2

being the grid size that discretizes the rectangular plate). These
appications are, therefore, computationally expensive.

To overcome such a problem, this manuscript presents 2
different schemes that cast the existing analytic solutions into
equivalent DST and DFT problems, respectively. Mathematical
proof for each scheme is presented. Afterwards, algorithms
that make use of FFT libraries to solve each of these schemes
are introduced, reducing the computational complexity of
the problem to O(MN log(MN)). The algorithms are im-
plemented both in CPU and GPU architectures. The test
results show significant improvements to the current state of
the art simulations (i.e. Ref. [21]), reducing the measured
computation times from 1s to 0.01s (100⇥ faster) for a

1024⇥ 1024 plate, and enabling simulations for larger plates
(up to 4096⇥ 4096).

III. METHODOLOGY

A. Heat Transfer Equation for Laser Heating on Thin Plates
The temperature u(x, y, t) (K) distribution on a 2D rect-

angular plate for a continuous laser beam source satisfies
the following partial differential equation with initial and
boundary conditions:

f � q

�z
= ⇢cp

@u

@t
�r · (ru)

q(x, y, t) = h · (u(x, y, t)� u1)

u(x, y, 0) = u1

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = u1

(1)

where a ⇥ b ⇥ �z are the plate dimensions (m3), ⇢ is the
plate density (kg/m3), cp is the specific heat (J/[kg K]) and
 is the thermal conductivity (W/[mK]). q = q(x, y, t) is the
heat loss due to convection at the plate surface (W/[m2]), h is
the convection coefficient (W/[m2 K]) and u1 is the ambient
temperature (K). Finally, the heat source f = f(x, y, t)
(W/[m2 K]) is defined as a square-shape moving laser beam:

f(x, y, t) =

(
P (1�R)

⇡r2
, max (|x� x0(t)|, |y � y0(t)|) <

r
p
⇡

2

0, otherwise
(2)

where 0  R < 1 is the plate reflectivity, P > 0 is the
laser power (W ), r > 0 is the laser radius (m) and x0(t) =
[x0(t), y0(t)] is the location of the laser spot at time t. x0 is the
parametric curve that defines the laser trajectory, discretized as
a sequence of piecewise linear trajectories as described in [20],
[21]. Fig. 1 presents an scheme of the laser heating problem
on thin metal plates.

Fig. 1. Scheme for the laser heating problem on thin metal plates

B. Analytic Solution
According to Refs. [20], [21], the solution to Eq. (1) can

be expressed as Fourier series:

u(x, y, t) = u1 +
1X

m=0

1X

n=0

✓mn(t) sin(↵mx) sin(�ny) (3)



with ↵m = (m + 1)⇡/a and �n = (n + 1)⇡/b. Each Fourier
coefficient ✓mn(t) is defined as:

✓mn(t) =
4

ab⇢cp�z
⇥

Z
t

0

Z
b

0

Z
a

0
f(x, y, ⌧) sin(↵mx) sin(�ny)e

�!mn(t�⌧)dxdyd⌧

(4)

with Laplace eigenvalues !mn:

!mn =


⇢cp
(↵2

m
+ �2

n
) +

h

⇢cp�z
(5)

Let C1(t),C2(t), . . . be a sequence of piecewise linear sub-
trajectories that discretize the complete laser trajectory, i.e.
x0(t) ⇡ C1(t),C2(t), . . .. Each sub-trajectory Ci (i > 0) is
defined as follows:

Ci(t) = x0(ti)
t� ti�1

ti � ti�1
+x0(ti�1)

ti � t

ti � ti�1
, ti�1  t < ti

(6)
where the original laser trajectory x0 is sampled at t =
t0, t1, t2, . . . .

The analytic solution for Eq. (4) for the given piecewise
linear discretization is presented in Refs. [20], [21].

C. Discrete Fourier Transform (DFT) and Fast Fourier Trans-
form (FFT)

The Discrete Fourier Transform (DFT) [33] allows to write
any sequence of M real numbers as a finite sum of sine and
cosine functions, i.e. a Fourier series. The (1D) DFT of the
sequence of real values G = {g0, g1, . . . , gM�1} ⇢ R is
defined as:

gk =
M�1X

m=0

�me�
i2⇡
M km

=
M�1X

m=0

�m


cos

2⇡km

M
� i sin

2⇡km

M

� (7)

where �m 2 C is the mth Fourier coefficient and i =
p
�1 is

the imaginary unit.
The computational complexity for direct evaluation of Eq.

(7) is O(M2). The Fast Fourier Transform (FFT) [31] is an
algorithm that eliminates redundant arithmetic computations
that arise due to the symmetries of the sine and cosine func-
tions in Eq. (7). As a consequence, the FFT algorithm reduces
the computational complexity of the problem to O(M logM)
[31].

The above DFT and FFT complexity orders are true for
1D arrays. Therefore, for a 2D discrete plate of size M ⇥

N , the computational complexities become O(M2
⇥N2) and

O(MN log(MN)) for the DFT and the FFT, respectively.
The remainder of this section describes how to cast Eq.

(3) as a DFT problem and therefore, solve it using any FFT
algorithm. This casting effectively improves the computational
complexity of the problem with respect to the current state of
the art [20]–[22].

D. Scheme 1 - Discrete Sine Transform (DST)

The Discrete Sine Transform (DST) [34] is a particular case
of the DFT transform in which only the sine terms of the
Fourier series are considered. The (1D) DFT of the sequence
G = {g0, g1, . . . , gM�1} ⇢ R is defined as:

gk =
M�1X

m=0

�k sin
(m+ 1)(k + 1)⇡

M + 1
(8)

Intuitively, this is the easiest of the schemes for casting the
problem as Eq. (3) only considers the sine terms of a Fourier
series. The mathematical proof of such a casting and the
algorithm for the retrieval of the plate temperature is discussed
below.

1) Mathematical Proof: Let {x0, x1, . . . , xM} and
{y0, y1, . . . , yN} be uniform discretizations of the intervals
[0, a] and [0, b], respectively. It is worth noting that for
such a uniform sampling, the equalities xk/a = i/M and
yl/b = l/N hold. Therefore, after truncating the number
of Fourier coefficients to (M � 1) ⇥ (N � 1), Eq. (3) is
approximated as:

ukl(t) = u1 +
M�2X

m=0

N�2X

n=0

✓mn sin(�m+1k) sin(�n+1l),

k = 0, 1, . . .M, l = 0, 1, . . . , N

(9)

with ukl(t) = u(xk, yl, t) the temperature at the discrete
points of the plate and �m = m⇡/M , �n = n⇡/N the
discrete versions of ↵m and �n, respectively. This equation
is equivalent to a 2D DST of the temperatures on the discrete
plate (as per Eq. (8)).

2) Algorithm: Algorithm 1 presents the algorithm used to
retrieve the temperature defined in Eq. (9) at any given time
t with the DST method. Line 2 applies the 2D DST of any
FFT library, while Line 3 applies the initial and boundary
conditions presented in Eq. (1) to the computed solution. The
complexity of the presented algorithm is O(MN log(MN)).

Algorithm 1 Retrieve temperature using a 2D DST
Require: ⇥ 2 R(M�2)⇥(N�2), u1 2 R
Ensure: U 2 RM⇥N

1: U  zeros(M,N)
2: U [1 : M � 1, 1 : N � 1] dst2d(⇥)
3: U  U + u1
4: return U

E. Scheme 2 - Fast Fourier Transform (FFT)

In this scheme, the original list of Fourier coefficients is
duplicated in size in each direction (2M ⇥ 2N ). The idea is
to take advantage of the odd symmetry of the sine function at
k⇡ (with k 2 N+). Therefore, the added coefficients are set
by mirroring the original M or N coefficients (multiplied by
�1) in each direction. The final temperature is obtained from
the imaginary (sine) components of the FFT result.



1) Mathematical Proof: Consider {x0, x1, . . . , xM} be a
uniform discretization of the interval [0, a]. Since sin(x) =
� sin(�x) and sin(x) = sin(x + 2k⇡) (with k 2 N+) the
following equation holds:

M�2X

m=0

✓mn sin
(m+ 1)k⇡

M

=�
M�2X

m=0

✓mn sin
�(m+ 1)k⇡

M

=�
M�2X

m=0

✓mn sin

✓
�(m+ 1)k⇡

M
+ 2k⇡

◆

=�
M�2X

m=0

✓mn sin

✓
(2M �m� 1)k⇡

M

◆
,

n =0, 1, . . . N

(10)

The previous series can be expressed in reverse form by
setting m M �m� 2:

M�2X

m=0

✓mn sin
(m+ 1)k⇡

M

=�
M�2X

m=0

✓(M�m�2)n sin

✓
(M +m+ 1)k⇡

M

◆ (11)

Afterwards, consider the sequence shift m = M + 1,M +
2, . . . , 2M � 1. Eq. (11) becomes:

M�2X

m=0

✓mn sin
(m+ 1)k⇡

M

=�
2M�1X

m=M+1

✓(2M�m�1)n sin

✓
mk⇡

M

◆ (12)

which is the second half of a sine transform with negative
coefficients in reverse order. Therefore, the series can be split
in two as follows:

M�2X

m=0

✓mn sin
(m+ 1)k⇡

M

=
1

2

M�2X

m=0

✓mn sin
(m+ 1)k⇡

M

+
1

2

2M�1X

m=M+1

�✓(2M�m�1)n sin

✓
mk⇡

M

◆

(13)

On the other hand, from Eq. (7):

�m sin
mk⇡

M
= �I


��mi sin

2mk⇡

2M

�

= �I
h
�me�

i2⇡
2M km

i (14)

where I[·] corresponds to the complex component of the
Fourier term.

Putting together Eqs. (13) and (14), Eq. (3) becomes:

ukl(t) = u1
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1

4
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k = 0, 1, . . .M, l = 0, 1, . . . , N
(15)

The previous equation is equivalent to 2 nested 1D DFTs
(Eq. (7)) after padding the M �2 coefficients in reverse order
(and negative) at the end of the original Fourier coefficients
in each direction (x and y), respectively.

2) Algorithm: Algorithm 2 presents the algorithm used to
retrieve the temperature of Eq. (15) at any given time t using
the FFT. Line 1 initializes the extended matrix of Fourier
coefficients with M,N trailing zeros. Lines 3-5 and Lines
6-8 add the reversed sequences of Fourier coefficients (with
negative sign) in each dimension, respectively. Lines 10 and
14 compute the 1D FFT of the padded arrays for the y and x
dimensions, respectively. Lines 11 and 15 extract the complex
(imaginary component) of the results. Finally, Line 12 removes
the mirrored part from solution while Line 13 applies initial
and boundary conditions. The complexity of the presented
algorithm is O(MN log(MN)).

IV. RESULTS

This section presents the results of the implementation
of Algorithms 1 and 2 using different state-of-the-art FFT
libraries for the solution of the laser heating problem on
thin metal plates. All the simulations are executed with the
same parameters and laser trajectory presented in [21] (see
Table I). Section IV-A presents the numerical validation of
the presented schemes with respect to the state of the art
analytic algorithms [21]. Finally, Section IV-B discusses the
computational performance of the proposed algorithms using
available FFT libraries.

A. Numerical Validation

Sect. III validates the correctness of the presented schemes.
However, a numerical validation is presented in this section
with numerical and graphical results for the already mentioned
test case. Fig. 2(a) plots the laser trajectory on the plate. Fig.
2(b) plots the temperature distribution results obtained with
the method presented in [21].

Fig. 3(a) presents the simulation results using the DST
algorithm for a 1024 ⇥ 1024 thin metal plate. Fig. 3(b)
plots the absolute error measured with respect to the analytic



TABLE I
PARAMETERS FOR THE PHYSICAL SIMULATION

Parameter Description Value Units

a Plate width 0.01 m
b Plate height 0.01 m
�z Plate thickness 0.01 m
⇢ Plate density 8030 kg/m3

cp Specific heat 574 J/(kgK)
 Thermal conductivity 20 W/(mK)
R Plate reflectivity 0 1
h Convection coefficient 20 W/(m2 K)
u1 Ambient temperature 300 K
P Laser power 100 W
r Laser spot radius 0.0003 m

(a) Laser trajectory for the simulation

(b) Analytic temperature solution [21]

Fig. 2. Laser trajectory and analytic simulation results for the method
presented in [21]

Algorithm 2 Retrieve temperature using a FFT by mirroring
the original coefficients
Require: ⇥ 2 R(M�2)⇥(N�2), u1 2 R
Ensure: U 2 RM⇥N

1: ⇥MIRRORED  zeros(2M, 2N)
2: ⇥MIRRORED[1 : M � 1, 1 : M � 1] ⇥
3: for m = M + 1,m < 2M � 1,m m+ 1 do

4: ⇥MIRRORED[m, :] �⇥MIRRORED[2M �m� 1]
5: end for

6: for n = N + 1, n < 2N � 1, n n+ 1 do

7: ⇥MIRRORED[n, :] �⇥MIRRORED[2N � n� 1]
8: end for

9: for n = 1, n < N � 1, n n+ 1 do

10: arr  fft(⇥MIRRORED[:, n])
11: ⇥MIRRORED[:, n] imag(arr)
12: end for

13: for m = 1,m < M � 1,m m+ 1 do

14: arr  fft(⇥MIRRORED[m, :])
15: ⇥MIRRORED[m, :] imag(arr)
16: end for

17: U  zeros(M,N)
18: U  ⇥MIRRORED[0 : M � 1, 0 : N � 1]
19: U  U + u1
20: return U

solution presented in Fig. 2(b). The resulting error is negligible
(< 10�11(K)), and evenly distributed along the 2D plate.
Similarly, Fig. 3(c) plots the temperature distribution using
the FFT for the same 1024⇥1024 plate. In this case, the error
also stays below 10�11(K) (see Fig. 3(d)).

B. Computational performance

This section evaluates the performance of the proposed
methods under CPU and GPU hardware by making use of
highly optimized libraries. The Python programming language
and its scientific package ecosystem contains high level wrap-
pers to C/C++ libraries. For this reason, Python has been
selected for the rapid prototyping of the proposed methods.
The performance differences between libraries, as well as the
speed-up against the state of the art analytic solution have been
measured.

The FFT algorithm is used in a wide range of performance
demanding applications. Therefore, the optimization degree
of its implementation is highly relevant. On the one hand,
to target the CPU, the FTTPACK, MKL and FFTW libraries
have been selected. On the other hand, to target the GPU,
the cuFFT library from the NVIDIA CUDA Toolkit has been
used. All these libraries make use of multi-core parallelization,
vectorization instructions, efficient memory usage and apply
specific FFT algorithms to exploit the underlying hardware to
the highest degree.

Table II summarizes the selected libraries along the Python
wrapper packages and the targeted hardware device during the
performance tests.



(a) DST temperature distribution (b) DST error distribution

(c) FFT temperature distribution (d) FFT error distribution

Fig. 3. Temperature and absolute error distributions (w.r.t. [21]) on the thin plates for the DST and FFT approaches

TABLE II
PARAMETERS FOR THE PHYSICAL SIMULATION

Library Package Hardware

FFTPACK scipy.fftpack CPU
MKL numpy.fft CPU
FFTW pyfftw CPU
cuFFT pyCUDA, scikit-cuda GPU

The test platform used for the measurements is the follow-
ing: a desktop PC using Windows 10 with an Intel Core i5-
6500 (CPU), 16 GB RAM and NVIDIA GeForce GTX 960
(GPU). To measure the execution times of each method, each
test has been computed 5 times and the minimum time has
been registered.

Fig. 4 shows the computation time for both the proposed
DST (FFTPACK only) and FFT (FFTPACK, MKL, FFTW
and cuFFT) methods. The DST implementation available in
FFTPACK is efficient for plate discretization sizes below
512 ⇥ 512. Above this size, the FFT based method is much

even within FFTPACK. Between FFTPACK, MKL and FFTW,
the optimization degree achieved for the FFT with the last
two is higher. Results obtained with the FFTW library are
slightly better (faster) than the MKL ones, but this can be
due to the usage of wrappers, as the pyfftw wrapper offers
more control over the FFTW implementation. Both, FFTW
and MKL have shown very good performance results with
execution times under 1s for plate sizes up to 4096 ⇥ 4096.
The cuFFT library that makes use of GPU hardware has shown
the best performance results for sizes � 1024⇥ 1024.

Fig. 5 compares the performance between CPU and GPU
under the test platform for the FFT method. As the Fourier
coefficients can be computed in the GPU before performing
the temperature computation, the input for the FFT is already
in GPU memory. Thus, the transfer of these coefficients from
host memory (CPU) to device memory (GPU) is not measured.
This comparison shows that the GPU hardware effectively
accelerates the computation time nearly to a 2⇥ speed-up for
sizes � 1024⇥ 1204.

Fig. 6 compares the proposed FFT method with the state of



Fig. 4. Execution times for the DST and FFT for different plate resolutions
using the libraries presented in Table II

Fig. 5. Comparison of CPU vs GPU execution times for the FFT with different
plate resolutions

the art GPU analytic solution [21]. The presented FFT method
is much faster for plate sizes > 128⇥ 128, showing a big gap
in performance with a plate of size 1024 ⇥ 1024 where the
FFT approach obtains a 124⇥ speed-up (2.255138s against
0.018186s). Fig. 6 demonstrates the potential of the presented
FFT method to perform the temperature evaluation for high
resolution plate sizes of 1024⇥1024 and beyond. Furthermore,
the current analytic solution [21] has a limit size of 1024 ⇥
1024 due to GPU shared memory usage, while the proposed
FFT approach can compute the temperature for plates of sizes
up to 4096 ⇥ 4096 under the same GPU hardware, without
resorting to out of GPU memory management. For small plate
sizes ( 128 ⇥ 128), the analytic approach is faster because
the FFT method requires extra processing of input coefficients
and dispatching of kernels (scheduling time), adding a small
computation overhead.

Fig. 6. Appraisal of the computation times (in GPU) for the presented FFT
method vs the analytic method presented in [21]

V. CONCLUSIONS AND FUTURE WORK

This manuscript presents two different schemes for the
solution of the laser heating problem on thin metal plates using
the DST and the FFT. The presented methods improve the
computational complexity of the problem from O(M2N2) to
O(MN log(MN) (with M⇥N being the discretization size of
the metal plate). These methods are implemented in both CPU
and GPU architectures using available FFT libraries in the
Python programming language. Mathematical and numerical
proofs of the correctness of the schemes are presented and the
numerical error is measured below 10�11 K. The computation
times for the temperature evaluation are reduced from 1s to
0.01s (100⇥ faster), measured in an NVIDIA GeForce GTX
960 (GPU).

Future work includes (1) the inclusion of thermal/stress
models for structural analysis of the plate after the generated
high temperature gradients, (2) analysis of non-rectangular
plate geometries, and (3) consideration of non-linear interac-
tions such as temperature-dependent thermal properties and
phase changes.
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