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Abstract: Lattice-based workpieces contain patterned repetition of individuals of a basic topology
(Schwarz, ortho-walls, gyroid, etc.) with each individual having distinct geometric grading. In the
context of the design, analysis and manufacturing of lattice workpieces, the problem of rapidly
assessing the mechanical behavior of large domains is relevant for pre-evaluation of designs. In this
realm, two approaches can be identified: (1) numerical simulations which usually bring accuracy
but limit the size of the domains that can be studied due to intractable data sizes, and (2) material
homogenization strategies that sacrifice precision to favor efficiency and allow for simulations of large
domains. Material homogenization synthesizes diluted material properties in a lattice, according
to the volume occupancy factor of such a lattice. Preliminary publications show that material
homogenization is reasonable in predicting displacements, but is not in predicting stresses (highly
sensitive to local geometry). As a response to such shortcomings, this paper presents a methodology
that systematically uses design of experiments (DOE) to produce simple mathematical expressions
(meta-models) that relate the stress–strain behavior of the lattice domain and the displacements
of the homogeneous domain. The implementation in this paper estimates the von Mises stress in
large Schwarz primitive lattice domains under compressive loads. The results of our experiments
show that (1) material homogenization can efficiently and accurately approximate the displacements
field, even in complex lattice domains, and (2) material homogenization and DOE can produce
rough estimations of the von Mises stress in large domains (more than 100 cells). The errors in the
von Mises stress estimations reach 42% for domains of up to 24 cells. This result means that coarse
stress–strain estimations may be possible in lattice domains by combining DOE and homogenized
material properties. This option is not suitable for precise stress prediction in sensitive contexts
wherein high accuracy is needed. Future work is required to refine the meta-models to improve the
accuracies of the estimations.

Keywords: design of experiments; lattice structures; homogenization; schwarz primitive; mechanical
characterization; modeling and simulation
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1. Introduction

New emerging technologies in the context of Industry 4.0, such as digital twins, pose new
challenges in the design and simulation in the industrial and biomedical ecosystems. The interactive
nature of the processes of Industry 4.0 requires fast simulation methods that enable real-time decision
making and digital twins being continuously updated with the physical world [1].

Lattice materials have multiple applications in engineering (e.g., energy absorption) and
biomedicine (e.g., implants and scaffolds) [2]. However, the simulation of large lattice domains
is in many cases unfeasible because: (1) the meshing of these domains is a time consuming process
that involves human intervention and (2) the size of the produced meshes is intractable due to the
geometric complexity associated with these domains [3,4].

This manuscript implements a methodology that combines material homogenization and design of
experiments (DOE) to estimate the stress–strain response in large lattice domains. The main advantage
of this methodology is its lesser computational demands in comparison to finite element analysis
(FEA). We apply this approach to approximate the von Mises stress in lattice structures of the type
Schwarz primitive. This manuscript is an extension of the work in [5] which presents a methodology
to develop the meta-models using DOE but does not integrate them with material homogenization to
produce stress–strain estimations in large lattice domains.

The remainder of this article is organized as follows: Section 2 provides a review of the relevant
related work. Section 3 describes the proposed methodology to estimate the stress–strain response in
lattice domains using material homogenization and DOE. Section 4 presents and evaluates the results
of the implementation of our methodology. Section 5 concludes the manuscript and suggests future
extensions of the article.

2. Literature Review

2.1. Lattice Structures and Material Homogenization

Lattice structures are generally composed of replicas of a unit cell that are continuous, uniformly
distributed and fill the space. The reason why lattice structures attract the attention of engineers
is that they can retain good mechanical performance while reducing material usage and weight.
For this reason, lattice structures are used for energy absorption, heat transfer and vibration damping
applications [2]. Additive manufacturing (AM) has also widened the application range of lattice
structures. The manufacturing freedom of AM has promoted the use of lattice structures for
materializing the results of structural optimization [6–9] and for biomedical applications in orthopedics
and tissue engineering [10,11].

Material homogenization seeks the equivalent Young’s modulus and Poisson’s ratio to produce
a homogeneous structure that resembles the displacements field of the lattice domain. Material
homogenization suppresses the geometrical complexity associated with lattice domains. Therefore,
lighter FEA meshes are obtained, and consequently, the computational cost and time requirements for
FEA simulations are reduced [6,12].

Apart from predicting macro-mechanical properties (Young’s and Poisson’s moduli), material
homogenization has enabled the study of periodic strut-like lattice structures built via AM, considering
the defects caused during the manufacturing with AM and the stiffening in the joints of the structure [13,
14]. These studies are, however, limited to strut-like lattice structures. Material homogenization has
also been successfully integrated with topology optimization to produce optimal designs of lattice
structures suitable for AM [6,12]. However, since the homogeneous and lattice domains have notorious
geometrical differences and stresses/strains depend on the geometry, the stress–strain behavior of the
homogeneous domain does not resemble the one of the lattice domain.



Appl. Sci. 2020, 10, 3858 3 of 21

2.2. Modeling and Simulation of Lattice Structures

The numerical analysis of the mechanical behavior of large lattice structures is challenging due to
the high computing (memory and time) requirements [4]. Large lattice structures demand heavy FEA
meshes formed by solid elements. Sometimes solid FEA meshes can be simplified using simpler and
lighter FEA elements (beams or shells). This approach has allowed for simulations of relatively large
domains of a few hundred of cells [4,15–17]. However, this technique cannot be applied to surface-type
lattice structures like Schwarz primitive lattices, since this kind of architecture cannot be approximated
by long struts or thin plates.

Regarding the joint use of FEA and DOE, we found that they have been combined in several
applications in non-lattice structures. The current work can be divided into three groups: (i) evaluation
of material and mechanical properties, including metals [18], resins [19] and composite materials [20];
(ii) shape optimization of mechanical parts, including medical devices [21] and automobile parts [22];
and (iii) generation of meta-models to estimate the stress–strain responses in small lattice domains
using DOE [5]. However, the produced meta-models are not used for any further analysis with
large lattice domains. To the best of our knowledge, the works in the literature do not implement
a methodology that integrates systematically material homogenization and DOE for stress–strain
estimation in the field of lattice materials.

Monte Carlo methods [23,24] use random samples in the domains of input variables for an
experiment. The experiment is run under the prescribed combination of input variables, and the
resulting output values recorded. The model mathematical model for the system or cause/effect
is computed on the basis of maximal likeness. In our case, the expenses of running each test are
significant since each test requires the preparation and setup of the FEA experiment; the execution
itself and its post-processing; and the analysis of results. This high cost is common to almost all
experiments, and leads to choosing a minimal (and as possible orthogonal) set of samples of the input
set, leading to DOE. This DOE, more economical than the Monte Carlo trials, was chosen for the
present work.

2.3. Conclusions of the Literature Review

In our literature survey, we found that the geometry of lattice structures implies the use of
small FEA elements which produce intractable FEA meshes. Consequently, the numerical analysis
of large lattice structures is a complex (sometimes unfeasible) process, limited by its elevated
computational cost.

To alleviate the computational burden of the simulation of lattice structures, material
homogenization is applied to produce regular domains that mimic the lattice domain. Following
this approach, one can obtain fast and accurate approximations of the displacements field of the
lattice domain. However, the stress–strain response cannot be directly obtained due to the geometric
dissimilarities between the lattice and the homogeneous domains.

Our goal with this paper is to contribute to the problem of the estimation of the stress–strain
response in large lattice domains. For this purpose, we propose a methodology that integrates material
homogenization and DOE. We use the DOE-based methodology in [5] to devise simple mathematical
expressions (meta-models) to characterize the stress–strain of Schwarz primitive lattice domains. The
inputs of the produced meta-models are displacement-based features that can be efficiently calculated
using material homogenization instead of full FEA simulations. The meta-models developed in this
article are not intended to be suitable in high precision contexts, but to produce rough and efficient
estimations of the von Mises stress that allow fast pre-evaluation of designs.
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Particularly, we apply our methodology to estimate the von Mises stress under compressive loads
for large (more than 100 cells) Schwarz primitive lattice structures. The meta-models use the strains of
the boundary of the lattice cell to relate the displacement field of the homogeneous domain with the
von Mises stress of the lattice domain.

3. Methodology

3.1. Schwarz Primitive Lattice Structures

Schwarz primitive lattice structures are obtained by calculating isosurfaces of the real-valued
function F : R3 → R in Equation (1):

F(x, y, z) = cos
(

2π

L
x
)
+ cos

(
2π

L
y
)
+ cos

(
2π

L
z
)

, (1)

where L is the desired length of the cell [25].
Schwarz primitive lattice structures are employed in topology optimization for AM. The result of

some common methods in topology optimization is a density map that is impossible to manufacture.
The problem of converting that density map into a manufacturable domain does not have an exact
solution. The mathematical structure of Schwarz primitive lattice allows for finding approximate
solutions to that problem, providing manufacturable designs with smooth transitions in the connections
of multiple cells, preventing stress concentration [7]. Moreover, Schwarz primitive lattice structures are
stiffer than other lattice structures (such as the gyroid) [26]. These properties make Schwarz primitive
structures attractive for engineering and biomedical applications [7,8,26].

In order to show the geometry of the Schwarz primitive cell, we obtained the isosurfaces for
the isovalues t = −0.87, 0.0, 0.87; that is, we found the surfaces that solved the equation F = t.
The corresponding relative densities (ρ; i.e., the ratio of the volume of the cell and L3) of the cells were
ρ = 0.25, 0.5, 0.75, respectively. Figure 1 displays the cells along with their corresponding isovalues
and relative densities.

(a) (b) (c)

Figure 1. Geometry of Schwarz primitive cells. (a) Isovalue t = −0.87 and relative density ρ = 0.25; (b)
isovalue t = 0 and relative density ρ = 0.50; and (c) isovalue t = 0.87 and relative density ρ = 0.75.
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3.2. Methodology to Estimate the Stress–Strain Response of Lattice Structures

In this paper, we propose a methodology for the efficient estimation of the stress–strain response of
large lattice structures. The proposed algorithm relies on two main concepts: material homogenization
and DOE. The algorithm is divided into four stages: (1) material homogenization of the lattice
structure, (2) numerical simulation of the load case using the homogeneous domain, (3) extraction of
displacement-based features and (4) the application of meta-models to estimate the response variable
based on the features extracted in (3). Below, we describe every step of our algorithm. Figure 2 presents
a graphical summary of the proposed methodology, with the inputs and outputs of each phase of
the process.

Figure 2. Work-flow for the estimation of the mechanical response of lattice domains using material
homogenization and design of experiments (DOE).

3.2.1. Material Homogenization

This process seeks to obtain a simplified regular (homogeneous) domain ΩQ that approximates
the heterogeneous lattice structure Ω. The goal is to find an equivalent material

(
EQ, νQ) so that the

regular domain equipped with the equivalent material
(
EQ, νQ) resembles the displacement field of

the original lattice domain. We implemented the numerical homogenization method presented in [27],
which has been applied in the context of lattice structures in [6,12]. In Section 3.3, the reader can find
more details on the foundations of material homogenization.

3.2.2. FEA Simulation of the Homogeneous Domain

At this stage, the load case is simulated on the homogeneous domain ΩQ using analogous
boundary conditions. The result of this stage is the displacement field on ΩQ, which is an
approximation of the displacement field on the lattice domain Ω.
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3.2.3. Feature Extraction

Characteristic features of every cell of the lattice domain Ω are extracted using the displacement
field over the homogeneous domain ΩQ obtained in the previous step. These displacement-based
features extracted at this stage are used as inputs of the meta-models to estimate the stress–strain
response of each cell. The definition of these features is central to obtaining reliable meta-models and
is highly dependent on the expertise of the modeler.

The extracted features condense (or characterize) the deformation of the cell and must provide
information about the variable of interest. In this work, we use as features the average normal strain at
the flat faces of the boundary of the Schwarz primitive cells, which can be obtained directly from the
displacements on the homogeneous domain ΩQ. A discussion on how to generate the meta-models
using DOE is presented in Section 3.4.

3.2.4. Meta-Model Execution

A meta-model is a simple mathematical expression (i.e., function) that relates the features extracted
in the previous stage and the response variable. In other words, the features extracted in the previous
stage (denoted by XXX = [x1, . . . , xn]T ) are used to feed a function f : Rn → R that gives an estimation of
the response variable for every cell of the lattice domain. In this article, the meta-models are developed
using DOE techniques (see Section 3.4).

3.3. Material Homogenization

Material homogenization seeks to represent a heterogeneous material with a simple homogeneous
material. In the case of lattice structures, a lattice unit cell can be treated as a composite material
formed by solid (with bulk properties E and ν) and void (with properties E0 and ν0) zones [6,12].
Material homogenization aims to find the material properties (EQ and νQ) that make a filled cube
behave like the unit lattice cell (see Figure 3).

Figure 3. Graphical representation of material homogenization.

We implemented the numerical homogenization method proposed in [27]. This method finds the
elasticity matrix CCCQ:

CCCQ =



c1 c2 c2 0 0 0
c2 c1 c2 0 0 0
c2 c2 c1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3


, (2)

that relates stresses and strains in the homogeneous material as σσσ = CCCQεεε. The corresponding Young
EQ and Poisson νQ moduli are provided by the following equations:



Appl. Sci. 2020, 10, 3858 7 of 21

EQ =
c2

1 + c1c2 − 2c2
2

c1 + c2
, (3)

νQ =
c2

c1 + c2
. (4)

In this work, we selected the titanium alloy Ti-6Al-4V as the bulk material with properties:
Young’s modulus E = 114 GPa and Poisson’s ratio ν = 0.33. We applied the homogenization
procedure to obtain the diluted properties of Schwarz primitive cells for the relative densities ρ ∈
{0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Table 1 displays the results obtained. Table 1 also includes the case
in which the density is ρ = 1.0. Notice that the properties of the homogeneous domain coincide with
the bulk properties (as expected). When needed, the properties of intermediate densities were obtained
via linear interpolation.

Table 1. Results of numerical homogenization of Schwarz primitive cells: Young’s modulus and
Poisson’s ratio.

Relative Density (ρ) Equivalent Young’s Modulus (EQ) Equivalent Poisson’s Ratio (νQ)

0.25 7.5 GPa 0.05
0.3 14.0 GPa 0.09
0.4 24.0 GPa 0.13
0.5 35.0 GPa 0.17
0.6 48.0 GPa 0.21
0.7 61.0 GPa 0.23
0.8 81.0 GPa 0.27
0.9 97.0 GPa 0.29
1.0 114 GPa 0.33

3.4. Generation of Meta-Models Using DOE

DOE is a traditional and effective methodology based on statistical techniques that supports the
analysis of complex processes and systems. DOE allows one to establish in a systematic way how
changes in the parameters of a system or function affect their outcome, minimizing the uncertainty
and the number of required experiments to complete such characterization. DOE covers the whole
spectrum, from the planing of the experiments to the statistical analysis of the results [28,29]. We used
DOE techniques to develop meta-models to estimate the von Mises stress in Schwarz primitive
lattice structures.

The von Mises stress σVM is a material failure criterion used in the design and analysis of lattice
structures in various works (e.g., [30–32]). The von Mises stress is defined per Equation (5):

σVM =
√

σ2
1 + σ2

2 + σ2
3 − (σ1σ2 + σ1σ3 + σ2σ3), (5)

where σ1, σ2, σ3 are the principal stresses. The criterion states that, for preventing failure, the von Mises
stress must be below the tensile strength of the material. However, failure in lattice materials is also
governed by buckling instabilities that occur before material failure [13]. For the sake of demonstration
of the methodology, this work is limited to the estimation of the von Mises stress, although a more
complete failure criterion for lattice structures should consider buckling phenomena.

The procedure to devise meta-models using DOE is summarized in three phases: (1) identification
of potential features (also called factors) that may affect the variable of interest, (2) selection of the
most influential (main) factors and (3) development of simple mathematical expressions (meta-models)
that relate the main factors and the response variable.

We applied DOE to develop meta-models for the von Mises stress in Schwarz primitive lattice
structures of different relative densities. In an ideal case, we should have attained a meta-model for
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each relative density ρ ∈ (0, 1). This computational demand makes this option unfeasible. Since we
were only seeking approximations of the von Mises stress, we found meta-models for the relative
densities ρ = 0.25, 0.50, 0.75, 1.0. To find the four meta-models, we used lattice domains formed by
a single unit cell of the mentioned relative densities. Below, we describe in detail every stage of
the procedure.

3.4.1. Factor Identification

The goal at this stage was to detect features (or factors) FV = { f1, f2, · · · , fn} that (1) were related
to the von Mises stress and (2) could be controlled. Additionally, the features had to be based on
the displacements over the lattice, so that they could be retrieved from the FEA simulation over the
homogeneous domain ΩQ.

Our set of factors initially contained the strains at the flat faces (extreme faces) of the boundary of
each unit cell of the Schwarz primitive lattice domain. For convenience, the flat faces of the boundary
were denoted as {X,−X, Y,−Y, Z,−Z}. {−X,−Y,−Z} were the flat faces at x = 0, y = 0, z = 0.
{X, Y, Z} were the flat faces at x = L, y = L, z = L. We defined the strains at the flat faces as:

εij = sgn(i) ·
Uij −U−jj

L
,

i = ±X,±Y,±Z, j = x, y, z,
(6)

where Uij represented the average displacement in j direction of the face i. For instance, U−Xx was the
displacement in x direction of the flat face at x = 0. The normal strains at the flat faces corresponded
to {ε−Xx, εXx, ε−Yy, εYy, ε−Zz, εZz}. However, from Equation (6), ε−Xx = ε−Yy = ε−Zz = 0, which
prevented the introduction of false strains due to pure translation of the Schwarz primitive cell.

In Equation (5) we can see that the von Mises stress depends on the shear stress, and therefore, it
is influenced by the shear strain. We conducted preliminary tests considering shear strains at the flat
faces of the cell but our results overestimated the von Mises stress by a large factor. We found that the
shear strain interaction is not fully understood at the level of DOE. Consequently, our set of factors
was reduced to the normal strains at the flat faces of the cell {εXx, εYy, εZz}.

3.4.2. Factor Selection

In the context of DOE, the goal at this stage is to reduce the number of considered factors, selecting
those factors that affect the most the response variable. Mature techniques do exist for this task, such
as full or fractional factorial or Plackett–Burman designs [28,29]. However, we considered only three
factors, so we decided to develop the meta-models using all of them.

3.4.3. Meta-Model Development

The goal at this stage was to develop efficient and simple mathematical expressions that expressed
the von Mises stress in Schwarz primitive lattice domains in terms of {εXx, εYy, εZz}.

We used response surface methodologies, specifically central composite face-centered design
(CCF), to efficiently devise the meta-models. The shape of the devised meta-models for Schwarz
primitive cells of relative densities ρ ∈ {0.25, 0.5, 0.75} was

ŷ =

(
β0 + ∑

i≤j
βijεiiε jj

)2

, (7)

and the shape of the meta-model for ρ = 1.0 was
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ŷ =

√√√√β0

(
∑

i
ε2

ii −∑
i<j

εiiε jj

)
. (8)

We used R [33] to perform the regression analysis to estimate the coefficients
(

βi, βij
)

of the
meta-models (see Table 2).

To evaluate the meta-models, we ran 100 random simulations for each of the four domains and
compared the experimental (result of FEA) and predicted (result of the meta-model) von Mises stress.
The values of the Young’s modulus and Poisson’s ratio used for the simulations with the homogeneous
domains were the ones reported in Table 1. For the cell of density ρ = 0.75, we used EQ = 71.0 GPa
and νQ = 0.25, which resulted by interpolating the corresponding moduli of the cells of densities
ρ = 0.7 and ρ = 0.8. We used the displacements on the homogeneous domains to calculate the normal
strains at the flat faces εij and used them as inputs for the meta-models in Equations (7) and (8).

The boundary conditions imposed on the four domains were prescribed displacements in the
normal direction of the flat faces of the domains. The size of the cell used was L = 1.0 cm, so that the
imposed displacements were equivalent to normal strains at the flat faces (εij).

Our analysis was limited to the elastic zone of the material. The range of the variables was εij ∈
10−5× [−1.0, 1.0]. The values of the variables were coded in the range [−1, 1] to be in concordance with
the procedures found in the literature [29]. To ensure that the strains in the flat faces were in the working
range

(
εij ∈ 10−5 × [−1.0, 1.0]

)
and to explore it evenly, the values of the imposed normal strains at

the flat faces were generated from a uniform distribution in the interval (−1.0× 10−5, 1.0× 10−5).
Figure 4 displays the aforementioned comparison for each cell. We can see that the meta-models

for the densities ρ ∈ {0.25, 0.50, 0.75} tend to overestimate the von Mises stress at low stress conditions.
This is due to the term β0 in Equation (7), which impedes the meta-model to predict small values
of von Mises stress. Table 2 gives the average and maximum relative error of the predicted vs. the
experimental von Mises stress. The maximum relative errors are associated to low stress conditions,
mainly influenced by the value of β0 in Equation (7) (as previously discussed). It is clear that the
meta-models are not well-suited for low stress conditions. The average and maximum relative errors
in the estimations show that this methodology is not applicable in very sensitive processes where high
accuracy is required.

Table 2. Values of the coefficients β in the fitted meta-models. Average and maximum relative errors
between FEA and our approach for 100 random simulations.

Relative Density β0 β12 β13 β23 β11 β22 β33 Average Relative Error Max. Relative Error

0.25 0.0438 0.0010 0.0013 0.0005 0.0089 0.0075 0.0067 19% 370%
0.50 0.0369 0.0019 0.0021 0.0019 0.0076 0.0073 0.0074 20% 298%
0.75 0.0419 0.0041 0.0039 0.0036 0.0089 0.0098 0.0091 21% 255%
1.0 0.4036 N/A N/A N/A N/A N/A N/A 0% 0%
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(a) (b)

(c) (d)

Figure 4. Experimental (result of lattice FEA) vs. predicted (result of the meta-model) von Mises stress
in Schwarz primitive lattices of relative density (a) ρ = 0.25; (b) ρ = 0.50; (c) ρ = 0.75; and (d) ρ = 1.0.

4. Results

4.1. Validation of the Proposed Methodology

To evaluate our methodology, we compared the results of the FEA simulation and our
methodology for six Schwarz primitive lattice domains. Three of the six domains (Figure 5a–c)
were formed by eight unit cells of uniform density ρ = 0.25, 0.50, 0.75, respectively. The other three
domains were formed by unit cells of graded density; that is, the isovalue t was not a constant but
a function t : R3 → R. The resultant surfaces are the solutions to Equation F(x, y, z) = t(x, y, z) (see
Equation (1)). The domain of 24 unit cells in Figure 5f was taken from [7] and corresponded to the
result of mapping the results of topology onto Schwarz primitive cells [7]. The domains of eight cells
displayed in Figure 5d,e were also taken from [7]. The isovalue functions associated with these two
domains are:

t(x, y, z) =


− 5

2
( 3x

2L
)2

+ 2 , 0 ≤ x ≤ 2L
3 , y, z ∈ R

− 1
2 , 2L

3 < x ≤ 4L
3 , y, z ∈ R

3
2L x− 5

2 , 4L
3 < x ≤ 2L, y, z ∈ R

(9)

t(x, y, z) = 3
( x

L
− 1
)2
− 1

2
, 0 ≤ x ≤ 2L, y, z ∈ R (10)

The six domains were subjected to uniaxial compression (see Figure 5). The magnitude of the
load was such that the resultant strains in the flat faces of the boundary of the cells lay in the range
of analysis εij ∈ 10−5 × [−1.0, 1.0]. First, we compared the displacements field of the lattice and
homogeneous domain (Section 4.1.1). Secondly, we applied our DOE-based methodology using the
displacement results from the homogeneous domain to get the maximum von Mises stress in every
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cell. Finally, we compared the maximum von Mises stress obtained via (1) direct FEA of the lattice
domain and (2) our proposed methodology (Section 4.1.2).

(a) (b) (c)

(d) (e)

(f) (g)

Figure 5. Studied domains and boundary conditions for the FEA simulations. Domains of eight cells of
uniform density (a) ρ = 0.25; (b) ρ = 0.50; and (c) ρ = 0.75. Domains of eight cells of density (d) per
Equation (9); and (e) per Equation (10). (f) Domain of 24 cells with density per [7]. (g) Domain of 112
cells with density per Equation (12).
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4.1.1. Material Homogenization in Schwarz Primitive Lattice Structures

The FEA simulations of the lattice and homogeneous domains were executed in ANSYS. The
lattice models were meshed in ANSYS using tetrahedral elements (SOLID285). The material properties
of the lattice models correspond to the bulk material properties (ρ = 1.0 in Table 1). On the other hand,
given the regular shape of the homogeneous domains, we used cubic elements (SOLID185) for the
respective meshes. Each cubic sub-domain was isotropic and its material properties were assigned
according to its relative density and the properties reported in Table 1. The homogeneous domain was
then a regular 3D array of isotropic cubic sub-domains. Since the properties of each sub-domain could
be different, the homogeneous domain resulted to be anisotropic.

0

50

100

150

200

250

300

8 cells.
ρ = 0.25

8 cells.
ρ = 0.50

8 cells.
ρ = 0.75

8 cells.
Graded
dens.

(Eq. 9)

8 cells.
Graded
dens.

(Eq. 10)

24 cells.
Graded
dens.

Ref. [7]

112 cells.
Graded
dens.

(Eq. 12)

N
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r 
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m
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Model

Number of Elements in Model Mesh

Lattice domain

Homogeneous
domain

× 103

Figure 6. Number of elements in the FE meshes of lattice and simplified homogeneous domains.

FEA simulations were executed using different hardware settings and different operative systems;
therefore, it was not possible to compare execution times between different simulations in equal
conditions. To overcome this difficulty, we used the number of elements in the mesh as a measurement
of computational expense in each domain. The numbers of elements required for each lattice and each
homogeneous domain are reported in Figure 6 and Table 3. It is noticeable that the FEA meshes of
lattice domains required more elements than the homogeneous domains. Another important aspect
to highlight is that the number of elements of the homogeneous domain only depend on the number
of cells (particularly, we chose a mesh of 10× 10× 10 elements per unit cell). On the other hand, the
number of elements for the lattice domains does not completely depend on the number of cells. Notice
that five out of the six domains are conformed by eight unit cells. However, the number of elements
(Figure 6 and Table 3) is different for each domain. These variations are mainly influenced by the shape
of the domain, which affects the corresponding meshing algorithms of the FEA software (ANSYS).

Table 3. Number of elements in FE meshes of lattice and simplified homogeneous domains.

Domain Figure Number No. of Elements in Lattice Domain No. of Elements in Homogeneous Domain

8 cells. Uniform density with ρ = 0.25 Figure 5a 149,090 8000
8 cells. Uniform density with ρ = 0.50 Figure 5b 132,710 8000
8 cells. Uniform density with ρ = 0.75 Figure 5c 260,610 8000

8 cells. Graded density per Equation (9) Figure 5d 27,863 8000
8 cells. Graded density per Equation (10) Figure 5e 66,890 8000

24 cells. Graded density per [7] Figure 5f 163,080 24,000
112 cells. Graded density per Equation (12) Figure 5g N/A 112,000

After conducting the FEA simulations, we proceeded to compare the resultant displacements of
the lattice and homogeneous domains. Figures 7 and 8 (1) contrast the nodal displacement in the load
direction X for the six load cases and (2) show the absolute difference between the X displacement
predicted by the lattice and homogeneous approaches. The reader may observe the similarity in both
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the distribution and magnitude of the displacements field of the lattice and homogeneous domains.
Figures 7 and 8 also show that the maximum value of the absolute error is in all cases approximately
10 times smaller than the maximum displacement. From these results we conclude that material
homogenization is an accurate tool to estimate the displacements in lattice structures and its efficiency
allows its application in large lattice domains.

4.1.2. Comparison between FEA and Our Methodology

We used the displacements on the homogeneous domains obtained in the previous stage to extract
the inputs of our meta-models: the normal strains on the boundary of each cell. Then, we used the
meta-models presented in Section 3.4 to estimate the maximum von Mises stress in each cell. To apply
the meta-models, we calculated the average relative density of each cell of the non-uniform (graded)
density domains. Since we had only meta-models for the relative densities ρ ∈ {0.25, 0.50, 0.75, 1.0},
we used linear interpolation to do the approximations for the intermediate values of density ρ. For
instance,

(
σ
(0.4)
VM

)
, the von Mises stress for a relative density ρ = 0.4 is approximated as

σ
(0.4)
VM =

2
5

σ
(0.25)
VM +

3
5

σ
(0.5)
VM , (11)

where σ
(0.25)
VM and σ

(0.50)
VM denote the von Mises stresses for the cells of densities ρ = 0.25 and ρ = 0.50.

σ
(0.25)
VM and σ

(0.50)
VM are retrieved using Equation (7) with the corresponding coefficients of Table 2.

Figures 9 and 10 show (i) the von Mises stress of the FEA simulation, (ii) the maximum von Mises
stress of every cell retrieved from the FEA simulation of the lattice domain and (iii) the maximum
von Mises stress of every cell calculated with our methodology. In addition, Table 4 lists, for each
domain, the global maximum von Mises stress using (a) FEA simulation of the lattice domain and
(b) our methodology. We measured the relative error of our methodology with respect to the FEA
simulation of the lattice domain. These results are reported also in Table 4.

In Figures 9 and 10, we can see that the maximum von Mises stress given by our methodology
(third column of the figures) is very uniform along all the cells. When compared with the maximum von
Mises stress of the FEA methodology (second column of the figures), it is clear that our methodology
is not able to capture all the variations of the maximum von Mises stress per cell (see Figure 10h,i).
However, we can see the correspondence between the most stressed zones using FEA simulation and
our methodology. Note that our implementation often predicts the most stressed cell.

Table 4. Maximum von Mises stress values of direct FEA of the lattice domain vs. our methodology.

Domain Figure Number Max. σVM : FEA (MPa) Max. σVM : Our Method (MPa) Rel. Error

Eight cells. Uniform density with ρ = 0.25 Figure 5a 3.6 2.4 33%
Eight cells. Uniform density with ρ = 0.50 Figure 5b 4.5 3.6 20%
Eight cells. Uniform density with ρ = 0.75 Figure 5c 3.4 2.4 29%

Eight cells. Graded density per Equation (9) Figure 5d 3.1 3.6 16%
Eight cells. Graded density per Equation (10) Figure 5e 3.4 2.8 17%

24 cells. Graded density per [7] Figure 5f 3.1 1.8 42%
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Results of X compression test. Domains of eight cells domains of uniform density. Domain
of ρ = 0.25: (a) X displacement in lattice domain. Min. displacement: −1.1 × 10−4 cm; (b) X
displacement in homogeneous domain. Min. displacement −1.1× 10−4 cm; and (c) absolute error.
Domain of ρ = 0.50: (d) X displacement in lattice domain. Min. displacement: −2.3× 10−4 cm; (e)
X displacement in homogeneous domain. Min. displacement −2.2× 10−4 cm; and (f) absolute error.
Domain of ρ = 0.75: (g) X displacement in lattice domain. Min. displacement: −1.2× 10−4 cm; (h) X
displacement in homogeneous domain. Min. displacement −1.1× 10−4 cm; and (i) absolute error.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Results of X compression test. Domains of graded density of 8 and 24 cells. Domain of
density per Equation (9): (a) X displacement in lattice domain. Min. displacement: −1.6× 10−4 cm;
(b) X displacement in homogeneous domain. Min. displacement −1.6× 10−4 cm; and (c) absolute
error. Domain of density per Equation (10): (d) X displacement in lattice domain. Min. displacement:
−1.6× 10−4 cm; (e) X displacement in homogeneous domain. Min. displacement −1.3× 10−4 cm; and
(f) absolute error. Domain of density as in [7]: (g) X displacement in lattice domain. Min. displacement:
−1.8× 10−4 cm; (h) X displacement in homogeneous domain. Min. displacement −2.0× 10−4 cm;
and (i) absolute error.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Comparison of the maximum von Mises stress in direct FEA (lattice) and our methodology in
Schwarz primitive structures. Domains of eight cells of uniform density. Distribution of von Mises
stress in lattice domain with (a) ρ = 0.25; (d) ρ = 0.50; and (g) ρ = 0.75. Maximum von Mises stress per
cell in lattice domain with (b) ρ = 0.25; (e) ρ = 0.50; and (h) ρ = 0.75. Maximum von Mises stress per
cell in homogeneous domain with (c) ρ = 0.25; (f) ρ = 0.50; and (i) ρ = 0.75. Detailed results in Table 4.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Comparison of the maximum von Mises stress in direct FEA (lattice) and our methodology
in Schwarz primitive structures of graded density. Domains of 8 and 24 cells. Distribution of von Mises
stress in lattice domain with (a) density per Equation (9); (d) density per Equation (10); and (g) density
as in [7]. Maximum von Mises stress per cell in lattice domain with (b) density per Equation (9); (e)
density per Equation (10); and (h) density as in [7]. Maximum von Mises stress per cell in homogeneous
domain with (c) density per Equation (9); (f) density per Equation (10); and (i) density as in [7]. Detailed
results in Table 4.

In terms of the accuracy of our methodology, we can see in Table 4 that (1) the error in the
estimations with our methodology is between 16% and 42% and (2) our methodology tends to
underestimate the maximum von Mises stress. These results show that our methodology can
only do rough estimations (with errors above 20%) of the maximum von Mises stress in Schwarz
lattice structures.
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We have identified three critical aspects that can improve the accuracy of our methodology:

1. To consider more displacement-based features located inside the cell, not only on the boundary of
the cell.

2. To develop meta-models for more relative densities. Currently, it is limited to meta-models of
density ρ ∈ {0.25, 0.50, 0.75, 1.0}.

3. To enlarge the range of analysis of the displacement-based features, since in a single load case, the
magnitude of the deformation of the lattice domain varies in every zone. Currently, the allowed
normal strains are limited to the interval 10−5 × [−1.0, 1.0].

4.2. Application of Our Methodology to Large Lattice Domains

To demonstrate the potential of our methodology to be applied in the roughly estimation of the
von Mises stress in larger lattice structures, we generated a domain of 112 (7× 4× 4) cells of graded
density. We tested it under uniaxial compression in X direction (Figure 11a). The isovalue function
associated to this domain is:

t(x, y, z) = 2.5− 0.3
L
(x + y). (12)

First, we produced the homogeneous domain and conducted the FEA simulation. The number of
elements of the mesh was 112,000 (10× 10× 10 elements per cell). Secondly, using the displacements
field (Figure 11b), we extracted the normal strains on the boundary of each of the 112 cells. Finally,
we used the meta-models of Section 3.4 along with linear interpolation to estimate the maximum von
Mises stress in each cell. The results of this estimation are shown in Figure 11c.

Due to the large number of cells (117), the FEA directly on the lattice domain was unfeasible.
However, it is possible to show the computational efficiency of our approach: to mesh a lattice domain
of 24 cells, 160k elements were required (6.6k elements per cell), while for the homogeneous domain of
112 cells, 112k elements were used (1.0k elements per cell). This example has shown the computational
efficiency of our approach in comparison with direct FEA simulation. It shows that our approach has
the potential to be employed in the estimation of the stress–strain response of large lattice domains.

(a) (b) (c)

Figure 11. Application of our methodology to a large Schwarz primitive domain of 112 cells of
density per Equation (12). (a) Domain and boundary conditions; (b) displacement in X direction in the
homogeneous domain; and (c) maximum von Mises stress per cell in the homogeneous domain.

5. Conclusions

In this article we present a methodology that integrates material homogenization and design of
experiments (DOE) to estimate the stress–strain responses in large lattice domains while reducing the
computational cost with respect to direct FEA simulation. On the one hand, material homogenization
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is used to efficiently approximate the displacements on the lattice domains. On the other hand, DOE is
applied to produce simple mathematical expressions to express the stresses in the lattice as functions
of the displacements obtained through homogenization. In comparison with related approaches, this
methodology is easy to implement, can be applied with different families of lattices (strut or surface
based) and offers an efficient alternative to retrieve the stress–strain responses of complex lattice
domains. However, it is less accurate and produces only rough estimations.

We implemented the proposed methodology to estimate the von Mises stress in Schwarz primitive
lattice structures. Material homogenization proved its suitability for the approximation of the
displacements in large lattice domains. Results have also shown that the proposed methodology
is an efficient tool with potential applications in the coarse estimation of the von Mises stress in large
lattice domains. The average errors in the estimations are between 20% and 40%, which are not acceptable
in sensitive processes where high accuracy is required. However, these results are encouraging when
it is considered that we estimated meta-models for only four densities (ρ ∈ {0.25, 0.50, 0.75, 1.0}) for a
narrow range of strains on the boundaries of the cells 10−5 × [−1.0, 1.0]. Our methodology has shown
potential for the pre-evaluation of designs, where less precision is needed.

The methodology presented in this paper can be applied to other types of lattice structures
(different to the Schwarz primitive). It will be necessary to develop meta-models for the lattice
structures of interest, and consequently, to perform material homogenization to obtain the Young’s
and Poisson’s moduli associated to the relative density.

Future Work

Future work is needed to improve the accuracy of the estimations of the von Mises stress. Efforts
should be focused on the fitting of more robust meta-models that use more information from the
displacements field obtained via material homogenization.

This paper considers the von Mises stress as a failure criterion for lattice domains. However, lattice
structures at low densities experience buckling instabilities. This phenomenon should be considered
to analyze failure in lattice structures.
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Abbreviations

The following abbreviations are used in this manuscript:

AM Additive manufacturing.
CCF Central composite face-centered design.
DOE Design of experiments.
FEA Finite element analysis.
Ω, ΩQ Subsets of R3 that represents the lattice domain and the equivalent homogeneous domain, respectively(

Ω, ΩQ ⊂ R3).
E, EQ Young’s moduli of the bulk and equivalent material, respectively (Pa).
ν, νQ Poisson’s ratio of the bulk and equivalent material, respectively.
σVM Von Mises stress (Pa).
L Length of the Schwarz primitive cell (L > 0).
ρ Relative density or volume fraction of a Schwarz primitive cell (0 ≤ ρ ≤ 1).
t Iso-value used to generate the Schwarz primitive cell (t ∈ [−3, 3]).
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