
applied
sciences

Article

Fast Simulation of Laser Heating Processes on Thin
Metal Plates with FFT Using CPU/GPU Hardware

Daniel Mejia-Parra 1,2 , Ander Arbelaiz 1,* , Oscar Ruiz-Salguero 2 , Juan Lalinde-Pulido 3,
Aitor Moreno 1 and Jorge Posada 1

1 Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57,
20009 San Sebastián, Spain; dmejiap@eafit.edu.co (D.M.-P.); amoreno@vicomtech.org (A.M.);
jposada@vicomtech.org (J.P.)

2 Laboratory of CAD CAM CAE, Universidad EAFIT, Cra 49 no 7-sur-50, Medellín 050022, Colombia;
oruiz@eafit.edu.co

3 High Performance Computing Facility APOLO, Universidad EAFIT, Cra 49 no 7-sur-50,
Medellín 050022, Colombia; jlalinde@eafit.edu.co

* Correspondence: aarbelaiz@vicomtech.org; Tel.: +34-943-309-230

Received: 23 March 2020; Accepted: 1 May 2020; Published: 8 May 2020
����������
�������

Abstract: In flexible manufacturing systems, fast feedback from simulation solutions is required
for effective tool path planning and parameter optimization. In the particular sub-domain of laser
heating/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain
(spectral) analytic solutions that greatly reduce the required computational time in comparison
to industry standard finite element based approaches. However, these spectral solutions have
not been presented previously in terms of Fourier methods and Fast Fourier Transform (FFT)
implementations. This manuscript presents four different schemes that translate the problem of laser
heating of rectangular plates into equivalent FFT problems. The presented schemes make use of
the FFT algorithm to reduce the computational time complexity of the problem from O(M2N2) to
O(MN log(MN)) (with M× N being the discretization size of the plate). The test results show that
the implemented schemes outperform previous non-FFT approaches both in CPU and GPU hardware,
resulting in 100× faster runs. Future work addresses thermal/stress analysis, non-rectangular
geometries and non-linear interactions (such as material melting/ablation, convection and radiation
heat transfer).

Keywords: spectral method; Fast Fourier Transform; laser heating; GPU; rectangular metal plate;
industry 4.0

1. Introduction

Based on virtual modelling and simulation of physical phenomena, Industry 4.0 solutions aim
to integrate interactive virtual worlds with their equivalent physical part (e.g., using digital twins).
These solutions enable the development of decision making tools that can be of great use in the
optimization of manufacturing processes.

In this context, engineering solutions use extensively Finite Element Analysis (FEA) for simulation
of such physical phenomena (e.g., acoustics, heat transfer, structural analysis, fluid flow, etc.). However,
FEA approaches require a great amount of computation resources. In contrast, spectral analysis
and spectral methods are competitive alternatives to numerical simulations. These methods provide
frequency-domain solutions (infinite sum of trigonometric functions) to the Partial Difference Equations
(PDEs) that model such physical phenomena.

In the particular sub-domain of laser heating/cutting simulation, frequency-based algorithms have
been developed for heat transfer analysis on rectangular plates. These algorithms are faster than traditional

Appl. Sci. 2020, 10, 3281; doi:10.3390/app10093281 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8126-0546
https://orcid.org/0000-0002-1439-2178
https://orcid.org/0000-0002-9674-8974
https://orcid.org/0000-0002-9088-7332
https://orcid.org/0000-0001-7985-9915
http://dx.doi.org/10.3390/app10093281
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/9/3281?type=check_update&version=2

Appl. Sci. 2020, 10, 3281 2 of 23

numerical methods (such as Finite Element Methods) at the cost of some model simplifications. In addition,
these methods provide some advantages over FEA, such as allowing to zoom into asynchronous time
intervals without computing or storing the complete history of the solution.

This property makes frequency-based algorithms more adequate for decision making tools that
require rapid response times, allowing to be more flexible towards changes in the heating/cutting
manufacturing process. Fast simulation of the laser heating/cutting problem is very important for
different engineering problems, such as tool path planning, laser parameter optimization, waste and
resources optimization, and so forth. Moreover, interactive simulation and visualization of laser
machining processes contributes to many different challenges and opportunities currently present in
the Industry 4.0 framework [1].

The aforementioned methods for laser heating/cutting simulation allow simulation of complex
laser trajectories on rectangular plates, including parametric trajectories and the introduction of
multiple laser beams simultaneously. However, there are no Fast Fourier Transform (FFT)-based
solutions to the laser heating/cutting problem in the current state of the art.

The FFT is a widely used algorithm not only in the context of PDEs simulation, but also in other
areas such as signal analysis and image processing. Thus, its development has been refined and
studied extensively in the literature. Several FFT algorithms exist in the literature that further optimize
the computation in function of the input signal properties (e.g., symmetry, real/imaginary, size, etc.).
In general, the FFT is a key algorithm that retrieves the original spatial-based solution by performing a
factorization of the Discrete Fourier Transform (DFT) and avoids redundant computations, reducing
the computational complexity of the original DFT problem [2].

This article presents four different schemes that cast the laser heating/cutting problem into DST
(Discrete Sine Transform) and DFT (Discrete Fourier Transform) problems. Such casting enables the
use of FFT libraries to implement these schemes. The test results show a significant improvement
over existing methods in the computational time, both in CPU and GPU, due to the computational
complexity reduction.

This manuscript is an extension of the work presented in Reference [3], where only two schemes
were briefly introduced for the FFT computation of the laser heating problem. The current research
discusses in more detail each of the four schemes, including mathematical and algorithmic descriptions
but also the intuition behind the schemes followed by illustrations. Furthermore, a different simulation
case is designed and tested. Finally, the presented schemes are in the process of being applied in an
Industry 4.0 application prototype. The ongoing prototype implements an interactive virtual model of
a laser heating/cutting machine using geometry operations and physical simulation.

The remainder of this manuscript is organized as follows—Section 2 discusses the relevant
literature. Section 3 presents the proposed FFT schemes. Section 4 discusses the test results. Finally,
Section 5 presents the conclusions and discusses what remains for future work.

2. Literature Review

2.1. Laser Heating/Cutting Simulation

Finite Element Analysis (FEA) is one of the most used methods for thermodynamic simulation of
laser heating/cutting of metal plates. Using non-linear FEA, Yilbas et al. [4] simulate triangular cuts
for residual stress analysis. Similarly, Akthar et al. [5,6] perform the same non-linear FEA analysis for
rectangular cuts, while in Reference [7] circular cuts are studied using the same approach. In order to
account for laser ablation (material melting and evaporation), different methods such as the enthalpy
method [4–7], element birth and death [8], volume fractions [9], and temperature thresholds [10–12]
have been presented.

Other numerical methods include Finite Differences [13–15], Boundary Elements [16,17] and
Finite Volumes [18,19]. However, numerical methods are computationally expensive in general,

Appl. Sci. 2020, 10, 3281 3 of 23

limiting their application to small plate geometries and simple laser trajectories, requiring full time
history simulations.

Analytic methods provide significantly faster computations at the cost of some model
simplifications. Zimmer [20] presents a uni-dimensional analytic model for laser drilling processes
when the laser beam is static. Modest and Abakians [21] present a solution for a moving laser on an
infinite 2D plate. Jiang and Dai [22] present a frequency-based solution for rectangular plates when the
moving laser follows a straight path. Similarly, Mejia et al. [23,24] present a frequency-based solution
for arbitrary laser trajectories. Finally, an extension of the previous frequency-based solutions applied
to multiple laser beams simultaneously heating the plate surface is presented in Reference [25].

2.2. FFT-Based Laser Heating Simulation

FFT-based methods are relevant in the solution of physical problems by solving the inherent PDE
in the frequency domain. As a consequence, these methods have been successfully implemented in
the simulation of different physics phenomena. For example, in the context of heat transfer analysis,
Ju and Farris [26] present an FFT-based method for the solution of the thermoelastic equation on
infinite domains, while Dillenseger and Esneault [27] apply the FFT to the solution of a heat transfer
problem that arises in treatments of tissue with cancer. In structural analysis, FFT-based methods
have been developed for the solution of different elasticity and plasticity problems [28–31], and fluid
mechanics [32]. Other applications of the FFT include electromagnetism [33], 1D signal processing [34],
and 2D image processing [35].

As discussed previously, many authors [22–25] solve the problem of laser heating simulation in
the frequency domain. However, none of these authors cast the problem into the FFT domain.

2.3. Conclusions of the Literature Review

Current analytic methods for simulation of the laser heating/cutting problem already provide
fast solutions to the problem in the frequency domain. However, such methods perform brute-force
evaluation of the Fourier transforms, whose computation complexity for a 2D plate is O(M2N2). As a
consequence, these applications quickly become computationally expensive as more resolution of the
plate is required.

To overcome this problem, this manuscript presents four different schemes that cast the existing
brute-force solutions into equivalent DST and DFT problems. Mathematical proof for the validity of
each scheme is presented and algorithms that make use of FFT libraries are introduced, reducing the
computational complexity of the problem fromO(M2N2) (squared) toO(MN log(MN)) (logarithmic).
These algorithms are implemented both in CPU and GPU architectures. Numerical validation against
the brute-force approach results in a measured absolute error that is below 10−10 K along the 2D
plate. The results show significant computation time improvements to such brute-force simulations
(i.e., References [22–25]), reducing the measured computation times from 1 s to 0.01 s (100× faster) for
a 1024× 1024 rectangular plate, and enabling simulations for larger plate discretization sizes (up to
4096× 4096).

This manuscript extends the work presented in Reference [3]. In this previous work, two of the
four presented schemes are briefly introduced. The research presented in this paper presents two
additional FFT schemes, and provides further details of the four schemes (with added illustrations),
to make easier the understanding of the algorithms. Furthermore, new simulations have been executed
and an application case of the algorithms being implemented into an interactive simulator is presented.

3. Methodology

3.1. Heat Transfer Equation for Laser Heating on Thin Plates

The temperature u(x, y, t) on a 2D rectangular plate for a continuous laser beam source satisfies
the following partial differential equation with initial and boundary conditions:

Appl. Sci. 2020, 10, 3281 4 of 23

f − q
∆z

= ρcp
∂u
∂t
−∇ · (κ∇u)

q(x, y, t) = h · (u(x, y, t)− u∞)

u(x, y, 0) = u∞

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = u∞,

(1)

where a× b× ∆z are the plate dimensions, ρ is the plate density, cp is the specific heat and κ is the
thermal conductivity. q = q(x, y, t) is the heat loss due to convection at the plate surface, h is the
convection coefficient and u∞ is the ambient temperature.

Finally, the heat source f = f (x, y, t) is defined as a square-shape moving laser beam:

f (x, y, t) =

{ P(1−R)
πr2 , ‖~x−~x0(t)‖∞ < r

√
π

2

0, otherwise,
(2)

where R is the plate reflectivity, P is the laser power, r is the laser radius and ~x0(t) = [x0(t), y0(t)]
is the location of the laser spot at time t. ~x0 is the parametric curve that defines the laser trajectory,
discretized as a sequence of piecewise linear trajectories as described in References [23,24]. The function
f describes the laser power on the plate according to the distance (infinity norm) ‖~x − ~x0(t)‖∞ =

max(x− x0(t), y− y0(t)) of each plate point ~x = [x, y] to the laser spot ~x0(t) = [x0(t), y0(t)]. Figure 1
presents an scheme of the laser heating problem on thin metal plates.

Figure 1. Scheme for the laser heating problem on thin metal plates.

3.2. Analytic Solution

According to References [23,24], the solution to Equation (1) can be expressed as Fourier series:

u(x, y, t) = u∞ +
∞

∑
m=0

∞

∑
n=0

θmn(t) sin(αmx) sin(βny), (3)

with αm = (m + 1)π/a and βn = (n + 1)π/b. Each Fourier coefficient θmn(t) is defined as:

θmn(t) =
4

abρcp∆z

∫ t

0

∫ b

0

∫ a

0
f (x, y, τ) sin(αmx) sin(βny)e−ωmn(t−τ)dxdydτ, (4)

with Laplace eigenvalues ωmn:

ωmn =
κ

ρcp
(α2

m + β2
n) +

h
ρcp∆z

. (5)

Appl. Sci. 2020, 10, 3281 5 of 23

Let ~C1(t), ~C2(t), . . . be a sequence of piecewise linear sub-trajectories that discretize the complete
laser trajectory (see Figure 2), that is, ~x0(t) ≈ ~C1(t), ~C2(t), Each sub-trajectory ~Ci (i > 0) is defined
as a parameterized line segment:

~Ci(t) = ~x0(ti)
t− ti−1

ti − ti−1
+~x0(ti−1)

ti − t
ti − ti−1

, ti−1 ≤ t < ti, (6)

where the original laser trajectory ~x0 is sampled at t = t0, t1, t2, . . . , Tf .
The analytic solution of the Equation (4) for the given piecewise linear discretization is presented

in References [23,24].

(a) (b)

Figure 2. Continuous laser trajectory (from point A to B) and piecewise linear discretization of
the trajectory on a rectangular plate. (a) Continuous laser trajectory; (b) (Coarse) Piecewise linear
discretization of the trajectory.

3.3. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)

The Discrete Fourier Transform (DFT) allows to write any sequence of M real numbers as a finite
sum of sine and cosine functions, that is, a Fourier series. The (1D) DFT of the sequence of real values
G = {g0, g1, . . . , gM−1} ⊂ R is defined as:

gk =
M−1

∑
m=0

φme−
i2π
M km =

M−1

∑
m=0

φm

[
cos

2πkm
M
− i sin

2πkm
M

]
, (7)

where φm ∈ C is the mth Fourier coefficient and i =
√
−1 is the imaginary unit. The computational

complexity for direct evaluation of Equation (7) is O(M2), in which each gk requires M evaluations
(one for each Fourier term φm).

The Fast Fourier Transform (FFT) [2,34] is an algorithm that performs a factorization of the DFT,
reordering the Fourier terms and grouping them (into pairs) in order to avoid redundant computations
between different gk terms. Such a grouping is possible due to symmetries of the sine and cosine
functions, and the resulting evaluation is performed in recursive form [2,34]. As a consequence, the FFT
algorithm reduces the computational complexity of the problem to O(M log M)[2,34].

The above DFT and FFT complexity orders are true for 1D arrays. Therefore, for a 2D discrete
plate of size M× N, the computational complexities become O(M2N2) and O(MN log(MN)) for the
DFT and the FFT, respectively.

The remainder of this section describes how to cast Equation (3) as a DFT problem and therefore,
solve it using any FFT algorithm. Such casting effectively improves the computational complexity of
the problem with respect to the current state of the art [22–25].

Appl. Sci. 2020, 10, 3281 6 of 23

3.4. Scheme 1—Discrete Sine Transform (DST)

The Discrete Sine Transform (DST) [36] is a particular case of the DFT transform in which only the
sine terms of the Fourier series are considered. The (1D) DFT of the sequence G = {g0, g1, . . . , gM−1} ⊂
R is defined as:

gk =
M−1

∑
m=0

φk sin
(m + 1)(k + 1)π

M + 1
. (8)

Intuitively, this is the easiest of the schemes for casting the problem as Equation (3) only considers
the sine terms of a Fourier series. The algorithm of such casting is discussed below. The reader may
refer to Appendix A for the mathematical proof of the scheme.

Algorithm 1 presents the method used to retrieve the temperature at any given time t with the
DST method (see Equation (A1)). Line 2 applies the fast 2D DST of any FFT library, which presents a
computational complexity equivalent to a FFT (i.e., O(N log N) [37]). Line 3 applies the initial and
boundary conditions presented in Equation (1) to the computed solution. The complexity of the
presented algorithm is O(MN log(MN)).

Algorithm 1 Retrieve temperature using a 2D DST

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R
Ensure: U ∈ RM×N

1: U ← zeros(M, N)
2: U[1 : M− 1, 1 : N − 1]← dst2d(Θ)
3: U ← U + u∞
4: return U

3.5. Scheme 2—FFT Padded with Zeros

In this scheme, the original list of Fourier coefficients is duplicated in size in each direction
(2M× 2N). The added coefficients are set to zero and the FFT algorithm is applied in each direction.
The final temperature result is obtained from the imaginary (sine) component of the FFT result.
The mathematical proof of the scheme is presented in Appendix B.

Algorithm 2 Retrieve temperature using a Fast Fourier Transform (FFT) with zero padding

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R
Ensure: U ∈ RM×N

1: ΘPADDED ← zeros(2M, 2N)
2: ΘPADDED[1 : M− 1, 1 : M− 1]← Θ
3: for n = 1, n < N − 1, n← n + 1 do

4: arr ← fft(ΘPADDED[:, n])
5: ΘPADDED[:, n]← imag(arr)
6: end for
7: for m = 1, m < M− 1, m← m + 1 do

8: arr ← fft(ΘPADDED[m, :])
9: ΘPADDED[m, :]← imag(arr)

10: end for
11: U ← zeros(M, N)
12: U ← ΘPADDED[0 : M− 1, 0 : N − 1]
13: U ← U + u∞
14: return U.

Algorithm 2 presents the method used to retrieve the temperature at any given time t using the
zero padding method (see Equation (A3)). Line 1 initializes the extended matrix of Fourier coefficients

Appl. Sci. 2020, 10, 3281 7 of 23

with M, N trailing zeros (as per Figure 3). Lines 4 and 8 compute the 1D FFT of the padded arrays for
the y and x dimensions, respectively. Lines 5 and 9 extract the complex (imaginary component) of the
results. Finally, Line 12 removes the trailing zeros from the solution while Line 13 applies initial and
boundary conditions. The complexity of the presented algorithm is O(MN log(MN)).

Figure 3. Matrix structure for the zero padding FFT. The blue block contains the original Fourier
coefficients θmn. The remainder of the matrix is filled with zeros.

3.6. Scheme 3—Odd-Symmetry 1D FFT

In this scheme, the original list of Fourier coefficients is also duplicated in size in each direction
(2M× 2N). The idea is to take advantage from the odd symmetry of the sine function at kπ (with
k ∈ N, see Figure 4). Therefore, the added coefficients are set by mirroring the original M and N
coefficients (multiplied by −1) in each direction (rows and columns). The final temperature is obtained
from the imaginary (sine) component of the 1D FFT result in each direction. The mathematical proof
of this scheme is presented in Appendix C.

Figure 4. Odd symmetry of the sine function at kπ (k = 0, 1, 2, . . .).

Algorithm 3 presents the method used to retrieve the temperature of Equation (A9) at any given
time t using two nested 1D FFTs. Line 1 initializes the extended matrix of Fourier coefficients with
M, N trailing zeros. Lines 3-5 and Lines 6-8 add the reversed sequences of Fourier coefficients (with
negative sign) in each dimension, respectively (see Figure 5). Lines 10 and 14 compute the 1D FFT of the
padded arrays for the y and x dimensions, respectively. Lines 11 and 15 extract the complex (imaginary
component) of the result. Finally, Line 12 removes the mirrored part from solution while Line 13 applies
initial and boundary conditions. The complexity of the presented algorithm is O(MN log(MN)).

Appl. Sci. 2020, 10, 3281 8 of 23

Algorithm 3 Retrieve temperature using 1D FFTs by applying odd symmetry to the original coefficients

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R
Ensure: U ∈ RM×N

1: ΘODD_SYM ← zeros(2M, 2N)
2: ΘODD_SYM[1 : M− 1, 1 : M− 1]← Θ
3: for m = M + 1, m < 2M− 1, m← m + 1 do

4: ΘODD_SYM[m, :]← −ΘODD_SYM[2M−m− 1]
5: end for
6: for n = N + 1, n < 2N − 1, n← n + 1 do

7: ΘODD_SYM[n, :]← −ΘODD_SYM[2N − n− 1]
8: end for
9: for n = 1, n < N − 1, n← n + 1 do

10: arr ← fft(ΘODD_SYM[:, n])
11: ΘODD_SYM[:, n]← imag(arr)
12: end for
13: for m = 1, m < M− 1, m← m + 1 do

14: arr ← fft(ΘODD_SYM[m, :])
15: ΘODD_SYM[m, :]← imag(arr)
16: end for
17: U ← zeros(M, N)
18: U ← ΘODD_SYM[0 : M− 1, 0 : N − 1]
19: U ← U + u∞
20: return U.

Figure 5. Matrix structure for the odd symmetry FFT (1D and 2D). The blue block contains the original
coefficients and the remaining blocks contain their odd-symmetry counterpart. All blocks are separated
by rows and columns of zeros.

3.7. Scheme 4—Odd-Symmetry 2D FFT

Finally, in this scheme the original list of coefficients is duplicated and mirrored in each direction
exactly as in Section 3.6. However, this scheme also takes advantage of the even symmetry of the
cosine function at 2kπ (k ∈ N, see Figure 6). Similar to the 1D odd-symmetry approach, the duplicated
coefficients are mirrored in each direction (rows and columns), and multiplied by −1. The final
temperature is retrieved from the real component of the 2D FFT, which considers the sine components
and the cosine components (that become 0 due to the cosine symmetry). The mathematical proof of the
scheme is presented in Appendix D.

Appl. Sci. 2020, 10, 3281 9 of 23

Figure 6. Even symmetry of the cosine function at 2kπ (k = 0, 1, 2, . . .).

Algorithm 4 presents the method used to retrieve the temperature of Equation (A16) at any given
time t using a 2D FFT. Line 1 initializes the extended matrix of Fourier coefficients with M, N trailing
zeros. Similar to the 1D odd symmetry method, Lines 3-8 add the reversed sequences of Fourier
coefficients (with negative sign) in each direction (see Figure 5). Line 9 computes the 2D FFT of the
extended Fourier matrix. Line 11 extracts the real part of the FFT solution and removes the mirrored
part. Finally, Line 12 applies the initial and boundary conditions. The complexity of the presented
algorithm is O(MN log(MN)).

Algorithm 4 Retrieve temperature using 2D FFTs by applying odd sine symmetry and even cosine
symmetry to the original coefficients

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R
Ensure: U ∈ RM×N

1: ΘODD_SYM ← zeros(2M, 2N)
2: ΘODD_SYM[1 : M− 1, 1 : M− 1]← Θ
3: for m = M + 1, m < 2M− 1, m← m + 1 do

4: ΘODD_SYM[m, :]← −ΘODD_SYM[2M−m− 1]
5: end for
6: for n = N + 1, n < 2N − 1, n← n + 1 do

7: ΘODD_SYM[n, :]← −ΘODD_SYM[2N − n− 1]
8: end for
9: Mat← fft2d(ΘODD_SYM)

10: U ← zeros(M, N)
11: U ← real(Mat[0 : M− 1, 0 : N − 1])
12: U ← U + u∞
13: return U.

3.8. Complexity Analysis

This section presents a complexity analysis of the presented algorithms. Table 1, presents the
computational complexity of Algorithm 2, line by line. The number of operations in a 1D FFT is of N +

N log N [2,34]. As M and N grow large, the dominant term for the total number of computer operations
is 2MN(log(2M) + log(2N)). As a consequence, the resulting complexity is O(MN(log M + log N))

or equivalently, O(MN log(MN)).

Appl. Sci. 2020, 10, 3281 10 of 23

Table 1. Computational complexity analysis for Algorithm 2 (FFT padded with zeros). Complexity
simplification rules applied are: (a) O(k f (n)) = O(f (n)), (b) O(f (n) + g(n)) = O(max(f (n), g(n))).

Line Description Number of Operations Dominant Term Complexity Order

1, 2 Memory initialization O(MN)
4 FFT of a column 2M + 2M log(2M) 2M log(2M) O(M log M)
5 Extract complex part 2M O(M)
3–6 Loop through columns (N − 2)(4M + 2M log(2M)) 2MN log(2M) O(MN log M)
8 FFT of a row 2N + 2N log(2N) 2N log(2N) O(N log N)
9 Extract complex part 2N O(N)
7–10 Loop through rows (M− 2)(4N + 2N log(2N)) 2MN log(2N) O(MN log M)
11, 12 Memory initialization O(MN)
13 Sum of matrices MN O(MN)

TOTAL O(MN log M + MN log N)
= O(MN log(MN))

Algorithms 1, 3 and 4, present the same structure as Algorithm 2 does. Therefore, similar complexity
analysis apply for Algorithms 1, 2, 3 and 4, resulting in the same complexity orderO(MN log(MN)).

4. Results

This section presents the simulation and performance results of the implemented DST and FFT
schemes using different state-of-the-art FFT libraries, for the solution of the laser heating problem
on thin metal plates. All the simulations are executed with the parameters presented in Table 2
and the laser trajectory presented in Figure 2a. Section 4.1 presents the numerical validation of the
presented schemes with respect to the brute-force algorithms [22–25]. Finally, Section 4.2 discusses the
computational performance of the implemented schemes using available FFT libraries.

Table 2. Parameters for the physical simulation.

Parameter Description Value Units

a Plate width 0.01 m
b Plate height 0.01 m

∆z Plate thickness 0.001 m
ρ Plate density 8030 kg/m3

cp Specific heat 574 J/(kg K)
κ Thermal conductivity 20 W/(m K)
R Plate reflectivity 0 1
h Convection coefficient 20 W/(m2 K)

u∞ Ambient temperature 300 K
P Laser power 500 W
r Laser spot radius 0.0003 m

4.1. Numerical Validation

Section 3 validates the mathematical correctness of the presented schemes. However, a numerical
validation is presented in this section with numerical and graphical results for a 0.01× 0.01× 0.001
rectangular plate. Laser and material parameters are presented in Table 2 while the laser trajectory
used for the tests is the same presented in Figure 2a. As a groundtruth, we choose the method
presented in References [23–25]. This method already solves the problem presented in Equation (1)
using a brute-force approach, which requires O(M2N2) operations (as already discussed in Section 3.3.
Figure 7 plots the temperature distribution results obtained with this brute-force method.

Figure 8a plots the temperature distribution at the end of the laser trajectory, computed with the
DST algorithm for a 1024× 1024 plate discretization. Figure 8b plots the same result computed with
the zero padding FFT algorithm. The absolute error for the DST and the zero paddding FFT result
(w.r.t. the brute-force approach) is presented in Figure 8c,d, respectively. The measured absolute error
is below 10−10 (K) in both cases. It is worth pointing out that this error is evenly distributed through

Appl. Sci. 2020, 10, 3281 11 of 23

the 2D plate, which means that such error is not sensitive to the laser path or any other geometric
features (such as the domain boundaries).

Figure 7. Temperature solution for the laser trajectory presented in Figure 2a obtained by the brute-force
method [24]. No FFT or Discrete Sine Transform (DST) is used.

(a) DST temperature distribution (b) Zero padding temperature distribution

(c) DST error distribution (d) Zero padding error distribution

Figure 8. Temperature and absolute error distributions (w.r.t. the brute-force approach [24]) on the thin
plates for the DST and the zero padding FFT simulations.

Similarly, Figure 9a,b plot the temperature distributions at the end of the laser trajectory for the
1D symmetric FFT and the 2D symmetric FFT algorithms, respectively. Figure 9c,d plot the absolute
error for the 1D symmetric and 2D symmetric FFTs, respectively. Again, the error is below 10−10,
evenly distributed through the 2D plate.

Appl. Sci. 2020, 10, 3281 12 of 23

(a) 1D odd symmetry temperature distribution (b) 2D odd symmetry temperature distribution

(c) 1D odd symmetry error distribution (d) 2D odd symmetry error distribution

Figure 9. Temperature and absolute error distributions (w.r.t. the brute-force approach [24]) on the thin
plates for the odd symmetry FFT approaches (1D and 2D).

4.2. Computational Performance

This section evaluates the performance of the proposed methods under CPU and GPU hardware
architectures by making use of highly optimized FFT libraries. The Python programming language
includes in its scientific package ecosystem high level wrappers to C/C++ libraries. For this reason,
Python has been selected for the rapid prototyping of the proposed schemes in this work.

The FFT algorithm is used in a wide range of performance demanding applications. Therefore,
the optimization degree of its implementation is highly relevant. On the one hand, to target the CPU,
the FTTPACK, MKL and FFTW libraries have been selected. On the other hand, to target the GPU,
the cuFFT library from the NVIDIA CUDA Toolkit has been used. All these libraries make use of
multi-core parallelization, vectorization instructions, efficient memory usage, and apply specific FFT
algorithms to exploit the underlying hardware to the highest degree. It is worth noticing that the
FFTPACK library is the only one (between the aforementioned ones) that provides an implementation
of the DST.

Table 3 summarizes the selected libraries along the Python wrapper packages and the targeted
hardware device during the performance tests.

Table 3. Selected libraries and corresponding Python packages.

Library Python Package Hardware

FFTPACK scipy.fft CPU
MKL numpy.fft CPU
FFTW pyfftw CPU
cuFFT pyCUDA, scikit-cuda GPU

Appl. Sci. 2020, 10, 3281 13 of 23

Two test platforms have been used for the performance measurements: (i) a desktop PC using
Windows 10 with an Intel Core i5-6500 (CPU), 16 GB RAM and NVIDIA GeForce GTX 960 (GPU) and
(ii) a desktop PC using Manjaro (GNU/Linux) with an Intel Core i7-4700K (CPU), 16GB RAM and
NVIDIA GeForce RTX 2060 (GPU). To measure the execution times of each proposed method, each test
has been computed 5 times and the minimum time has been registered.

This section is divided into four subsections. Section 4.2.1 presents the computation times using
the CPU, while Section 4.2.2 presents the computational times using GPU hardware. Then, Section 4.2.3
compares the performance difference between both devices. Finally, Section 4.2.4 presents the achieved
speed-up against the state of the art brute-force solution [22–25].

4.2.1. CPU Performance Measurements

Figure 10 shows the computation time of the proposed schemes using the FFTPACK, MKL and
FFTW libraries, respectively. These are all implemented to be executed in general CPU hardware.

Figure 10a,b show all the proposed schemes implemented with the FFTPACK library.
The FFTPACK is the only library (between the used ones in this manuscripts) that has an
implementation of the DST algorithm. This DST implementation is efficient for plate discretization
sizes of 512× 512 and 1024× 1024. However, its performance is not as consistent as the FFT based
methods. Overall, the performance of the FFT-based methods with different input size are more stable,
being the 1D odd symmetric FFT scheme the best approach using the FFTPACK library.

Figure 10c,d show the execution times of the temperature evaluation making use of the MKL
library. In this case, from the FFT-based methods, both the 1D and 2D odd symmetric schemes are the
most efficient.

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 4

10 3

10 2

10 1

100

tim
e

(s
)

Method
DST_2D
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(a) FFTPACK with Intel i5-6500

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 4

10 3

10 2

10 1

100

tim
e

(s
)

Method
DST_2D
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(b) FFTPACK with Intel i7-4700K

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 4

10 3

10 2

10 1

100

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(c) MKL with Intel i5-6500

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 3

10 2

10 1

100

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(d) MKL with Intel i7-4700K

Figure 10. Cont.

Appl. Sci. 2020, 10, 3281 14 of 23

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 4

10 3

10 2

10 1

100

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(d) FFTW with Intel i5-6500

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 3

10 2

10 1

100

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(e) FFTW with Intel i7-4700K

Figure 10. CPU computation times using the FFTPACK, MKL and FFTW libraries for the proposed
schemes using different plate sizes. The odd symmetric schemes (1D and 2D) present the best
performance overall.

Figure 10e,f show the computation times using the FFTW library. Although, quite close to the
results obtained with the MKL library, the FFTW results are the best when using the CPU device.
In this case, also both the 1D and 2D odd symmetric schemes are the most efficient.

The optimization degree achieved for the FFT algorithms with the MKL and FFTW libraries is
higher. These libraries make better use of the underlying hardware, obtaining faster results than the
FFTPACK library for the FFT-based methods. Results obtained with the FFTW library are slightly
better (faster) than the MKL ones. However, this can be due to the usage of wrappers, as the pyfftw
(FFTW) wrapper offers more control over the implementation. Nonetheless, the obtained results
greatly surpass the state of art, both FFTW and MKL have shown execution times under 1s for plate
sizes up to 4096× 4096.

4.2.2. GPU Performance Measurements

Figure 11 shows the computation time for the three proposed FFT schemes using different GPU
hardware: (i) GeForce GTX 960 and (ii) GeForce RTX 2060. The implementation is based on the cuFFT
(CUDA toolkit) library and makes use of the PyCUDA and scikit-cuda python packages.

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 3

10 2

10 1

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(a) NVIDIA GeForce GTX960

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 3

10 2

10 1

tim
e

(s
)

Method
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(b) NVIDIA GeForce RTX2060

Figure 11. GPU computation times for the FFT-based methods using the cuFFT library with different
plate sizes. The 2D odd symmetric scheme outperforms the remainder FFT-based ones.

While the zero padding and the 1D odd symmetric implementations produce similar results
(in terms of computation time), the 2D odd symmetric scheme is by far the most performant. As the

Appl. Sci. 2020, 10, 3281 15 of 23

Fourier coefficients can be computed in the GPU before performing the temperature computation,
the input for the FFT is already in GPU memory. It is worth to point out that the transfer of these
coefficients from host memory (CPU) to device memory (GPU) is not measured.

4.2.3. Comparison of CPU and GPU Performance

Figure 12a shows an overview of the computation times for the proposed DST (FFTPACK only)
and FFT (FFTPACK, MKL, FFTW and cuFFT) methods. The FFTPACK (red) is the slowest and cuFFT
(yellow) is the fastest. Execution times for both the MKL (blue) and FFTW (green) libraries are similar,
obtaining slightly faster results with FFTW. Overall, the GPU hardware acceleration (with cuFFT)
provides a considerable speed-up, making it a good alternative to consider for simulations on plates
with large discretization sizes.

Figure 12b compares the execution times of the two test platforms considering both CPU and GPU
devices for the most performant FFT method: the 2D odd symmetric algorithm. This comparison shows
that the GPU hardware effectively accelerates the computation time, between the fastest CPU (i7-4700K)
and the slowest GPU (GTX 960), obtaining up to a 2× speed-up for plate sizes larger than 1024× 1024.
The performance difference increases as the input plate increases in size. Using more recent GPU
hardware (RTX 2060) results show a bigger difference in the achievable compute time speed-up.

512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 2

10 1

100

tim
e

(s
)

Library
FFTPACK
MKL
FFTW
cuFFT

Method
DST_2D
FFT_zeropadding
FFT_1D_oddsym
FFT_2D_oddsym

(a)

512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

0.0

0.1

0.2

0.3

0.4

tim
e

(s
)

CPU: i5-6500
CPU: i7-4700K
GPU: GTX960
GPU: RTX2060

(b)

Figure 12. CPU and GPU computation time comparison using different plate resolutions. (a) Computing
time for each scheme, grouped by library as per Table 3; (b) Computing time for the 2D odd symmetric
FFT scheme.

4.2.4. Comparison against State of the Art

Figure 13 compares the proposed FFT method with the state of the art (SoA) GPU brute-force
solution [25]. The presented FFT method is much faster for plate sizes larger than 128× 128, showing
a big difference in computing times with a plate size of 1024× 1024, where the FFT approach obtains
a 124× speed-up (2.255 s against 0.018 s). Figure 13 demonstrates the potential of the presented
FFT method to perform the temperature evaluation for high resolution plate sizes (1024× 1024 and
beyond). Furthermore, the current brute-force solution [25] has a limit size of 1024× 1024 due to GPU
shared memory usage, while the proposed FFT approach can compute the temperature for plates of
sizes up to 4096× 4096 under the same GPU hardware, without resorting to out-of-core GPU memory
management. For small plate sizes (smaller than 128× 128), the brute-force approach is faster due to
the FFT method requiring extra processing of input coefficients and dispatching of kernels (scheduling
time), adding a small computation overhead.

Appl. Sci. 2020, 10, 3281 16 of 23

64x64 128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
Coefficients and plate size

10 3

10 2

10 1

100

tim
e

(s
)

Method
Analytic SoA
FFT_2D_oddsym

Figure 13. Appraisal of the computation times using an NVIDIA GeForce GTX960 (GPU) for the
presented 2D odd symmetric FFT method vs the brute-force method presented in Reference [25]

4.3. Interactive Simulator Prototype

This section presents the integration of the presented FFT-based schemes into a 3D interactive
simulator for CNC (Computer Numeric Control) laser machining. The prototype integrates a physical
module for the temperature computation and a geometry module that computes the plate cutting
through time [23]. The physical module implements the GPU-based FFT algorithms presented in this
manuscript for the temperature computation at interactive rates while the geometry module performs
boolean operations as discussed in References [38,39].

The current prototype provides interactive simulation of the laser heating/cutting process,
visualized as a continuous animation. Interactively, the user can inspect the plate and its temperature at
any specific timestep. Furthermore, the fast computation speed enables the possibility to run different
simulations with different parameters in an interactive manner. Figure 14 shows the virtual simulator
for the test case discussed in this manuscript.

(a) M-trajectory interactive simulation (b) Close-up view of the laser head and laser spot

Figure 14. Interactive laser heating/cutting simulator. A virtual CNC machine follows the laser
trajectory defined by the program and the physical module computes the temperature using the FFT.

The development of interactive virtual worlds connected with physical objects (e.g., digital twins),
has become a key technology for fast assessment of manufacturing processes [1]. In this context,
an interactive CNC machine (as the integrated prototype) provides several tools to the engineer for the
design of efficient CNC programs (plate, laser parameters and trajectory), reducing the requirement
of real-world tests and consequently, reducing costs in terms of energy consumption, material waste,
machining times, and so forth.

The performance of the simulation is very important in the decision making process and
particularly, in the optimization of a given CNC program. Given a fixed time to design the CNC
program, it is important to test and tune the different program parameters (such as laser parameters

Appl. Sci. 2020, 10, 3281 17 of 23

and trajectory). The current approach shows a significant decrease in the simulation computing time.
This saving allows user-assisted and/or automated optimization programs to evaluate the different
scenarios at a reasonable computational cost. The impact of such optimization on the quality of the
workpiece will depend on the actual decisions and strategies applied by the engineers, supported by
the simulation results.

Although not being part of the present investigation, it is worth noticing that the temperature
maps on the plate help to predict and control deformations caused by thermal residual stresses.

5. Conclusions and Future Work

This manuscript presents four different schemes for the solution of the laser heating problem
on thin metal plates using the DST and the FFT. The presented methods reduce the computational
complexity of the problem from O(M2N2) to O(MN log(MN)) (with M× N being the discretization
size of the metal plate). It is worth noting that forced convection and radiative heat transfer are not
present in the solution considered in this manuscript. The inclusion of those effects in the simulation
implies a significant change in the structure of the mathematical model, which is out of the scope of
this research. Overcoming of such a limitation is left as future work.

These schemes are implemented in both CPU and GPU architectures using available optimized
FFT libraries. Mathematical and numerical proofs of the correctness of the schemes are presented and
the numerical error is measured below 10−10 K (and independent of the laser trajectory).

The performance evaluation shows that the minimum achievable computation time varies in
function of the used library, specially for big input sizes. Furthermore, the obtained results improve
the state of the art [25] in both CPU and GPU platforms for all the proposed schemes. Specifically,
using GPU hardware, the computation times for the temperature evaluation are reduced from 1 s to
0.01 s (100× faster), measured in an NVIDIA GeForce GTX 960 (GPU).

With more modern GPU hardware (GeForce RTX2060) even faster results can be acquired which
shows the potential of the proposed algorithms towards real-time laser heating/cutting simulations
and flexible manufacturing scenarios that require fast tool-planning capability and laser parameter
optimization to easily adapt to customer order changes.

Future work includes (1) the inclusion of thermal/stress models for structural analysis of the
plate after the generated high temperature gradients, (2) analysis of non-rectangular plate geometries,
and (3) consideration of non-linear interactions such as temperature-dependent thermal properties,
forced convection, radiation heat transfer and phase changes.

Author Contributions: D.M.-P., A.A. and A.M. conceived, designed and implemented the algorithms and
performed the simulations. O.R.-S. and J.P. supervised the Computational Geometry, Heat Transfer and Spectral
Methods research. J.L.-P. supervised the Parallel Computing, Data Structures and High Performance Programming
aspects of this research. All the authors contributed to the writing of this manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PDE Partial Differential Equation
DST Discrete Sine Transform
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
a, b, ∆z Width, height and thickness of the thin plate (m3).
Tf Total simulation time (s).
~x, t Spatial ~x = (x, y) ∈ [0, a]× [0, b] and temporal 0 ≤ t ≤ Tf coordinates.
u = u(~x, t) Temperature field u : [0, a]× [0, b]× [0, Tf]→ R on the metal plate (K).
ρ Plate density (kg/m3).

Appl. Sci. 2020, 10, 3281 18 of 23

cp Plate specific heat (J/(kg K)).
κ Plate thermal conductivity (W/(m K)).
R Plate reflectivity (0 ≤ R < 1).
q = q(u) Temperature-dependent heat convection field q : R→ R (W/m2).
h Natural convection coefficient at the plate surface (W/(m2 K))
u∞ Ambient temperature (K).
~x0 = ~x0(t) Laser spot location at a given time ~x0(t) = (x0(t), y0(t)).
f = f (~x, t) Power Density Field f : [0, a]× [0, b]× [0, Tf]→ R for the laser beam (W/m2).
P Laser power (W).
r Laser spot radius (m).
M× N 2D plate discretization size (M, N ∈ N).
θmn(t) mth, nth Fourier coefficient (m, n = 0, 1, . . .) for the temperature solution u at time t.
αm, βn Coefficients αm = (m + 1)π/a and βn = (n + 1)π/b for the Fourier basis in the X- and Y-axis,

respectively.
γm, δn γm = mπ/M and δn = nπ/N are the discrete equivalent of αm (m = 0, 1, . . . , M − 1) and βn (n =

0, 1, . . . , N − 1), respectively.
ωmn mth, nth eigenvalue of the heat (Laplace) operator defined on the rectangular plate.
~Ci(t) Piecewise linear discretization of the laser trajectory ~x0(t).

Appendix A. Scheme 1—Discrete Sine Transform (DST)

Let {x0, x1, . . . , xM} and {y0, y1, . . . , yN} be uniform discretizations of the intervals [0, a] and [0, b],
respectively. It is worth noting that for such a uniform sampling, the equalities xk/a = i/M and
yl/b = l/N hold. Therefore, after truncating the number of Fourier coefficients to (M− 1)× (N − 1),
Equation (3) is approximated as:

ukl(t) = u∞ +
M−2

∑
m=0

N−2

∑
n=0

θmn sin(γm+1k) sin(δn+1l),

k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A1)

with ukl(t) = u(xk, yl , t) the temperature at the discrete points of the plate and γm = mπ/M,
δn = nπ/N the discrete versions of αm and βn, respectively. This equation is equivalent to a 2D
DST of the temperatures on the discrete plate (as per Equation (8)).

Appendix B. Scheme 2—FFT Padded with Zeros

Consider {x0, x1, . . . , xM} be a uniform discretization of the interval [0, a]. For M Fourier
coefficients the following equation holds:

M−2

∑
m=0

θmn sin(γ(m+1)k) = −I
[
−

M−2

∑
m=0

θmni sin
2γ(m+1)k

2

]
= −I

[
M−2

∑
m=0

θmne−
i2π
2M k(m+1)

]
n = 0, 1, . . . N − 1

(A2)

where I [·] corresponds to the complex component of the series and γm = mπ/M. This corresponds to
a 1D DFT (Equation (7)) with M trailing zeros.

After applying the same procedure to the sequence {y0, y1, . . . , yN}, Equation (3) becomes:

ukl(t) = u∞ + I
[

N−2

∑
n=0
I
[

M−2

∑
m=0

θmne−
i2π
2M k(m+1)

]
e−

i2π
2N l(n+1)

]
,

k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A3)

The previous equation is equivalent to 2 nested 1D DFTs (Equation (7)) after adding 1 zero at the
beginning of the Fourier sequence and M, N zeros (x and y components, respectively) at the end of
the sequence.

Appl. Sci. 2020, 10, 3281 19 of 23

Appendix C. Scheme 3—Odd-Symmetry 1D FFT

Consider {x0, x1, . . . , xM} be a uniform discretization of the interval [0, a]. Since sin(x) =

− sin(−x) and sin(x) = sin(x + 2kπ) (with k ∈ N+) the following equation holds:

M−2

∑
m=0

θmn sin
(m + 1)kπ

M
=−

M−2

∑
m=0

θmn sin
−(m + 1)kπ

M

=−
M−2

∑
m=0

θmn sin
(
−(m + 1)kπ

M
+ 2kπ

)

=−
M−2

∑
m=0

θmn sin
(
(2M−m− 1)kπ

M

)
,

n =0, 1, . . . N

(A4)

The previous series can be expressed in reverse form by setting m← M−m− 2:

M−2

∑
m=0

θmn sin
(m + 1)kπ

M
= −

M−2

∑
m=0

θ(M−m−2)n sin
(
(M + m + 1)kπ

M

)
(A5)

Afterwards, consider the sequence shift m = M + 1, M + 2, . . . , 2M− 1. Equation (A5) becomes:

M−2

∑
m=0

θmn sin
(m + 1)kπ

M
= −

2M−1

∑
m=M+1

θ(2M−m−1)n sin
(

mkπ

M

)
(A6)

which is the second half of a sine transform with negative coefficients in reverse order. Therefore,
the series can be split in two as follows:

M−2

∑
m=0

θmn sin
(m + 1)kπ

M
=

1
2

M−2

∑
m=0

θmn sin
(m + 1)kπ

M
+

1
2

2M−1

∑
m=M+1

−θ(2M−m−1)n sin
(

mkπ

M

)
(A7)

On the other hand, from Equation (7):

φm sin
mkπ

M
= −I

[
−φmi sin

2mkπ

2M

]
= −I

[
φme−

i2π
2M km

]
(A8)

where I [·] corresponds to the complex component of the Fourier term.
Putting together Equations (A7) and (A8), Equation (3) becomes:

ukl(t) = u∞ +
1
4
I
[

N−2

∑
n=0
I
[

M−2

∑
m=0

θmne−
i2π
2M k(m+1)

]
e−

i2π
2N l(n+1)

]

− 1
4
I
[

N−2

∑
n=0
I
[

2M−1

∑
m=M+1

θ(2M−m−1)ne−
i2π
2M km

]
e−

i2π
2N l(n+1)

]

− 1
4
I
[

2N−1

∑
n=N+1

I
[

M−2

∑
m=0

θm(2N−n−1)e
− i2π

2M k(m+1)

]
e−

i2π
2N ln

]

+
1
4
I
[

2N−1

∑
n=N+1

I
[

2M−1

∑
m=M+1

θ(2M−m−1)(2N−n−1)e
− i2π

2M km

]
e−

i2π
2N ln

]
k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A9)

The previous equation is equivalent to 2 nested 1D DFTs (Equation (7)) after padding the
M− 2, N − 2 coefficients in reverse order (and negative) at the end of the original Fourier coefficients
in each direction (x and y), respectively. The final result is retrieved by taking the complex part
(i.e., the sine component) of each 1D DFT.

Appl. Sci. 2020, 10, 3281 20 of 23

Appendix D. Scheme 4—Odd-Symmetry 2D FFT

In this scheme, consider the real part Dkl (instead of the complex one) of Equation (A9) as follows:

Dkl =
1
4
Re

[
N−2

∑
n=0
Re

[
M−2

∑
m=0

θmne−
i2π
2M k(m+1)

]
e−

i2π
2N l(n+1)

]

− 1
4
Re

[
N−2

∑
n=0
Re

[
2M−1

∑
m=M+1

θ(2M−m−1)ne−
i2π
2M km

]
e−

i2π
2N l(n+1)

]

− 1
4
Re

[
2N−1

∑
n=N+1

Re

[
M−2

∑
m=0

θm(2N−n−1)e
− i2π

2M k(m+1)

]
e−

i2π
2N ln

]

+
1
4
Re

[
2N−1

∑
n=N+1

Re

[
2M−1

∑
m=M+1

θ(2M−m−1)(2N−n−1)e
− i2π

2M km

]
e−

i2π
2N ln

]
k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A10)

which in fact consists of the cosine parts of the Fourier series:

Dkl =
1
4

N−2

∑
n=0

M−2

∑
m=0

θmn cos
(

2πk(m + 1)
2M

)
cos

(
2πl(n + 1)

2N

)

− 1
4

N−2

∑
n=0

2M−1

∑
m=M+1

θ(2M−m−1)n cos
(

2πkm
2M

)
cos

(
2πl(n + 1)

2N

)

− 1
4

2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1) cos
(

2πk(m + 1)
2M

)
cos

(
2πln
2N

)

+
1
4

2N−1

∑
n=N+1

2M−1

∑
m=M+1

θ(2M−m−1)(2N−n−1) cos
(

2πkm
2M

)
cos

(
2πln
2N

)
k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A11)

Consider the second term of the previous expansion, and the change of the series variable
m ← 2M − m − 1. Since cos(x) = cos(−x) and cos(x) = cos(x + 2πk) (with k ∈ N+), then the
following equation holds:

1
4

N−2

∑
n=0

2M−1

∑
m=M+1

θ(2M−m−1)n cos
(

2πkm
2M

)
cos

(
2πl(n + 1)

2N

)

=
1
4

N−2

∑
n=0

M−2

∑
m=0

θmn cos
(

2πk(2M− 1−m)

2M

)
cos

(
2πl(n + 1)

2N

)

=
1
4

N−2

∑
n=0

M−2

∑
m=0

θmn cos
(

2πk(m + 1)
2M

)
cos

(
2πl(n + 1)

2N

)
(A12)

Applying the same procedure to the fourth term in Equation (A11), we obtain:

1
4

2N−1

∑
n=N+1

2M−1

∑
m=M+1

θ(2M−m−1)(2N−n−1) cos
(

2πkm
2M

)
cos

(
2πln
2N

)

=
1
4

2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1) cos
(

2πk(2M− 1−m)

2M

)
cos

(
2πln
2N

)

=
1
4

2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1) cos
(

2πk(m + 1)
2M

)
cos

(
2πln
2N

)
(A13)

Appl. Sci. 2020, 10, 3281 21 of 23

Substituting Equations (A12) and (A13) into Equation (A11):

Dkl =
1
4

N−2

∑
n=0

M−2

∑
m=0

θmn cos
(

2πk(m + 1)
2M

)
cos

(
2πl(n + 1)

2N

)

− 1
4

N−2

∑
n=0

M−2

∑
m=0

θmn cos
(

2πk(m + 1)
2M

)
cos

(
2πl(n + 1)

2N

)

− 1
4

2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1) cos
(

2πk(m + 1)
2M

)
cos

(
2πln
2N

)

+
1
4

2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1) cos
(

2πk(m + 1)
2M

)
cos

(
2πln
2N

)
k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A14)

in which the first and second terms cancel out, as well as terms three and four, respectively. Therefore:

∀k,l Dkl = 0 (A15)

Finally, we add Dkl to Equation (A9):

ukl(t) = ukl(t) + Dkl

= u∞ +
1
4
Re

[
N−2

∑
n=0

M−2

∑
m=0

θmne−
i2π
2M k(m+1)e−

i2π
2N l(n+1)

]

− 1
4
Re

[
N−2

∑
n=0

2M−1

∑
m=M+1

θ(2M−m−1)ne−
i2π
2M kme−

i2π
2N l(n+1)

]

− 1
4
Re

[
2N−1

∑
n=N+1

M−2

∑
m=0

θm(2N−n−1)e
− i2π

2M k(m+1)e−
i2π
2N ln

]

+
1
4
Re

[
2N−1

∑
n=N+1

2M−1

∑
m=M+1

θ(2M−m−1)(2N−n−1)e
− i2π

2M kme−
i2π
2N ln

]
k = 0, 1, . . . M− 1, l = 0, 1, . . . , N − 1

(A16)

The above equation is true since Re(xy) = Re(x)Re(y) + I(x)I(y) (i.e., the real part of
the product of two complex numbers is the sum of their real parts and their imaginary parts).
Equation (A16) is equivalent to a 2D DFT (Equation (7)) after padding the M− 2, N − 2 coefficients in
reverse order (and negative) at the end of the original Fourier coefficients in each direction (x and y),
respectively. The final result is retrieved by taking the real part of the result.

References

1. Posada, J.; Toro, C.; Barandiaran, I.; Oyarzun, D.; Stricker, D.; de Amicis, R.; Pinto, E.B.; Eisert, P.; Döllner, J.;
Vallarino, I. Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet.
IEEE Comput. Graphics Appl. 2015, 35, 26–40. [CrossRef]

2. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput.
1965, 19, 297–301. [CrossRef]

3. Mejia-Parra, D.; Arbelaiz, A.; Moreno, A.; Posada, J.; Ruiz-Salguero, O. Fast Spectral Formulations of Thin
Plate Laser Heating with GPU Implementations. In Proceedings of the 2nd International Conference on
Mathematics and Computers in Science and Engineering (MACISE 2020), Madrid, Spain, 18–20 January
2020, to be Published.

4. Yilbas, B.S.; Akhtar, S.; Keles, O. Laser cutting of triangular blanks from thick aluminum foam plate: Thermal
stress analysis and morphology. Appl. Therm. Eng. 2014, 62, 28–36. [CrossRef]

http://dx.doi.org/10.1109/MCG.2015.45
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1016/j.applthermaleng.2013.09.026

Appl. Sci. 2020, 10, 3281 22 of 23

5. Akhtar, S.; Kardas, O.O.; Keles, O.; Yilbas, B.S. Laser cutting of rectangular geometry into aluminum alloy:
Effect of cut sizes on thermal stress field. Opt. Lasers Eng. 2014, 61, 57–66. [CrossRef]

6. Yilbas, B.; Akhtar, S.; Karatas, C. Laser cutting of rectangular geometry into alumina tiles. Opt. Lasers Eng.
2014, 55, 35–43. [CrossRef]

7. Akhtar, S.S. Laser cutting of thick-section circular blanks: Thermal stress prediction and microstructural
analysis. Int. J. Adv. Manuf. Technol. 2014, 71, 1345–1358. [CrossRef]

8. Roberts, I.; Wang, C.; Esterlein, R.; Stanford, M.; Mynors, D. A three-dimensional finite element analysis of
the temperature field during laser melting of metal powders in additive layer manufacturing. Int. J. Mach.
Tools Manuf. 2009, 49, 916–923. [CrossRef]

9. Shi, B.; Attia, H. Integrated Process of Laser-Assisted Machining and Laser Surface Heat Treatment. J. Manuf.
Sci. Eng. 2013, 135, 061021. [CrossRef]

10. Akarapu, R.; Li, B.Q.; Segall, A. A thermal stress and failure model for laser cutting and forming operations.
J. Fail. Anal. Prev. 2004, 4, 51–62. [CrossRef]

11. Nyon, K.Y.; Nyeoh, C.Y.; Mokhtar, M.; Abdul-Rahman, R. Finite element analysis of laser inert gas cutting
on Inconel 718. Int. J. Adv. Manuf. Technol. 2012, 60, 995–1007. [CrossRef]

12. Fu, C.; Sealy, M.; Guo, Y.; Wei, X. Finite element simulation and experimental validation of pulsed laser
cutting of nitinol. J. Manuf. Process. 2015, 19, 81–86. [CrossRef]

13. Modest, M.F. Three-dimensional, transient model for laser machining of ablating/decomposing materials.
Int. J. Heat Mass Transf. 1996, 39, 221–234. [CrossRef]

14. Han, G.-c.; Nas, S.-j. A Study on Torch Path Planning in Laser Cutting Processes Part 1: Calculation of
Heat Flow in Contour Laser Beam Cutting. J. Manuf. Process. 1999, 1, 54–61. Special Issue of the Journal of
Manufacturing Systems. [CrossRef]

15. Xu, W.; Fang, J.; Wang, X.; Wang, T.; Liu, F.; Zhao, Z. A numerical simulation of temperature field in
plasma-arc forming of sheet metal. J. Mater. Process. Technol. 2005, 164–165, 1644–1649. AMPT/AMME05
Part 2. [CrossRef]

16. Kim, M.J. Transient evaporative laser-cutting with boundary element method. Appl. Math. Model. 2000, 25,
25–39. [CrossRef]

17. Kim, M.J. Transient evaporative laser cutting with moving laser by boundary element method.
Appl. Math. Model. 2004, 28, 891–910. [CrossRef]

18. Kheloufi, K.; Hachemi Amara, E.; Benzaoui, A. Numerical Simulation of Transient Three-Dimensional
Temperature and Kerf Formation in Laser Fusion Cutting. J. Heat Transf. 2015, 137, 112101. [CrossRef]

19. Yuan, P.; Gu, D. Molten pool behaviour and its physical mechanism during selective laser melting of
TiC/AlSi10Mg nanocomposites: simulation and experiments. J. Phys. D Appl. Phys. 2015, 48, 035303.
[CrossRef]

20. Zimmer, K. Analytical solution of the laser-induced temperature distribution across internal material
interfaces. Int. J. Heat Mass Transf. 2009, 52, 497–503. [CrossRef]

21. Modest, M.F.; Abakians, H. Evaporative Cutting of a Semi-infinite Body With a Moving CW Laser.
J. Heat Transf. 1986, 108, 602–607. [CrossRef]

22. Jiang, H.J.; Dai, H.L. Effect of laser processing on three dimensional thermodynamic analysis for HSLA
rectangular steel plates. Int. J. Heat Mass Transf. 2015, 82, 98–108. [CrossRef]

23. Mejia, D.; Moreno, A.; Arbelaiz, A.; Posada, J.; Ruiz-Salguero, O.; Chopitea, R. Accelerated Thermal
Simulation for Three-Dimensional Interactive Optimization of Computer Numeric Control Sheet Metal Laser
Cutting. J. Manuf. Sci. Eng. 2017, 140, 031006. [CrossRef]

24. Mejia-Parra, D.; Moreno, A.; Posada, J.; Ruiz-Salguero, O.; Barandiaran, I.; Poza, J.C.; Chopitea, R.
Frequency-domain analytic method for efficient thermal simulation under curved trajectories laser heating.
Math. Comput. Simul. 2019, 166, 177–192. [CrossRef]

25. Mejia-Parra, D.; Montoya-Zapata, D.; Arbelaiz, A.; Moreno, A.; Posada, J.; Ruiz-Salguero, O. Fast Analytic
Simulation for Multi-Laser Heating of Sheet Metal in GPU. Materials 2018, 11, 2078. [CrossRef] [PubMed]

26. Ju, Y.; Farris, T.N. FFT Thermoelastic Solutions for Moving Heat Sources. J. Tribol. 1997, 119, 156–162.
[CrossRef]

27. Dillenseger, J.L.; Esneault, S. Fast FFT-based bioheat transfer equation computation. Comput. Biol. Med. 2010,
40, 119–123. [CrossRef]

http://dx.doi.org/10.1016/j.optlaseng.2014.04.016
http://dx.doi.org/10.1016/j.optlaseng.2013.10.006
http://dx.doi.org/10.1007/s00170-013-5594-5
http://dx.doi.org/10.1016/j.ijmachtools.2009.07.004
http://dx.doi.org/10.1115/1.4025832
http://dx.doi.org/10.1361/15477020420756
http://dx.doi.org/10.1007/s00170-011-3655-1
http://dx.doi.org/10.1016/j.jmapro.2015.06.005
http://dx.doi.org/10.1016/0017-9310(95)00134-U
http://dx.doi.org/10.1016/S1526-6125(99)70005-8
http://dx.doi.org/10.1016/j.jmatprotec.2005.01.007
http://dx.doi.org/10.1016/S0307-904X(00)00034-2
http://dx.doi.org/10.1016/j.apm.2004.03.001
http://dx.doi.org/10.1115/1.4030658
http://dx.doi.org/10.1088/0022-3727/48/3/035303
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.03.034
http://dx.doi.org/10.1115/1.3246978
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.11.003
http://dx.doi.org/10.1115/1.4038207
http://dx.doi.org/10.1016/j.matcom.2019.05.006
http://dx.doi.org/10.3390/ma11112078
http://www.ncbi.nlm.nih.gov/pubmed/30355959
http://dx.doi.org/10.1115/1.2832452
http://dx.doi.org/10.1016/j.compbiomed.2009.11.008

Appl. Sci. 2020, 10, 3281 23 of 23

28. Berbenni, S.; Taupin, V.; Djaka, K.S.; Fressengeas, C. A numerical spectral approach for solving elasto-static
field dislocation and g-disclination mechanics. Int. J. Solids Struct. 2014, 51, 4157–4175. [CrossRef]

29. Djaka, K.S.; Villani, A.; Taupin, V.; Capolungo, L.; Berbenni, S. Field Dislocation Mechanics for heterogeneous
elastic materials: A numerical spectral approach. Comput. Methods Appl. Mech. Eng. 2017, 315, 921–942.
[CrossRef]

30. Ma, R.; Truster, T.J. FFT-based homogenization of hypoelastic plasticity at finite strains. Comput. Methods
Appl. Mech. Eng. 2019, 349, 499–521. [CrossRef]

31. Paramatmuni, C.; Kanjarla, A.K. A crystal plasticity FFT based study of deformation twinning, anisotropy
and micromechanics in HCP materials: Application to AZ31 alloy. Int. J. Plast. 2019, 113, 269–290. [CrossRef]

32. Starn, J. A Simple Fluid Solver Based on the FFT. J. Graphics Tools 2001, 6, 43–52. [CrossRef]
33. Taboada, J.M.; Landesa, L.; Obelleiro, F.; Rodriguez, J.L.; Bertolo, J.M.; Araujo, M.G.; Mouri no, J.C.; Gomez, A.

High Scalability FMM-FFT Electromagnetic Solver for Supercomputer Systems. IEEE Antennas Propag. Mag.
2009, 51, 20–28. [CrossRef]

34. Manolakis, D.; Ingle, V. Chapter 8—Computation of the Discrete Fourier Transform. In Applied Digital Signal
Processing: Theory and Practice; Manolakis, D., Ingle, V., Eds.; Cambridge University Press: New York, NY,
USA, 2011; pp. 434–484.

35. Raaf, O.; Adane, A.E.H. Pattern recognition filtering and bidimensional FFT-based detection of storms in
meteorological radar images. Digit. Signal Process. 2012, 22, 734–743. [CrossRef]

36. Britanak, V.; Yip, P.C.; Rao, K. CHAPTER 1—Discrete Cosine and Sine Transforms. In Discrete Cosine and Sine
Transforms; Britanak, V., Yip, P.C., Rao, K., Eds.; Academic Press: Oxford, UK, 2007; pp. 1–15. [CrossRef]

37. Britanak, V.; Yip, P.C.; Rao, K. CHAPTER 4—Fast DCT/DST Algorithms. In Discrete Cosine and Sine
Transforms; Britanak, V., Yip, P.C., Rao, K., Eds.; Academic Press: Oxford, UK, 2007; pp. 73–140. [CrossRef]

38. Moreno, A.; Segura, Á.; Arregui, H.; Posada, J.; Ruíz de Infante, Á.; Canto, N. Using 2D Contours to Model
Metal Sheets in Industrial Machining Processes. In Future Vision and Trends on Shapes, Geometry and Algebra;
De Amicis, R., Conti, G., Eds.; Springer: London, UK, 2014; pp. 135–149.

39. Velez, G.; Moreno, A.; Infante, A.R.D.; Chopitea, R. Real-time part detection in a virtually machined sheet
metal defined as a set of disjoint regions. Int. J. Comput. Integr. Manuf. 2016, 29, 1089–1104. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijsolstr.2014.08.009
http://dx.doi.org/10.1016/j.cma.2016.11.036
http://dx.doi.org/10.1016/j.cma.2019.02.037
http://dx.doi.org/10.1016/j.ijplas.2018.10.007
http://dx.doi.org/10.1080/10867651.2001.10487540
http://dx.doi.org/10.1109/MAP.2009.5433091
http://dx.doi.org/10.1016/j.dsp.2012.04.008
http://dx.doi.org/10.1016/B978-012373624-6/50003-5
http://dx.doi.org/10.1016/B978-012373624-6/50006-0
http://dx.doi.org/10.1080/0951192X.2015.1130263
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Laser Heating/Cutting Simulation
	FFT-Based Laser Heating Simulation
	Conclusions of the Literature Review

	Methodology
	Heat Transfer Equation for Laser Heating on Thin Plates
	Analytic Solution
	Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT)
	Scheme 1—Discrete Sine Transform (DST)
	Scheme 2—FFT Padded with Zeros
	Scheme 3—Odd-Symmetry 1D FFT
	Scheme 4—Odd-Symmetry 2D FFT
	Complexity Analysis

	Results
	Numerical Validation
	Computational Performance
	CPU Performance Measurements
	GPU Performance Measurements
	Comparison of CPU and GPU Performance
	Comparison against State of the Art

	Interactive Simulator Prototype

	Conclusions and Future Work
	Scheme 1—Discrete Sine Transform (DST)
	Scheme 2—FFT Padded with Zeros
	Scheme 3—Odd-Symmetry 1D FFT
	Scheme 4—Odd-Symmetry 2D FFT
	References

