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II-A

Goal of the Final Examination

Under the regulations of the Doctoral Program in Engineering at U. EAFIT, the purpose of the
Final Examination is to assess the thesis work of the doctoral student, which should reflect the
capacity of the student to: (I) conduct high-quality scientific research, (II) contribute to the state
of the art, and (III) articulate in novel manners the existing knowledge to advance in the formulation
and solution of theoretic and practical problems in the Engineering domain.

The Final Exam assesses these aspects:

1. The academic trajectory undertaken and opportunities profited by the doctoral student during
the doctoral studies, in terms of (a) Doctoral Courses, (b) Special Trainings, (c) Attendance to
Specialized Forums and Industries (d) Equipment, Software, accessory materials, (e) Funding
Proceedings, (f) Special Advisors, etc.

2. The thematically connected results of the research of the student and the doctoral team, and
the endorsement of the international scientific community to these results, in the form of
ranked publications.

The Jury approves or reproves the thesis work of the doctoral student.
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II-B

Organization of this Document

The remaining of this document is organized as follows:

� Part III: Academic Trajectory. This part reports the following aspects of the doctoral process:

(a) List of Publications and Co-authors

(b) Doctoral Courses

(c) Special Trainings

(d) Attendance to Specialized Forums

(e) Special Advisors

(f) Projects

(g) Distinctions

� Part IV: Research Results. This part provides:

(a) An overview of the domains in which the doctoral investigation has been conducted.

(b) The compendium of publications generated in each of the investigated domains.

� Part V: General Conclusions.
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III-A

Academic History
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III-A.1

Summary

1. In December of 2013, Daniel Mejia obtained his bachelor degree in Engineering Mathematics
for Universidad EAFIT.

2. In January of 2014, Daniel joined the CAD CAM CAE Laboratory of Universidad EAFIT
and began his Master in Science studies in Engineering under the supervision of Prof. Dr.
Eng. Oscar Ruiz.

3. From July 2015 to June 2016, Daniel undertook a research internship at the Industry and
Advanced Manufacture department of Vicomtech (Spain), under the supervision of Dr. Jorge
Posada.

4. In June of 2016, Daniel obtained his M.Sc. Degree in Engineering from Universidad EAFIT.

5. In July of 2016, Daniel started his Doctoral studies in Engineering at Universidad EAFIT
under the supervision of Prof. Dr. Eng. Oscar Ruiz (U. EAFIT, Colombia) and Dr. Eng.
Jorge Posada (Vicomtech, Spain).

6. From July 2016 to July 2019, Daniel continued his research internship at the Industry and
Advanced Manufacture department of Vicomtech (Spain) as part of his Doctoral Thesis.

7. From July 2015 to June 2020, Daniel received collaborative funding as part of a joint spon-
sorship provided by Universidad EAFIT and Vicomtech for his M.Sc. and Ph.D. studies.

In the framework of the collaborative program between EAFIT and Vicomtech, the student
and his doctoral support team have achieved several publications, formalizing the doctoral work of
the student. The mentioned doctoral support team is composed by the doctoral supervisors of the
student and several researchers from EAFIT and Vicomtech.
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III-A.2

List of Publications

Table III-A.2.1: List of published articles of the doctoral support team.

Item Bibliographic Information Type /
Status

Indexing /
Qualification

1 Daniel Mejia-Parra, Ander Arbelaiz, Oscar Ruiz-
Salguero, Juan Lalinde-Pulido, Aitor Moreno and
Jorge Posada. Fast simulation of laser heat-
ing processes on thin metal plates with FFT
using CPU/GPU hardware. Applied Sciences,
2020, 10(9), pp. 3281:1-3281:25. DOI:
10.3390/app10093281.

Journal
Article /
Published

ISI (Q2),
SCOPUS(Q1),
Publindex(A1)

2 Daniel Mejia-Parra, Ander Arbelaiz, Oscar Ruiz-
Salguero, Aitor Moreno and Jorge Posada (2020).
DST and FFT - based algorithms for laser heating
simulation on thin metal plates in GPU. In Math-
ematics And Computers in Science & Engineering
(MACISE 2020). January 18-20, Madrid, Spain.

International
Conference /
Published.

Indexing
Pending

3 Daniel Mejia-Parra, Jairo R. Sánchez, Jorge Posada,
Oscar Ruiz-Salguero and Carlos Cadavid. Quasi-
isometric mesh parameterization using heat-based
geodesics and Poisson surface fills. Mathematics,
2019, 7(8), 753. DOI: 10.3390/math7080753.

Journal
Article /
Published

ISI(Q1),
SCOPUS(Q2),
Publindex(A1)

4 Daniel Mejia-Parra, Juan Lalinde-Pulido, Jairo R.
Sánchez, Oscar Ruiz-Salguero and Jorge Posada
(2019). Perfect Spatial Hashing for point-cloud-
to-mesh registration. In Spanish Computer Graph-
ics Conference (CEIG 2019). June 26-28, Donostia
- San Sebastián, Spain. ISBN: 978-3-03868-093-2.
DOI: 10.2312/ceig.20191202.

International
Conference /
Published

EUROGRA-
PHICS Digital
Library

Continued on next page
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Table III-A.2.1 – Continued from previous page
Item Bibliographic Information Type /

Status
Indexing /
Qualification

5 Daniel Mejia-Parra, Aitor Moreno, Jorge Posada,
Oscar Ruiz-Salguero, Iñigo Barandiaran, Juan Car-
los Poza and Raúl Chopitea. Frequency-domain an-
alytic method for efficient thermal simulation un-
der curved trajectories laser heating. Mathemat-
ics and Computers in Simulation, 2019, 166. DOI:
10.1016/j.matcom.2019.05.006.

Journal
Article /
Published

ISI(Q2),
SCOPUS(Q2),
Publindex(A1)

6 Daniel Mejia-Parra, Jairo R. Sánchez, Oscar Ruiz-
Salguero, Marcos Alonso, Alberto Izaguirre, Erik
Gil, Jorge Palomar and Jorge Posada. In-line di-
mensional inspection of warm-die forged revolution
workpieces Using 3D Mesh Reconstruction. Applied
Sciences, 2019, 9(6), pp. 1069:1-1069:21. DOI:
10.3390/app9061069.

Journal
Article /
Published

ISI (Q2),
SCOPUS(Q1),
Publindex(A1)

7 Daniel Mejia-Parra, Diego Montoya-Zapata, An-
der Arbelaiz, Aitor Moreno, Jorge Posada and Os-
car Ruiz-Salguero. Fast analytic simulation for
multi-laser heating of sheet metal in GPU. Ma-
terials, 2018, 11, pp. 2078:1-2078:19. DOI:
10.3390/ma11112078.

Journal
Article /
Published

ISI(Q2),
SCOPUS(Q1),
Publindex(A2)

8 Daniel Mejia, Oscar Ruiz-Salguero, Carlos Cadavid,
Jairo R. Sánchez, Jorge Posada and Diego A. Acosta
(2018). Mesh segmentation driven by bijective pa-
rameterization. In Proceedings of the 12th Interna-
tional Symposium on Tools and Methods of Compet-
itive Engineering (TMCE 2018). May 7-11, Las Pal-
mas de Gran Canaria, Spain. ISBN: 978-94-6186-
910-4. Award Best Senior Paper Contribution

International
Conference /
Published

Award Best
Senior Paper
Contribution

9 Daniel Mejia, Oscar Ruiz-Salguero, Jairo R. Sánchez,
Jorge Posada, Aitor Moreno and Carlos A. Ca-
david. Hybrid geometry / topology based mesh
segmentation for reverse engineering. Comput-
ers & Graphics, 2018, 73, pp. 47-58. DOI:
10.1016/j.cag.2018.03.004.

Journal
Article /
Published

ISI(Q3),
SCOPUS(Q1),
Publindex(A1)

10 Daniel Mejia, Aitor Moreno, Ander Arbelaiz,
Jorge Posada, Oscar Ruiz-Salguero and Raúl Cho-
pitea. Accelerated thermal simulation for three-
dimensional interactive optimization of computer nu-
meric control sheet metal laser cutting. Journal of
Manufacturing Science and Engineering, 2018, 140,
pp. 031006:1-031006:9. DOI: 10.1115/1.4038207.

Journal
Article /
Published

ISI(Q2),
SCOPUS(Q1),
Publindex(A1)

Continued on next page
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Table III-A.2.1 – Continued from previous page
Item Bibliographic Information Type /

Status
Indexing /
Qualification

11 Daniel Mejia, Diego A. Acosta and Oscar Ruiz-
Salguero. Weighted area/angle distortion minimiza-
tion for mesh parameterization. Engineering Com-
putations, 2017, 34 (6), pp. 1874-7895. DOI:
10.1108/EC-02-2016-0072.

Journal
Article /
Published

ISI(Q3),
SCOPUS(Q2),
Publindex(A1)

12 Daniel Mejia, Jairo R. Sánchez, Álvaro Segura, Os-
car Ruiz-Salguero, Jorge Posada and Carlos Cadavid
(2017). Mesh segmentation and texture mapping
for dimensional inspection in Web3D. In Proceed-
ings of the 22nd International Conference on 3D
Web Technology (Web3D ´17). June 05-07, Bris-
bane, Australia. ISBN: 978-1-4503-4955-0. DOI:
10.1145/3055624.3075954.

International
Conference /
Published

SCOPUS,
dblp, Semantic
Scholar
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III-A.2.1 List of Co-authors

Aside from the Ph.D. Supervisors, this compendium of publications has the following co-authors.

Table III-A.2.2: Co-authors of this compendium of publications.

Name Affiliation

Diego A. Acosta Grupo de Desarrollo y Diseño de Procesos, Universidad
EAFIT

Ander Arbelaiz Industry and Advanced Manufacturing, Vicomtech
Marcos Alonso Computational Intelligence Group, University of the

Basque Country UPV/EHU
Iñigo Barandiaran Industry and Advanced Manufacturing, Vicomtech
Carlos Cadavid Departamento de Matemáticas Aplicadas, Universidad

EAFIT
Raúl Chopitea Lantek R&D, Lantek Sheet Metal Solutions
Erik Gil GKN Driveline Legazpi S.A.
Alberto Izaguirre CIS & Electronics Department, University of Mondragon
Juan G. Lalinde High Performance Computing Facility APOLO, Universi-

dad EAFIT
Diego Montoya Laboratorio de CAD CAM CAE, Universidad EAFIT
Aitor Moreno Industry and Advanced Manufacturing, Vicomtech
Jorge Palomar GKN Driveline Legazpi S.A.
Juan C. Poza Lantek R&D, Lantek Sheet Metal Solutions
Jairo R. Sánchez Industry and Advanced Manufacturing, Vicomtech

Álvaro Segura Industry and Advanced Manufacturing, Vicomtech
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III-A.3

Doctoral Courses

III-A.3.1 Preparatory Courses

According to the regulations of U. EAFIT, the courses that prepare the student to perform his
doctoral thesis are taken during the M.Sc. and Ph.D. programs. The preparatory courses that the
student took are presented in Table III-A.3.1:

Table III-A.3.1: M.Sc.(2014-1 to 2016-1) and Ph.D. (2016-2 to 2019-1) Preparatory Courses.

Course Semester
Dimensional Reduction 2014-1
Advanced Continuum Mechanics 2014-2
Computational Geometry 2014-2
Introduction to the Boundary Element Method 2014-2
Computer Aided Geometric Design I 2015-1
Introduction to the Finite Element Method 2015-1
Optimization Techniques 2015-1
Advanced Data Structures and Algorithms 2015-2
Numerical Solutions of Differential Equations 2016-1
Underlying Mathematics for CAD CAM 2016-2
Non-linear Finite Element Method 2017-1
Graph Algorithms 2017-2
Modern Concepts of Programming in Engineering 2018-1
Parallel Computing 2018-2
Study and Application of General Programming us-
ing the Graphics Processor

2019-1
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III-A.3.2 Qualifying Exams

Starting the second year of the doctoral program, the student prepared, took and approved the
doctoral qualifying exams that are reported in Table III-A.3.2:

Table III-A.3.2: Qualifying Exams.

Exam Date Examiner
Numerical Computations June 2017 Prof. Dr. Eng. Juan D.

Jaramillo, U. EAFIT

Graph Algorithms November 2017 Dr. Eng. Hugo Álvarez, Vi-
comtech

III-A.3.3 Preliminary Exam of Dissertation

During the fourth year of the doctoral studies, the student prepared, presented and approved
the Preliminary Exam of Dissertation. The Preliminary Examination assessed: (a) the academic
trajectory undertaken and opportunities profited by the doctoral student during the first 36 months
of the doctoral studies, (b) the thematically connected results of the research of the student and
the doctoral team in the form of ranked publications, and (c) the closure research activities and
goals of the doctoral student and supporting team for the remaining 12 months (approx.).

On 24-09-2019 the Jury decided to permit the doctoral student to continue the academic and
research activities, in order to prepare and perfect the materials, goals, publications, etc. for the
Final Examination.
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III-A.4

Special Trainings

As part of the doctoral formation, the student has undertaken the trainings presented in Table
III-A.4.1:

Table III-A.4.1: Special Trainings.

Topic Entity-Context Date Supervisor
Interactive Simulation of
Sheet Metal Laser cutting

Lantek Sheet Metal Solutions
(Vitoria-Gasteiz, Spain),
Vicomtech (San Sebastián,
Spain)

Nov. 2015 Eng. Raúl
Chopitea,
Eng. Juan C.
Poza

Agile & SCRUM Methodolo-
gies

Agilar (Madrid, Spain),
Vicomtech (San Sebastián,
Spain)

Jun. 2017 Eng. Jose R.
Dı́az

GIT and GITLAB Formation Agilar (Madrid, Spain),
Vicomtech (San Sebastián,
Spain)

Nov. 2017 Eng. Juan B.
Barrera

Dimensional Inspection of
Warm-forged Revolution
Work-pieces in the Automo-
tive Industry

GKN Driveline (Legazpi,
Spain), Vicomtech (San
Sebastián, Spain)

Jul. 2018 -
Feb. 2019

Eng. Jorge
Palomar

Computational Geome-
try Techniques in Medical
(Dentistry) Applications

BTI Biotechnology Institute
(Vitoria, Spain), Vicomtech
(San Sebastián, Spain)

Sep. 2018 -
Jun. 2019

Eng. Luis
Saracho

Geomagic Freeform 2019 Improto 3D (Medelĺın,
Colombia), U. EAFIT
(Medelĺın, Colombia)

Jul. 2019 Andres M.
Quiceno
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III-A.5

Attendance to Specialized Forums

During the doctoral formation, the student has attended to the following specialized forums:

III-A.5.1 Scientific Conferences

1. TMCE 2018: Twelfth International Symposium on Tools and Methods of Competitive Engi-
neering, May 7-11, 2018, Las Palmas de Gran Canaria, Spain. Award Best Senior Paper
Contribution.

2. CEIG 2018: Spanish Computer Graphics Conference, June 27-29, 2018, Madrid, Spain.

III-A.5.2 Professional Forums

1. FORJA: Jornada Análisis FEM de Uniones Mecánicas. CAE Innovación - Grupo AyS (Anal-
ysis & Simulation). September 2016. Amorebieta-Etxano, Spain.

2. FORJA: Jornada Análisis de Problemática Común en la Industria de Forja. CAE Innovación
- Grupo AyS (Analysis & Simulation). September 2016. Bergara, Spain.

3. Master Internship: Vicomtech. Industry and Advanced Manufacturing. July 2015 - June
2016. Donostia - San Sebastián, Spain.

4. Doctoral Internship: Vicomtech. Industry and Advanced Manufacturing. July 2016 - June
2019. Donostia - San Sebastián, Spain.
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III-A.6

Special Advisors

In addition to the support provided by several professors and researchers from EAFIT and Vi-
comtech, the student was advised by the specialists presented in Table III-A.6.1.

Table III-A.6.1: Special Advisors.

Name Role Entity Topic
Prof. Dr. Eng.
Diego A. Acosta

Scientific Coordinator and
Advisor

Design and Development
of Processes and Products
Research Group (DDP)
EAFIT, Colombia.

Optimization Tech-
niques. Operations
Research. Sensitiv-
ity Analysis.

Prof. Dr.
Carlos A.
Cadavid

Scientific Coordinator and
Advisor

Mathematics and Appli-
cations, Department of
Mathematical Sciences,
EAFIT, Colombia

Differential Oper-
ators. Topology.
Spectral Analy-
sis. Graph Theory.
Morse Theory.

Prof. Dr. Juan
G. Lalinde

Scientific Coordinator and
Advisor

High Performance Com-
puting Facility APOLO,
EAFIT, Colombia.

Parallel Comput-
ing (Architecture /
Technique). Data
Structures. High
Performance Pro-
gramming.

Dr. Eng. Aitor
Moreno

Senior Researcher. Head
of Interactive Laser Sim-
ulation (BEROSIM) and
Medicine (FERULAS3D)
projects.

Industry and Advanced
Manufacturing, Vi-
comtech, Spain.

Thermal Simulation
of Sheet Laser Cut-
ting. Mesh Segmen-
tation. Interactive
Simulation.

Dr. Eng. Jairo
R. Sánchez

Senior Researcher. Head
of Geometry Processing
Library (GEOMLIB)
and Dimensional Assess-
ment (HOTINSPECT)
projects.

Industry and Advanced
Manufacturing, Vi-
comtech, Spain.

Mesh Registra-
tion. Dimensional
Inspection. Compu-
tational Geometry
Algorithms.

21



III-A.7

Projects

During the student internship at Vicomtech, the student has participated in projects related to the
areas of Computational Geometry, CAD CAM CAE, Industry / Manufacturing and Medicine:

1. BEROSIM: Development of an interactive 3D simulator of CNC sheet metal laser cutting
operations. Fast / interactive simulation of geometric and thermal behavious of the sheet
metal caused by the high input energies from the cutting laser.

2. HOTINSPECT: Development of dimensional inspection software tools for in-line inspection
of warm-forged work-pieces, common in the automotive industry. Application of Computer
Vision and Computational Geometry techniques (such as mesh registration) for dimensional
assessment of manufactured parts.

3. GEOMLIB: Development of different Computational Geometry data structures (e.g. Perfect
Spatial Hashing) and algorithms (e.g. Mesh Parameterization / Segmentation / Deformation
/ Registration). Contribution to the growth of a Computational Geometry library for point
cloud and mesh processing.

4. FERULAS3D: Applications of Computational Geometry in medicine (confidential).
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III-A.8

Distinctions

The following table presents the distinctions and acknowledgements that the student and the doc-
toral team achieved during the doctoral process:

Table III-A.8.1: Distinctions during the Doctoral process

Distinction Context Observations
Scholarship. EAFIT
M.Sc. and Ph.D.

EAFIT University (2014-2
to 2020-1)

Renewed each semester upon
student meeting academic per-
formance and publication re-
quirements.

Sponsorship. Vicomtech
M.Sc. and Ph.D.

Vicomtech/EAFIT Agree-
ment (2015-2 to 2019-1)

Renewed each year upon stu-
dent meeting academic perfor-
mance, publications and indus-
try projects participation re-
quirements.

Exceptional 12-month
Sponsorhip. Vicomtech
Ph.D.

Vicomtech (2019-2 to
2020-1)

Additional 12-month fund-
ing exceptional to the Vi-
comtech/EAFIT agreement
(outside of the original 48-
month funding). The student
performs away from the research
center (at U. EAFIT).

Award: Best Senior Pa-
per Contribution

International Symposium
on Tools and Methods of
Competitive Engineering
(TMCE 2018)

May 7-11, Las Palmas de Gran
Canaria, Spain.
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Prof. Dr. Imre Horváth Prof. Dr. José Pablo Suárez Rivero 
 co-chairman

 Delft University of Technology University of Las Palmas de Gran Canaria 
 niapS sdnalrehteN eht 

TMCE 2018
Tools and Methods of 

Competitive Engineering
 Best Senior Contribution Award

Mesh Segmentation Driven
 By Bijective Parameterization

 D. Mejia    O. Ruiz-Salguero  C. Cadavid
 J.R. Sánchez  J. Posada  D. Acosta

The Organizing Committee of the International 
Tools and Methods of Competitive Engineering 
Symposia has the pleasure to recognize your 
outstanding contribution to the past events as 
well as to the TMCE 2018 Symposium.



Part IV

Research Results
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IV-A

Context

This Doctoral Thesis develops novel articulations of Differential Operators on Manifolds and
other Computational Geometry techniques for applications on Computer Aided Design and Manu-
facture. The Mathematical and Computer Science concepts applied in this Thesis are presented in
Table IV-A.

Mathematical / Computer Science
Topic

Area of Application

Coordinate Frames Mesh Parameterization, Mesh Registration,
Dimensional Assessment.

Affine Transformations (area / angle / dis-
tance - preserving, rigid)

Mesh Parameterization, Mesh Registration,
Dimensional Assessment, 2-Manifold Level
Sets.

Quaternion Algebra Mesh Registration.
Homeomorphic Maps Mesh Parameterization.
Dimensionality Reduction Mesh Parameterization.
Curvature Operators (min, max, mean, Gaus-
sian, dihedral angle)

Mesh Segmentation

Differential Geometry Operators (Tangent
derivative, Laplace-Beltrami, Tangent Hes-
sian)

Mesh Parameterization, Mesh Segmentation,
Laser Cutting Simulation, 2-Manifold Level
Sets.

Morse Theory 2-Manifold Level Sets
Spatial Partition Techniques (e.g. Octrees,
Perfect Spatial Hashing)

Mesh Registration, Dimensional Assessment.

Non-linear Optimization Mesh Parameterization, Mesh Registration
Finite Element Method (FEM) Mesh Parameterization, Mesh Segmentation,

Laser Cutting Simulation.
Spectral Analysis / Generalized Singular
Value Decomposition (SVD)

Mesh Parameterization, Mesh Segmentation,
Laser Cutting Simulation.

Parallel Programming Techniques Laser Cutting Simulation, Mesh Registration.
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Differential Operators on 
Manifolds

1. Mesh Parameterization 
/ Mesh Segmentation

3. Visual Dimensional 
Inspection

(a) Multi-objective Optimization 
for Mesh Parameterization

(b) Heat-based Mesh 
Parameterization

(c) Mesh Segmentation Driven 
by Bijective Parameterization

(d) Heat-based Mesh 
Segmentation

(a) Fast Point-Cloud-to-Mesh 
Registration using Perfect 
Spatial Hashing

(b) In-line Dimensional 
Assessment of Warm-Die 
Forged Parts

(c) In-line Visual Inspection on 
Web3D 

2. Simulation of CNC Laser 
Machining

(a) Analytic Frequency-Domain 
Solution for Curved Trajectory 
Laser Heating

(b) Integration within an 
Interactive Virtual Simulator

(c) Simultaneous Multi-Laser 
Heating/Cutting Applications

(d) Fast Fourier Transform -
based Simulation using GPU 
Hardware

4. Level Sets (Slicing) in 
Additive Manufacturing

(a) Classification of Critical Points 
in Weak-Morse Functions for 
Computation of Level Sets

(e) Computational Geometry 
Applications in Medicine

Figure 1: Overview of the problems addressed in this Thesis, their domain of application and
location within the Differential Operators on Manifolds framework.

Fig. 1 presents the problems addressed in this thesis, their domain of application, and where
they take place within the Differential Operators framework. A brief description of each domain is
discussed below:

1. Mesh Parameterization / Mesh Segmentation

(a) Development of a multi-objective non-linear optimization algorithm for the minimization
of a distortion-based operator. Such an operator measures the angle/area distortion of
a (sought) parameterization φ : M → R2.

(b) Application of the divergence and Laplace-Beltrami operators for the computation of
mesh temperature maps and geodesic fields. The computed geodesics are used to retrieve
an isometric (distance-preserving) parameterization of M .

(c) Development of an iterative algorithm which computes a segmentation of a mesh M
based on non-bijective parameterizations of M . These parameterizations are computed
from the spectrum (eigenvectors) of a tangent Hessian operator.

(d) Development of a mesh segmentation algorithm based on the computation of temperature
maps on M with temperature constrains. These constraints are set based on curvature
fields. Applications of the segmentation/parameterization algorithm include Reverse
Engineering and Manufacturing.

(e) Development and implementation of Computational Geometry algorithms for Medical
Applications (confidential).

2. Simulation of CNC Laser Machining
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(a) Development of a spectral-based analytic solution to the transient, non-homogeneous
heat transfer equation in rectangular 2-manifold plates. Laser beams acting on the plate
are modelled in time using 1-manifold trajectories.

(b) Integration of the above method within an interactive virtual simulator for visual assess-
ment of the plate temperature and cut geometry. The developed simulator is relevant
for the assessment and optimization of CNC laser machining programs.

(c) Extension of the former analytic solution to include the effects of simultaneous (and asyn-
chronous) laser beams, acting on the plate surface. Applications of the developed method
include simulation and assessment of multi-beam CNC laser machining programs.

(d) Implementation and optimization of the single- and multi- beam simulation approaches
using Fast Fourier Transform algorithms in GPU hardware. Applications include real-
time / highly interactive simulation.

3. Visual Dimensional Inspection

(a) Implementation of a Perfect Spatial Hashing data structure for the computation of a
rigid transformation SO(3) between 2-manifolds embedded in R3. A distance operator
is minimized to compute the named transformation, which ”registers” an input free mesh
against a reference (immovable) mesh.

(b) Implementation of the above registration algorithm for the real-time assessment of di-
mensional compliance of warm-forged workpieces. Using computer vision, the quality of
each forged part is evaluated directly in the factory manufacturing line.

(c) Implementation of heat-based mesh segmentation and Hessian-based mesh parameteri-
zation for the application of dimensional deviation fields as texture maps. The computed
texture maps enable the deployment of real-time dimensional assessment reports under
the Web3D framework.

4. Level Sets (Slicing) in Additive Manufacturing

(a) Development of a classification of non-degenerate (i.e. non-singular Hessian) and de-
generate (i.e. singular Hessian) critical points of weak-Morse functions on 2-manifold
objects. Such classification enables the development of an algorithm for the computa-
tion of level sets of 2-manifold triangular meshes. The computed level sets (slices) are
relevant in the design of Additive Manufacturing programs.

The description of the specific problems and contributions performed in the Mesh Parameter-
ization / Segmentation, Simulation of CNC Laser Machining, Visual Dimensional Inspection and
Level Sets in Additive Manufacturing domains are presented in the subsequent Parts, respectively.
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IV-B

Summary of Contributions

This thesis develops and applies techniques from the area of Computational Geometry and
Differential Operators on Manifolds to different domains of CAD CAM CAE, Computer Graph-
ics, Industry and Manufacture. The specific domains that are investigated and the contributions
performed in each of such domains are the following:

Table 1: Applied domains and main contributions of this thesis.

Applied Domain Contribution
Parameterization / Seg-
mentation of 2-Manifold
Triangular Meshes

(1) An angle / area preserving mesh parameterization algorithm
based on multi-objective non-linear optimization.

(2) A distance-preserving mesh parameterization algorithm based
on geodesic fields and heat transfer analysis.

(3) A mesh segmentation algorithm driven by non-bijective Hes-
sian parameterizations.

(4) A geometry / topology - based mesh segmentation algorithm
extracted from temperature fields.

(5) Applications of Mesh segmentation / parameterization algo-
rithms in Reverse Engineering, Manufacture and Medicine
(Dentistry).

Thermal Simulation of
CNC Laser Machining

(1) A spectral-based analytic solution to the curved trajectory
laser beam heating problem in rectangular 2-manifold plates.

(2) An interactive 3D virtual simulator for metal plate laser cut-
ting that includes geometric and thermal effects.

(3) An algorithm for simultaneous application of several laser
beams on the plate surface (multi-laser plate heating / cut-
ting).

(4) An implementation into GPU hardware using FFT methods
for fast interactive laser heating simulation.

Continued on next page
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Table 1 – Continued from previous page
Applied Domain Contribution
In-line Dimensional As-
sessment of Forged Parts

(1) An implementation of a Perfect Spatial Hash data structure
for fast point-cloud-to-mesh registration of large datasets.

(2) An algorithm for in-line dimensional assessment of warm-die
forged parts using mesh reconstruction, registration and com-
puter vision.

(3) An implementation of mesh segmentation / parameterization
algorithms for in-line Web3D dimensional assessment.

Level Sets (Slicing) in Ad-
ditive Manufacturing

A classification algorithm of non-degenerate and degenerate crit-
ical points of weak-Morse functions for the computation of mesh
level sets.
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IV-C

Parameterization / Segmentation of 2-Manifold
Triangular Meshes
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IV-C.1

Weighted Area/Angle Distortion Minimization for

Mesh Parameterization

Daniel Mejia-Parra1,2, Diego A. Acosta1 and Oscar E. Ruiz1

1 Laboratory of CAD CAM CAE, Universidad EAFIT, Colombia

2 Vicomtech, Spain

Citation

Daniel Mejia, Diego A. Acosta and Oscar Ruiz-Salguero. Weighted area/angle distortion minimiza-
tion for mesh parameterization. Engineering Computations, 2017, 34 (6), pp. 1874-7895. DOI:
10.1108/EC-02-2016-0072.

Indexing: ISI (Q3), SCOPUS (Q2), Publindex (A1)
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Abstract

Mesh Parameterization is relevant for reverse engineering, tool path planning, etc. Current Mesh
Parameterization methods usually seek to minimize area, angle and/or distance distortion in the
parameterization. Some of these algorithms fix the parameterization boundary inducing high dis-
tortions or require an initial valid parameterization. This article presents a free boundary method
which does not require a valid initial parameterization and produces locally bijective parameter-
izations. Our method parameterizes each triangle of a triangular mesh and then maps it to the
parameter space by a nonlinear function F , built as a weighted function of area and shape distor-
tion, which is then minimized by the Levenberg-Marquardt algorithm. Complexity analysis shows
asymptotically linear behavior in the number of mesh nodes and a sensitivity analysis shows fine-
tuning the weighting parameter turns globally non-bijective parameterizations into bijective ones
in specific cases. Our test runs show parameterizations with no triangle flips.

Keywords: Reverse Engineering, Mesh Parameterization, Nonlinear Optimization, Levenberg-
Marquardt, Complexity Analysis, Sensitivity Analysis.

Glossary

LM: Levenberg-Marquardt.
Ik: Identity matrix of degree k.
O(f(n)) Computational complexity of an algorithm being asymptotic to f(n), with n

being the measuring unit. In this article, O() refers to time complexity.
M : Triangular mesh (with boundary) of a 2-manifold embedded in R3, composed

by the set of triangles T = {t1, t2, · · · , tm} with vertex set X = {x1, x2, · · · , xn}
(X ⊂ R3).

φ(x): Parameterization of M which is a piecewise affine mapping {φ1, φ2, · · · , φm}
with φi = ψi ◦ Ri. φ : M → R2 is an homeomorphism.

U : Set of points U = {u1, u2, · · · , un} corresponding to the image of X under the
mapping φ (i.e., ui = φ(xi)).

Ri: Rigid transformation which maps the triangle ti to the plane XY and its center
of mass xi to the origin.

Ri: Image of the vertices [xi1 , xi2 , xi3 ] of the i-th triangle of M under the mapping
Ri.

Qi: Right pseudo-inverse of Ri (i.e., RiQi = I2).
ψi: An affine mapping R2 → R2 which maps Ri to its final place in the parameter-

ization (φ). ψi(ε) = Aiε+ ci.
Ai: Jacobian matrix of ψi.
Di
area: Area distortion of the triangle ti under the mapping φi defined as Di

area =(
det(Ai)− 1

)2
.

Di
angle: Angle distortion of the triangle ti under the mapping φi defined as Di

angle =(
Ai11 −Ai22

)2
+
(
Ai12 +Ai21

)2
.

F (U): Function R2n → R to be minimized which sums the weighted area and angle
distortion of the triangles in M under the mapping U = φ(X).
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F ∗: Value at which the penalty function F is a local minimum.
α: Parameter 0 ≤ α ≤ 1 which weights area distortion (α) against angle distortion

(1− α) in the penalty function F .
∇: Gradient operator.
H: Hessian operator.
λ: Damping parameter of the LM algorithm.
ε: Tolerance parameter of the LM algorithm.
Sfp : Relative sensitivity of a penalty function f with respect to a p parameter.

IV-C.1.1 Introduction

In CAD CAM CAE, it is usual to have a triangular mesh M ⊂ R3 as a result of the segmentation of
a larger triangular mesh. M is an open 2-manifold with low curvature (i.e., M is near-developable).
Therefore, M admits a 2-variable parameterization which is an homeomorphism between M and
R2.

Mesh Parameterization consists of finding a mapping φ : M → R2 such that: 1) φ and φ−1 are
continuous (i.e., connectivity of the triangles is preserved after the mapping) and 2) φ is bijective
(i.e., triangles do not overlap after the mapping). φ is an homeomorphism and the image of M
under φ is a parameterization of M . In addition, local preservation of properties (e.g., angle,
area, dimensions, colinearity, etc.) is pursued but rarely achieved in parameterizations of actual
engineering M meshes.

Mesh Parameterization is relevant in areas such as reverse engineering, tool path planning,
feature detection, re-design, etc. This article proposes an algorithm for computing φ by minimizing
a penalty function F which measures a weighted area and shape distortion. Different results may
be obtained for the same mesh by changing the weighting parameter α in F . Therefore, fine-tuning
of this parameter allows in some cases to recover globally bijective parameterizations.

The remainder of this article is structured as follows: Section IV-C.1.2 reviews the relevant
literature. Section IV-C.1.3 describes the implemented methodology. Section IV-C.1.4 presents
and discusses the results of the test runs. Section IV-C.1.5 concludes the paper and introduces
opportunities for future work.

IV-C.1.2 Literature review

Mesh Parameterization is usually achieved by posing an optimization problem where some kind of
distortion measure is minimized in the parameter space. Linear-gradient Mesh Parameterization
algorithms seek to reduce to the solution of a single linear system of equations. Several algorithms
of this type pose a minimization problem where the boundary is fixed in the parameterization
[1–3]. However, fixing the boundary introduces high area and angle distortions in most application
cases. The Virtual Boundary algorithm partially overcomes this problem by introducing an artificial
boundary connected to the real boundary. Therefore, the real boundary is allowed to move in the
parameter space since the algorithm constrains only the virtual boundary. However, the shape of
the virtual boundary affects the result and may introduce distortions. Algorithms such as MIPS
(Most Isometric ParameterizationS) [4], LSCF (Least Squares Conformal Maps) [5], Linear ABF
and ASAP (As Similar As Possible) [6], are linear-gradient algorithms that do not require fixing
the boundary. Though, these algorithms only seek conformal parameterizations.
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A nonlinear-gradient algorithm arises when the problem is formulated such that the gradient
of the function to be minimized is nonlinear. Nonlinear-gradient algorithms usually offer better
results than their linear-gradient counterparts at the expense of more computational cost. In ad-
dition, global optima cannot be guaranteed which can lead the algorithm to get stuck in a bad
parameterization. To avoid getting stuck in such bad parameterization, most nonlinear-gradient
algorithms require an initial valid parameterization (i.e., with no triangle flips). A linear-gradient
parameterization algorithm is used to compute the initial parameterization overcoming the afore-
mentioned problem in some cases as described in Natural Conformal Maps [1], Quasi-Harmonic
Maps [7], ARAP (As Rigid As Possible) algorithm [6] and the Constrained Parameterization on
Parallel Platforms algorithm [8]. The Circle Patterns [9], Curvature Prescription [10] and Confor-
mal Equivalence [11] algorithms transfer the gaussian curvature of the whole mesh to a selected set
of nodes known as cone singularities. However, these approaches require a careful selection of these
cone singularities which is a non-trivial task usually done manually.

The ABF (Angle-Based Flattening) algorithm [12] is a nonlinear-gradient algorithm which poses
an optimization problem in terms of the angles of the mesh triangles in order to find a conformal
parameterization. However, the ABF algorithm is computationally expensive making it unusable
for large datasets. The ABF++ algorithm [13] and the Linear ABF [14] propose a variation of the
original ABF algorithm which potentially improves the computation time at the cost of some global
distortion.

Dimensionality Reduction Techniques have been also successfully applied to Mesh Parameteri-
zation. These techniques perform a parameterization of a manifold M using the information about
the graph of the mesh rather than its triangular structure. In [15] a variation to the Isomap al-
gorithm for triangular meshes is proposed. The problem with Isomap lies in that estimation of
geodesics can be computationally expensive and it may present problems for non-convex domains.
In [16], Laplacian Eigenmaps and HLLE (Hessian Locally Linear Embedding) are used for mesh
parameterization which overcomes the discussed shortcomings of Isomap. However, none of these
two algorithms can guarantee preservation of shape or areas which might be a requisite in most
applications.

The problem of globally bijective parameterizations cannot be guaranteed in most cases (spe-
cially for free boundary methods). The recently proposed Bijective Parameterizations with Free
Boundaries algorithm [17] overcomes this problem by posing a nonlinear optimization problem with
barrier functions which do not allow boundary overlapping. However, this algorithm becomes highly
expensive when evaluating boundary overlaps. In addition, as most nonlinear-gradient parameter-
ization algorithms it requires an initial valid parameterization.

IV-C.1.2.1 Conclusions of the literature review

As dicussed earlier, current Mesh Parameterization algorithms may present one or more of the
following disadvantages: local overlaps (triangle flips), non-area preservation in case of conformal
maps, requirement of an initial valid parameterization to avoid local minima and non-bijective
mappings, etc. In this article we propose a parameterization algorithm where each triangle is
mapped individually to the XY plane by a rigid transformation and then a penalty function F
measuring distortion in the global parameterization is minimized. Our algorithm however, does
not require an initial valid parameterization as opposed to most nonlinear-gradient algorithms and
produces no triangle flips. A 0 ≤ α ≤ 1 parameter weighs area distortion against 1 − α which
weighs shape distortion. However, the weighting scheme proposed in this manuscript restricts the
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α parameter by a linearly convex combination which potentially avoids numerical instabilities that
may arise as opposed to unbounded weighting parameters as in [1, 6].

In order to minimize F we implement the Levenberg-Marquardt (LM) algorithm. LM is a
gradient descent method with high convergence rate allowing to evade the computation of an initial
valid parameterization which is a requirement in most nonlinear-gradient algorithms. The test runs
show that no local overlaps (triangle flips) occur in the resulting parameterization and an adequate
fine-tuning of the α parameter results in globally bijective parameterizations in specific cases. In
addition, a complexity analysis of our algorithm and a sensitivity analysis for the minimized F ∗

with respect to α is presented. As far as we know, a sensitivity analysis for weighting parameters
has not been presented in the Mesh Parameterization literature yet.

IV-C.1.3 Methodology

Consider M = (X,T ) a connected 2-manifold in R3 with border and possibly with holes which is
homeomorphic to R2. Our goal is to find a set of points U = {u1, u2, · · · , un} ⊂ R2 such that ui is
the image of xi under a homeomorphism φ : M → R2.

We build φ as a piecewise affine mapping (i.e., φ(x) = φi(x) for all x ∈ ti, with φi : ti ⊂M → R2

being an affine transformation) which highly preserves distances (isometric). Since a mapping is
isometric if it is both authalic (preserves areas) and conformal (preserves angles and orientation),
we estimate φ by minimizing the sum over all the triangles of a weighted area and shape distortion.

We propose an algorithm for finding U described below:

1. Rigid mapping Ri : M → R2: Find the rigid transformation Ri : M → R2 that maps the
triangle ti to the XY plane and its center of mass xi to the origin. The matrix Ri corresponds
therefore to the image of the vertices of the triangle ti under such mapping.

2. Affine mapping ψi : R2 → R2: Since each triangle has been mapped individually to R2,
an affine mapping ψi(ε) = Aiε + ci which maps each Ri to the final parameterization φ
is constructed. The Jacobian matrix Ai can be computed in terms of Ri and the vertices
[ui1 , ui2 , ui3 ] of the triangle φ(ti). From this construction, φi = ψi◦Ri is an affine mapping and
φ = {φ1, φ2, · · · , φm} is a piecewise affine mapping which parameterizes M . The continuity
of φ is implied in ψ = {ψ1, ψ2, · · · , ψm} from the connectivity of M , i.e., if ti and tj share the
edge (xk, xl) then ψi and ψj overlap in the edge (uk, ul).

3. Weighted penalty function F (U): A penalty function F : R2n → R which penalizes
the weighted area and shape distortion of each triangle is constructed in this step. Since
φi = ψi ◦ Ri is an affine mapping and Ri is rigid, all the distortion of φi can be extracted
from Ai. An area (Di

area) and shape (Di
angle) distortion is build for each triangle in terms of

Ai and a weighted sum of these terms over all the triangles compose the penalty function F .

4. Parameterization U = φ(X): Since φ has minimum distortion, U is estimated by mini-
mizing F . Because ∇F is nonlinear, we implement the LM algorithm for this optimization
process.

Each one of the steps described is shown in the fig, IV-C.1.1 and discussed in detail in sections
IV-C.1.3.1 through IV-C.1.3.4.

36



 

Map each triangle of 𝑴 

independently to ℝ𝟐. 

Build the weighted 

area/shape distortion 

function 𝑭(𝑼;𝜶,𝑹). 

Minimize 𝑭(𝑼;𝜶, 𝑹) with 

respect to 𝑼. 

Triangular surface 

𝑀 = (𝑋, 𝑇) in ℝ3. 

Set of triangles 𝑹 =

{𝑅1, 𝑅2, … , 𝑅𝑚} in ℝ2. 

Function 𝐹:ℝ2𝑛 → ℝ. 

Set of coordinates 𝑈 =

{𝑢1, 𝑢2, … , 𝑢𝑛} which minimize 

𝐹 and parameterize 𝑀. 

Figure IV-C.1.1: Proposed Mesh Parameterization algorithm.

IV-C.1.3.1 Rigid mapping Ri :M → R2

In order to build the function F , we propose to map each triangle ti to R2 individually first. One
way to do this is to compute the center of mass xi and the normal vector ~ni of the triangle ti. If
Bi = [~vi1, ~v

i
2] is an orthonormal basis of the plane with normal ~ni, then Ri : R3 → R2 defined as:

Ri(x) = BTi (x− xi), (IV-C.1.1)

is a projection which maps isometrically the triangle ti to the plane tangent to ti (fig IV-C.1.2).
Therefore, the matrix Ri corresponds to the image of the current triangle vertices under the map
Ri, i.e.:

Ri = Ri([xi1 , xi2 , xi3 ]) (IV-C.1.2)

where xij is the j-th vertex of ti.

IV-C.1.3.2 Affine mapping ψi : R2 → R2

φi is an affine transformation such that φi = ψi◦Ri, where ψi : R2 → R2 is an affine transformation
that maps Ri to the global paramaterization U . Therefore:

ψi(ε) = Aiε+ ci, (IV-C.1.3)

where Ai is a 2× 2 linear transformation and ci =
∑3
j=1 uij is a translation term corresponding to

the center of mass of the triangle φ(ti).
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 𝑥𝑖2  

𝑥𝑖1  

𝑥𝑖3  

𝑥 𝑖  

(a) A triangle on the surface (ti).

 

𝑅2
𝑖  

𝑅1
𝑖  

𝑅3
𝑖  

𝑅 𝑖  

(b) Mapping of the triangle ti to R2. The mapped
triangle Ri is isometric to ti and it is mean centered.

Figure IV-C.1.2: Mapping of a triangle on M to R2 by projecting it onto the tangent plane.

Since Ri is isometric to ti, the matrix Ai contains all the information about the distortion of
the triangle ti under the mapping φi. Recalling that φ(ti) = ψi(R

i), we solve eq. (IV-C.1.3) for Ai:

Ai = [ui1 − ci, ui2 − ci, ui3 − ci]Qi, (IV-C.1.4)

where Qi is the right pseudoinverse of Ri (i.e., RiQi = I2). The preservation of the connectivity
of M under φ is implied in eq. (IV-C.1.4). Specifically, the set of matrices A = {A1, A2, · · · , Am}
are correlated in the sense that if ti and tj share an edge (xk, xl), the matrices Ai and Aj share the
terms uk, ul.

IV-C.1.3.3 Weighted penalty function F (U)

Calculating Ai in terms of the parameterization coordinates U allows to evaluate the local authalic
and conformal distortion for each triangle under the parameterization φ. A transformation is
authalic if and only if its Jacobian determinant is ±1. A consistent orientation is important to
avoid local overlaps (triangle flips) which may result in a non-bijective mapping, therefore the
minus sign is discarded. Thus we measure the area distortion Di

area on each triangle by setting:

Di
area =

(
det(Ai)− 1

)2
(IV-C.1.5)

On the other hand, a mapping is conformal if its Jacobian matrix is k times a rotation matrix.
Similar to [5], we construct the angle distortion measure Di

angle of each triangle as follows:

Di
angle =

(
Ai11 −Ai22

)2
+
(
Ai12 +Ai21

)2
(IV-C.1.6)

If we define the area and shape distortion of the mapping as the sum of all Di
area and all Di

angle

respectively, we can measure the global distortion as a linear combination of the global area and
shape distortion:

F =

m∑
i=1

αDi
area + (1− α)Di

angle, (IV-C.1.7)
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with 0 ≤ α ≤ 1 being a weighting parameter such that F measures only angle distortion if α → 0
and F measures only area distortion if α → 1. F is only dependant of Q = {Q1, Q2, · · · , Qm}
and U = {u1, u2, · · · , un} which are required to compute Ai as described in eq. (IV-C.1.4) and
the weighting parameter α, which is introduced in order to allow some control over the resulting
parameterization. Our test runs have shown that tuning the α parameter allows our method to find
valid parameterizations for some complex datasets which would fail if such parameter is discarded
(e.g., if an isometric mapping of M does not exists but a conformal or authalic does).

IV-C.1.3.4 Parameterization U = φ(X)

In order to find the global parameterization U = φ(X) it is necessary to minimize the F defined
in eq. (IV-C.1.7). Therefore our global parameterization is given by the value of U that solves the
following unconstrained problem:

F ∗ = min
U

{
m∑
i=1

αDi
area + (1− α)Di

angle

}
(IV-C.1.8)

where F ∗ stands for the minimum of F . The minimization problem posed in (IV-C.1.8) is relatively
easy to solve since F is continuous and the region of search is the convex set R2n (because it is
unconstrained). However, the nonlinear nature of the gradient of F requires a nonlinear method
for finding a solution to eq. (IV-C.1.8). We choose LM for minimization which is described below.

IV-C.1.3.5 The Levenberg-Marquardt (LM) algorithm

The LM algorithm is a second-order method for optimization of unconstrained continuous twice
differentiable functions. It is applied here to compute F ∗. In LM the following iterative scheme is
posed [18]:

Uk+1 = Uk −
(
H[F (Uk)] + λkI2n

)−1∇F (Uk), (IV-C.1.9)

where k is the current iteration, λk is the LM damping parameter which is updated iteratively
according to the current solution, and H[F (Uk)] is the Hessian matrix of F defined as Hij [F ] =
∂2F

∂ui∂uj
[19].

The gradient of F is estimated analytically. It can be computed by adding the gradient associ-
ated to the distortion of each triangle:

∇F =

m∑
i=1

α∇Di
area + (1− α)∇Di

angle (IV-C.1.10)

Usually, the Hessian matrix in eq. (IV-C.1.9) is approximated as H[F ] ≈ ∇F · ∇FT. However,
such approximation leads to a dense matrix. An alternative is to compute the Hessian analytically
as follows:

H[F ] =

m∑
i=1

αH[Di
area] + (1− α)H[Di

angle] (IV-C.1.11)

In eq. (IV-C.1.11), the Hessian of each triangle is computed individually and added afterwards
toH[F ] resulting in a 2n×2n sparse matrix where only adjacent points in M have respective nonzero
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elements. Therefore, the linear system that arises in eq. (IV-C.1.9) can be handled efficiently by a
sparse solver.

In addition, the iterative procedure in eq. (IV-C.1.9) requires an initial parameterization U0.
The formula is then applied until certain criteria is met: 1) the norm of the gradient ‖∇F‖ is lower
than ε (where ε ∈ R is a fixed tolerance) or 2) a certain number of iterations have occurred. A global
minimum cannot be guaranteed in most nonlinear-gradient algorithms because the penalty function
is not convex [20] requiring a careful selection of an adequate U0. However, our implementation
has provided consistent results despite a random initial parameterization U0 has been used in all
test cases, which is superior than most nonlinear-gradient algorithms which require an initial valid
parameterization to proceed such as [6, 8, 17].

IV-C.1.3.6 Complexity analysis

The time complexity of our algorithm is discussed in this section. In [21], a complexity analysis
of the LM algorithm has been presented which shows that LM iterates O(ln ε−1) times. In our
algorithm, for a mesh with m triangles and n nodes each LM iteration must perform the following
operations:

1. Compute F (Uk), ∇F (Uk) and H[F (Uk)].

2. Solve the linear system H[F (Uk) + λkI2n] = ∇F (Uk) as per eq. (IV-C.1.9).

In the first step of the LM iteration, F (Uk), ∇F (Uk) and H[F (Uk)] are computed by adding the
distortion Di

area and Di
angle and their corresponding derivatives for each individual triangle. The

cost of this operation isO(m). For the linear system in the second step, the matrixH[F (Uk)]+λkI2n
is a 2n× 2n symmetric sparse matrix whose nonzero elements correspond to adjacent nodes in the
mesh as discussed in section IV-C.1.3.5. The solution of this linear system costs O(nz) (where nz
is the number of nonzeros in the matrix H[F (Uk)] + λkI2n). Due to the Euler characteristic of
triangular meshes, nz ≈ 28n. Hence, the complexity order for the linear system solution becomes
O(n) [22].

Putting it all together, the order of our algorithm is the order of the LM algorithm times
the internal loop i.e., O(ln ε−1)(O(m) + O(n)). However, for a fixed ε and assuming (by the
Euler characteristic) that O(m) = O(n), our algorithm becomes of the order O(n). Table IV-C.1.2
presents a comparison of computational complexities for several Mesh Parameterization algorithms.

IV-C.1.3.7 Sensitivity analysis

We also perform a sensitivity analysis of the penalty function with respect to the parameter α to
compare the resulting paramaterization and the global distortion given the chosen value for α. We
therefore estimate numerically the relative sensitivity of F with respect to α as [20]:

SFα =
∂ lnF ∗

∂ lnα
=

α

F ∗
∂F ∗

∂α
≈ α

F
∗

∆F ∗

∆α
(IV-C.1.12)

Eq. (IV-C.1.12) provides an idea of how relatively small changes in the α parameter impact the
penalty function F for a given mesh M .
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Table IV-C.1.2: Computational time complexity of several Mesh Parameterization algorithms. The
complexity analysis of such algorithms considers: a) a fixed ε in all cases [23], and b) solving a
sparse linear system for a mesh operator is O(n) [22]

Algorithm name Time complexity Reference
Intrinsic Parameterizations O(n) [1]
Stretch Minimizing Mesh Parameterization O(n) [3]
Least Squares Conformal Maps (LSCM) O(n) [5]
Linear ABF O(n) [14]
As Rigid As Possible (ARAP) O(f(ε) · n) = O(n) [6]
Boundary Free Composite Approach O(n) [7]
Conformal Flattening by Curvature Prescription O(f(ε) · n) = O(n) [10]
Angle-Based Flattening (ABF) O(n) [12]
Bijective Parameterizations with Free Boundaries O(b2) (b: Number of

boundary edges)
[17]

Levenberg-Marquard Parameterization O(f(ε) · n) = O(n) This
manuscript

.

(a) Beetle dataset. (b) Cow dataset.

Figure IV-C.1.3: Case studies datasets.

IV-C.1.3.8 Datasets

In order to test the proposed algorithm, several triangular meshes have been obtained from public
sites in internet. These datasets impose a standard benchmark for Mesh Parameterization and are
available from [24]. Due to the high non-developability of some datasets, these have been segmented
manually (Partial-Glove dataset) while others have an artificial boundary (Cow, Fandisk, Foot and
Bull datasets) computed by the Seamster algorithm [25] prior to Mesh Parameterization, allowing
the algorithm to unfold the surface in the plane.
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(a) α = 0.1. (b) α = 0.5. (c) α = 0.9

Figure IV-C.1.4: Resulting parameterization for the Beetle dataset for different α values: (a) α = 0.1
(quasi-conformal), (b) α = 0.5 (conformal and authalic) and (c) α = 0.9 (quasi-authalic).

IV-C.1.4 Results and discussion

In this section, two case studies from the literature are presented and analyzed thoroughly. Section
IV-C.1.4.1 presents the first case corresponding to the Beetle dataset (fig. IV-C.1.3(a)). We show
that by tuning adequately the α parameter, a valid parameterization can be achieved. Section
IV-C.1.4.2 presents the second case study namely the Cow dataset (fig. IV-C.1.3(b)). This case
study has presented several problems and though a nearly-valid parameterization is achieved with
our algorithm, global overlaps cannot be helped. Finally, section IV-C.1.4.3 presents and discusses
a summary of the results of our parameterization algorithm applied to other datasets.

IV-C.1.4.1 Beetle dataset results

Fig. IV-C.1.4 presents the resulting parameterization U for the Beetle dataset with different values
of α. Setting α = 0.1 results in a valid parameterization with low shape distortion as seen in
fig. IV-C.1.4(a). This is not the case for α = 0.5 (fig. IV-C.1.4(b)), where global overlaps occur
as some area preservation is demanded to the algorithm (triangle flips do not happen). A highly
authalic mapping (α = 0.9) results in a parameterization with higher shape distortion and low
area distortion (fig. IV-C.1.4(c)). Despite no triangle flips occur, the boundary and non-adjacent
triangles overlap resulting in a non-bijective parameterization. The mapped texture in fig. IV-C.1.5
shows how the shape is highly preserved as squares attain its form through the bijective mapping
for α = 0.1. Similar results for this dataset have been presented by other authors [6, 15].

Recalling that the implemented algorithm converges to the same solution despite the initial
(possibly non-valid) parameterization, fig. IV-C.1.6 presents the initial, intermediate and final
stages for α = 0.1 of the LM for different initial parameterizations: i) an initial parameterization
U0

Isomap computed by the Isomap algorithm [26] (fig. IV-C.1.6(a)), ii) an initial parameterization
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Figure IV-C.1.5: Texture map for the Beetle dataset (α = 0).

U0
LapEig computed by the Laplacian Eigenmaps algorithm [27] (fig. IV-C.1.6(b)) and iii) a randomly

generated (non-bijective) initial parameterization U0
Rand (fig. IV-C.1.6(c)). The respective inter-

mediate steps (figs. IV-C.1.6(d), IV-C.1.6(e) and IV-C.1.6(f)) show how the surface is unfolded in
each case and fig. IV-C.1.6(g) presents the resulting parameterization for all the cases illustrating
the consistency of the algorithm (even for the random non-valid initial parameterization URand) as
discussed in section IV-C.1.3.5.

Using the random initial solution of fig. IV-C.1.6(c), fig. IV-C.1.7(a) presents the evolution
of the penalty function F for different α values. Higher values of α take more iterations before
converging. Also, though F ∗ reaches a lower value for α = 1 than for α = 0.5, this is not guarantee
of a better result as seen in figs. IV-C.1.4(b) and IV-C.1.4(c). Fig. IV-C.1.7(b) plots the relative
sensitivity of F ∗ with respect to α as per eq. (IV-C.1.12). F ∗ becomes highly sensitive to α for
values greater than 0.6 making F more stable for lower values of α. Despite this stability, the
resulting parameterization may vary and become a non-valid result as seen in figs. IV-C.1.4(a) and
IV-C.1.4(b).

IV-C.1.4.2 Cow dataset results

For a random initial parameterization U0
Rand, fig. IV-C.1.8 presents the resulting parameterization U

for the Cow dataset with different α values. Setting α = 0.1 results in a non-valid parameterization
where the head of the Cow overlaps its body (fig. IV-C.1.8(a)). For α = 0.01, the head no longer
overlaps the body in the resulting parameterization (fig. IV-C.1.8(b)). However, the resulting
parameterization is still non-bijective. Seeking a purely conformal parameterization (α = 0) results
in a high distorted mapping where the head and the legs present a high area distortion (figs. IV-
C.1.8(c) and IV-C.1.9). Zooming into the head and tail of the Cow it is clear that the boundary
self-intersects and the parameterization is not bijective (figs. IV-C.1.8(d) and IV-C.1.8(e)). It is
important to emphasize that none of the discussed results above present triangle flips despite the
map not being bijective. Our results are in concordance with other authors [6, 10, 13, 14] where
non-bijective parameterizations (e.g., global overlaps) have been also reported for the Cow dataset.
Finally, higher values of α were tested resulting in worse parameterizations.
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(a) Isomap initial parameterization
U0

Isomap.
(b) Laplacian Eigenmaps initial pa-
rameterization U0

LapEig.
(c) Random (non-bijective) initial
parameterization U0

Rand.

(d) Intermediate solution for
U0

Isomap.
(e) Intermediate solution for
U0

LapEig.
(f) Intermediate solution for U0

Rand.

(g) Final LM parameterization for:
i) U0

Isomap, ii) U0
LapEig and iii)

U0
Rand.

Figure IV-C.1.6: Initial, intermediate and final stages of LM optimization for the Beetle dataset
using different initial parameterizations: i) Isomap U0

Isomap, ii) Laplacian Eigenmaps U0
LapEig and

iii) random parameterization U0
Rand. α is set to 0.1.
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(a) Evolution of F for different α values. (b) Relative sensitivity SFα .

Figure IV-C.1.7: Beetle dataset. Sensitivity analysis of F with respect to α.

Table IV-C.1.3: Appraisal of the algorithm results for the test datasets.

Dataset n α ‖∇F‖ Result
Beetle 988 0.1 2× 10−12 Fig. IV-C.1.5
Cow 3195 0 4× 10−11 Fig. IV-C.1.9

Sliced-Glove 985 0.5 7× 10−11 Fig. IV-C.1.11(a)
Fandisk 6699 0.5 4× 10−11 Fig. IV-C.1.11(b)

Foot 10211 0.5 6× 10−11 Fig. IV-C.1.11(c)
Bull 17918 0.1 4× 10−9 Fig. IV-C.1.11(d)

Fig. IV-C.1.10 presents a sensitivity analysis of F with respect to α for the Cow dataset. Again,
higher values of α makes the algorithm to require more iterations to converge (fig. IV-C.1.10(a)).
The relative sensitivity of F with respect to α (fig. IV-C.1.10(b)) shows how F becomes highly
sensitive to α for values higher than 0.6. However, this analysis must always be complemented by
the resulting parameterization (fig. IV-C.1.8).

IV-C.1.4.3 Results for other datasets

Fig. IV-C.1.11 presents the parameterization results of the proposed algorithm for the Sliced-Glove,
Fandisk, Foot and Bull datasets. With an α = 0.5 the algorithm converged in all the presented
cases to valid parameterizations (except for the Bull parameterization which is not bijective) which
competes against most Mesh Parameterization algorithms which have presented similar results
qualitatively for the same datasets [6,7,10,13,14] as well as similar (asymptotic) time performance
as illustrated in table IV-C.1.2. Table IV-C.1.3 presents an appraisal of the algorithm applied
to the test datasets. A random initial parameterization U0

Rand is used and in all the test cases,
‖∇F ∗‖ < 10−8 and the lowest eigenvalue of the Hessian is nonnegative indicating that a local
minimum has been reached and the algorithm has converged. All the resulting parameterizations
are locally bijective (no triangle flips).
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(a) Cow parameterization (α = 0.1). (b) Cow parameterization (α =
0.01).

(c) Cow parameterization (α = 0).

(d) Cow parameterization (α = 0).
Zoom into head.

(e) Cow parameterization (α = 0).
Zoom into tail.

Figure IV-C.1.8: Parameterization results for the Cow dataset.
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Figure IV-C.1.9: Texture map for the Cow dataset (α = 0). Area distortion is more noticeable in
the head, legs and tail.

(a) Evolution of F for different α values. (b) Relative sensitivity SFα .

Figure IV-C.1.10: Cow dataset. Sensitivity analysis of F with respect to α.
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(a) Sliced-Glove bijective parameterization and tex-
ture map.

(b) Fandisk bijective parameterization and texture
map.

(c) Foot bijective parameterization and texture map. (d) Bull non-bijective parameterization and texture
map.

Figure IV-C.1.11: Parameterization results for several datasets and their corresponding texture
map. All meshes are 2-manifolds with border.
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IV-C.1.5 Conclusions

This article presents an algorithm for parameterizing a triangular mesh M of an open 2-manifold
embedded in R3. The proposed algorithm consists of mapping each triangle individually to the XY
plane by a rigid transformation R and then mapping it to the global parameterization φ by an affine
mapping ψ. The parameterization U = φ(X) is obtained by minimizing the weighted area and angle
distortion of ψ with the LM algorithm. The complexity analysis of our algorithm showed asymptotic
linear behavior O(n) which makes our method comparable to most mesh parameterization that are
also asymptotically linear in time as illustrated in table IV-C.1.2. Our algorithm presents the
advantage over other nonlinear-gradient parameterization algorithms of not requiring an initial
valid parameterization.

A weighting parameter α is introduced in the penalty distortion function which allows tuning
by the user to favour area against angle preservation turning a non-bijective parameterization into
a bijective one in specific cases. Our sensitivity analysis shows that higher values for α make the
penalty function more unstable and the algorithm slower. However, the sensitivity analysis does not
evidence the quality of the parameterization and a small change in α may turn a bijective mapping
into a non-bijective or vice-versa.

In general, the proposed algorithm converged presenting correct results across the datasets, ren-
dering low distortion, non-overlapping and valid parameterizations except for highly non-developable
datasets (i.e., Cow and Bull datasets).

IV-C.1.5.1 Ongoing work

Segmentation of large meshes into smaller ones increases the probability of finding bijective individ-
ual parameterizations for the smaller ones. Therefore, it is of interest to explore mesh segmentation
as a necessary step for mesh parameterization.

Also, bijectivity of the resulting parameterization can be broken by two facts: 1) local overlaps
(triangle flips) and 2) global overlaps. The first one has been already addressed in this article.
However, global bijectivity is a non-trivial constraint which increases the computational complexity
of the algorithm to O(n2) as shown in [17]. Therefore, further work is required on this aspect.
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Abstract

In the context of CAD, CAM, CAE, and reverse engineering, the problem of mesh parameteri-
zation is a central process. Mesh parameterization implies the computation of a bijective map φ
from the original mesh M ∈ R3 to the planar domain φ(M) ∈ R2. The mapping may preserve an-
gles, areas, or distances. Distance-preserving parameterizations (i.e., isometries) are obviously
attractive. However, geodesic-based isometries present limitations when the mesh has concave or
disconnected boundary (i.e., holes). Recent advances in computing geodesic maps using the heat
equation in 2-manifolds motivate us to revisit mesh parameterization with geodesic maps. We de-
vise a Poisson surface underlying, extending, and filling the holes of the mesh M . We compute a
near-isometric mapping for quasi-developable meshes by using geodesic maps based on heat prop-
agation. Our method: (1) Precomputes a set of temperature maps (heat kernels) on the mesh; (2)
estimates the geodesic distances along the piecewise linear surface by using the temperature maps;
and (3) uses multidimensional scaling (MDS) to acquire the 2D coordinates that minimize the dif-
ference between geodesic distances on M and Euclidean distances on R2. This novel heat-geodesic
parameterization is successfully tested with several concave and/or punctured surfaces, obtaining
bijective low-distortion parameterizations. Failures are registered in nonsegmented, highly nonde-
velopable meshes (such as seam meshes). These cases are the goal of future endeavors.

Keywords: Mesh Parameterization, Geodesic Maps, Heat Transfer Analysis, Poisson Fills.

Glossary

MDS: Multidimensional scaling.
M : Triangular mesh M = (X, T ) of a connected 2-manifold with border (and possibly

holes), embedded in R3. M is represented as a set of points X = {x1, x2, . . . , xn} ⊂ R3

and a set of oriented triangles T = {t1, t2, . . . , tm}.
M∗: Triangular mesh M∗ ⊂ R3 of a connected 2-manifold with border (but without holes).

M∗ is an extension of M (M ⊂M∗).
∆t, T : Time step size ∆t and total simulation time T parameters defined for the heat transfer

simulations on M .
φ: Continuous and bijective function (homeomorphism) φ : M → R2 that maps M to

a planar region in R2. In this manuscript, φ is a nearly-isometric map (i.e., highly
preserves distances).

g: Geodesic distance function g : M ×M → R+ defined on M . gij = g(xi, xj).
δxi Dirac delta (temperature) distribution δxi : M → [0,∞] associated to the source point

xi, such that the temperature at xi is infinite and 0 everywhere else.
ui: Heat kernel function ui : M × (0, T ] → R associated to vertex xi ∈ M . ui(x, t) is the

temperature at the point x, t, due to an initial infinite-heat point-source δxi .
χ: Continuous function χ : R3 → that indicates if a point p ∈ R3 is “inside” (χ(p) = 1),

“outside” (χ(p) = 0), or “in-between” (χ(p) = 1
n

∑
x∈M χ(x)) a solid defined by M∗.

~Hi: Vector field ~Hi : M → R3 defined on M . ~Hi(x, t) = − ∇ui(x,t)
‖∇ui(x,t)‖ is the normalized heat

flux for the heat kernel ui. ‖ ~Hi(x, t)‖ = 1.
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~N : Vector field ~N : R3 → R3 defined on R3. For every x ∈ M , ~N(x) is the normal vector

to the surface M at x. For any x /∈M , ~N(x) = 0.
Φ: Discrete parameterization Φ = {φ1, φ2, . . . φn} ⊂ R2 of M such that φi = φ(xi).
L,B: n×n Laplace–Beltrami L and mass B matrices, respectively. L and B are the sparse and

symmetric matrices that approximate the Laplace–Beltrami operator on the triangular
mesh M .

U (t): n × n matrix with the discrete heat kernels maps associated to each vertex in M , i.e.,

U
(t)
ij = ui(xj , t).

K(t): n× n matrix of the divergence fields of all heat kernels U (t). K
(t)
ij = ∇ · ~Hi(xj , t).

G,G2: n× n matrices of geodesic and squared geodesic distances, respectively, defined on M .
Gij = g(xi, xj), G

2
ij = g(xi, xj)

2.
C: n × n symmetric matrix whose entries contain the mean centered squared geodesic

distances in M , i.e., Cij = − 1
2 [g2

ij − 1
n (
∑
kl g

2
kl)]. C is semidefinite positive.

In, Jn: n× n identity In and all-ones Jn matrices.
λ1, V1: Largest (positive) eigenvalue λ1 of the semidefinite positive matrix C and its correspond-

ing n× 1 eigenvector V1.
√
λ1V1 are the discrete u-coordinates of the parameterization

Φ ⊂ R2.
λ2, V2: Second largest (positive) eigenvalue λ2 of the semidefinite positive matrix C and its

corresponding n×1 eigenvector V2.
√
λ2V2 are the discrete v-coordinates of the param-

eterization Φ ⊂ R2.

IV-C.2.1 Introduction

Mesh parameterization is the process by which a piecewise linear surface (i.e. triangular mesh) M
is mapped with the least possible distortion onto a planar (R2) region, via a bijective continous
function φ : M → R2. The mesh M is supposed to be a connected 2-manifold with border (and
possibly holes).

Mesh parameterization is central in tool path generation for surface machining, texture mapping,
thermo-forming of thin layers (metal, leather, plastic, etc.), reverse engineering, finite element re-
meshing, facial expressions, morphing, etc.

A geodesic curve between two points of a continuous surface is the shortest path within the
surface joining the two points. The length of such a path is the geodesic (shortest) distance,
embedded in the surface, between those two points.

Given any two points xi, xj ∈ M , ideal parameterizations of such a surface seek to map them
to φ(xi), φ(xj) ∈ R2 so that the geodesic distance between xi and xj in M matches the Euclidean
2D distance between φ(xi) and φ(xj) in R2. In the rare occasions in which this goal is possible, M
is called a developable surface and φ is an isometric map. When the distortion in such distances
is small, one qualifies M as a quasi-developable surface. This case is sufficiently frequent, since
large triangular meshes can be segmented with a goal being that the resulting sub-meshes are
quasi-developable or developable.

It is not convenient, when the mesh has holes or concavities in its boundary, to parameterize
the mesh via geodesics. The reason is that mesh points being close neighborhs in the surface may
be far apart via geodesic curves due to mesh gaps or concavities.
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IV-C.2.2 Literature Review

Mesh parameterization algorithms can be classified depending on the type of distortion being mini-
mized, as follows: (a) Area-preserving (authalic) algorithms; (b) angle-preserving (conformal) algo-
rithms; and (c) distance-preserving (isometric) algorithms. The remainder of this section discusses
a summary of recent mesh parameterization algorithms already present in the literature (Detailed
surveys on mesh parameterization algorithms are presented in [28–30]).

IV-C.2.2.1 Area-Preserving Mesh Parameterization

Area-preserving (authalic) parameterization algorithms rely on the minimization of an area pre-
serving continuous cost function. Zou et al. [31] solved a Lie advection problem on the mesh M .
The gradient of the scalar Lie advection field was then added to an initial parameterization φ0 of
M , resulting in an authalic parameterization. Zhao et al. [32] solved an optimal mass transport
problem from the mesh M to its parameterization φ(M). The optimal mass transport poses a
partial differential equation in which the parameterization φ(x) locally preserves the area at every
point x ∈ M . Since most optimal transport methods only parameterize meshes with a connected
boundary (i.e., without holes), Su et al. [33] introduced additional boundary conditions to allow
authalic parameterizations of meshes with more complex topologies.

IV-C.2.2.2 Angle-Preserving Mesh Parameterization

Angle-preserving (conformal) optimization aims to minimize the parameterization angle distortion.
Since this objective can be achieved by collapsing all triangles to a single point, these algorithms
rely on constraining the parameterized boundary to a region in R2. Disk geometries are usually
used in this context [34, 35] however, other geometries such as squared domains have also been
proposed [36,37]. The imposed boundary restrictions in these constrained optimization algorithms
induce additional distortion in the resulting parameterization.

Free boundary algorithms allow unrestricted boundary parameterizations, producing less dis-
torted maps. Sawhney and Crane [38] presented an algorithm in which the mesh boundary is
mapped to R2 according to its shape. The parameterized boundary is then used as a constraint to
produce a boundary-free parameterization. Starting from a disk parameterization, Bright et al. [39]
performed nonlinear optimization while unconstraining the boundary edges of the parameterized
mesh. The resulting parameterization allows the (initially mapped to disk) boundary to move freely
in the parameter space. Smith and Schaefer [17] presented a mesh parameterization method which
introduced a barrier function in its optimization process. The introduced barrier function penalizes
nonadjacent triangle overlaps, which guarantees global bijectiveness in the resulting parameteriza-
tion.

Dimensionality reduction is a superset of mesh parameterization, in which a d-manifold em-
bedded in a higher dimensional space RD, is parameterized to its corresponding Rd domain. As
a consequence, these algorithms have been applied successfully in mesh parameterization applica-
tions. Such algorithms include Laplacian Eigenmaps [16] and Hessian Locally Linear Embedding
[40].
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IV-C.2.2.3 Distance-Preserving Mesh Parameterization

By definition, a distance-preserving (isometric) mapping is a function that simultaneously preserves
areas and angles. Mejia et al. [41] presented a nonlinear minimization algorithm for area-angle
(isometry) preservation. The minimization function is a linear combination of area and angle dis-
tortion, and the weighting parameters for each distortion term are adjusted by the user. The authors
pointed out that the algorithm performs better when the angle-preserving term is preponderant over
the area-preserving one. Similarly, Yu et al. [42] used polar factorization to introduce area-angle
preserving mappings, in which area distortion increases as angle distortion decreases. ARAP (As
Rigid As Possible) algorithms divide the parameterization into two optimization steps—local pa-
rameterization and global parameterization—performing these steps iteratively one after another
until convergence [6, 43, 44]. These algorithms produce different bijective parameterizations, but
since the weighting parameters are nonoptimized (as they are user-defined), the resulting parame-
terization is rarely the optimal distance-preserving map.

Ruiz et al. [16] used a dimensionality-reduction geodesic-based algorithm (Isomap) for the com-
putation of isometric parameterization of quasi-developable meshes. However, in addition to the
classic nonconvex parameterization problems, such algorithms estimate geodesics using shortest-
path graph algorithms which introduce additional distortions in the resulting parameterization.
Li et al. [45] presented a geodesic approximation approach in which cutting planes are intersected
with the mesh to estimate geodesic paths. This approach solves the problem of nonconvex surfaces
and distortion errors induced by mesh graph approximation. However, the method is limited to
geodesic curves embedded in R2 (i.e., the cutting plane).

IV-C.2.2.4 Conclusions of the Literature Review

Most of the distance-preserving parameterization algorithms rely on weighting angle vs. area distor-
tion. Such a weighting is defined by the user and drastically changes the resulting parameterization,
not providing the optimal isometric mapping. Geodesic-based parameterization algorithms solve
this problem by directly minimizing the distance distortion. However, current geodesic-based al-
gorithms rely on shortest-path graph algorithms for geodesics estimation, introducing unnecessary
distortion in the resulting parameterization. In addition, estimation of geodesics fails when the
surface is nonconvex (such as surfaces with holes and boundary concavities).

To overcome these problems, this manuscript presents a novel heat-geodesic mesh parameteriza-
tion algorithm. Our algorithm computes a set of temperature maps (heat kernels) on the mesh M ,
which are then used to retrieve the set of point-to-point geodesic distances on the discrete mesh.
Afterwards, a near-isometric parameterization is obtained by minimizing the difference between the
parameterization Euclidean distances and their corresponding geodesics. Since our method relies on
finite element mesh discretization to estimate the temperature maps and geodesics, our geodesics
estimation is unaffected by mesh-graph topology (as opposed to shortest-path graph algorithms).
To overcome the nonconvexity problem, our algorithm uses Poisson surface reconstruction [46],
in which the surface holes and boundary concavities are temporarily filled for parameterization.
The resulting parameterization for the Poisson reconstructed surface is trimmed with the origi-
nal boundary of M , producing a trimmed surface. The implementation and integration of these
different techniques provide a novel geodesic-based mesh parameterization algorithm which is (1)
unaffected by mesh holes and/or concavities and (2) less sensitive to mesh graph topology.
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IV-C.2.3 Methodology

Consider M = (X, T ) (with point set X = {x1, x2, · · · , xn} and triangle set T = {t1, t2, · · · , tm}),
a connected 2-manifold with border (and possibly holes) embedded in R3. The problem of mesh
parameterization consists of finding a set of points Φ = {φ1, φ2, · · · , φn} ⊂ R2 such that φi is the
image of xi ∈M under the image of a homeomorphism φ : M → R2 (i.e. φi = φ(xi)). The function
φ must satisfy the following conditions:

1. Continuity: If ti ∈ T and tj ∈ T (ti 6= tj) are adjacent triangles in M , then φ(ti) and φ(tj)
are adjacent in φ(M).

2. Local bijectiveness: All mapped triangles φ(M) share the same orientation in R2.

3. Global bijectiveness: Triangles in φ(M) do not overlap each other. This can happen even
if all triangles share the same orientation as illustrated in [17].

In addition, define g : M ×M → R+ as the geodesic distance function in M . If g(xi, xj) =
‖φi−φj‖ (xi, xj ∈M), then φ is an isometric mapping (i.e. φ preserves geodesic distances) and M
is a developable surface.

As most of the surfaces are not developable in practice, we aim to find the discrete mapping Φ
that minimizes the difference between these two distances as follows:

min
Φ

n∑
i=1

n∑
j=1

‖‖φi − φj‖ − g(xi, xj)‖2

s.t.
n∑
i=1

φi = 0

(IV-C.2.1)

where the restriction
∑n
i=1 φi = 0 indicates that the parameterization is mean centered, i.e., the

center of mass of the parameterization points is 0 ∈ R2. Such a restriction is introduced to obviate
all the possible translations of the same solution.

IV-C.2.3.1 Algorithm Overview

Our mesh parameterization algorithm aims to retrieve a parameterization φ(M) which highly pre-
serves the geodesic distances of M as Euclidean distances. In order to estimate the geodesic dis-
tances g in M , the heat-based algorithm the heat-based geodesics algorithm presented in [47] is
implemented. Afterwards, we use classic Multi-Dimensional Scaling to retrieve the 2D coordinates
of the parameterization φ from the computed geodesic distances. In the case that M presents
holes or concavities, our algorithm applies Poisson surface reconstruction [46] and computes a pa-
rameterization on a trimmed surface instead. A summary of the algorithm is presented in Fig.
IV-C.2.1.

The remainder of this section details the steps to solve Eq. (IV-C.2.1), and the details of our
mesh parameterization algorithm. The algorithm has been implemented in MATLAB®[48], except
for the Poisson Surface Fills which have been implemented in C++ using the PCL library [49].
Figures including triangular meshes, scalar fields, vector fields, and 2D parameterizations have
been produced in MATLAB®. Figures including texture maps on the surface have been produced
using MeshLab[50].
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Φ ⊂ ℝ2: Parameterization of 𝑀

𝑀: Reference mesh

1. Does 𝑀 have
concavities or holes?

2. Compute underlying
Poisson surface

𝑀∗ ← 𝑝𝑜𝑖𝑠𝑠𝑜𝑛_𝑓𝑖𝑙𝑙 𝑋

5. For each
𝑥𝑖 ∈ 𝑋

6. Compute heat kernel of 𝑥𝑖 and its
corresponding normalized heat flux
𝑈𝑖 ← ℎ𝑒𝑎𝑡_𝑘𝑒𝑟𝑛𝑒𝑙 𝐿,𝑀, Δ𝑡, 𝑇, 𝑖
𝐻𝑖 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_ℎ𝑒𝑎𝑡 𝑈𝑖

𝑖
+
1

3. Initialize simulation parameters

Δ𝑡 ← max ቚ𝑥𝑖 − 𝑥𝑗 𝑥𝑖 , 𝑥𝑗 ∈ 𝐸𝑑𝑔𝑒𝑠(𝑀)

𝑇 ← Δ𝑡

4. Pre-compute Laplace-Beltrami and Mass matrices
𝐿 ← 𝑙𝑎𝑝𝑙𝑎𝑐𝑒_𝑏𝑒𝑙𝑡𝑟𝑎𝑚𝑖 𝑀
𝐵 ← 𝑚𝑎𝑠𝑠_𝑚𝑎𝑡𝑟𝑖𝑥 𝑀
𝐿, 𝐵 ← 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦_𝑓𝑎𝑐𝑡 𝐿, 𝐵

7. Estimate geodesic distances for 𝑥𝑖
𝐺𝑖 ← 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐_𝑓𝑟𝑜𝑚_ℎ𝑒𝑎𝑡 𝐿, 𝐵, 𝐻𝑖

8. Compute mean centered squared geodesics

𝐶 ← −
1

2
𝐼𝑛 −

1

𝑛
𝑂𝑛 𝐺2 𝐼𝑛 −

1

𝑛
𝑂𝑛

9. Compute largest eigenvalues (and eigenvectors) of 𝐶
𝜆1, 𝑉1, 𝜆2, 𝑉2 ← 𝑒𝑖𝑔𝑠 𝐶

10. Retrieve near-isometric parameterization of 𝑀

Φ ← 𝜆1𝑉1, 𝜆2𝑉2

No

Yes

𝑀∗: Underlying mesh

Δ𝑡: Time step size
𝑇: Simulation time

𝐿: 𝑛 × 𝑛 Laplace-Beltrami matrix
𝐵: 𝑛 × 𝑛 mass matrix

𝑥𝑖 ∈ 𝑀

𝑈𝑖: Discrete heat kernel for 𝑥𝑖
𝐻𝑖: Normalized heat vector

field for kernel 𝑢𝑖

𝐺: 𝑛 × 𝑛 matrix of geodesic distances in 𝑀

𝐶: 𝑛 × 𝑛 matrix of squared mean
centered geodesics

𝜆1, 𝜆2: Largest eigenvalues of 𝐶
𝑉1, 𝑉2: Eigenvectors for 𝜆1 and 𝜆2

Figure IV-C.2.1: Scheme of our heat-geodesic mesh parametertization algorithm
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Source point 𝑥𝑖

Figure IV-C.2.2: Heat kernel ui(x, t) for the vertex source xi (t > 0). Heat dissipates from xi.

IV-C.2.3.2 Mesh Heat Kernels

A heat kernel of a point xi ∈M is a function ui : M × (0, T ]→ R that satisfies the following partial
differential equation [51]:

∂ui(x, t)

∂t
+ ∆ui(x, t) = 0, x ∈M, t ∈ (0, T ]

∂u(x, t)

∂n

∣∣∣∣
∂M

= 0

ui(x, 0) = δxi(x)

(IV-C.2.2)

where ∆ is the Laplace-Beltrami operator, ui is the temperature distribution (heat kernel) associ-
ated to the source point xi, x ∈ M, t ∈ (0, T ] are the spatial and time coordinates , respectively,

and T > 0 is the simulation time. The term ∂u(x,t)
∂n

∣∣∣
∂M

= 0 corresponds to the Neumann boundary

condition (no boundary heat flux). Finally, the term ui(x, 0) = δxi(x) corresponds to Dirac delta
initial conditions, i.e.:

δxi(x) =

{
∞ if x = xi,

0 otherwise∫
M

δxi = 1

(IV-C.2.3)

The above initial conditions dictate initial infinite temperature at vertex xi and 0 everywhere
else. After some time t > 0 has passed, heat dissipates from xi as illustrated in Fig. IV-C.2.2.

Eq. (IV-C.2.2) can be solved using a Finite Element discretization scheme, as follows:

(∆tL+B)U
(t+∆t)
i = BU

(t)
i (IV-C.2.4)

where ∆t is the time step, U
(t)
i = {u(t)

i1 , u
(t)
i2 , · · · , u

(t)
in } is the vector of temperatures values (u

(t)
ij =

ui(xj , t)), and L and B are the n×n Laplace-Beltrami and mass (sparse and symmetric) matrices,
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respectively. For a given edge eij = (xi, xj), the Laplace-Beltrami matrix L is defined as follows:

Lij =


cotαij+cot βij

2 , eij ∈ Edges(M)

−∑k∈E∗
i
Lik, i = j

0, otherwise

(IV-C.2.5)

where αij , βij ∈ (0, π) are the two opposite angles to the edge eij , and S∗i = {k|eik ∈ Edges(M)} is
the index set of all incident edges to the vertex xi ∈ X. The entries Lij of the matrix L are known
as cotangent weights [52].

Similarly, the mass matrix B is defined as follows:

Bij =


|t1|+|t2|

12 , t1, t2 ∈ T adjacent triangles to eij ∈ Edges(M)∑
k∈S∗

i
Bik, i = j

0, otherwise

(IV-C.2.6)

where t1, t2 ∈ T are the pair of triangles adjacent to the edge eij , and |tl| is the area of the triangle
tl (l = 1, 2).

For each vertex xi ∈ M , Eq. (IV-C.2.4) is solved for Ui using a sparse Cholesky linear solver.
It is worth noting that for every xi and t ∈ (0, T ], the matrices ∆tL and B are the same. As a
consequence, these matrices are pre-factored only once using Cholesky factorization, which speeds
up the computation of the heat kernels.

Finally, the simulation parameters ∆t, T are chosen according to [47]:

∆t = {‖xi − xj‖| (xi, xj) ∈ Edges(M)}
T = ∆t

(IV-C.2.7)

with ∆t computed as the magnitude of the largest edge in M , and T equals to ∆t. These values
have provided better results in our parameterization experiments than other values.

IV-C.2.3.3 Heat-based Geodesic Distance

The vector field −∇ui(x, t) (∇: gradient operator on M) describes the heat flux on M for the
respective heat kernel ui. Define the normalized heat flux vector field Hi as follows:

~Hi(x, t) = − ∇ui(x, t)‖∇ui(x, t)‖
(IV-C.2.8)

It is worth noting that the magnitude of the vector field ~Hi is 1 everywhere (‖ ~Hi(x, t)‖ = 1). In
addition, as illustrated in Fig. IV-C.2.3, the temperature contours are perpendicular to the geodesic
paths from xi ∈M , and the corresponding vector field points in the same direction that such paths.

The geodesic field g(xi, xj) satisfies the following differential equation [47]:

∆g(xi, x) = lim
T→0
∇ · ~Hi(x, T ) (IV-C.2.9)

where ∇ · ~Hi(x, T ) is the divergence field of the normalized heat flux. Similar to Eq. (IV-C.2.2),
Eq. (IV-C.2.9) is discretized using the same Finite Element scheme, as follows:

LGi = lim
T→0

BK
(T )
i (IV-C.2.10)

58



Figure IV-C.2.3: Normalized heat flux field ~Hi(x, t). The vector field is normalized and it points in
the direction of the geodesic paths from xi ∈M .

where Gi = {gi1, gi2, · · · , gin} is the vector of geodesic distances gij = g(xi, xj), and K
(T )
i =

{k(T )
i1 , k

(T )
i2 , · · · , k(T )

in } is the divergence field of the normalized gradient k
(T )
ij = ∇ · ~Hi(xj , T ) [47].

Fig. IV-C.2.4 plots the estimated geodesic distance field g(xi, x) for the vertex xi.

IV-C.2.3.4 Multi-Dimensional Scaling (MDS)

After the geodesic field gij = g(xi, xj) has been estimated on M , the minimization problem in
Eq. (IV-C.2.1) can be solved. Classic Multi-Dimensional Scaling poses an equivalent minimization
problem [53]:

min
Φ

∑
ij

[
1

n

(∑
kl

g2
kl

)
− g2

ij − 2φi · φj
]2

(IV-C.2.11)

Let C be the symmetric, semidefinite positive matrix whose entries contain the mean centered
squared geodesics (i.e. Cij = − 1

2 [g2
ij − 1

n (
∑
kl g

2
kl)]). In matrix form, C is equivalent to:

C = −1

2

(
In −

1

n
Jn

)
G2

(
In −

1

n
Jn

)
(IV-C.2.12)

where In, Jn are the n × n identity and all-ones matrices, respectively, and G2 is the n × n sym-
metric matrix whose entries contain the squared geodesic distances in M , i.e., G2

ij = g2
ij . Then,

Eq. (IV-C.2.11) becomes:
min

Φ
‖C − ΦΦT ‖2F (IV-C.2.13)

with ‖A‖2F =
∑
ij A

2
ij the (squared) Frobenius norm of A.

Finally, Eq. (IV-C.2.13) can be solved by an eigendecomposition of C as follows [53]: let λ1

and λ2 be the largest positive eigenvalues of C, with respective n× 1 eigenvectors V1 and V2. The
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Source point 𝑥𝑖

Figure IV-C.2.4: Geodesic field g(xi, x) for the vertex xi, computed from its respective heat kernel
ui(x, T )

near-isometric parameterization of M becomes:

Φ = [
√
λ1V1,

√
λ2V2] (IV-C.2.14)

where
√
λ1V1 are the discrete u-coordinates and

√
λ2V2 are the discrete v-coordinates of the pa-

rameterization Φ = {φ1, φ2, . . . , φn} ⊂ R2. Fig. IV-C.2.5 plots the resulting parameterization using
MDS on the estimated geodesic fields G.

IV-C.2.3.5 Poisson Mesh Reconstruction

In the case that M is non-convex (i.e. it has holes or concavities), we seek to compute an underlying
extending surface M∗. Such a surface contains the points in M , and fills the holes and concavities
by extending M in such areas (M ⊂ M∗). As an example, a geodesic path in a non-convex M ,
circles a given hole (Fig. IV-C.2.6(a)). On the other hand, the same geodesic path in the extended
surface M∗ crosses through the hole (Fig. IV-C.2.6(b)).

To compute the surface M∗, our parameterization algorithm uses Poisson surface reconstruction
[46] from the PCL library [49]. Define χ : R3 → R as an indicator function such that χ(x) = 1 if
x ∈ R3 is ”inside” the solid defined by M∗ and χ(x) = 0 if x is ”outside” such solid. The surface
M∗ is composed by the points in-between, as follows [46]:

M∗ =

{
p ∈ R3

∣∣χ(p) =
1

n

∑
x∈M

χ(x)

}
(IV-C.2.15)

The indicator function χ is computed by solving the following partial differential equation in R3

[46]:

∆χ(x) = ∇ · ~N(x) (IV-C.2.16)

where ∆ and ∇ are the R3 Euclidean Laplacian and gradient operators, respectively. It is worth
noting that this Laplacian and gradient operators are different from the 2-manifold version presented
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Figure IV-C.2.5: MDS parameterization Φ = [
√
λ1V1,

√
λ2V2] from the estimated geodesic distances

(a) Geodesic path on raw mesh M (b) Geodesic path on M with the help of underlying
Poisson surface

Figure IV-C.2.6: Our algorithm computes an underlying Poisson surface M∗ to fix the geodesic
paths on non-convex mesh M
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(a) Original mesh M (b) Poisson surface M∗ underlying the raw mesh M∗

Figure IV-C.2.7: Raw mesh M and its underlying Poisson surface approximation M∗

in Sects. IV-C.2.3.2 and IV-C.2.3.3. ~N : R3 → R3 is a vector field in R3 whose value ~N(x) is the

normal vector to the original surface M if x ∈M , and ~N(x) = 0 everywhere else.
To solve Eq. (IV-C.2.16), the PCL library uses a hierarchical 3D spatial discretization and a

Finite Differences approach [49].
Fig. IV-C.2.7 plots the Poisson surface filling M∗ for a given non-convex mesh M . The re-

sulting geodesic field (Fig. IV-C.2.8) is distributed along the original mesh M and its extents
M∗ − M . The corresponding parameterization of the underlying Poisson surface M∗ (Fig. IV-
C.2.9(a)) is finally trimmed in order to retrieve the final parameterization Φ of M (Fig. IV-C.2.9(b)).
Fig. IV-C.2.10 plots the chessboard texture maps for both parameterization without Poisson filling
(Fig. IV-C.2.10(a)) and parameterization with Poisson surface filling (Fig. IV-C.2.10(b)). As illus-
trated, using Poisson filling reduces parameterization distortions close to mesh holes and boundary
concavities.

IV-C.2.4 Results and Discussion

To test our mesh parameterization algorithm we run tests with several parameterizable surfaces.
Sect. IV-C.2.4.1 presents a comparison of our mesh parameterization algorithm without Poisson
surface filling vs. Poisson surface filling, for quasi-developable non-convex meshes. Sect. IV-C.2.4.2
presents parameterization results for some challenging, strongly non-developable data sets. Fi-
nally, Sect. IV-C.2.4.3 presents the application of our parameterization algorithm for the reverse
engineering of a scanned cow vertebra.

IV-C.2.4.1 Non-filling vs. Poisson Filling Parameterization

Fig. IV-C.2.11 plots the parameterization results (2D Φ coordinates and 3D texture map) for the
Mask data set. Without using Poisson surface reconstruction, the resulting parameterization is
bijective with relatively low distortion, except for the eye holes (Fig. IV-C.2.11(a)). However, such
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Source point 𝑥𝑖

Figure IV-C.2.8: Geodesic distance estimation on the Poisson surface M∗ approximating raw mesh
M

(a) Mesh parameterization of the Poisson surface M∗ (b) Trimmed parameterization Φ

Figure IV-C.2.9: Parameterization of the Poisson surface M∗ and its corresponding trimmed pa-
rameterization Φ.
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High distortion close 
to the boundary

(a) Texture on raw mesh M , distorted at holes and
boundary concavities

(b) Texture using underlying Poisson surface M∗,
undistorted

Figure IV-C.2.10: Chessboard texture maps from our heat-geodesic based parameterization

a parameterization is improved by applying the Poisson reconstruction, reducing the distortion close
to mesh holes and boundary concavities (Fig. IV-C.2.11(b)).

A more extreme case is illustrated in Fig. IV-C.2.12, with the S-trimmed-on-cone dataset from
[16]. Since the S shape is trimmed on a cone, M is a fully developable surface.Yet, the heat-geodesic
parameterization on M fails to compute a bijective parameterization (Fig. IV-C.2.12(a)). Applica-
tion of the Poisson (extended underlying surface M∗) filling (Fig. IV-C.2.12(b)) solves this issue,
resulting in a non-distorted bijective parameterization. This case illustrates (a) the vulnerability of
geodesic-based parameterizations in the presence of mesh holes or concavities at mesh borders, (b)
the capacity of the underlying Poisson extended surface to prevent (a), (c) the natural manner in
which geodesic curves isometrically parameterize a developable surface.

IV-C.2.4.2 Parameterization of Strongly Non-Developable Meshes

In this section, the public data sets Foot, Gargoyle and Cow are parameterized with our heat-based
geodesics algorithm. These benchmark datasets contain an artificially introduced border [25], which
allows their parameterization. Figs. IV-C.2.13(a) and IV-C.2.13(b) plot the parameterization re-
sults for the seam Foot and Gargoyle, respectively. The resulting parameterization is bijective, with
some noticeable distortion (e.g. in the Gargoyle head). Fig. IV-C.2.13(c) plots our parameterization
results for the seamed Cow, which is not bijective in the head, legs and tail.

It is worth noting that although parameterizable, these benchmark data sets are strongly non-
developable without a proper mesh pre-segmentation. This fact is illustrated in the next section.

IV-C.2.4.3 Reverse Engineering of Cow Vertebra

For this section, the vertebra of a cow is scanned using a 3D optical scanner. The scanned mesh
is closed and therefore accepts no (bijective) parameterization. The closed mesh is segmented
into quasi-developable meshes using a heat-based segmentation approach [54]. Fig. IV-C.2.14
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(a) Parameterization of M . 3D texture map (left) and
2D Φ coordinates (right). Distorted at holes and con-
cavities.

(b) Undistorted parameterization with underlying sur-
face M∗. 3D texture map (left) and 2D Φ coordinates
(right).

Figure IV-C.2.11: Data set Mask. Hole-distorted and undistorted heat-geodesic parameterizations.

𝑢

𝑣

𝑥

𝑦

𝑧

(a) Non-bijective parameterization of M . 3D texture
map (left) and 2D Φ coordinates (right).

(b) Undistorted and bijective parameterization with
underlying surface M∗. 3D texture map (left) and 2D
Φ coordinates (right).

Figure IV-C.2.12: Data set S-trimmed-on-cone. Non-bijective parameterization using raw mesh M .
Bijective isometric parameterization using underlying Poisson mesh M∗.
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𝑢

𝑣

𝑥

𝑦

𝑧

(a) Data set Foot. Bijective parameterization. (b) Data set Gargoyle. Bijective parameterization.

(c) Data set Cow. Non-bijective parameterization near
the legs and tail.

Figure IV-C.2.13: Heat-geodesic parameterization of seam meshes [25]. The strong non-
developability of the meshes produces high parameterization distortions and in some cases non-
bijectiveness.
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𝑢

𝑣

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

Figure IV-C.2.14: Cow Vertebra data set. Undistorted parameterization using heat-based geodesic
maps. Segmentation by Mejia et al [54].

plots the parameterization results for the segmented mesh. Each sub-mesh bijective parameter-
ization presents low distortion, enabling further reverse engineering operations such as NURBs
re-parameterization [16], finite element analysis, structural optimization and/or dimensional in-
spection [54].

IV-C.2.5 Conclusions

This article presents the implementation of a novel application of heat propagation in 2-manifolds
used for mesh parameterization. The temperature contours for the heat kernels computed on the
mesh are perpendicular at each point to the geodesic curves in the surface. This principle permits
to determine geodesic maps in the mesh and in particular vertex-to-vertex geodesic distances.
Although Finite Element methods produce better results as the mesh resolution increases (higher
polygon count), the geodesics estimation method still produces robust results for low polygon
count meshes as each geodesic path traverses across the mesh faces (contrary to graph algorithms
which traverse the mesh graph). A quasi-isometric bijective function (i.e. the parameterization)
is synthesized, to map the 3D mesh to the parameter (2D) space. This parameterization is near
isometric in the sense that geodesic distance on the mesh between any two points on the mesh
approximates the Euclidean distance between their images in the parametric space. This approach
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obviously limited to meshes which are quasi-developable or developable, since mesh developability
is necessary for the existence of an isometric parameterization for it.

Our approach circumvents the weakness of geodesic maps in the presence of mesh interruptions
(boundary concavities and mesh holes) by devising an underlying continuous Poisson surface that
approximates the input mesh but contains no such interruptions. This underlying surface allows
for geodesic maps to be computed on it, which are also valid in the input mesh. In this manner,
the parameterization computed for the Poisson surface is valid for the input mesh. Finally, the
boundaries of the input mesh are explicitly marked on the parameterization to obtain a trimmed
surface or FACE in the Boundary Representation jargon.

Future work is required in these aspects: (a) to eliminate redundant computation that is present
in the construction of heat-based geodesic maps, (b) to use failures in the bijectiveness of the
computed parameterizations to force mesh segmentation, when the input mesh is strongly non-
developable.
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Abstract

In Reverse Engineering (RE), mesh segmentation is usually followed by mesh parameterization.
A segmentation of a mesh M is not acceptable if the parameterization of its sub-mesh Mi fails.
A defined parameterization failure criterion is given by the non-bijective nature of the parame-
terization ψi : Mi → R2. Current mesh segmentation algorithms produce either (1) topology -
based partitions which present highly non-developable sub-meshes or (2) geometry - based parti-
tions which present over-segmentation for organic meshes. The algorithm that we present in this
manuscript partially overcomes these limitations by using the failure regions of a (Hessian - based)
parameterization algorithm as basis for mesh segmentation. Our algorithm produces a hierarchical
subdivision of Mi only if the Hessian - based parameterization ψi is not bijective, avoiding mesh
over-segmentation. As no further subdivision is triggered, the final parameterization is obtained
using an angle preserving parameterization algorithm (CONFOP). The decision of using two param-
eterization algorithms obeys the fact that Hessian parameterization is a Dimensionality Reduction
- based algorithm which allows parameterization foldings (ideal for segmentation) while CONFOP
parameterization penalizes such foldings (ideal for bijective parameterization). Our interplay of
segmentation / parameterization is conservative in subdivision and yet produces parameterizable
sub-meshes. The test runs show fully bijective mappings on several landmark datasets. Ongoing
work addresses sub-mesh boundary smoothing to avoid jagged boundary FACEs in the Boundary
Representation.

Keywords:Mesh Segmentation, Mesh Parameterization, Mesh Hessian, Conformal Mapping, Re-
verse Engineering

Glossary

RE Reverse Engineering.
DR Dimensional Reduction.
CAD Computer Aided Design.
CAM Computer Aided Manufacturing.
CAE Computer Aided Engineering.
CONFOP CONformal OPtimization algorithm for mesh parameterization.
M Triangular mesh of a connected 2-manifold embedded in R3. M =

(X,T ) is composed by the set of triangles T = {t1, t2, . . . , tm} with
vertex set X = {x1, x2, . . . , xn} ⊂ R3.

ψhessian Hessian - based non-bijective parameterization of M . ψhessian :
M → R2.

Mi A sub-mesh of the segmentation of M .
⋃k
i=1Mi = M , Mi∩Mj =

∅ (i 6= j).
O+, O− Triangle 2D orientations subsets. O+, O− contain all the mesh

triangles which have positive and negative orientation, respec-
tively, in the (non-bijective) Hessian parameterization. Therefore,
M = O+ ∪O−.

f Continuous smooth function f ∈ C2(M) defined on the mesh.
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Htan
x Tangent Hessian of M defined at any point x ∈M .
H Hessian functional on M . H : C2(M)→ C(M).
K n× n matrix which discretizes the H functional on M . The first

two non-constant eigenvectors of K define the Hessian parameter-
ization ψhessian.

ε Segmentation user - defined parameter which defines the minimum
sub-mesh size.

ψi CONFOP 2D parameterization of Mi. ψi : Mi → R2.
A(tj) 2×3 transformation matrix that maps the triangle tj ∈Mi to the

plane R2.

B An orthonormal basis B = [~v
tj
1 , ~v

tj
2 ] for the plane tangent to tri-

angle tj .

IV-C.3.1 Introduction

In the context of manufacturing, RE is a core part of the Visual Computing field, which is considered
a key enabling technology for the implementation of the Industry 4.0 initiative [55]. This technology
can be used to digitalize physical prototypes of a product during the design phase to evaluate its
behavior using CAD CAM CAE tools.

The general workflow of a RE process begins with the acquisition of the geometry of the physical
part in form of a point cloud using a 3D scanner. This geometry is processed to reconstruct the
connectivity of the points in the form of a triangle mesh. In this work, we address the segmenta-
tion/parameterization problem that finally allows to obtain a representation of the mesh suitable
for be processed by CAD CAM CAE tools.

Given a triangular mesh M , the mesh segmentation / parameterization problem is defined as
follows:

1. Split M into a set of disjoint and connected sub-meshes {M1,M2, . . . ,Mk}. The computed
partition of M must favor the developability of each Mi.

2. For each sub-mesh Mi, compute a bijective parameterization ψi : Mi → R2.

In contrast to common state of the art mesh segmentation methods, a natural approach to com-
pute the segmentation of M could be to learn and segment M from non-bijective parameterizations
until the computed segmentation performs bijective parameterizations. Following such idea, this
manuscript implements an algorithm which computes a Hessian - based non-bijective parameteriza-
tion ψhessian of M . Such parameterization produces mesh foldings in the parameter space R2 which
define the new sub-mesh boundaries. This segmentation approach is applied hierarchically on each
sub-mesh Mi until the computed segmentation is completely bijective. The final parameterization
ψi of the developable sub-mesh Mi is computed with an angle preserving mesh parameterization
algorithm (CONFOP), which minimizes mapping distortions.

Our algorithm contributes to the mesh segmentation / parameterization state of the art by
extracting information of non-bijective parameterizations in order to guide the mesh segmenta-
tion. As a consequence, our algorithm (1) produces a fully bijective segmentation of M and, (2)
avoids over-segmentation as each sub-mesh is only sub-segmented if a non-bijective request has
been triggered.
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The remainder of this manuscript is organized as follows: Sect. IV-C.3.2 reviews the relevant
literature. Sect. IV-C.3.3 describes the mesh segmentation / parameterization algorithm. Sect.
IV-C.3.4 presents and discusses results of the conducted experiments. Sect. IV-C.3.5 concludes the
paper and introduces what remains for future work.

IV-C.3.2 Literature review

This section reviews the taxonomy of mesh segmentation / parameterization algorithms. Mesh
segmentation algorithms can be classified depending on the surface features used to partition the
mesh as follows:

IV-C.3.2.1 Geometry - based Mesh Segmentation

Geometry - based algorithms capture local geometric features on the surface. Features such as the
dihedral angles between adjacent triangles [56], the gaussian curvature [57] or the instantaneous
speed [58] on the surface, are common descriptors that characterize CAD-like models. A region
growing method is then applied to the characterized model in order to produce the segmentation
[59].

Since curvature and sharpness indicators on the surface are used to segment the mesh, geometry
- based algorithms are able to produce highly developable mesh partitions with low curvatures and
non-sharp transitions. However, the local nature of these algorithms make them highly sensitive to
noise and to organic (non-CAD) meshes, resulting frequently in high mesh over-segmentation.

IV-C.3.2.2 Topology-based Mesh Segmentation

On the other hand, topology based algorithms take advantage of the mesh connectivity encoded in
the spectrum (eigenvalues and eigenvectors) of some mesh operators such as the graph Laplacian
[60] or the dual Laplacian [61]. The Laplace-Beltrami operator is a type of mesh Laplacian which has
gained a lot of importance in the context of Computational Geometry [62]. The segmentation can
be achieved finally by applying a k-means algorithm to the Laplacian eigenvectors [63] or by merging
such eigenvectors into a single segmentation field [64]. In order to account for geometric features
(in addition to the topologic ones), operators such as the Giaquinta - Hildebrandt incorporate
connectivity weights which capture mesh concavities / convexities [65].

Topology - based segmentation algorithms do not have the over-segmentation problem inherent
to geometry - based algorithms as the former ones are designed to produce small partitions with
large sub-meshes. However, these large sub-meshes are in most cases non-developable. Such a
shortcoming is critical in mesh parameterization applications as the segmentation algorithm cannot
be directly applied in the segmentation / parameterization context.

IV-C.3.2.3 Mesh Parameterization

Mesh parameterization is a special case of Dimensional Reduction (DR) where a 2-manifold M
(triangular mesh) embedded in R3 must be mapped to the plane through a bijective (no triangle
flips nor mesh overlaps) mapping ψ : M → R2. As a consequence, some DR algorithms have
been used successfully in mesh parameterization applications. In [15], a distance preserving DR
algorithm (Isomap) is used to compute the parameterization of the mesh, which is then used to
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apply a 2D texture to the surface. Other DR algorithms such as Laplacian Eigenmaps and Hessian
Locally Linear Embedding have been used for mesh parameterization in order to fit parametric
surfaces [16,40].

In addition to bijectiveness, the preservation of geometric properties such as angles (conformal
maps), areas (authalic maps) or distances (isometric maps) becomes a requisite in most mesh pa-
rameterization applications. Discrete Conformal Maps algorithms [66] apply the Riemann mapping
theorem to solve a complex - valued system of equations which produces low angle distortion map-
pings. Similarly, Angle-Based Flattening (ABF) algorithms [14] solve a minimization problem in
the domain of mesh triangle angles. Harmonic map algorithms [39] minimize the Laplace-Beltrami
operator in order to compute area preserving parameterizations. Isometric (distance preserving
mappings) can be computed by both preservation of angles and areas [43,67].

Seam-based algorithms compute mesh parameterization of full meshes by introducing an artifi-
cial boundary (seam) which partially cuts the mesh allowing developability. The seamster algorithm
[25] is a common approach in the mesh parameterization literature which introduces such a bound-
ary in high curvature - low visibility regions of the mesh. However, parameterization of these meshes
easily introduces large distortions, and global non-bijectiveness (mesh overlaps) [67]. The recently
developed unfolding from mesh failures algorithm [68] introduces a seam based segmentation of the
mesh by learning from unfolding failures. However, this algorithm is computationally expensive
due to its heuristic nature, rendering it useless for modest-to-large size datasets.

IV-C.3.2.4 Conclusions of the Literature Review

Most mesh segmentation algorithms present shortcomings such as: (1) high mesh over-segmentation
in the case of geometry - based algorithms, and (2) non-developability in the case of topology - based
algorithms. To overcome these problems, this article presents a parameterization - driven mesh
segmentation algorithm. Our algorithm aims to segment the surface using the failure information
of a non-bijective parameterization. The algorithm incorporates: (1) a Hessian - based segmentation
algorithm which detects sub-mesh boundaries from a non-bijective Hessian parameterization, and
(2) an angle preserving (CONFOP) mesh parameterization algorithm [67]. The algorithm produces
fully bijective parameterizations and avoids over-segmentation. Test results also show that our
algorithm is able to identify mesh protrusions.

IV-C.3.3 Methodology

To compute a bijective parameterization of the triangular mesh M , our algorithm is implemented
as follows (Fig. IV-C.3.1):

1. A Hessian - based mesh parameterization algorithm [40] is applied on M .

2. The non-bijective parameterization ψhessian(M) overlaps in the parameter space (R2). Each
mesh triangle is classified according to its orientation in the plane (positive O+ and negative
O− orientation).

3. The segmentation {M1,M2, . . . ,Mk} of M is computed by extracting the connected compo-
nents of the orientation sets O+ and O− (as they are probably non-connected).
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4. Some triangles become isolated in the previous step. These triangles are merged into large
neighbor sub-meshes.

5. To obtain the (potentially) final parameterization ψi(Mi), an angle preservation mesh param-
eterization algorithm (CONFOP) [67] is applied.

6. If the parameterization ψi of the sub-mesh Mi is bijective, then stop the algorithm for the
current sub-mesh and proceed with the next one. Otherwise, go to step (1) using mesh Mi as
input.

Triangular mesh 𝑀

Compute Hessian mesh
parameterization

(Non-bijective) parameterization 𝜓ℎ𝑒𝑠𝑠𝑖𝑎𝑛 𝑀

Compute the orientation of the
mapped (2D) mesh triangles

Triangle orientation sets 𝑂+ and 𝑂−

Extract the connected sub-meshes of 
𝑶+ and 𝑶−

Mesh segmentation 𝑀1, 𝑀2, … ,𝑀𝑘

Merge isolated triangles into large
sub-meshes.

Clean segmentation 𝑀1, 𝑀2, … ,𝑀𝑘

Apply conformal parameterization
(CONFOP) to each sub-mesh

Mesh parameterization 𝜓1, 𝜓2, … , 𝜓𝑘

Return bijective parameterization
𝑴𝒊, 𝝍𝒊

Is 𝝍𝒊 bijective?

YES

NO

Figure IV-C.3.1: Mesh segmentation/parameterization interplay algorithm.

The previous algorithm uses two different mesh parameterization algorithms: (a) Hessian -
based parameterization and (b) angle preserving mesh parameterization (CONFOP). The reason we
choose both these algorithms is because Hessian parameterization allows mesh foldings and triangle
flips, which are exploited by the segmentation algorithm. On the other hand, CONFOP only
permits a single triangle orientation for the full parameterization and minimizes angle distortions,
resulting in a higher quality parameterization result.

Additionally, step (6) from the algorithm introduces a hierarchical segmentation where the
algorithm requests a subdivision of sub-mesh Mi if its current parameterization is non-bijective. As
a consequence, the algorithm produces a conservative segmentation with large sub-meshes, avoiding
over-segmentation and vouching bijectivity.

Each step of the algorithm is described in detail in the remainder of this section.
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IV-C.3.3.1 Hessian-based Parameterization

A Hessian-based mesh parameterization algorithm [40] is applied on the full triangular mesh M .
Since the mesh M is non-developable, such parameterization is non-bijective. However, this non-
bijectiveness is exploited in further sections to produce a developable segmentation of M .

According to [40], a parameterization of M is given by the first 2 non-constant eigenvectors of
the Hessian functional H, defined as:

Hf =

∫
M

‖Htan
x f‖2FdA ≈ fTKf (IV-C.3.1)

where ‖ · ‖F is the Frobenius norm, dA is the surface differential, Htan
x is the (tangent) Hessian

at any point x ∈ Mi, f ∈ C2(M) is a smooth function defined on M , f = {f1, f2, · · · , fn} are the
corresponding discrete values of f at each vertex xi ∈ M , and K is the n × n Hessian estimator
matrix. The tangent mesh Hessian Htan

x is defined as follows:

Htan
x f =

[
∂2f
∂b21

∂2f
∂b1b2

∂2f
∂b2b1

∂2f
∂b22

]
(IV-C.3.2)

with b1, b2,∈ R3 being an orthonormal basis for the tangent plane at x ∈M .

(a) High frequency mesh neigh-
borhood.

(b) Non-bijective local parame-
terization using average normal
Hessian (Mejia et al., 2016).

(c) Bijective local parameteri-
zation using conformal (CON-
FOP) approach (Mejia, Acosta,
& Ruiz-Salguero, 2017).

Figure IV-C.3.2: Parameterization of high frequency mesh neighborhood. Hessian (failure) and
conformal (success) approach.

To estimate this tangent plane, standard Hessian parameterization algorithm uses PCA [69] or
the average triangle normals method [40]. However, these methods produce in some special cases
locally non-bijective parameterizations (Figs. IV-C.3.2(a),IV-C.3.2(b)), affecting the quality of the
global parameterization. Instead, to estimate the tangent plane at xi our algorithm uses CONFOP
[67] to unfold the triangles adjacent to xi. Such unfolding results in tangent planes which are always
bijective as seen in Fig. IV-C.3.2(c). The CONFOP algorithm is detailed in Sect. IV-C.3.3.4.

The matrix K is semidefinite-positive [40,69]. Therefore, the eigenvalues of K are larger or equal
than zero. The parameterization ψhessian(M) is extracted by computing the first two eigenvectors
of K with the smallest non-zero eigenvalue. Such eigenvectors correspond to an orthogonal basis
for all linear functions (and as a consequence, a basis for all parameterizations) defined on M .
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IV-C.3.3.2 Hessian-based Segmentation

(a) (Non-bijective) Hessian pa-
rameterization of the full mesh.

(b) Sub-mesh classification sets
O+ (yellow) and O− (blue) ac-
cording to Hessian - based orien-
tation.

(c) Connected sub-meshes with
common Hessian - based orien-
tation.

Figure IV-C.3.3: Airplane dataset. Hessian - based mesh segmentation.

For the non-developable mesh M , the Hessian-based parameterization algorithm produces a
non-bijective parameterization ψhessian(M) (Fig. IV-C.3.3(a)). As a consequence, the triangles
of the non-bijective parameterization present positive and negative orientation on different regions
of such parameterization. Classifying each triangle in M with its corresponding orientation in
ψhessian(M) splits the mesh M into two subsets M = O+ ∪ O− (one for each possible orientation
of the triangles) as illustrated in Fig. IV-C.3.3(b).

By definition, each connected sub-mesh in O+ and O− (Fig. IV-C.3.3(b)) accepts a parameter-
ization. Such a collection of connected sub-meshes is itself a mesh segmentation (Fig. IV-C.3.3(c)).

Figure IV-C.3.4: Airplane dataset. Mesh segmentation using CONFOP parameterization instead
of Hessian parameterization.

To compute the mesh parameterization ψhessian(M), the Hessian-based algorithm aligns the
triangles of M in the parameter space, encouraging a consistent orientation between adjacent tri-
angles. However, such algorithm does not prefer a given orientation against the other. Other mesh
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parameterization algorithms enforce a unique orientation, resulting in a low quality mesh segmen-
tation of M with smaller highly nonconvex sub-meshes and sub-mesh boundaries with significantly
higher frequencies (Fig. IV-C.3.4) than the Hessian-based one (Fig. IV-C.3.3(c)).

IV-C.3.3.3 Process Small Sub-meshes

(a) Isolated triangles on raw segmentation. (b) Merged segmentation.

Figure IV-C.3.5: Small sub-meshes and isolated triangles are merged into large sub-meshes.

The Hessian-based segmentation algorithm may produce an over-segmentation with isolated
triangles and small sub-meshes (Fig. IV-C.3.5(a)). This over-segmentation occurs due to:

1. Several triangles become isolated near sub-mesh boundaries since the Hessian parameteriza-
tion algorithm tends to collapse triangles close to the boundary to straight lines (e.g. Fig.
IV-C.3.6(a)).

2. Small sub-meshes occur in high frequency non-developable zones which are folded by the
Hessian parameterization algorithm.

To handle this over-segmentation, we implement a simple algorithm to merge isolated triangles
and small sub-meshes into large ones as follows:

1. Small sub-meshes are detected by the algorithm by a user defined parameter ε which defines
the minimum sub-mesh size allowed by the algorithm.

2. If a given sub-mesh is smaller than the given threshold, it is merged into an adjacent sub-mesh.

3. If a small sub-mesh (or an isolated triangle) has two or more adjacent sub-meshes, it is merged
onto the sub-mesh with which it shares the longest boundary curve.

To improve the quality of the mesh segmentation, changes to geometry and topology could be
implemented (such as curve smoothing or edge flips at sub-mesh boundaries). However, this is left
for future research.
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IV-C.3.3.4 Conformal Mesh Parameterization (CONFOP)

After computing a developable segmentation of M , a mesh parameterization algorithm is applied
on each sub-mesh Mi. In order to highly preserve the sub-meshes shape (preserve angle), the
CONFOP (conformal optimization) algorithm is implemented. CONFOP is a specialization of the
angle/area preserving algorithm presented in [67], where only the optimization term regarding angle
preservation is used. In CONFOP, the following minimization problem arises for each sub-mesh
Mi:

min
Ψ

∑
tj∈Mi

(
A

(tj)
11 −A

(tj)
22

)2

+
(
A

(tj)
12 +A

(tj)
21

)2

(IV-C.3.3)

where Ψ = {ψ1, ψ2, . . . , ψn} is the mapping of the sub-mesh nodes to the CONFOP parameterization
(i.e. ψj = ψ(xj), ψ : Mi → R2), and the matrix A(tj) is the transformation matrix that maps the
triangle tj ∈Mi to the plane (i.e. ψ(tj)) defined as:

A(tj) =
[
ψ

(tj)

1 , ψ
(tj)

2 , ψ
(tj)

3

]
· pinv

(
BT

[
x

(tj)
1 , x

(tj)
2 , x

(tj)
3

])
(IV-C.3.4)

with B = [~v
tj
1 , ~v

tj
2 ] an orthonormal basis for the plane tangent to triangle tj and x

tj
i , ψ

tj
i are the

mean centered coordinates of triangle tj on the mesh and the parameterization, respectively:

x
(tj)
i = x

(tj)
i −

3∑
k=1

x
(tj)
k ,

ψ
(tj)

i = ψ
(tj)
i −

3∑
k=1

ψ
(tj)
k

(IV-C.3.5)

The conformal parameterization Ψ of the sub-mesh Mi is obtained by solving the minimization
problem in Eq. (IV-C.3.3). Such problem reduces to the solution of a linear system of equations as
opposed to the approach taken in [67], which requires iterative nonlinear Marquardt optimization.
This improvement in performance arises due to the fact that our algorithm does not consider
the area-preserving term which is highly nonlinear. The CONFOP parameterization produces a
bijective mapping for the developable partition of the mesh as presented in Fig. IV-C.3.6(a). The
algorithm enforces a unique orientation for the whole mesh parameterization and minimizes angle
distortions (as illustrated on the chessboard texture map in Fig. IV-C.3.6(b)).

IV-C.3.4 Results

We test our algorithm with several datasets from the Princeton benchmark database [70]. Fig IV-
C.3.7 presents segmentation/parameterization results for the Teddy, Gargoyle, Cow and Armadillo
meshes. Our Hessian - based algorithms produces conservative mesh partitions ranging from only
two sub-meshes (such as the Teddy and Gargoyle datasets - Figs. IV-C.3.7(a) and IV-C.3.7(d)) to
9 sub-meshes (Armadillo dataset - Fig. IV-C.3.7(j)). Boundary curves do not follow geometry but
rather divide the surface into the large, low curvature sub-meshes. In all test cases, CONFOP pa-
rameterization achieved fully bijective parameterizations (as seen in Figs. IV-C.3.7(b), IV-C.3.7(e),
IV-C.3.7(h) and IV-C.3.7(k)).
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(a) Airplane (bijective) mesh parameterization. (b) Airplane texture mapping.

Figure IV-C.3.6: Conformal mesh parameterization on the Hessian-based segmentation of the Air-
plane dataset.

Chessboard texture maps show low shape (angle) distortion for the Teddy and Gargoyle pa-
rameterizations (Figs. IV-C.3.7(c) and IV-C.3.7(f)). However, the Cow (Fig. IV-C.3.7(i)) presents
high angle distortions at mesh protrusions (such as ears and horns), evidenced by the loss of the
chessboard pattern in these zones. Similarly, the Armadillo dataset presents high distortions at
mesh protrusions (such as fingers and toes). However, our Hessian - based algorithm partially de-
tects these zones as they are naturally non-developable (Fig. IV-C.3.8(a)). As a consequence, our
CONFOP algorithm parameterizes independently some sections of the Armadillo toes in order to
guarantee parameterization bijectiveness (Fig. IV-C.3.8(b)).

IV-C.3.5 Conclusions

This manuscript presents a parameterization - driven segmentation algorithm for bijective param-
eterization of triangular meshes. Our algorithm exploits the failure regions of a Hessian - based
non-bijective parameterization of the mesh to partition it into developable meshes. Subsequent
sub-mesh partitioning is triggered by the algorithm only if the sub-mesh parameterization is non-
bijective. As a consequence, our algorithm produces conservative (in partition size) but parame-
terizable mesh partitions. The final parameterization of each sub-mesh is computed using an angle
preserving mesh parameterization algorithm (CONFOP). We choose to use two different mesh pa-
rameterization algorithms in our approach because (1) Hessian - based parameterization allows
mesh foldings and triangle flips which are the main key for the segmentation algorithm, (2) CON-
FOP parameterization only permits a single triangle orientation (penalizing triangle flips and mesh
foldings) and minimizes angle distortions, leading to higher quality final parameterizations. Our
conducted experiments show fully bijective segmentations which are moderate in partition size. The
algorithm successfully detects, segments and parameterizes mesh protrusions, which are a common
challenge in mesh parameterization.
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(a) Teddy segmentation (2 sub-
meshes).

(b) Teddy parameterization
(100% bijective).

(c) Teddy chessboard texture.

(d) Gargoyle segmentation (2
sub-meshes).

(e) Gargoyle parameterization
(100% bijective).

(f) Gargoyle chessboard texture.

(g) Cow segmentation (6 sub-
meshes).

(h) Cow parameterization (100%
bijective).

(i) Cow chessboard texture.

(j) Armadillo segmentation (9
sub-meshes).

(k) Armadillo parameterization
(100% bijective).

(l) Armadillo chessboard tex-
ture.

Figure IV-C.3.7: Algorithm Segmentation/Parameterization results for several datasets.
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(a) Hessian - based segmentation. (b) CONFOP texture mapping.

Figure IV-C.3.8: Armadillo’s foot. Segmentation and texture mapping of mesh protrusions (toes).

Mesh segmentation / parameterization is important for the process of RE. A flaw of our algo-
rithm lies in the fact that it produces jagged sub-mesh boundaries in most segmentations, which is
sub-optimal for RE surface fitting and Boundary Representation. To overcome this problem, future
work addresses: (1) boundary smoothing via geometry operations, (2) topology operations such
as edge flips and triangles exchange at sub-mesh boundaries, and (3) mesh refinement in coarse
boundary poly-lines.
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Abstract

Mesh segmentation and parameterization are crucial for Reverse Engineering (RE). Bijective pa-
rameterizations of the sub-meshes are a sine-qua-non test for segmentation. Current segmentation
methods use either (1) topologic or (2) geometric criteria to partition the mesh. Reported topology-
based segmentations produce large sub-meshes which reject parameterizations. Geometry-based
segmentations are very sensitive to local variations in dihedral angle or curvatures, thus produc-
ing an exaggerated large number of small sub-meshes. Although small sub-meshes accept nearly
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isometric parameterizations, this significant granulation defeats the intent of synthesizing a us-
able Boundary Representation (compulsory for RE). In response to these limitations, this article
presents an implementation of a hybrid geometry / topology segmentation algorithm for mechanical
workpieces. This method locates heat transfer constraints (topological criterion) in low frequency
neighborhoods of the mesh (geometric criterion) and solves for the resulting temperature distri-
bution on the mesh. The mesh partition dictated by the temperature scalar map results in large,
albeit parameterizable, sub-meshes. Our algorithm is tested with both benchmark repository and
physical piece scans data. The experiments are successful, except for the well - known cases of
topological cylinders, which require a user - introduced boundary along the cylinder generatrices.

Indexing: Mesh Segmentation, Heat Transfer, Reverse Engineering, CAD/CAM/CAE.

IV-C.4.1 Introduction

In the context of Computer Aided Design / Manufacturing / Engineering (CAD/CAM/CAE) and
the emerging Industry 4.0 framework, RE encompasses (re-)design, manufacturing, simulation, etc.
[55]. Typical RE processes (Fig. IV-C.4.1): (1) tessellate the point cloud of the scanned model,
(2) clean the raw triangular mesh (smoothing, filling, non-manifold repair, decimation, etc.), (3)
build the Boundary Representation (B-Rep) of the mesh, (4) segment the mesh, (5) fit the resulting
partition with parametric surfaces (analytic and / or freeform surfaces), (6) build the B-Rep of the
reconstructed CAD model, and (7) conduct the engineering analysis. RE applications include (but
are not limited to) Finite Element Analysis (FEA) [71, 72], Structural Optimization [73, 74] and
Dimensional Analysis [75,76].

1 2 3 4 5 6 7

Figure IV-C.4.1: The current RE workflow is user-intensive [77]

Mesh segmentation / parameterization plays a crucial role in RE (steps 4-5) for the adequate
geometric modeling of the workpiece. The mesh segmentation / parameterization problem is defined
as follows:

Given: A 2-manifold triangular mesh M (or simply, ”mesh”) embedded in R3. Goal: (i)
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to partition (i.e. segment) the triangle set M into a set of disjoint and connected sub-meshes
{M1,M2, ...Mk} which together compose the original mesh, and (ii) to compute a bijective pa-
rameterization ψi : Mi → R2 for each sub-mesh Mi. The segmentation step (i) must favor the
parameterizability of the computed sub-meshes while retaining feature (functional) surfaces of the
scanned workpiece.

Mesh segmentation algorithms can be classified depending on the surface features used to divide
the mesh:

1. Geometry-based segmentation captures locally geometric features of the surface (sharp
edges, principal curvatures, surface normals, etc.) and partitions the surface using this infor-
mation. This type of segmentation is ideal for CAD meshes that present clear sharp transi-
tions between sub-meshes. However, geometric criterion alone applied to noisy or imperfect
meshes results in over-segmentation (Fig. IV-C.4.2). If the workpiece is smooth, geometric
segmentation produces large and (likely) non-parameterizable sub-meshes.

2. Topology-based segmentation relies on the spectra (eigenpairs) of any Laplacian operator
computed on the mesh graph. This type of segmentation is common in Computer Graphics
applications. However, this segmentation usually results in non-parameterizable sub-meshes
(Fig. IV-C.4.3(a)).

3. Interactive segmentation is the most common practice by RE software (such as Geomagic®

and Polyworks®, Fig. IV-C.4.3(b)). The current state-of-the-art segmentation approaches
still demand expensive user interaction in order to achieve suitable segmentations for param-
eterization and B-Rep reconstruction (Fig. IV-C.4.1).

Figure IV-C.4.2: Dihedral segmentation produces over-segmentation due to surface imperfections
and surface blends

Having the mesh segmented, the construction of the B-Rep becomes straightforward if a bijective
parameterization of each sub-mesh is computed. A trimmed NURBS (Non-Uniform Rational B-
Splines) surface can be fitted by Least Squares [78] or Radial Basis Functions (RBFs) [16] to each
sub-mesh. The fitted surfaces and their trimming curves can be oriented and related to each other
by their adjacency graph in order to produce the reconstructed B-Rep model [79].
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(a) Topologic segmentation [77] (b) Interactive segmentation with Geomagic®

for RE [77]

Figure IV-C.4.3: Topology vs. user - based segmentations [77]

This manuscript presents a hybrid mesh segmentation / parameterization algorithm for RE, as
follows: (i) A set of heat transfer equations are defined on the mesh. The topology of the mesh is
captured by the Laplace-Beltrami operator inherent in the differential equation for heat transfer.
(ii) Temperature constraints are imposed on a subset of vertices (mesh seeds), acting as heat sources
and sinks. The local geometry of the mesh is captured by choosing the mesh seeds according to
a dihedral angle criterion. (iii) To avoid over-segmentation, seeds that produce small sub-meshes
are ignored. The temperature fields are used to re-compute the segmentation without these small
sub-meshes. (iv) The parameterization of each sub-mesh is thereafter computed by a Hessian-based
parameterization [80].

The contribution of this manuscript resides in the mixed topology (temperature) / geometry
(dihedral) nature of the segmentation algorithm. Our algorithm not only pursues mesh parame-
terizability but also a functional partition of scanned mechanical workpieces, without resorting to
over-segmentation. The algorithm allows (almost) automatic processing of 3D meshes from scanned
workpieces, improving the RE workflow.

The remainder of this manuscript is organized as follows: Sect. IV-C.4.2 reviews the relevant
literature. Sect. IV-C.4.3 describes the mesh segmentation algorithm. Sect. IV-C.4.4 discusses
the implementation details of the algorithm. Sect. IV-C.4.5 presents and discusses results of the
conducted experiments. Sect. IV-C.4.6 concludes the paper and introduces what remains for future
work.

IV-C.4.2 Literature review

Mesh segmentation algorithms can be classified depending on the mesh properties used to partition
the mesh as follows:
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IV-C.4.2.1 Geometry-based segmentation

Geometry-based segmentation approaches compute local geometric properties (e.g. dihedral angle,
curvature, frequency, [56, 77]) and use region-growing algorithms to lump property - homogeneous
regions (Fig. IV-C.4.2).

Shape recognition algorithms partition the surface by matching analytic shapes to the mesh
[57–59]. One of these analytic shapes (plane, sphere, cylinder or cone) is registered to each mesh
vertex according to the local geometric information (such as curvature). A clustering or region
growing algorithm is finally applied to compute the mesh segmentation.

Geometry-based segmentation algorithms (1) require several post-processing due to over-segmentation,
(2) do not favor functional or feature segmentation, and (3) are highly sensitive to noise. Mesh
smoothing may be used to reduce noise previous to segmentation [56].

IV-C.4.2.2 Topology-based segmentation

In spectral analysis, a mesh topology operator matrix (e.g. adjacency or Laplacian) is estimated on
the mesh graph in order to extract and analyze its spectra (eigenpairs) [81]. A partition of the first
non-constant Laplacian (Fiedler) eigenvector reflects a possible segmentation of the mesh [77, 82].
A central pre-condition for spectral methods is the edge length homogeneity through the mesh.
To improve the robustness of the spectral segmentation, Refs. [83, 84] segment similar meshes
simultaneously by introducing edge correspondences between meshes, while Ref. [85] captures
images of the same mesh from different perspectives in order to correlate the mesh edges.

Ref. [86] computes an edge weighted Laplacian which includes information about concave re-
gions. Chosen Laplacian eigenvectors are merged into a single scalar field whose partition segments
the mesh. Ref. [65] introduces Secondary Laplacian and Giaquinta-Hildebrant operators which
locally capture geometric properties (e.g. principal curvatures), thus allowing to infere 3D concav-
ities / convexities. Ref. [61] computes the spectra of a weighted dual graph Laplacian. The dual
Laplacian encodes the topology of the mesh in terms of the connectivity of the triangles (instead of
the points connectivity). The weighting scheme incorporates dihedral angles, which improves the
sub-mesh definition.

Heat-based algorithms are an alternative approach for topologic segmentation, defining and
solving different heat transfer equations on the mesh. The topology of the mesh is captured by the
Laplace-Beltrami operator, present in the heat equation. The resulting segmentation is obtained
from the computed temperature fields on the mesh. Ref. [87] presents an interactive segmentation
algorithm where the user draws lines perpendicular to potential sub-mesh boundaries. The algo-
rithm defines temperature constraints according to these user strokes. The algorithm computes the
constrained temperature fields and produces the segmentation based on the temperature contours.

Heat kernels are specific solutions to the heat transfer problems with unique point sources.
These heat kernels can be computed by means of the eigenvectors of the Laplace-Beltrami operator
[51, 88]. Refs. [89, 90] compute the heat potential (tendency to attract heat) of each mesh point
in order to identify crucial heat sources which are then used to compute the heat kernels and the
underlying segmentation.

In general, topology-based methods present several shortcomings: (1) they produce large sub-
meshes which are non-parameterizable, and (2) they usually require heavy user interaction in se-
lection of eigenpairs (spectral) or heat sources (heat-based) on the mesh, critical for the quality of
the segmentation [91].
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IV-C.4.2.3 Mesh segmentation in RE

RE workflow currently requires intensive, costly user input (Fig. IV-C.4.1). Commercial tools
include PolyWorks® [73], RapidWorks® [75] and Geomagic® [77]. Refs. [71, 92] apply RE to run
FEA on scanned turbine blades. The turbine blades are manually divided into sections prior to
digitizing. Ref. [79] uses the dihedral angle and curvature scalar fields on the mesh to segment it,
seeking to optimally fit analytic shapes (sphere, cylinder, cone, etc.). Refs. [78, 93] fit freeforms to
growing sub-meshes, with Ref. [93] favoring rectangular ones. A common approach to represent an
unknown model is to fit rectangular NURBs patches to the whole mesh [93]. These small NURBs
patches have the advantage to produce low-distortion parameterizations, even in the case of complex
geometries where such parameterization can be optimized to produce the smallest distortion [94,95].
However, such patches usually lack from the functional information of the source CAD model (see
Fig. IV-C.4.3(b)).

IV-C.4.2.4 Conclusions of the literature review

Current state-of-the-art segmentation algorithms are not fully suitable for RE applications. Geometry-
based segmentation algorithms produce over-segmentation on scanned workpieces due to surface
imperfections and surface blends between sub-meshes. On the other hand, topology-based algo-
rithms result in parameterization - hostile segmentations. Therefore, the current RE workflow
demands massive user input in order to produce usable B-Reps, requiring between 25-150 hours of
interactive work for a single scanned workpiece [73,77].

To overcome these problems, this article presents an automatic mesh segmentation algorithm
for RE: (1) Our algorithm defines several constrained heat transfer problems on the mesh for seg-
mentation. Temperature constraints are located automatically using a dihedral criterion. To avoid
over-segmentation, constraints that produce small sub-meshes are removed. Therefore, our algo-
rithm favors sub-meshes parameterizability by capturing local geometric features (dihedral angle)
and avoids over-segmentation by capturing topological mesh features (temperature fields). (2) The
sub-meshes are parameterized with a Hessian-based parameterization algorithm [80]. Results are
presented for meshes collected from a 3D optical scanner and public benchmarks.

IV-C.4.3 Methodology

To compute the segmentation of the mesh M , we extend the heat-based approach presented in
Ref. [87], making the segmentation procedure completely automatic (in the sense that it does
not require user interaction) as follows (Fig. IV-C.4.4): (1) instead of manually selecting a heat
source and a heat sink to split the mesh into two sub-meshes, our segmentation algorithm locates
simultaneously the set of all heat sources and sinks S. Such heat sources and sinks (mesh seeds)
are located automatically by a dihedral angle criterion which captures the local geometry of the
mesh. (2) These heat sources / sinks are used to define a set of heat transfer differential equations
on the whole mesh. Therefore, for each heat source Si ⊂ S, a mesh temperature field ui is found.
(3) The computed temperature fields are compared for each vertex in order to define a unique
pre-segmentation of M . (4) Seeds that produce small sub-meshes are removed to avoid over-
segmentation, resulting in a new set of temperature fields. (5) Finally, these new temperature fields
define the final segmentation of M . In addition, an almost automatic parameterization algorithm
proceeds as follows: (6) Artificial boundaries are manually (interactively) introduced only in the
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case of cylinder-like sub-meshes to allow their parameterization. (7) The parameterization of each
sub-mesh is computed with a Hessian-based parameterization algorithm [80].

Triangular Mesh 𝑀 = 𝑋, 𝑇

Compute mesh seeds based on a dihedral angle criteria.

Seed Groups 𝑆1, 𝑆2, …

Solve temperature field 𝒖𝒊 for each seed group 𝑺𝒊

Temperature fields on 𝑀:
𝑢1 𝑥 , 𝑢2 𝑥 , …

Pre-segment the mesh by comparing the temperature values on each vertex

Pre-Segmentation of 
𝑀: 𝑃𝑀1, 𝑃𝑀2, …

Remove seed groups that produce small sub-meshes

Seed Groups 𝑆1, 𝑆2, … , 𝑆𝑘

Group together adjacent mesh seeds.

Mesh Seeds 𝑆 = 𝑠1, 𝑠2, …

Solve the temperature fields 𝒖𝒊 for the new set of mesh seeds

Temperature fields on 𝑀
𝑢1 𝑥 , 𝑢2 𝑥 , …𝑢𝑘 𝑥

Segment the mesh by comparing the temperature values on each vertex

Segmentation of 𝑀: 𝑀1, 𝑀2, … ,𝑀𝑘

Manually introduce artificial boundaries for cylinder-like sub-meshes

Segmentation of 𝑀: 𝑀1, 𝑀2, … ,𝑀𝑘

Hessian-based mesh parameterization of each sub-mesh 𝑴𝒊

Parameterization of 𝑀: 
𝜓1 𝑀1 , 𝜓(𝑀2) , … , 𝜓(𝑀𝑘)

Figure IV-C.4.4: Overall scheme of the segmentation algorithm

IV-C.4.3.1 Automatic placement of mesh seeds

One of the crucial requisites in mesh parameterization resides in the parameterizability of the re-
sulting segmentation. Such parameterizability is hindered by high frequency zones and favored by
low frequency zones. Our algorithm locates a set of mesh seeds S in the low frequency neighbor-
hoods of the mesh. These mesh seeds will expand the different sub-meshes of the segmentation by
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propagating heat through the whole mesh (discussed in subsequent sections). We identify such low
frequency zones by a dihedral angle criterion as follows:

1. Set a dihedral angle threshold θthreshold → 0

2. For each vertex xi ∈M :

(a) Compute the incident edges Ei = e1, e2, . . . on xi.

(b) Compute the dihedral angle θj of each incident edge ej ∈ Ei.
(c) If π − θj > θthreshold (for any incident edge ej), then skip the current vertex.

(d) Else, insert the current vertex xi in the list of the mesh seeds S.

A vertex is considered as a low frequency vertex if and only if none of its incident edges is sharp
(Fig. IV-C.4.5). An edge is sharp (non-planar) if π − θj is larger than the dihedral threshold
θthreshold. Therefore, θthreshold → 0 can be seen as the maximum non-coplanarity between two
adjacent triangles in a low frequency zone.

Low frequency vertex

(a) Low frequency vertex

Sharp incident edge

High frequency vertex

(b) High frequency vertex with a sharp incident
edge

Figure IV-C.4.5: Examples of low and high frequency vertex for selection of mesh seeds based on a
dihedral criterion

Our algorithm ensures that adjacent low frequency mesh vertices lie in the interior of a common
sub-mesh by grouping them into a subset of mesh seeds Si ⊂ S (Fig. IV-C.4.6(a)).

IV-C.4.3.2 Heat transfer with temperature constraints

The following partial differential equation describes the steady heat transfer phenomenon without
heat sources on the mesh M :

∆u(x) = 0 (IV-C.4.1)

where ∆ is the Laplace-Beltrami operator and u(x) is the temperature distribution along the surface.
We impose a temperature value (u(Si) = 1) on a subset of mesh seeds (heat sources) Si ⊂ S, and
temperature value (u(Sj) = 0) at the remaining seed sets (heat sinks) Sj ⊂ M, i 6= j. Each subset
of sources Si will define a sub-mesh Mi of the segmentation. Therefore, for each sub-mesh Mi, the
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(a) Mesh seeds on low frequency zones grouped
by color

(b) Temperature solution for one seed group

Figure IV-C.4.6: Mesh seeds are located at low frequency zones. Each seed group defines a tem-
perature field on the mesh.

following constrained heat problem arises:

∆ui(x) = 0

s.t.

ui(Si) = 1,

ui(Sj) = 0, i 6= j

(IV-C.4.2)

For each heat source Si, its corresponding temperature field ui(x) is obtained by propagating
the thermal energy through the whole mesh M (Fig. IV-C.4.6(b)). The temperature solution ui(x)
is directly related to the sub-mesh Mi, achieving maximum value (u = 1) at the defined heat sources
Si and minimum value (u = 0) at the remaining heat sinks Sj , i 6= j.

The FEA Method is implemented to estimate ∆ numerically. Therefore, ∆ is approximated by
the FEA matrix L, defined as [52,96]:

Lij =


3
Ai
wij , if (xi, xj) is an edge of M

− 3
Ai

∑
xk∈Ni wik, if i = j

0, otherwise

(IV-C.4.3)

where Ni is the neighborhood of xi, wij =
cotαij+cot βij

2 is the cotangent weight of edge (xi, xj),
αij and βij are the angles opposite to edge (xi, xj), and Ai is the area of all the triangles incident
to vertex xi. An n× n linear system of equations AUi = Bi arises for each heat source Si, with:

A =

 L
ISi

ISj

 , and Bi =

0
1
0

 (IV-C.4.4)

where L is the FEA matrix for all the nodes with unknown temperature in M (i.e. rows associated
to mesh sources and sinks are excluded from L), ISi

, ISj
are the constraints matrices for the current

heat sources Si and heat sinks Sj , respectively (i.e. entry kl of matrix IS is 1 if constraint k fixes
the temperature for the heat source / sink xl, 0 otherwise).
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Our algorithm simultaneously solves several heat transfer problems (one for each group of seeds
Si). The matrix A is common to all of them and it is computed and prefactored once. The linear
system defined by Eq. (IV-C.4.4) is then solved using sparse Cholesky factorization, which in most
cases can be solved in nearly linear time O(n) [97, 98]. The following section describes how to
combine the different temperature fields to obtain a single segmentation field.

IV-C.4.3.3 Heat-based mesh segmentation

At this point, each vertex xi in the mesh has an associated set of temperature values u1(xi), u2(xi), · · ·
from the temperature fields generated by each set of mesh seeds S1, S2, . . . . The segmentation of
M is achieved by computing the maximum temperature value at each vertex and its correspond-
ing seed group. Thus, each sub-mesh Mi is composed by the subset of vertices whose maximum
temperature is ui(x):

Mi = {xk ∈M | ui(xk) > uj(xk), i 6= j} (IV-C.4.5)

This construction guarantees that the set of heat sources Si belongs to the sub-mesh Mi, assigning
low frequency areas to the same sub-mesh. Heat propagates smoothly from these zones to higher
frequency zones, defining the sub-mesh boundaries.

IV-C.4.3.4 Discarding small seed groups

In RE, the mesh M presents surface imperfections due to manufacturing imperfections and / or RE
pre-processing results (such as data acquisition, surface meshing, mesh filtering, mesh decimation,
etc). Such imperfections and mesh noise produce small groups of seeds that lead the heat algorithm
to an over-segmentation of the surface. A second heat - based segmentation is then executed
excluding noise - originated seeds. An overview of the method follows:

1. Locate the initial heat seeds on low frequency neighborhoods.

2. Find the mesh temperature fields and segment accordingly.

3. Compute the area of each sub-mesh.

4. Given the sub-mesh with the largest area Alargest, locate all the sub-meshes with an area
below ε ·Alargest (small sub-meshes).

5. Discard seeds in small sub-meshes.

6. Re-compute the temperature fields with the surviving seeds.

7. Re-compute the segmentation with the new temperature fields.

The area percentage parameter 0 ≤ ε ≤ 1 measures the minimum sub-mesh size (relative to
the largest sub-mesh) allowed by the segmentation. Triangles belonging to small sub-meshes in the
over-segmentation are appended to the largest sub-meshes by temperature propagation as discussed
in Sect. IV-C.4.3.3.
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IV-C.4.3.5 Segmentation of cylinder-like sub-meshes

In the well known case of cylinder-like sub-meshes, our segmentation algorithm produces param-
eterization - hostile surfaces. However, such surfaces can be made parameterizable by manually
making a generatrix of the cylinder a mesh boundary (Fig. IV-C.4.7), as follows:

1. The user selects the start and end vertices of the generatrix.

2. A shortest path (Dijkstra) algorithm computes the path that links the start and end vertices.

3. Our algorithm generates a new B-Rep of the sub-mesh introducing the computed trajectory
as sub-mesh boundary.

(a) Parameterization - hostile cylinder-like sub-
mesh

(b) Parameterizable cylinder-like sub-mesh

Figure IV-C.4.7: To parameterize cylinder-like sub-meshes, an artificial boundary (red) is manually
introduced using a cylinder generatrix

Other authors have addressed the problem of fitting closed cylinders using least squares min-
imization [78, 79]. However, our approach comprises not only standard cylinders but also their
topological equivalents (with and without holes).

IV-C.4.3.6 Hessian-based mesh parameterization

To compute the parameterization ψ ⊂ R2 of M , a Hessian-based mesh parameterization algorithm
[80] is applied on each sub-meshMi. This Hessian mesh parameterization algorithm applies the main
concepts of Hessian Locally Linear Embedding (HLLE)[69] (a Dimensional Reduction algorithm)
on triangular meshes.

According to [69,80], a parameterization of Mi is given by the first 2 non-constant eigenvectors
of the Hessian functional H, defined as:

Hf =

∫
Mi

‖Htan
x f‖2FdA ≈ fTKf (IV-C.4.6)

where f ∈ C2(Mi) is a smooth function defined on Mi, ‖ · ‖F is the Frobenius norm, dA is the
surface differential, f = {f1, f2, · · · , fn} are the values of f(xj) at each vertex xj ∈ Mi, and K =
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(K1 + K2 · · · ,Kn) is the discrete Hessian estimator (matrix). This matrix is semidefinite-positive
[69,80]. Therefore, the parameterization ψi(Mi) is extracted by computing the first two eigenvectors
of K with the smallest non-zero eigenvalue. Such eigenvectors correspond to an orthogonal basis
for all linear functions (and as a consequence, a basis for all parameterizations) defined on Mi.

IV-C.4.4 Implementation of the algorithm

To test our algorithm in a real RE context, different engineering pieces have been scanned with
an optical 3D scanner (Fig. IV-C.4.8). The RE result for these pieces is used in real engineering
contexts. The optical 3D scanner produces point cloud data for each workpiece. Fig. IV-C.4.9 plots
the datasets obtained by scanning (a) a knob, (b) a tripod joint, and (c) a rocker arm base. These
datasets were user - processed in Geomagic® DesignTM to ensure manifold properties (pre-condition
for segmentation and parameterization).

Figure IV-C.4.8: Acquisition of 3D point cloud data through an optical 3D scanner

Fig. IV-C.4.10 plots the resulting meshes after the interactive processing. Large holes have been
left in the mesh. These meshes are the actual input for our segmentation algorithm.

Table IV-C.4.1: Default parameter values for our segmentation algorithm

Parameter Value
θthreshold

1
20π radians

ε 5%

Fig. IV-C.4.11 plots the seed groups processing for the Knob mesh. The initial mesh seeds
are computed with a θthreshold = 1

20π radians (see Table IV-C.4.1), since this value has shown to
consistently capture flat zones in all of our experiments. Several small seed groups arise due to
isolated low frequency points inside high frequency zones (Fig. IV-C.4.11(a)). The temperature-
based segmentation using these seeds results in an over-segmentation of the surface (Fig. IV-
C.4.11(b)). Small (noise-generated) sub-meshes are then discarded by the algorithm (as discussed
in Sect. IV-C.4.3.4), no longer receiving heat seeds and therefore being absorbed in natural form by
large meshes when the heat algorithm is run again. After applying seeds processing, the remaining
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(a) Knob (17.3m points) (b) Tripod joint (23.6m points)

(c) Rocker arm base (3.1m points)

Figure IV-C.4.9: Datasets (point clouds) obtained with an optical scanner

seeds capture the local flat geometry of the mesh and the high frequency seeds dissapear (Fig. IV-
C.4.11(c)). The final temperature-based segmentation preserves the geometric properties from the
dihedral criterion in low frequency zones while producing a smooth transition between sub-meshes,
avoiding mesh over-segmentation (Fig. IV-C.4.11(d)). Fig. IV-C.4.12 plots the distribution of the
sub-mesh sizes (sorted by surface area) and the area threshold used to discard small sub-meshes.
In all our conducted experiments we choose an area threshold parameter of ε = 5% (see Table
IV-C.4.1) as we have identified that it consistently differentiates large (albeit parameterizable) sub-
meshes (Fig. IV-C.4.11(d)) from small (noise-generated) ones (Fig. IV-C.4.11(b)). The initial
segmentation of the knob produces 300 sub-meshes while the final segmentation produces only 15
sub-meshes. Decreasing the value of ε in Fig. IV-C.4.12 would increase the likelihood of over-
segmentation. On the other hand, increasing its value could lead the algorithm to merge large
sub-meshes and produce non-parameterizable segmentations. The user may, of course, change the
cutting value (upon examination of the distribution exemplified in Fig. IV-C.4.12), reinforcing or
decreasing the absorption of small sub-meshes into the larger ones.

Fig. IV-C.4.13 plots the final segmentation results for each mesh. The computed sub-meshes
present low frequencies while sub-mesh boundaries are located in high frequency zones. The segmen-
tation is controlled by the area percentage parameter ε (taken as ε = 5% in all our experiments),
discarding noise - related sub-meshes as discussed in Sect. IV-C.4.3.4. Our algorithm produces
parameterization - friendly segmentations while keeping a relatively low number of sub-meshes (15
sub-meshes for the knob - Fig. IV-C.4.13(a), 13 for the tripod joint - Fig. IV-C.4.13(b), and 27 for
the rocker arm base - Fig. IV-C.4.13(c), respectively.).
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(a) Knob (57.8 faces) (b) Tripod joint (61.0k faces)

(c) Rocker arm base (36.1k faces)

Figure IV-C.4.10: Input meshes for our segmentation algorithm. These meshes are the result of
manual preprocessing with commercial software (Geomagic®).

(a) Knob (15 sub-meshes) (b) Tripod joint (13 sub-meshes)

(c) Rocker arm base (27 sub-meshes)

Figure IV-C.4.13: Temperature-based segmentation. The dihedral criterion captures the local mesh
geometry while the temperature approach produces smooth transitions between sub-meshes.
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(a) (Raw) Knob seeds (b) Knob temperature-based segmentation (raw
seeds)

(c) (Processed) Knob seeds (d) Knob temperature-based segmentation (pro-
cessed seeds)

Figure IV-C.4.11: Discarding mesh seeds. The initial seed groups produce over-segmentation due to
surface imperfections (a-b). After discarding small seed groups, such over-segmentation is removed
(c-d).

Hessian parameterization is then applied on each sub-mesh. Fig. IV-C.4.14 plots the 2D pa-
rameterization of each of the knob sub-meshes. Such parameterization is completely bijective (i.e.
no triangle flips nor surface overlaps occur in the parametric space). Fig. IV-C.4.15 plots the chess-
board textures applied on the resulting segmentation using the computed Hessian parameterization.
The distortion of the chessboard squares represents the distortion of the computed parameteriza-
tion. In the case of the tripod joint (Fig. IV-C.4.15(b)), artificial boundaries have been introduced
manually on the cylinder-like sub-meshes as dicussed in Sect. IV-C.4.3.5. Fig. IV-C.4.15 displays
(using chessboard textures) the computed bijective Hessian parameterizations of the sub-meshes.
The special segmentation case of topological cylinders (e.g. tripod joint, Fig. IV-C.4.15(b)) cur-
rently requires the manual creation of a boundary along a cylinder generatrix (discussion in Sect.
IV-C.4.3.5).
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Figure IV-C.4.12: Sub-mesh sizes for the initial segmentation of the knob mesh. The red line plots
the area threshold (ε = 5%) used to discard small sub-meshes from the final segmentation.

Figure IV-C.4.14: Knob Hessian parameterization

IV-C.4.5 Results and benchmarking

This section presents a comparison of our segmentation algorithm against several state-of-the-art al-
gorithms and commercial CAD software. Sect. IV-C.4.5.1 presents a standard benchmarking using
datasets and algorithms from the National Design Repository [99] and the Princeton Benchmark
Repository [70], which are standard in the mesh segmentation literature. Afterwards, Sect. IV-
C.4.5.2 compares our algorithm against recent algorithms from the literature and some commercial
software using our in-house scanned pieces (introduced in Sect. IV-C.4.4).

98



(a) Knob (b) Tripod joint

(c) Rocker arm base

Figure IV-C.4.15: Chessboard texture applied on each sub-mesh. The resulting parameterization
is bijective for all the scanned models.

IV-C.4.5.1 Standard benchmarking

Fig. IV-C.4.16 plots our segmentation results compared with the Cross Boundary Brushes algorithm
results [87] for some CAD models from the National Design Repository [99]. Both methods use a
heat-based approach to capture geometric features of each CAD model. However, Cross Boundary
Brushes is completely interactive, requiring user input for each computed sub-mesh. CAD models
usually present several geometric features which require moderate segmentation sizes (> 10 sub-
meshes). Therefore, interactive user input may become unreliable in such cases. In contrast, our
algorithm produces similar segmentation results and parameterizable sub-meshes without requiring
any user input.

Fig. IV-C.4.17 plots segmentation results of our algorithm and some automatic algorithms from
the Princeton Benchmark [70]. Our algorithm is able to capture the geometric features of the surface
for the flange dataset (Fig. IV-C.4.17(d)) while other algorithms struggle to capture such features,
grouping different surfaces (such as the cylinders, cones and the plane on the flange orifices) into
the same sub-mesh (Figs. IV-C.4.17(a) - IV-C.4.17(c)). As a consequence, our algorithm produces
more sub-meshes (21) than the benchmark algorithms (< 10), which in a RE context is preferable
to allow easy parameterization of each of the flange sub-meshes (see Table IV-C.4.2). On the other
hand, our segmentation of the cup dataset (Fig. IV-C.4.17(d)) results in a similar number of sub-
meshes (see Table IV-C.4.2), and it is in agreement with the rest of the benchmarking algorithms
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(a) Cross Boundary Brushes [87] (fully interactive)

(b) Our method (automated)

Figure IV-C.4.16: Standard benchmarking. Segmentation results of the Cross Boundary Brushes
method [87] (above) vs. our automated method (below). Meshes from the National Design Repos-
itory [99].

(Figs. IV-C.4.17(a) - IV-C.4.17(c)), correctly segmenting the cup model into its meaningful parts
(Fig. IV-C.4.17(d)).

(a) Random Cuts [100] (b) Random Walks
[101]

(c) Fitting Primitives
[102]

(d) Our algorithm

Figure IV-C.4.17: Standard benchmarking. Segmentation results for the flange and cup models.
Meshes from the Princeton Benchmark [70].

Table IV-C.4.2: Number of sub-meshes for the segmentation results of the Princeton Benchmark

Algorithm \Dataset Flange Cup
Random Cuts [100] 7 4

Random Walks [101] 5 3
Fitting Primitives [102] 8 6

Our (Temp-Geom) algorithm 21 5

Our segmentation algorithm is designed to work on scanned meshes of mechanical pieces. As

100



a consequence, our algorithm behaves unexpectedly if applied to organic meshes. Fig. IV-C.4.18
illustrates this fact by applying our algorithm to a human mesh. The result is a bad segmentation
with features not being characterized by our algorithm (such as head, hands or leg), and also each
sub-mesh is non-parameterizable. Despite of the topology (heat-based) component of the algorithm,
such a result is mainly due to the dihedral-criterion used to place the temperature seeds on the
mesh (see Sect. IV-C.4.3.1). This problem can be addressed by changing the approach to define
these seeds, which is left for future work.

Figure IV-C.4.18: Non-parameterizable segmentation of an organic mesh with our algorithm. Hu-
man mesh from the Princeton benchmark [70].

IV-C.4.5.2 RE benchmarking

Fig. IV-C.4.19 plots the segmentation results of the scanned mechanical workpieces (introduced
in Sect. IV-C.4.4) using state-of-the-art segmentation techniques. Fig. IV-C.4.19(a) plots the
segmentation result using our implementation of the Contour Based automatic algorithm [56]. The
resulting segmentation captures some of the surface features of the tripod joint and rocker arm
meshes. However, sub-mesh boundaries are non-smooth and do not capture the real boundaries
of the workpiece surfaces. The number of sub-meshes is relatively low (see Table IV-C.4.3) for
each segmented piece, grouping several feature surfaces of the workpiece in the same sub-mesh,
which difficults the parameterization step of the RE process. The segmentation of the knob mesh
is undesirable in the context of RE.

Figs. IV-C.4.19(b)-IV-C.4.19(c) plot the automatic segmentation results of the scanned work-
pieces using commercial CAD software. The Autodesk® 3ds Max® result is able to locate the
different feature surfaces of the CAD meshes. However, it produces an excessive amount of sub-
meshes (> 1000, see Table IV-C.4.3) which are for the most part product of mesh noise and blending
surfaces. On the other hand, the Geomagic® DesignTM result captures not only feature surfaces
but also blending surfaces (which dictate smooth transitions between feature surfaces) while ignor-
ing the mesh noise. Such a result is highly desirable in a RE context to reconstruct the analytic
surfaces of the scanned model. However, these blending surfaces can produce over-segmentation
at some degree as illustrated in the rocker arm of Fig. IV-C.4.19(c), which has 115 sub-meshes.
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Our algorithm solves this problem by merging the blending surfaces into the feature surfaces (Fig.
IV-C.4.19(d)), reducing this number to 27 [16] while keeping the segmentation parameterizable.

Table IV-C.4.4 presents the main advantages and disadvantages of all the segmentation algo-
rithms used in this manuscript. Our algorithm provides an automatic alternative to mesh segmen-
tation of mechanical pieces for RE, avoiding over-segmentation even in the presence of blending
surfaces and mesh noise (natural to scanning devices and manufacture defects). It is worth to note
that in the general context of mesh segmentation, an algorithm is considered to be automatic if it
does not require interactive input of the user to compute the result. However, it is very common for
automatic algorithms (including ours, see Table IV-C.4.1) to require the use of at least one input
parameter (prior to segmentation) which is used by the algorithm to internally perform numerical
decisions during the segmentation.

(a) Implementation of
Contour Based Seg-
mentation [56]

(b) Automatic
Autodesk® 3ds
Max® segmentation

(c) Automatic
Geomagic® DesignTM

segmentation

(d) Our algorithm

Figure IV-C.4.19: Comparison of results: (a) state-of-the-art competitor [56], (b-c) commercial
tools, (d) our algorithm. Datasets: in-house scanned mechanical pieces.

Table IV-C.4.3: Number of sub-meshes for the segmentation results of our scanned models using
state-of-the-art algorithms and commercial software

Algorithm \Dataset Knob Tripod Joint Rocker Arm Base
Contour Based Segmentation
[56]

6 9 11

Autodesk® 3ds Max® 6216 5633 11772

Geomagic® DesignTM 40 26 115
Our (Temp-Geom) algorithm 15 13 27
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Table IV-C.4.4: Advantages and disadvantages of each segmentation algorithm

Algorithm Advantages Disadvantages
Cross
Bound-
ary Brushes
[87]

1. Works on both mechanical and
organic meshes
2. Smooth sub-mesh boundaries

1. Non-automatic (requires heavy
user interaction)

Random
Cuts [100]

1. Avoids over-segmentation
2. Smooth sub-mesh boundaries

1. Non-automatic (requires user
interaction)
2. Non-parameterizable sub-
meshes

Random
Walks [101]

1. Automatic segmentation
2. Works on both mechanical and
organic meshes
3. Avoids over-segmentation
4. Smooth sub-mesh boundaries

1. Non-parameterizable sub-
meshes

Fitting
Primitives
[102]

1. Automatic segmentation
2. Smooth sub-mesh boundaries
3. Parameterizable sub-meshes for
RE

1. Does not work properly on or-
ganic meshes
2. Does not work properly on me-
chanical meshes composed by sev-
eral freeform surfaces

Contour
Based Seg-
mentation
[56]

1. Works on both mechanical and
organic meshes
2. Avoids over-segmentation

1. Non-parameterizable sub-
meshes
2. Non-smooth sub-mesh bound-
aries

Autodesk®

3ds Max®
1. Automatic segmentation
2. Parameterizable sub-meshes

1. Does not work properly on or-
ganic meshes
2. Over-segmentation

Geomagic®

DesignTM
1. Automatic segmentation
2. Smooth sub-mesh boundaries
3. Parameterizable sub-meshes for
RE

1. Does not work properly on or-
ganic meshes
2. Over-segmentation on meshes
with a lot of small features (such
as blending surfaces)

Our (Temp-
Geom) algo-
rithm

1. Automatic segmentation
2. Avoids over-segmentation
3. Smooth sub-mesh boundaries
4. Parameterizable sub-meshes for
RE

1. Does not work properly on or-
ganic meshes
2. Ignores small feature surfaces

IV-C.4.6 Conclusions and future work

This manuscript presents an algorithm for automatic mesh segmentation of 3D meshes of digitized
mechanical pieces for RE applications. The implemented algorithm articulates a dihedral / heat
transfer-based segmentation with a Hessian-based parameterization.

Compared to similar approaches, our method improves the RE workflow with an automatic
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hybrid geometry / topology approach which segments triangular meshes acquired from scanned
mechanical models. The geometric component of the algorithm (i.e. dihedral criterion) favors
the parameterizability of the resulting partition. On the other hand, the topologic component
(captured by the temperature fields) favors smooth transitions between sub-meshes and avoids
over-segmentation. The experiments were conducted on data acquired by a 3D optical scanner and
from public repositories, and yet resulted in sets of fully parameterizable sub-meshes.

Ongoing work addresses: (1) Detection of cylinder-like sub-meshes and automatic computation
of virtual boundaries as our algorithm currently requires user guidance to parameterize such cases.
(2) Design of an alternative method to compute temperature seeds in the mesh to allow the segmen-
tation of organic meshes. (3) Triangle negotiation / splitting between adjacent sub-meshes in order
to produce smoother sub-mesh boundary curves, in preparation of cleaner B-Reps. (4) Definition of
a consistent topology (SHELL, FACES, LOOPS, EDGES and VERTICES) and geometry (freeform
curves and surfaces) which together compose the final B-Rep of the reconstructed model.
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IV-D

Thermal Simulation of CNC Laser Machin-
ing
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Abstract

In the context of Computer Simulation, the problem of heat transfer analysis of thin plate laser
heating is relevant for downstream simulations of machining processes. Alternatives to address the
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problem include (i) numerical methods, which require unaffordable time and storage computing
resources even for very small domains, (ii) analytical methods, which are less expensive but are
limited to simple geometries, straight trajectories and do not account for material non-linearities
or convective cooling. This manuscript presents a parallel efficient analytic method to determine,
in a thin plate under convective cooling, the transient temperature field resulting from application
of a laser spot following a curved trajectory. Convergence of both FEA (Finite Element Analysis)
and the analytic approaches for a small planar plate is presented, estimating a maximum relative
error for the analytic approach below 3.5% at the laser spot. Measured computing times evidence
superior efficiency of the analytic approach w.r.t. FEA. A study case, with the analytic solution,
for a large spatial and time domain (1m × 1m and 12 s history, respectively) is presented. This
case is not tractable with FEA, where domains larger than 0.05m × 0.05m and 2 s require high
amounts of computing time and storage.

Keywords: Heat Transfer, Laser Heating, Analytic Solution, Efficient Simulation, Parallel Com-
puting, Thin Plate.

Glossary

FEA Finite Element Analysis.
a, b, ∆z Width (m), height (m) and thickness (m) of the plate.
x, t Spatial x = [x, y] ([m,m]) and temporal t ≥ 0 (s) coordinates.
u = u(x, t) Temperature distribution along the plate at a given time (K).
ρ Plate density (kg/m3).
cp Plate specific heat (J/(kg ·K)).
k Plate thermal conductivity (W/(m ·K)).
R Plate reflectivity i.e., portion of the laser energy that is not absorbed by

the plate (0 ≤ R ≤ 1).
q = q(u) Heat loss due to convection at the thin plate surface (W/m2).
h Convection coefficient at the plate surface (W/(m2 ·K)).
u∞ Temperature of the plate surrounding medium (K).
x0 = x0(t) Laser spot center location at a given time [x0(t), y0(t)] ([m,m]).
f = f(x,x0) Laser power density model (W/m2). There are four types in this

manuscript: circle-shape (fc), square-shape (fs), Gaussian (fg) and Dirac
delta (fd).

P Laser power (W ).
~v = [vx, vy] Laser scanning speed (m/s).
r Circle-shape laser spot radius (m).
∆x Square-shape laser spot edge length (m).
σ Parameter of the Gaussian laser model (m).
Xi = Xi(x) i-th Fourier basis function in the x-axis.
Yj = Yj(y) j-th Fourier basis function in the y-axis.
Θij = Θij(t) ij-th Fourier coefficient for the temperature solution u.
(Ω,X) Finite element discretization of the problem. Ω = {Ω1,Ω2, . . . ,Ωm}, X =

{x1,x2, . . . ,xn}.
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∆t Timestep size for the time discretization in FEA.
U(t) Nodal values of the temperature for the FEA discretization of the problem.

U(t) = [u(x1, t), u(x2, t), . . . , u(xn, t)]
T .

F(t) Nodal values of the laser source for the FEA discretization of the problem.
F(t) = [f(x1, t), f(x2, t), . . . , f(xn, t)]

T .

IV-D.1.1 Introduction

Thin plate laser heating is an important manufacturing process in which a high powered laser source
(such as a CO2 or Nd-YAG laser) is applied to locally heat, melt and/or remove the plate material.
Applications include metal plate alloying, drilling, forming, bending and cutting.

Numerical computer simulations of laser applications consume large computing resources, even
for very small domains. On the other hand, analytic or closed form formulations require much less
computer resources, at the price of lower precision and significant restrictions on the application
circumstances. However, these analytic solutions become appealing as they may produce economic
forecasts of the overall heating process, for specific study cases.

This manuscript presents an efficient analytic solution for the time history of the temperature
field of thin rectangular flat plates heated by a constant speed laser spot. Unlike other analytic
methods, our solution considers convective energy exchange and piecewise linear curved trajectories.
It handles time and space domains sizes significantly larger than the feasible for FEA. Our method
uses Fourier coefficients to find a solution in the frequency domain and maps it back to the time-
space domain. We compute the solution for timestep tn and trajectory piece x0(tn) based on
timestep tn−1 and trajectory piece x0(tn−1). The presented algorithm enables easy parallelization
resulting in further improvement in the overall efficiency for larger space and/or time domains

This article is organized as follows: Sect. IV-D.1.2 reviews the relevant literature. Sect. IV-
D.1.3 describes the methodology. Sect. IV-D.1.4 presents and discusses results of the conducted
experiments. Sect. IV-D.1.5 concludes the paper. Sect. IV-D.1.6 introduces what remains for
future work.

IV-D.1.2 Literature Review

This section discusses the state of the art for the simulation of the laser heating problem. Sect. IV-
D.1.2.1 reviews the literature concerning numerical approaches to the problem solution while Sect.
IV-D.1.2.2 discusses the analytic approaches. Sect. IV-D.1.2.3 concludes the literature review.

IV-D.1.2.1 Numerical methods for laser heating simulation

FEA is one of the most important numerical tool for thermodynamic analysis of metal plates under
laser heating. [103, 104] perform a parametric study on a rectangular plate using FEA in order
to measure the impact of laser speed, laser spot radius and laser power on the plate temperature
distribution during laser heating. [105] performs and statistically validates the parametric analysis
using ANOVA tests. [106, 107] solve a thermal/stress model with FEA in order to study the
plate deformations due to the high temperature gradients. [108] compare FEA with trained ANN
(Artificial Neural Networks) for predicting thermal stresses in laser cutting of glass sheets.
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[109, 110] simulate rectangular cuts with laser using FEA, while [111, 112] perform the same
analysis for circular and triangular cuts respectively. The enthalpy method is used to account for
non-linearites of the material as well as phase changes that induce material melting. Experimental
validation of the estimated temperature is presented using thermocouples.

[113] investigate the laser heating problem using the element birth and death method in order to
account for material non-linearities. For accounting material removal in the FEA models, [114–116]
incorporate a temperature-threshold approach which removes melted elements from the plate mesh
during the simulation.

Aside from FEA, other numerical methods have been used for simulation of laser heating pro-
cesses. [117–120] use the Finite Differences Method (FDM) for the analysis of laser heating phe-
nomenon while [121, 122] employs a Boundary Element Method (BEM) approach. Recently, the
Finite Volume Method (FVM) has been incorporated for the simulation of the laser heating problem
[123,124].

Despite the modeling complexity that can be reached with numerical tools, these approaches
are highly sensitive to spatial and time discretizations of the plate [125–127]. Therefore, such
approaches are currently unusable in industrial scenarios where fast decisions must be made for
large plates and complex laser trajectories.

IV-D.1.2.2 Analytic methods for laser heating simulation

Analytic (or semi-analytic) solutions to the problem have been also proposed in the literature of
laser heating simulation. [128] develop an ordinary non-linear differential equation which is then
solved numerically for the laser heating problem. [129] solves a 1D laser heating problem for solid-
liquid interfaces using the Laplace transform. [130] develop a non-linear analytic model which
is solved iteratively to estimate the plate temperature in underwater laser cutting. The model
is then validated numerically and statistically [131]. [132] present an analytic solution for the
thermal/stress equations by means of Fourier series. [133] presents an analytic solution for the 3D
laser heating problem for piecewise linear trajectories by a superposition of fundamental solutions
in a semi-infinite domain. Convective heat losses are omitted at the plate surface and the plate is
assumed with infinite depth.

Analytic approaches provide computationally faster results than numerical approaches. How-
ever, they are very limited in model assumptions [134]. Such limitations include: linear laser
trajectories, 1D and 2D rectangular domains, constant material properties and null convection on
the plate surface.

IV-D.1.2.3 Conclusions of the literature review

As discussed above, numerical tools are impractical for industrial scenarios [126,127] where decisions
must be made on large plate sizes. Current analytic approaches partially overcome this problem
by providing fast solutions at the cost of limitations such linear trajectories, no convection at the
plate surface and material properties independent of the temperature. However, they only work for
linear trajectories on the plate.

This manuscript presents an analytic solution for the 2D laser heating of rectangular thin plates
problem. Our algorithm: (1) acts recursively in the time domain calculating the Fourier solution for
time tn using the coefficients from timestep tn−1, (2) allows parallelization for computing the Fourier
coefficients of timestep tn. Features (1) and (2) are the basis for the algorithm low computational
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Table IV-D.1.2: Comparison of the contributions and drawbacks of our analytic method and some
state of the art methodologies.

Ref. Curved Laser
Trajectory

Convection at
the Surface

Nonlinear
Thermal Prop-
erties

Large Domain
Study

Our Analytic
Method

Yes Yes No Yes

[128] No No No No
[129] No No No No
[130] No Yes Yes No
[132] No No No No
[133] Yes No No Yes
FDM [120] No Yes No No
BEM [122] No Yes No No
FEA [107] Yes Yes Yes No
FVM [124] No Yes Yes No

cost. Our analytic approach covers larger space and time domains than the ones achieved by FEA
methods. A study case is presented in order to compare the convergence rate and execution times
of the algorithm vs. FEA in a MATLAB implementation.

To illustrate the capabilities of the implemented approach, a study case for a large plate (1m2,
12 s history) is presented. Table IV-D.1.2 presents an appraisal of this manuscript contributions
versus other approaches in the current literature.

IV-D.1.3 Methodology

This section discusses the methodology for our analytic solution to the laser heating problem and
poses a study case. Sect. IV-D.1.3.1 introduces the theoretical model and assumptions for the heat
transfer analysis. Sect. IV-D.1.3.2 presents the analytic solution to the problem. Sect. IV-D.1.3.3
discusses about the different laser models. Sect. IV-D.1.3.4 describes the implementation details of
the solution. Sect. IV-D.1.3.5 briefly discusses the FEA approach used to validate numerically the
analytic solution. Finally, Sect. IV-D.1.3.6 presents a simulation case of study.

IV-D.1.3.1 Heat equation for the thin plate laser heating problem

In the case of metal plates, it is reasonable to ignore heat transfer through the plate thickness (i.e.

using a 2D model ∇ · k∇ = k ∂2

∂x2 + k ∂2

∂y2 ) due to the relative size of the plate thickness w.r.t. its

width and height (∆z → 0) and the high thermal conductivity. According to Ref. [135], heat
transfer in a 2D plate subject to a continuous laser source satisfies the following PDE with initial
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Figure IV-D.1.1: Schematic of the laser heating model. A laser passes an amount of energy f at a
plate location x0 while the plate cools down due to convection q at the surface.

and boundary conditions:

ρcp
∂u

∂t
−∇ · (k∇u) =

f − q
∆z

q = h(u− u∞)

u|x=0 = u|x=a = u|y=0 = u|y=b = u∞

u(x, t0) = u∞

(IV-D.1.1)

where ρ, cp and k are the material density, specific heat and thermal conductivity respectively
(assumed constant in this manuscript). u is the temperature distribution on the plate. f is the
laser surface power density of the laser (discussed in Sect. IV-D.1.3.3) and q is the heat loss due
to convection at the plate surface. The plate initial temperature is assumed at constant ambient
temperature u∞ and the 2D borders of the plate are assumed at ambient temperature for the whole
simulation. An scheme of the laser heating problem is depicted in Fig. IV-D.1.1.

IV-D.1.3.2 Analytic solution of the problem

Following the same procedure as in [132], the following analytic solution for the temperature dis-
tribution can be derived for Eq. (IV-D.1.1):

u(x, t) = u∞ +

∞∑
i=1

∞∑
j=1

Θij(t)Xi(x)Yj(y) (IV-D.1.2)

with Fourier basis functions:

Xi(x) = sin
iπx

a

Yj(y) = sin
jπy

b

(IV-D.1.3)

and their respective Fourier coefficients Θij(t). The value for these coefficients is given below.
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IV-D.1.3.2.1 Fourier Coefficients

The closed form of the Fourier coefficients Θij(t) from Eq. (IV-D.1.2) can be derived using separa-
tion of variables [132]:

Θij(t) =
4

abρcp∆z

∫ t

t0

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(t−τ)dxdydτ (IV-D.1.4)

where ωij are the eigenvalues of Eq. (IV-D.1.3) for the current operator (Eq. (IV-D.1.1)) defined
as:

ωij =
k

ρcp

(
i2π2

a2
+
j2π2

b2

)
+

h

ρcp∆z
(IV-D.1.5)

The curved trajectory x0(t) is discretized into a sequence of linear trajectories x0(t) = [x0(t0),x0(t1), · · · ,x0(tn)].
Therefore, Eq. (IV-D.1.4) becomes:

Θij(tn) =
4

abρcp∆z

n∑
l=0

e−ωij(tn−tl)

∫ tl

tl−1

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(tl−τ)dxdydτ

(IV-D.1.6)

Such discretization allows to compute easier the integral term in Eq. (IV-D.1.4) for the nonlinear
laser trajectory as a sum of linear laser trajectories. In order to satisfy the initial condition of the
differential equation, the Fourier coefficients are initialized to Θij(t0) = 0. Thus, Eq. (IV-D.1.2)
becomes u(x, t0) = u∞, satisfying the initial condition presented in Eq. (IV-D.1.1).

IV-D.1.3.2.2 Recursive Fourier Coefficients

Eq. (IV-D.1.6) can be rewritten in recursive form as follows:

Θij(tn) =Θij(tn−1)e−ωij(tn−tn−1)+

4

abρcp∆z

∫ tn

tn−1

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(tn−τ)dxdydτ
(IV-D.1.7)

where Θij(tn−1) are the Fourier coefficients of a previous timestep solution (recursive term). In the
time domain, the term Θij(tn), for time tn can be economically solved in recursive manner by using
the term Θij(tn−1) instead of computing the whole history. Furthermore, since the laser trajectory
has been discretized into linear paths, the integral term in Eq. (IV-D.1.7) accounts for a linear laser
trajectory at time tn. Therefore, such integral can be solved easier than using a nonlinear path.

IV-D.1.3.3 Laser source models

Eq. (IV-D.1.7) requires evaluating the following integral for the laser beam source:∫ tn

tn−1

∫ b

0

∫ a

0

f(x,x0)Xi(x)Yj(y)e−ωij(tn−τ)dxdydτ (IV-D.1.8)
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Table IV-D.1.3: Equivalence table between laser model parameters.

Model Parameter Value
Circle-shape r
Square-shape ∆x ∆x = r

√
π

Gaussian model σ σ = r
Dirac laser r → 0

The value of such integral depends on the laser model used. The most common models used are:
circle-shape laser model (fc, Fig. IV-D.1.2(a)), square-shape laser model (fs, Fig. IV-D.1.2(b)),
Gaussian laser model (fg, Fig. IV-D.1.2(c)) and Dirac delta laser model (fd). Each of these models
are presented below:

fc(x,x0) =

{
P (1−R)
πr2 , ‖x− x0‖ < r

0, otherwise

fs(x,x0) =

{
P (1−R)

∆x2 , |x− x0| < ∆x
2 ∧ |y − y0| < ∆x

2

0, otherwise

fg(x,x0) =
P (1−R)

πσ2
exp

(
−‖x− x0‖2

σ2

)
fd(x,x0) = lim

σ→0
fg(x,x0)

(IV-D.1.9)

Solution for Eq. (IV-D.1.8) is presented in the Appendix for a squared (fs) and a Dirac delta
(fd) laser source. For the other two laser models, Table IV-D.1.3 presents an equivalence between

laser parameters such that the overall input energy
∫ b

0

∫ a
0
f(x,x0)dxdy and the power density peak

maxx f(x,x0) of the laser beam are the same independently of the model. As the laser spot becomes
smaller, all the energy input localizes in a smaller area despite the chosen model as illustrated in
Fig. IV-D.1.3. Therefore, for relatively small laser spots (w.r.t. the 2D plate size), the heat transfer
phenomenon described in Eq. (IV-D.1.1) should behave similarly for all the laser models.

IV-D.1.3.4 Algorithm overview

To apply the analytic solution posed in Eq. (IV-D.1.2), the curved laser trajectory x0(t) is dis-
cretized into a sequence of linear trajectories x0(t) = [x0(t0),x0(t1), · · · ,x0(tn)]. Such discretiza-
tion is achieved by uniformly sampling the parametric trajectory such that the timestep remains
constant through the whole simulation. Afterwards, Eq. (IV-D.1.7) is applied recursively on the
sequence of linear trajectories in order to compute the Fourier coefficients at each timestep. As
already discussed in Sect. IV-D.1.3.2, the algorithm is initialized by setting Θij(t0) = 0. Finally,
the temperature solution u(x, tl) at any timestep tl can be recovered by applying Eq. (IV-D.1.2).
The infinite sum is truncated in order to obtain an approximate solution. Fig. IV-D.1.4 presents
an overview of the algorithm.
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(a) Circle-shape laser beam model fc distribution. (b) Square-shape laser beam model fs distribution.

(c) Gaussian laser beam model fg distribution.

Figure IV-D.1.2: Laser model distribution for the different laser beam models: fc, fs and fg.
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(a) Laser power density distribution for a spot radius
r = a/10.

(b) Laser power density distribution for a spot radius
r = a/100.

Figure IV-D.1.3: Distribution of the laser power densities for the different laser models along the
x-axis using different laser spot sizes.

Figure IV-D.1.4: Diagram of the analytic approach algorithm.
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Table IV-D.1.4: Physical parameters for simulation of laser heating of an AISI 304 steel plate (Ref.
[106]). Natural convection due to surrounding air is considered.

Parameter Value
ρ 8030 kg/m3

cp 574 J/(kg ·K)
k 20W/(m ·K)
R 0
h 20W/(m2 ·K)
u∞ 300K

IV-D.1.3.5 Numerical Comparison with FEA

In order to validate numerically the implemented approach, FEA is used to simulate the laser
heating problem. The FEA linear system of equations that arises for Eq. (IV-D.1.1) is:[(

ρcp
∆t

+
h

∆z

)
M + kL

]
U(t+∆t) = M

(
ρcp
∆t

U(t) +
1

∆z

∫ t+∆t

t

F(τ)dτ +
h

∆z
u∞

)
(IV-D.1.10)

where:

Lij =
∑

Ωk∈Ω

∫
Ωk

∇φi · ∇φjdA

Mij =
∑

Ωk∈Ω

∫
Ωk

φiφjdA

(IV-D.1.11)

are the Laplace-Beltrami (stiffness) and norm (mass) matrices respectively. Ω = {Ω1,Ω2, . . . ,Ωm},
X = {x1,x2, . . . ,xn} is a discretization of the plate into finite elements. φi = φi(x) is the
interpolation function associated to the node xi. U(t) = [u(x1, t), u(x2, t), . . . , u(xn, t)]

T and
F(t) = [f(x1, t), f(x2, t), . . . , f(xn, t)]

T are the nodal values of the temperature and the laser source
respectively. Finally, ∆t is the timestep size.

To carry out the comparison of our analytic algorithm with FEA, a small study case (which can
be solved accurately with FEA) is simulated with both approaches: a 0.01m × 0.01m × 0.001m
AISI 304 steel plate (Table IV-D.1.4) is heated by a P = 100W , r = 0.0003m squared laser source
(fs) which follows the trajectory depicted in Fig. IV-D.1.5 at constant speed ‖~v‖ = 0.1m/s. To
discretize the plate, triangular elements are used with linear interpolation (Fig. IV-D.1.6). A
timestep ∆t = 0.0012 s is chosen for the time discretization.

IV-D.1.3.6 Experimental setup

To test the implemented algorithm, a simulation study case with a relatively large plate is presented
(computationally impractical for FEA). A 1m×1m×0.001m AISI 304 steel plate (Table IV-D.1.4)
is heated by a P = 100W point laser source (fd) that follows the trajectory depicted in Fig. IV-
D.1.5 at constant speed ‖~v‖ = 0.1m/s. The surface of the plate is surrounded by air, which cools
the plate by natural convection. Ambient temperature is set at 300K.
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Figure IV-D.1.5: Trajectory of the laser on the plate surface (from A to B).

Figure IV-D.1.6: Triangular mesh discretization of the plate for FEA.
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IV-D.1.4 Results and Discussion

This section presents and discusses a numerical comparison of the implemented analytic method
against FEA for a small plate study case (Sect. IV-D.1.4.1). Sect. IV-D.1.4.2 presents results
of our analytic algorithm for a large plate study case, where current FEA becomes impractical
computationally. Finally, Sect. IV-D.1.4.3 compares measured execution times for the analytic
(serial and parallel implementation) and FEM approaches.

IV-D.1.4.1 Numerical comparison of the analytic solution vs. FEA

This section presents the numerical results of the study case presented and discussed in Sect. IV-
D.1.3.5. These results are used to compare the analytic approach with FEA. Fig. IV-D.1.7(a) plots
the plate temperature distribution at the end of the simulation (t = 0.12 s) estimated with our
analytic approach. For this particular case, Eq. IV-D.1.2 is truncated at 200 × 200 Fourier terms
since: (1) the error of the solution does not change significantly with more Fourier terms, and (2)
such error is tolerable (below 3.5%). Fig. IV-D.1.7(b) plots the FEA temperature at the same
simulation time. A timestep of ∆t = 0.0012 s is used and the triangular mesh in Fig. IV-D.1.6
is for both FEA and our analytic solution (as per Eq. (IV-D.1.2)). Fig. IV-D.1.7(c) plots the
relative error distribution of the analytic temperature considering the FEA solution as reference.
A maximum relative error of 3.43% is measured around the laser spot.

Fig. IV-D.1.8(a) plots the maximum relative error of the analytic solution as a function of
the number of Fourier terms in Eq. (IV-D.1.2). The analytic solution stabilizes above 100 × 100
Fourier terms for the current study case (a relative error of ≈ 3.5%). Fig. IV-D.1.8(b) shows, in
contrast, that the FEA solution falls below a relative error of 2% for mesh sizes above 10000 nodes.
A FEA solution with a high resolution mesh (> 50K mesh nodes) is used as reference temperature
in both cases (MATLAB adaptive remeshing used). This relative analysis is only applicable to the
described study case, as the convergence of the problem is dependent on the laser spot radius /
plate size ratio. Larger plates (or smaller laser spots) require more Fourier terms in the analytic
case and larger meshes in the FEA case in order to accurately simulate the physical phenomenon.

IV-D.1.4.2 Experiment results

This section presents the results obtained the analytic approach for the large study case (1m ×
1m × 0.001m) in Sect. IV-D.1.3.6. A point source fd is used to simulate the laser. The Fourier
series is set to 2000 × 2000 terms. Fig. IV-D.1.9 presents the evolution of the temperature field
on the plate at different simulation times. Figs. IV-D.1.9(a) and IV-D.1.9(b) plot the temperature
at early (t = 0.6189 s) and halfway (t = 6.1892 s) stages respectively while Fig. IV-D.1.9(c) plots
the temperature at the end of the laser trajectory (t = 12.3786 s). The zoom near the laser spot
exhibits the high spatial resolution captured by our analytic solution.

IV-D.1.4.3 Computing times

This section compares the analytic vs. FEA computing times for the case in Sect. IV-D.1.3.5. In
the FEA case, Eq. (IV-D.1.10) is implemented in MATLAB and solved using a linear solver for
sparse matrices (sparse Cholesky factorization library CHOLMOD).
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(a) Analytic temperature distribution at t = 0.12 s. (b) FEA temperature distribution at t = 0.12 s.

(c) Relative error of the analytic solution vs. FEA.
The maximum relative error is 3.43%.

Figure IV-D.1.7: Temperature and error distribution for a small plate (0.01m× 0.01m× 0.001m)
obtained by the analytic and FEA approaches.
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(a) Error of our analytic solution as a function of the
number of Fourier terms.

(b) Error in the FEA solution as a function of the
number of nodes.

Figure IV-D.1.8: Maximum relative error evolution for the analytic and FEA methods for the study
case in Sect. IV-D.1.3.5 (the reference solution is a 54K node FEA simulation).

Table IV-D.1.5: Hardware and software specifications of the machine used to run FEA and the
analytic simulations in both serial and parallel form.

Item Specifications
Operating System Microsoft Windows 10 Home Single Language
Processor Intel©Core�i7-4700HQ CPU @2.40GHz 2394 Mhz
Random Access Memory (RAM) 16.0 GB
Operating System Type 64 bits (x64)
GPU Unit NVIDIA GeForce GTX 760M
Software MATLAB R2014b 64-bit (win64), MATLAB Parallel Com-

puting Toolbox

Our analytic solution lends itself for parallel computing. Our algorithm in Sect. IV-D.1.3.4
requires computing each Fourier coefficient Θij(t) (Eq. (IV-D.1.7)) as a sequence of simple op-
erations (such as sums, products and powers) independent from each other. These sequences of
operations are independent between Fourier coefficients. In addition, the temperature field from
Eq. (IV-D.1.2) describes the temperature at each point x in the domain as a linear combination of
the Fourier basis. Hence, the temperature can be recovered for each point x in the domain inde-
pendently of others points. Therefore, we implement the analytic algorithm using both MATLAB
basic operations (serial implementation) as well as gpuArray operations from the MATLAB Paral-
lel Computing Toolbox (parallel implementation). Table IV-D.1.5 lists the software and hardware
specifications of the machine used to run FEA, as well as the analytic algorithm in both serial and
parallel form. Such configuration is a low end for numerical computing. This modest demand poses
an advantage for our analytic approach.

Fig. IV-D.1.10 plots the measured execution times for computing the Fourier coefficients (Eq.
(IV-D.1.7)) with the analytic approach as a function of the number of Fourier terms in both se-
rial and parallel implementations for the small plate case. The temperature recovery step of Eq.
(IV-D.1.2) is not included in the measured times. The intersection point between the serial and
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(a) Plate temperature distribution at t = 0.6189 s.

(b) Plate temperature distribution at t = 6.1892 s. (c) Plate temperature distribution at t = 12.3783 s.

Figure IV-D.1.9: Simulated temperature distribution for the large plate (1m× 1m× 0.001m) case
study at different timestamps.
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Figure IV-D.1.10: Serial and parallel execution times for computing the analytic Fourier solution
(Eq. (IV-D.1.7)) vs. number of Fourier coefficients used for the small plate case study (Sect.
IV-D.1.3.5). The temperature recovery step of Eq. (IV-D.1.2) is not considered.

parallel times in the plot is near the 60× 60 Fourier coefficients and the the gap between the serial
and parallel execution times becomes larger as the number of Fourier coefficients increases. There-
fore, the parallel version of the algorithm becomes in fact, significantly faster than the serial one
for larger number of coefficients.

Fig. IV-D.1.11 presents the execution times for FEA and the serial analytic algorithm as a
function of the number of mesh nodes and the number of Fourier terms (for the analytic case). The
measured computation times consider the computation of the Fourier terms at each timestep and the
recovery of the temperature (as per Eq. (IV-D.1.2)) at the end of the simulation in the case of the
analytic approach. However, the meshing step is not taken into account for measuring analytic or
FEA times. Our analytic approach performs significantly faster than FEA as the mesh size increases,
even for a large number of Fourier coefficients. Such difference in efficiency becomes crucial as
the problem grows to bigger domains where FEA becomes very expensive computationally. For
simplicity of the plot, parallel times are not included in Fig. IV-D.1.11. However, our experiments
showed that the parallel implementation of the analytic algorithm performs better than the serial
one (and therefore, better than FEA).

IV-D.1.5 Conclusions

This paper has presented a parallel efficient analytic solution for the 2D rectangular plate laser
heating problem for curved laser trajectories and convection at the plate surface. Our algorithm
discretizes the curved laser trajectory as a piecewise linear trajectory with constant speed. The so-
lution for timestep tn in the trajectory x0(tn) uses the result accumulated till the previous timestep
tn−1. Our analytic solution allows to consider convective energy into the balance. Although the
assumptions of the mathematical model simplify the laser heating phenomenon (constant material
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Figure IV-D.1.11: Execution times for computing the temperature solution with FEA and the serial
analytic approaches w.r.t. the mesh size and the number of Fourier coefficients used in the analytic
approach. Both Fourier computation times (Eq. (IV-D.1.7)) and temperature recovery times (Eq.
(IV-D.1.2)) are considered. Meshing times are not considered.

properties, no phase changes and constrained plate and laser geometries), the analytic algorithm
provides an efficient solution to problems that are very expensive computationally for current FEA
methods.

Computing times of our algorithm are significantly lower than the FEA times for the same
problem. Numerical comparison of the analytic method with FEA presents a relative error that
reaches a maximum of 3.5% in very localized areas at the laser spot. Results for a 1m×1m×0.001m
AISI 304 steel plate during 12.37 s history (intractable with FEA) are presented for our analytic
method.

IV-D.1.6 Future Work

Current mathematical description of heat transfer phenomena does not consider all physical factors
involved in the laser machining process. Essentially, the methodology presented in this manuscript
provides an approximated, but fast solution to the laser heating problem.

Consideration of radiative heat exchange between the laser beam and the metal plate requires
the introduction of non-linear terms in the heat transfer equation (Eq. (IV-D.1.1)). As of our
knowledge, there is no known analytic solution to such a non-linear formulation, even for the
simplest geometries.

The authors remark that the presented method heavily rests on the continuous rectangular thin
plate assumption. Domain discontinuities (e.g. holes) require a quite different approach, which
surely would include both analytic and numerical methods. The authors seek to address such
problems, and solutions, in the near future.
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Abstract

In the context of CNC-based (Computer Numeric Control) sheet metal laser cutting, the problem
of heat transfer simulation is relevant for the optimization of CNC programs. Current physically-
based simulation tools use numeric or analytic algorithms which provide accurate but slow solutions
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due to the underlying mathematical description of the model. This manuscript presents: (1 ) an
analytic solution to the laser heating problem of rectangular sheet metal for curved laser trajectories
and convective cooling, (2 ) a GPU implementation of the analytic solution for fast simulation of
the problem, and (3 ) an integration within an interactive environment for the simulation of sheet
metal CNC laser cutting. This analytic approach sacrifices the material removal effect of the laser
cut in favor of an approximated real-time temperature map on the sheet metal. The articulation of
thermal, geometric and graphic feedback in virtual manufacturing environments enables interactive
redefinition of the CNC programs for better product quality, lower safety risks, material waste and
energy usage among others. The error with respect to FEA in temperature prediction descends as
low as 3.5 %.

Keywords: Computational fabrication, Geometric algorithms, Heat transfer, CNC optimization,
Fast simulation.

IV-D.2.1 Introduction

Sheet metal cutting is an important technique of metalworking, and is widely used in many indus-
tries (automotive, aeronautics, etc). One of the most efficient and advanced technologies for sheet
metal cutting is CNC laser cutting (specially for steel and aluminum), a process in which a high-
power laser beam is directed through a nozzle to cut the material (melting, burning or vaporizing
it) providing high-quality surface finishing, greater accuracy, and quicker production [136].

Interactive 3D simulation of CNC laser cuts has proven to be useful at industrial level allowing
a better design of the cutting parameters to optimize the production in many ways [137–139]. The
ability to interactively visualize and modify the effect of a certain CNC sequence for laser cutting
is a valuable resource for manual and automatic optimization procedures that aim to reduce man-
ufacturing costs. Moreover, laser cutting interactive simulation is a good example of the challenges
and opportunities identified in [55].

However, current laser-cutting interactive simulations are in most cases purely geometric. One
of the reasons is the fact that accurate physical simulations require massive computing resources
(e.g. FEA), incompatible with interactive simulation.

In this work, we present the implementation of a GPU accelerated simulation of sheet metal
laser heating/cutting, integrated into an interactive CNC sheet cut environment. This contribution
allows novel and more interactive ways of designing and planning the laser cutting processes, in
order to improve not only geometric and material waste aspects, but also the thermal effects on the
sheet.

The remainder of this manuscript is organized as follows: Section IV-D.2.2 reviews the relevant
literature. Section IV-D.2.3 presents the methodology and models used. Section IV-D.2.4 presents
and discusses the results. Section IV-D.2.5 presents conclusions and introduces what remains for
future work.
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IV-D.2.2 Literature Review

IV-D.2.2.1 Thermal Simulation of Laser Cutting

Analytic solutions to the laser heating problem have been developed in order to estimate the
temperature on rectangular sheet metal. Solutions that account only one dimension (distance from
the laser source to the hole boundary [128] or the sheet depth [129]) have been presented for fast
solution of laser drilling problems. As the drilling process dictates, such approaches require the
laser to be at a fixed location through the entire simulation.

An analytic solution for the 3D laser heating problem is presented in [132]. The solution uses
Fourier series to express the temperature field at any location of the sheet. However, such solution
only accounts for a straight line laser trajectory perpendicular to one of the edges of the rectangular
sheet. An analytic solution for general piecewise linear laser trajectories is presented in [133]. This
approach employs fundamental solutions to compute the temperature on a 3D sheet with infinite
depth.

Simulation based on analytic solutions provide the advantage of being computationally efficient
at the cost of limited model assumptions such as: linear laser trajectories, rectangular domains,
constant material properties and null convection on the sheet surface [134]. On the other hand,
numerical approaches provide stronger tools for the simulation of complex physical phenomena.
Finite Element Analysis (FEA) is a common numerical tool for the simulation of thermodynamic
phenomena. 3D simulations of triangular [112], rectangular [109, 110] and circular cuts [111] have
been achieved using nonlinear FEA to analyze how changes in the laser trajectory impact the
resulting temperature profile. To account laser ablation, methodologies such as the element birth
and death method [113], volume fractions [140], temperature thresholds [114–116] or the enthalpy
method [109–112, 141] are coupled to the FEA routines. Other numerical methods include: Finite
Differences [117,118,120,142], Boundary Elements [121,122] and Finite Volumes [123,124]. All the
aforementioned numerical methods present the shortcoming of being computationally expensive
for large geometries and complex laser trajectories [40, 125–127, 143], rendering them useless for
interactive simulation of industrial scenarios.

IV-D.2.2.2 Virtual Manufacturing Environment to Support Laser Ma-
chining Processes

There has not been a lot of effort in the integration of geometric and physical modules for the
simulation of laser machining processes. Current state of the art algorithms for thermal analysis
of the problem impose computational time constraints that do not allow an interactive workflow
between the geometric simulation and the thermal simulation for complex laser trajectories. How-
ever, the integration is a relevant research topic for current trends in virtual manufacturing [55] and
specifically, for laser path planning optimization [139,144]. A coupling of a numerical solver inside
a Simulated Annealing program has been presented for the optimization of laser cutting trajectories
[142,145]. The computational cost of such integration is high considering that heuristic algorithms
have to simulate multiple thermodynamic scenarios. Therefore, the use of analytical temperature
solutions have proven to be more usable for laser path optimization regardless of the underlying
model simplifications [146].

To overcome the aforementioned problem, this manuscript presents the integration of a fast
analytic heat solver with a geometric module for simulation of the laser cutting process on a rect-
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angular sheet metal. The heat solver allows curved laser trajectories and considers convection at
the sheet surface. The geometric module represents the sheet using the algorithms described in
[138, 147]. The geometric model of the cut sheet is texturized with the color mapped temperature
field (dynamically computed in the GPU). The implemented approach allows visual interaction at
real-time rates for large geometries and complex laser trajectories.

IV-D.2.3 Methodology

This section presents an analytic solution to the laser heating problem on rectangular sheets. The
analytic solution enables efficient computation of the temperature for any curved laser trajectory
defined on the sheet, allowing convection at the sheet surface. Using the GPU capabilities, the
temperature solution is integrated in a geometric module that simulates the CNC machining process
and the sheet cutting operation.

IV-D.2.3.1 Heat Equation for the Sheet Laser Heating Problem

In the case of a sheet metal, it is reasonable to ignore heat transfer through the sheet depth (i.e.

using a 2D model ∇ · k∇ = k ∂2

∂x2 + k ∂2

∂y2 ) due to the relative size of the sheet depth with respect

to its width and height (∆z → 0) and the high thermal conductivity. Therefore, the equation that
models the temperature u = u(x, t) distribution on a 2D rectangular sheet subject to a continuous
laser source should satisfy the following PDE with initial and boundary conditions [135]:

f − q
∆z

= ρcp
∂u

∂t
−∇ · (k∇u)

q = h(u− u∞)

u|x=0 = u|x=a = u|y=0 = u|y=b = u∞

u(x, 0) = u∞

(IV-D.2.1)

where ρ, cp and k are the material density, specific heat and thermal conductivity, respectively
(assumed constant in this manuscript). u is the temperature distribution on the sheet, q is the heat
loss due to convection at the sheet surface and f is the surface power density of a squared laser
beam centered at x0 = [x0, y0]:

f(x,x0) =


P (1−R)

∆x2 , |x− x0| < ∆x
2 and

|y − y0| < ∆x
2

0, otherwise

(IV-D.2.2)

with R being the sheet reflectivity and P , ∆x being the laser power and laser diameter, respectively.
The sheet initial temperature is assumed at constant ambient temperature u∞ and the 2D borders
of the sheet are assumed at ambient temperature for the whole simulation. An scheme of the
problem is depicted in Fig. IV-D.2.1.
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Figure IV-D.2.1: Schematic of the laser heating model. A laser passes an amount of energy f at a
sheet location x0 while the sheet cools down due to convection q at the surface.

IV-D.2.3.2 Analytic Solution

Similar to [132], the following analytic solution for the temperature distribution can be derived for
Eq. (IV-D.2.1):

u(x, t) = u∞ +

∞∑
i=1

∞∑
j=1

Θij(t)Xi(x)Yj(y) (IV-D.2.3)

with Fourier basis functions:

Xi(x) = sin
iπx

a

Yj(y) = sin
jπy

b

(IV-D.2.4)

and their respective Fourier coefficients Θij(t). These Fourier coefficients can be derived using
separation of variables:

Θij(tn) =
4

abρcp∆z

n∑
l=0

e−ωij(tn−tl)×

∫ tl

tl−1

∫ b

0

∫ a

0

f(x,x0(τ))Xi(x)Yi(y)e−ωij(tl−τ)dxdydτ

(IV-D.2.5)

with eigenvalues ωij defined as:

ωij =
k

ρcp

(
i2π2

a2
+
j2π2

b2

)
+

h

ρcp∆z
(IV-D.2.6)

In Eq. (IV-D.2.5), the curved trajectory x0(t) has been discretized into a piecewise linear
trajectory x0(t) = [x0(t0),x0(t1), · · · ,x0(tn)]. Between the timestep (tl−1, tl], the linearized laser
subtrajectory x0(tl) is defined as:

x0(tl) = v · (tl − tl−1) + p (IV-D.2.7)
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with instantaneous speed v = [vx, vy]T and origin of subtrajectory p = [px, py]T. Therefore, for
each linear subtrajectory, the integral term in Eq. (IV-D.2.5) becomes:∫ tl

tl−1

∫ b

0

∫ a

0

f(x,x0)Xi(x)Yj(y)e−ωij(tl−τ)dxdydτ

=
abP (1−R)

ijπ2∆x2[
c1c3

∫ ∆t

0

e−ωij(∆t−τ) cosαxτ cosαyτdτ

− c1c4
∫ ∆t

0

e−ωij(∆t−τ) cosαxτ sinαyτdτ

− c2c3
∫ ∆t

0

e−ωij(∆t−τ) sinαxτ cosαyτdτ

+ c2c4

∫ ∆t

0

e−ωij(∆t−τ) sinαxτ sinαyτdτ

]

(IV-D.2.8)

where:

c1 = cosβx − cos γx, c2 = sinβx − sin γx,

c3 = cosβy − cos γy, c4 = sinβy − sin γy,

αx =
iπvx
a

, αy =
jπvy
b

,

βx =
iπ(px + ∆x/2)

a
, βy =

jπ(py + ∆x/2)

b
,

γx =
iπ(px −∆x/2)

a
, γy =

jπ(py −∆x/2)

b
∆t = tl − tl−1

(IV-D.2.9)

The integral terms in Eq. (IV-D.2.8) can be solved in closed form for any linear subtrajectory,
i.e. no numerical integration is required. Therefore, the Fourier solution of the temperature (Eq.
(IV-D.2.5)) for a given timestep tl can be computed directly with the available information of (i) the
sheet and laser parameters, (ii) the current linear subtrajectory parameters, and (iii) the Fourier
solution of the previous timestep tl−1. The temperature of the sheet can be retrieved from Eq.
(IV-D.2.3) after truncating the Fourier solution.

IV-D.2.3.3 Interactive Simulation of Sheet Metal Cutting

In order to estimate the temperature of the sheet for a given subtrajectory, the analytic algorithm
requires (as per Eq. (IV-D.2.5)): (i) the trajectory of the current machining operation: origin, des-
tination and speed (timing information); and (ii) the Fourier coefficients calculated in the previous
simulation step. The analytic temperature is estimated by applying the following steps iteratively:
(i) compute Fourier coefficients for the current subtrajectory, (ii) retrieve the temperature from
the computed coefficients.
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Configurable discretizations of curved laser trajectories are required. A discretization is basically
a piecewise linear reparameterization of a curve x0(t) = [x0(t0),x0(t1), · · · ,x0(tn)], which permits
variable traversal velocity of the tool and regulation of the torch (power and radius of the laser
beam).

In the first step, the calculation of Fourier coefficients for each linear subtrajectory requires
only the coefficients from the previous subtrajectory (Eq. (IV-D.2.5)). This calculation is fast
and independent of the sheet geometry discretization. Contrary to FEA methods, Eq. (IV-D.2.5)
does not impose a restriction on the timestep ∆t, allowing arbitrarily large timesteps for any linear
subtrajectory.

For the second step, the evaluation of the actual temperatures in the sheet metal requires to use
Eq. (IV-D.2.3) at discrete sample points of the sheet. A m× n grid generates such sample points.
The temperature evaluated on each sample point is used to create a RGBA color image. A color
mapping function is used to obtain a color from a given temperature value.

To simulate the material removal due to laser ablation, the geometric module presented in
[138] is used. This geometric module represents the laser trajectory on the sheet as a set of 2D
boolean operations between the sheet itself and the contours generated by the laser trajectory.
A high-level spatial subdivision algorithm is implemented for such boolean operations in order to
increase the computation performance. Moreover, the simulated ablation is purely geometric as the
analytic approach does not account for the material removal. This assumption significantly reduces
the computational cost of the simulation at the expense of numerical accuracy in the estimated
temperature. Such a gain in computational efficiency becomes crucial in industrial applications
where immediate albeit approximate results are required for the design of complex CNC processes.
Fig. IV-D.2.2 lays out the modules of the CNC laser cut simulator. An additional heat source term
might complement Eq. (IV-D.2.1) by filtering the heat propagation through the sheet cuts. Such
filtering would allow to simulate heat propagation across the empty space produced by the laser
cutting process. However, we have not identified any filter of this kind in the literature. Future
work aims to explore this possibility.

IV-D.2.3.4 Algorithm Analysis

Fig. IV-D.2.3 presents the algorithm or pseudocode of the analytic laser cutting simulation. The
procedure AnalyticLaserSimulation calls the analytic routines ComputeFourier and Com-
puteTemperature.

Given the (piecewise linear) laser trajectory x0, function ComputeFourier applies Eq. (IV-D.2.5)
to compute the Fourier coefficients of the solution. To satisfy u(x, t0) = u∞ in Eq. (IV-D.2.3), the
Fourier coefficients are initialized by setting Θij(t0) = 0. The function UpdateCoeffs computes
the value of a single Fourier coefficient at the current subtrajectory end given its previous value.
Since this last operation is achieved in constant time, the time complexity order of Compute-
Fourier is O(num subtrajectories× num coeffs).

On the other hand, the function ComputeTemperature applies Eq. (IV-D.2.3) to retrieve
the temperature distribution from the computed Fourier coefficients. The sheet temperature is
initialized at ambient temperature (i.e. u[k] ← u∞). The function SampleSheet produces the
sheet sampling in linear time O(num points). The function FourierBasis applies Eq. (IV-D.2.4)
to compute the Fourier basis for a given coefficient and a given sample point (in constant time).
Therefore, the time complexity order of ComputeTemperature is O(num points×num coeffs).
The infinite sum of Fourier basis functions has been truncated by num coeffs in order to obtain
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Figure IV-D.2.2: Integration scheme between the physics and geometry modules for interactive
simulation of the CNC sheet metal laser cutting

132



Figure IV-D.2.3: Algorithm for Analytic Simulation of Sheet Laser Cutting
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an approximate solution.
The geometry module call (presented in [138]) simulates the laser cuts on the sheet as geometric

boolean operations. Using spatial subdivision, the time complexity order of such calling is O(ne×
log(ne)+k+z× log(ne)) (where z is the number of cut contours, ne is the number of contour edges
and k is the number of edge intersections) [138].

As a consequence, the time complexity order of the physical (analytic) module becomes:

O(ComputeFourier) +O(ComputeTemperature)

= O(ns× nc) +O(np× nc)
= O(nc(ns+ np))

(IV-D.2.10)

with nc = num coeffs, ns = num subtrajectories and np = num points.
Eqs. (IV-D.2.3) and (IV-D.2.5) present some interesting properties at the implementation level

as follows: 1) for the current subtrajectory, each Fourier coefficients is independent from the rest
of the coefficients and, 2) the temperature at each sample point is independent of the other points.
Therefore, the functions ComputeFourier and ComputeTemperature allow easy paralleliza-
tion. In the following section we take advantage of such parallelization properties in order to use
modern parallel computer architectures such as multi-core computing and GPU.

IV-D.2.4 Results and Discussion

This section presents and discusses the results of the system (Fig. IV-D.2.2) that integrates: (i)
the physics (analytic) module that calculates the temperature field, and (ii) the geometry module
for the sheet metal geometry representation. Section IV-D.2.4.1 presents a numerical comparison
of our analytic module against a FEA implementation. Section IV-D.2.4.2 presents results of the
temperature evaluation using OpenCL. Section IV-D.2.4.3 presents a performance assesment of the
analytic module. Section IV-D.2.4.4 discusses the interactivity of our implementation. Section
IV-D.2.4.5 discusses the impact of the implemented interactive simulator in the design workflow of
CNC-based laser cutting programs.

IV-D.2.4.1 Numerical Comparison with FEA

The FEA linear system for Eq. (IV-D.2.1) is:[(
ρcp
∆t

+
h

∆z

)
M + kL

]
U(t+∆t) =

M

(
ρcp
∆t

U(t) +
1

∆z

∫ t+∆t

t

F(τ)dτ +
h

∆z
u∞

) (IV-D.2.11)

where:

Lij =
∑

Ωk∈Ω

∫
Ωk

∇φi · ∇φjdA

Mij =
∑

Ωk∈Ω

∫
Ωk

φiφjdA

(IV-D.2.12)
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are the stiffness and mass matrices, respectively. Ω = {Ω1,Ω2, . . . ,Ωm} is a discretization of the
sheet into finite elements. X = {x1,x2, . . . ,xn} is the discrete set of mesh nodes. φi = φi(x) is
the interpolation function associated to the node xi. U(t) = [u(x1, t), u(x2, t), . . . , u(xn, t)]

T and
F(t) = [f(x1, t), f(x2, t), . . . , f(xn, t)]

T are the nodal values of the temperature and the laser source,
respectively. ∆t is the simulation timestep.

A case is studied contrasting (a) analytic and (b) FEA implementations. The case conditions
are:

1. Sheet geometry: 0.01m× 0.01m× 0.001m.

2. Material: AISI 304 steel (Table IV-D.2.1).

3. Laser power: 100W .

4. Laser spot radius: r = 0.0003m.

5. Traversal laser speed: 0.1m/s.

The laser beam follows an S -shape trajectory. A timestep ∆t = 0.0012 s is chosen for the FEA
time discretization.

(a) Analytic temperature distribution at t = 0.12 s (b) Relative error. Analytic vs. FEA solution. Rela-
tive error below 3.43%

Figure IV-D.2.4: Analytic temperature and relative error distribution (w.r.t. FEA) for the S -shape
laser trajectory

Fig. IV-D.2.4(a) plots the sheet temperature distribution at the end of the analytic simulation
(t = 0.12 s) using 100 × 100 Fourier coefficients. Fig. IV-D.2.4(b) shows the relative error dis-
tribution of the analytic model considering the FEA solution as reference. The maximal relative
error (3.43%) occurs at the laser spot. Additional experiments increasing the number of Fourier
coefficients did not provide any significant improvement in the analytic solution of the current study
case.

Domains with sizes above the small one here discussed do not permit termination of the FEA
computation. Therefore, a comparison analytic vs. FEA is only possible for exceedingly small
domains. Following subsections present study cases with larger domains.
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Table IV-D.2.1: Physical parameters for simulation of laser heating of an AISI 304 steel sheet with
natural convection at the surface [106]

Parameter Value
ρ 8030 kg/m3

cp 574 J/(kg ·K)
k 20W/(m ·K)
R 0
h 20W/(m2 ·K)
u∞ 300K

IV-D.2.4.2 Temperature Evaluation Assisted by GPU

The analytic approach presented in section IV-D.2.3, permits a parallel implementation, which this
section discusses. As specified in section IV-D.2.3.3, grid sampling is used in order to obtain the
temperature at discrete points on the sheet. To illustrate the capabilities of the presented approach,
a study case with complex laser trajectory is evaluated on a large (larger than FEA) sheet metal.
The following setup is used:

1. Sheet geometry: 0.235m× 0.235m× 0.01m.

2. Material: AISI 304 steel (Table IV-D.2.1).

3. Laser power: 8000W .

4. Laser spot radius: r = 0.0001m.

The study presents a custom CAM model to produce a set of nested squares. The resulting
CNC program is composed as a combination of cutting and non-cutting instructions:

1. Machining instructions: Instructions which move the laser head and cut the sheet. The
laser moves at traversal speed ‖~v‖ = 0.028m/s.

2. Rapid non-cutting movements: Instructions which move the laser head but do not cut
the sheet (P = 0W ). The laser moves at traversal speed ‖~v‖ = 0.183m/s.

3. Other CNC control instructions: Sourceless (P = 0W ) and static (‖~v‖ = 0m/s) instruc-
tions (such as powering on and off the laser beam) simulated as delays of 1 s.
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Table IV-D.2.2: GPU implementation. Execution times (in seconds) for retrieving the temperature
at a given timestep tl, according to Eq. (IV-D.2.3). Computation times of Fourier coefficients are
not considered.

Fourier Coeffs. Grid
Resolution
64× 64

Grid
Resolution
128× 128

Grid
Resolution
256× 256

Grid
Resolution
512× 512

Grid
Resolution
1024× 1024

Grid
Resolution
2048× 2048

Grid
Resolution
4096× 4096

64× 64 0.001313 0.002641 0.007977 0.029518 0.115439 0.4318 1.6787
128× 128 0.002796 0.008041 0.027954 0.110535 0.414949 1.6098 6.3809
256× 256 0.008013 0.027058 0.101933 0.415542 1.591032 6.3067 25.1822
512× 512 0.028004 0.101988 0.397375 1.598041 6.281901 25.0937 100.3546

1024× 1024 0.105995 0.401026 1.581736 6.327188 25.08374 100.3443 N/A

(a) Temperature texture map (b) Visualization of the cutting process in the interac-
tive simulator

Figure IV-D.2.5: Simulation of the CNC process integrating the physical (512× 512 Fourier coeffi-
cients) and the geometric modules (1024× 1024 grid points)

As illustrated in section IV-D.2.3.4, the computation time of our analytic algorithm is deter-
mined by the number of Fourier coefficients times the number of sample points, which for high
Fourier and sampling resolutions may render our algorithm beyond the interactivity needs. How-
ever, the evaluation of the sheet temperature is independent for each sampling point (as per Eq.
(IV-D.2.3)), thus the temperature distribution can be easily evaluated in parallel. Therefore, the
computation time of the temperature becomes determined by the number of coefficients, which ulti-
mately translates to a great amount of memory access operations. Unlike CPUs, current GPUs can
evaluate a larger number of sample points in parallel and provide faster and more efficient memory
access. In definitive, GPUs are better suited for the temperature evaluation problem. Therefore,
a GPGPU implementation of Eq. (3) has been developed using OpenCL [39] as follows: (1 ) The
Fourier coefficients are transferred from host memory to the GPU memory. (2 ) A 1D OpenCL
kernel is launched to perform the temperature evaluation. The number of threads is determined
by the desired number of sample points (resolution), the local work-group size is determined by
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Table IV-D.2.3: Modest hardware and software specifications of the machine used to run the the
CNC simulations

Item Specifications
Operating System Microsoft Windows 10 Pro (64 bits)
Processor Intel©Core�i5-6500 CPU @3.20GHz
RAM 8.0 GB
GPU NVIDIA GeForce GTX 960
OpenCL OpenCL 1.2 CUDA 8.0.0
Compilation Environment Visual Studio 2013�(x64 with optimization -O2

flags)

the underlying OpenCL implementation in function of the GPU. (3 ) When the kernel computation
finalizes the results are transferred from GPU to host memory.

The simulation system is implemented in a Windows 10 platform using C++ with OpenMP
support. OpenCL support is provided by the NVIDIA native drivers through the proprietary CUDA
API. With a grid sampling of 512×512 and 512×512 coefficients, the temperature evaluation takes
about 1.59 s in average (without considering the computation times of the Fourier coefficients) for
any given subtrajectory. Increasing the number of coefficients or the number of sampling points
increases linearly the temperature evaluation times (see Table IV-D.2.2). Fig. IV-D.2.5 plots the
temperature distribution at the middle of the sheet laser cutting simulation, coupling both the
analytic and the geometric modules.

The number of coefficients and grid resolution cannot be increased without limit, as the inter-
nal GPU memory, registers and available threads are finite. In our test machine (Table IV-D.2.3)
increasing the grid resolution and number of coefficients above 2048×2048 and 1024×1024 respec-
tively, reduces significantly our GPU performance, rendering noncomputable results beyond such
resolutions (as shown in Table IV-D.2.2 where such combination crashes the GPU computation).

In order to compute the temperature, the Fourier coefficients must be calculated as per Eq.
(IV-D.2.5). The independence between Fourier coefficients allows efficient CPU parallelization of
this calculation using OpenMP. Fig. IV-D.2.6 plots the computation times of the Fourier coefficients
for different Fourier resolutions. Such calculation could be implemented directly in the GPU.
However, our experiments show that the CPU times are fast enough to allow the interactivity rate
(below 0.15 seconds for the larger resolution).

IV-D.2.4.3 Assessment of Computing Performance

Table IV-D.2.4 presents CPU (with OpenMP support) performance results for the temperature
calculation of the test case introduced in section IV-D.2.4.2. Compared to the GPU results (see
Table IV-D.2.2), the CPU implementation shows significant performance decrease. As an example,
the 256 × 256 test case (0.102 seconds) runs 150 times faster than the CPU execution (15.877
seconds). As a rule of thumb, we consider interactive simulation if the waiting times for the user lie
below 5 seconds. The CPU implementation breaks this rule of thumb for moderate resolutions (up
to 128× 128 Fourier coefficients and 256× 256 grid points) while the GPU allows larger resolutions
(up to 256× 256 Fourier coefficients and 1024× 1024 grid points).
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Figure IV-D.2.6: CPU computation times of the Fourier coefficients for a single timestep (as per
Eq. (IV-D.2.5))

Table IV-D.2.4: CPU implementation. Execution times (in seconds) for the computation of the
temperature at a given timestep tl, according to Eq. (IV-D.2.3).

Fourier Coeffs. Grid Res. 64× 64 Grid Res. 128× 128 Grid Res. 256× 256 Grid Res. 512× 512
64× 64 0.0662 0.2630 1.0169 3.9880

128× 128 0.2771 1.0788 4.3264 16.8444
256× 256 1.1368 4.0004 15.8775 63.9231
512× 512 3.9514 15.5803 62.5949 250.4050

In addition, linear FEA for thermal analysis has been implemented in MATLAB with adaptive
re-meshing from the MATLAB PDE Toolbox in order to compare the performance between FEA and
our analytic (GPU) algorithm. Since FEA simulation becomes unfeasible as the sheet size increases
and the laser trajectory becomes more complex [40, 125], the (much smaller) test case presented
in section IV-D.2.4.1 is used for such comparison. In our test machine (see Table IV-D.2.3), the
FEA computation of the temperature for a sheet discretization of 3586 points and 100 simulation
timesteps takes in average 6.3835 seconds (not considering FEA re-meshing time). In contrast,
our GPU implementation of the analytic algorithm performs the same trajectory simulation (with
100× 100 Fourier coefficients) in 0.3556 seconds (18 times faster).

IV-D.2.4.4 Interactive Simulation of the Laser Cutting Process

Our work efficiently integrates geometry and thermal modules for the simulation of sheet metal
CNC laser cutting. We use a contour-based representation to model the geometry of the processed
sheet [138, 147], coupled with an analytic solution of the underlying thermal phenomena which
generates the corresponding temperature texture. The simulator presents the user a virtual 3D
interactive scenario with a fully detailed CNC machine equipped with a virtual laser that will be
the target of the machining instructions. In this virtual scene, the sheet metal is rendered with the
computed temperature distribution on its surface.
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We identify two different use cases in the virtual 3D simulator: (1) the user visualizes the
machining simulation as a continuous animation to track the overall process and, (2) the user
inspects a specific timestep of the simulation looking for more detail in the current state of the
sheet (e.g. cutting and temperature profile near the laser spot).

In the first scenario, the temperature on the sheet is calculated after each machining movement.
Even if some preprocessing must be done, the worst case scenario implies a user request of the whole
process as soon as the simulator itself is loaded. The computation process involves the utilization
of CPU and GPU resources. The contour-based representation is calculated in the CPU (single-
threaded). For each machining instruction, a new updated geometric representation of the sheet
metal is generated. At the same time, the Fourier coefficients are calculated in CPU using all its
available cores (thanks to OpenMP). Once the geometry and the coefficients are calculated, the
temperature field is evaluated in the GPU using a 256×256 grid with 300×300 Fourier coefficients
(thanks to OpenCL). This grid resolution is small enough to allow fast and interactive visualization
of the machining process (below 0.12 s. as shown in Table IV-D.2.2).

In the second scenario, the simulation is stopped at a given timestep and the user interactively
inspects the current state of the machining process. In this scenario, the user might request a more
accurate representation of the temperatures on the sheet metal. In such case, the computing time
is less penalized in favor of more precise results. Some UI elements enable the user to configure the
desired quality of these results. Therefore, if high quality is requested, a 1024× 1024 grid sampling
is used with 1024 × 1024 Fourier coefficients. This combination of grid resolution and number
of coefficients provide high quality results and it is dependent on the existing GPU hardware.
State-of-the-art GPU models might use 2048 × 2048 or higher grid resolutions within affordable
computational time limits (below 5-6 s).

IV-D.2.4.5 Impact in the Design Workflow of CNC Programs

The design process of CNC programs is essentially iterative. The designer receives the list of
parts to be produced, their material and any other relevant information. The nesting software
produces the arrangement of the parts in any of the available metal sheets in the Manufacturing
Execution System (MES) software. This process can be configured by the designer in order to
optimize different aspects of the machining process such as: i) minimization of the produced scrap,
ii) minimization of the overall machining time and iii) reduction of rapid movements over cut parts
(to reduce potential collisions).

As a consequence, professional nesting software provides a variety of options to the designer to
fine-tune the produced CNC program. This number of options continuously increases. Therefore,
an analysis of different simulated scenarios aids the designer in the parameter selection of the CNC
machine for an optimal configuration. As an example, the energy output of the laser must be
controlled. The available laser with the highest power is not always the best option to operate on
the sheet metal. It might produce better quality cuts with positive economical consequences (such
as less machining time), negative economical consequences (such as more energy consumption) or
potential side-effects in the quality of the parts near the cut zone. Therefore, the selection of the
proper heat source parameters can be optimized with the support of the CNC simulator.

Using high quality simulations with FEA software is precise but computationally expensive
[40,125–127,143]. Therefore, the number of test scenarios to be carried out during the design phase
becomes limited. On the other hand, utilization of fast simulation software like the one presented in
this work, enables the simulation of a considerable number of test scenarios. The design workflow
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would be more agile and versatile, providing new optimization opportunities that would led to
better CNC programs in terms of quality of the parts, economical benefits, wasted resources and
safety of the operators in the factory floor.

Fig. IV-D.2.7 shows the sheet metal cutting simulator running a real CNC program. The
temperature texture on the sheet surface provides useful information to the designer. As an example,
heat progation around the recent cut part (star) affects posterior cuts (Fig. IV-D.2.7(c)). Therefore,
the designer might consider to modify the arrangement of the star cuts in order to reduce potential
rejections of the produced parts in the post-machining inspection.

(a) Nesting of the CNC program

(b) Overall 3D visualization of the CNC simulation (c) Detailed inspection near a recent cut. Heat affects
posterior cuts

Figure IV-D.2.7: The interactive CNC simulator can be used to detect potential problems in the
nesting planning due to heat propagation

IV-D.2.5 Conclusions and Future Work

This manuscript implements an integration of a physical and a geometric module for fast and
interactive simulation of CNC-based sheet metal laser cutting.

Sections IV-D.2.3.1 and IV-D.2.3.2 presents the analytic solution to the laser heating prob-
lem. Although the assumptions of the mathematical model simplify the laser heating phenomenon
(constant material properties, no material removal, no phase changes and constrained sheet ge-
ometries), the analytic algorithm provides an efficient solution to problems that are very expensive
computationally for current FEA methods.
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Section IV-D.2.3.3 presents the integration of the geometric and physic modules in the CNC
simulator. A grid sampling of the sheet metal is used to calculate the temperature distribution and
to create a texture that is overlaid on the geometric representation of the sheet. The goal of the
grid sampling is to provide fast and detailed results for visual inspection at an specific timestep
using the GPU. A complexity analysis of the analytic approach is presented in section IV-D.2.3.4.
The parallelization properties of the mathematical description allow efficient implementation of the
algorithm.

A numerical comparison with FEA is presented in section IV-D.2.4.1. With the curved S
trajectory path case, the calculated maximum error is 3.43% around the laser spot.

Section IV-D.2.4.2 presents the results for the integrated CNC simulator with the grid sam-
pling technique. The implementation of Equation (IV-D.2.3) in OpenCL allows the utilization
of the capabilities of modern GPU hardware to speed up the temperature calculation. Section
IV-D.2.4.3 conducts a performance assesment of such GPU implementation against non-GPU ana-
lytic implementation and FEA. The GPU implementation performs 150 times faster than the CPU
implementation and 18 times faster than linear FEA, allowing our approach to run interactive
simulations of complex CNC programs, which are otherwise non-computable in the latter ones.

The analytic model presented in section IV-D.2.3 simplifies by design the thermal phenomena
of laser cutting in order to achieve real-time performance. As future work, we aim to (1) introduce
nonlinear physical behaviour into the analytical model in the form of nonlinear material properties
and material ablation (sheet removal), (2) evaluate the accuracy of the method with experimental
data in order to provide error bounds, and (3) use meshing techniques that improve the sheet sam-
pling in order to allow even larger sheet configurations and better temperature resolutions near the
laser spot.
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Abstract

In the context of multi-beam laser machining, the problem of heat transfer simulation is relevant for
thermal-stress analysis and path planning optimization. Currently used methods rely on numerical
methods such as Finite Differences or Finite Element Analysis (FEA). These numerical solutions
provide precise results at the expense of a high computational cost. To overcome this limitation,
this article introduces a fast analytic temperature solution to the multi-beam laser heating problem
for any type of laser trajectories and arbitrary sheet sizes. The test runs show that our algorithm
produces accurate temperature fields, even for a large number of simultaneous laser beams. The
heat transfer module is integrated into an interactive simulation environment for sheet cutting.
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Ongoing work addresses thermal stress coupling and efficient models that consider laser ablation.

Keywords: multi-beam laser; heat transfer analysis; fast simulation; GPU; analytic solution.

Glossary

The following abbreviations are used in this manuscript:

FEA / FEM Finite Element Analysis / Finite Element Method.
GPU Graphics Processing Unit.
a, b,∆z Width, height and thickness of the sheet (m).
~x, t Spatial ~x = (x, y) ∈ [0, a] × [0, b] and temporal 0 ≤ t ≤ Tf (s)

coordinates for the simulation.
u = u(~x, t) Temperature distribution along the sheet at any given time (K).
ρ Sheet density (kg/m3).
cp Sheet specific heat (J/(kg K)).
κ Sheet thermal conductivity (W/(mK)).
R Sheet reflectivity (0 ≤ R < 1).
q = q(u) Temperature-dependent heat convection on the sheet surface

(W/m2).
u∞ Ambient temperature K.
h Natural convection coefficient (W/(m2K)).
fk Heat input from laser beam k (W/m2). k = 1 . . . num lasers.
Pk Power of laser beam k (W ).
rk Radius of laser spot k (m).
~xk0 = ~xk0(t) Laser spot center for laser beam k at time t.
[tk0 , t

k
f ] Simulation time frame in which the laser beam k remains turned

on. 0 ≤ tk0 < tkf ≤ Tf .

~vk Scan speed of laser beam k (m/s).
F = F (~x, t) Sum of all laser beam heat sources (W/m2).
Xi = Xi(x) Fourier basis function associated to the x coordinate. i = 1 . . .∞.
Yj = Yj(y) Fourier basis function associated to the y coordinate. j = 1 . . .∞.
Θij = Θij(t) Fourier coefficient associated to basis functions Xi and Yj .
θkij = θkij(t) Pseudo-Fourier-coefficient associated to the k-th laser beam

source.
ωij ij-th eigenvalue of the heat operator (Laplacian) on the rectangu-

lar sheet.

IV-D.3.1 Introduction

Multi-beam laser heating of sheet metal is a relevant metalworking technique which has arisen
interest of researchers in the last years. In contrast to single-beam heating, multi-beam heating
provides two main advantages to the former: (1) the ability to process different locations of the
sheet simultaneously [148], and (2) control of thermal stress levels by specific multi-beam config-
urations [149]. Industrial applications of multi-beam heating of sheet metal include laser forming
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and bending, laser cutting and additive manufacturing.
Thermal simulation is crucial for temperature and stress analysis of manufactured pieces. An

adequate selection of laser parameters and a correct path planning allows to improve the efficiency
of the process and minimizes material damage and waste. Current simulation approaches rely on
numerical schemes which require fine geometry and time discretizations. Such discretizations imply
high computational costs, which limit the application of these approaches in real manufacturing
scenarios with large time / space domains and complex laser trajectories.

This manuscript presents a simulation approach for the multi-beam laser heating problem based
on an analytic solution to the heat equation on rectangular domains. This analytic solution does
not require a mesh nor a fine time discretization to solve the problem. As a consequence, our
algorithm is able to run complex simulations with large time / space domains and complex multi-
laser trajectories at interactive time rates. Furthermore, each laser beam trajectory is allowed to
be independent from the others, with different time-dependent parameters, trajectories and time
frames (i.e. each laser beam can be turned on / off independently at any point of the simulation).

The remainder of this manuscript is organized as follows: Section IV-D.3.2 discusses the relevant
literature. Section IV-D.3.3 presents the mathematical model and describes the implementation of
the proposed algorithm. Section IV-D.3.4 discusses the obtained results for different test cases.
Finally, Section IV-D.3.5 presents the conclusions and introduces the future work.

IV-D.3.2 Literature review

IV-D.3.2.1 Multi-beam Single Trajectory vs. Multiple-Trajectory Si-
multaneous Laser Heating

There are currently two main applications for multi-laser heating in laser machining: (1) single-
trajectory multi-laser heating and, (2) multi-trajectory multi-laser heating.

In single-trajectory multi-beam laser heating, a leading laser is followed by a pattern of secondary
finishing ones, all in the same trajectory (or with minimum spatial offset). Experimental evidence
has shown that such a configuration reduces the thermal stresses produced by the laser beams in
laser cutting (compared to single-beam cutting) [150]. Furthermore, specific configurations of the
laser beams have shown to reduce the required pressure of assisting gas [151]. Each laser beam may
be produced by an independent source [152] or by diffraction of a single beam source [153].

On the other hand, in multi-trajectory heating, each laser beam follows an independent trajec-
tory [148]. Multi-trajectory heating is relevant as it improves the machining times by processing
different zones of the sheet at the same time. This manuscript focuses on the simulation of multi-
trajectory laser heating.

IV-D.3.2.2 Thermal Simulation for Sheet Metal Laser Heating

The problem of laser beam heating simulation has been widely researched for single-beam applica-
tions. Numerical methods are the most common simulation approach. Methods such as the Finite
Differences Method (FDM) [117–120] and the Boundary Element Method (BEM) [121, 122] have
been used in the literature to study the thermal behaviour of sheet laser heating. However, these
methods impose several numerical limitations such as dense rectangular grids in the case of FDM
and non-sparse linear systems for BEM, requiring a high amount of computational resources even
for simple problems.
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The Finite Element Method (FEM) is a standard numerical approach for the simulation of
physical problems. Non-linear FEM has been applied to study the thermal / stress behaviour
of the single-beam laser heating of rectangular sheets [154–157]. In contrast to FDM and BEM,
FEM works by discretizing the domain using different types of meshes which allow fine discretiza-
tions (high level of detail) near interest zones (laser spot and trajectory) and coarse resolutions in
other zones resulting in less expensive systems of equations. To address laser ablation and material
removal, methods such as element birth and death [113], volume fractions [140], temperature thresh-
olds [114,116,158], and the enthalpy method [141,154–157], are coupled to the different numerical
schemes.

The Finite Volume Method (FVM) has been recently introduced in the literature for the study
of laser ablation and sheet heating [123, 124]. Contrary to previous numerical methods, the FVM
allows to accurately model and simulate interactions between the laser beam and the sheet in its
physical states: solid, liquid and gas. However, these interactions are highly non-linear and as a
consequence, computationally expensive.

Numerical methods provide tools to simulate non-linear interactions, phase changes, laser abla-
tion and material removal. However, they are also computationally expensive, limiting the appli-
cations of the algorithms in real manufacturing scenarios with complex laser trajectories and large
space / time domains. Analytical methods do not have such limitations, allowing fast simulation
of complex problems at the cost of some simplifications of the physical model. Uni-dimensional
analytic models have been implemented for the simulation of laser drilling processes for static laser
beams [128, 129]. A 3D model for laser heating of sheet metal for straight line trajectories is
presented in [132], while 2D models for arbitrary laser trajectories have been presented in [76,133].

Despite the large amount of literature concerning single-beam laser heating, simulation for multi-
beam laser processing has been rarely studied. In [152,159], the FDM is used to analyze the thermal
and structural impact of two independent laser beams melting a sheet metal. On the other hand,
in [149,160] a thermal / stress analysis of multi-beam laser heating is performed using FEM. These
simulations show that multi-beam heating reduce the thermal stresses afflicted to the material. A
semi-analytic model for the steady multi-beam laser heating problem is presented in [161]. This
pseudo-analytic model is also implemented inside an optimization algorithm which estimates the
best laser parameters for a given manufacturing process. The use of analytic solutions is crucial for
optimization due to the optimization process being expensive per se, requiring multiple evaluations
of the temperature fields with different laser parameters and/or trajectories.

IV-D.3.2.3 Conclusions of the literature review

Contrary to single-beam, multi-beam heating is scarce in the literature. Numerical (as opposed to
analytical) methods are computationally expensive. As a consequence, these methods are unable
to simulate real world sheet sizes and laser trajectories.

This manuscript offers the implementation of an analytic Fourier-based method to simulate
multi-trajectory laser heating. The characteristics of the implemented method are: (a) constant
material properties, (b) natural convection, (c) simplification of the sheet into a 2D domain, (d)
transient (time-history) temperature, (e) multiple laser head configurations, (f) independent laser
trajectories (with independent parameters), (g) arbitrary power on/off time history on each trajec-
tory.

In contrast to numerical methods (such as FEA), the accuracy of our method is not affected
by the time and space discretizations, allowing large time steps and arbitrary meshes (such as

146



triangular meshes, grids, a polyline or a set of sampled points on the sheet) which speeds up the
solving process. Finally, the algorithm has been implemented into an interactive laser cutting
simulation environment for real time assessment of the laser cutting process in real manufacturing
scenarios.

IV-D.3.3 Methodology

IV-D.3.3.1 Heat Transfer Equation for Multi-beam Laser Heating

The temperature distribution u = u(~x, t) of a 2D rectangular sheet satisfies the following partial
differential equation:

ρcp
∂u

∂t
−∇ · (κ∇u) =

F − q
∆z

q = h(u− u∞)
(IV-D.3.1)

where ρ, cp and κ are the material density, specific heat and thermal conductivity, respectively.
∇ · ∇ = ∂2/∂2x + ∂2/∂2y is the 2D Laplace operator. ∆z is the thickness of the sheet. F =
F (~x, t) is the set of surface heat sources affecting the sheet, and q = q(u) is the temperature-
dependent convection on the sheet surface with its respective convection coefficient h ≥ 0 and
ambient temperature u∞ ∈ R. For the previous partial differential equation, the following boundary
and initial conditions are imposed on the sheet:

u|x=0 = u|x=a = u|y=0 = u|y=b = u∞

u(~x, 0) = u∞
(IV-D.3.2)

For the multi-beam approach, the set of heat sources F is defined as the sum of the heat inputs
of each laser beam fk:

F (~x, t) =

num lasers∑
k=1

fk(~x, t)

fk(~x, t) =

{
Pk(1−R)
πr2
k

, ‖~x− ~xk0(t)‖∞ < rk
√
π

2

0, otherwise

(IV-D.3.3)

where Pk ≥ 0 is the power of the laser beam, rk > 0 is the radius of the laser spot and
~xk0(t) ∈ R2 is the center of the laser spot at time t. 0 ≤ R < 1 is the reflectivity of the material.
‖~x‖∞ = max(x, y) is the infinity norm in R2. The above laser model transforms the circular laser
spot with radius rk to its equivalent squared spot with area πr2

k. We apply such transformation in
order to develop the analytic solution in the next section. Fig. IV-D.3.1 presents an scheme of the
multi-beam laser heating problem.
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Figure IV-D.3.1: Multi-beam laser heating scheme. The sheet surface is heated by a set of laser
beams f1, f2, . . . and cooled down due to natural convection q.

IV-D.3.3.2 Analytic Solution

Following the same procedure as in [162], the temperature u on the rectangular sheet can be
expressed as a linear combination of Fourier functions:

u(~x, t) = u∞ +

∞∑
i=1

∞∑
j=1

Θij(t)Xi(x)Xj(y), (IV-D.3.4)

with basis:

Xi(x) = sin
iπx

a

Yi(y) = sin
jπy

b

(IV-D.3.5)

Applying separation of variables, the Fourier coefficients Θij from Eq. (IV-D.3.4) can be ex-
pressed as a sum of the pseudo-coefficients θkij of each independent heat source:

Θij(t) =

num lasers∑
k=1

θkij(t) (IV-D.3.6)

where each laser beam fk defines its respective pseudo-coefficient θkij as follows:

θkij(t) = θkij(t0)e−ωij(t−t0) +
4

abρcp∆z

∫ t

t0

∫ b

0

∫ a

0

fk(~x, τ)Xi(x)Yj(y)e−ωij(t−τ)dxdydτ (IV-D.3.7)

with corresponding Laplacian eigenvalues:

ωij =
κ

ρcp

(
i2π2

a2
+
j2π2

b2

)
+

h

ρcp∆z
(IV-D.3.8)

148



Eq. (IV-D.3.7) is written recursively in terms of a previous known solution θkij(t0). Therefore,

each laser trajectory is discretized as a piece-wise linear trajectory ~xk0 = [~xk0(0), ~xk0(t1), ~xk0(t2), . . . ].
Finally, the closed form for the integral term in Eq. (IV-D.3.7) has been already presented in [162].

IV-D.3.3.3 Algorithm

Fig. IV-D.3.2 presents a diagram of the simulation algorithm based on the analytic solution pre-
sented in Section IV-D.3.3.2. Each step of the algorithm is discussed in detail below:

1. Discretize laser trajectories: As discussed in Sect. IV-D.3.3.2, the laser beam trajectories
~xk0(t) are discretized as sequences of piece-wise linear trajectories [~xk0(0), ~xk0(t1), . . . , ~xk0(Tf )],
as described in [162]. The only requirement for this discretization is the fact that all laser
beam trajectories must share the same time discretization, i.e., t0, t1, . . . , Tf are the same for
all trajectories ~xk0 .

2. Compute the Laplacian eigenvalues: The Laplacian eigenvalues of the sheet are computed
as per Eq. (IV-D.3.8). Since the eigenvalues ωij are time-independent, this step is performed
before the simulation loop starts.

3. Initialize time and sheet temperature: The simulation time is initialized to t0 ← 0.
In order to satisfy the initial temperature condition u(0) = u∞, the pseudo coefficients are
initialized as θkij(0) = 0 (see Eq. (IV-D.3.4)).

4. Update current time t: The current simulation time t = tl+1 is updated according to the
previous time t0 = tl, in concordance with the discretization of trajectories from step 1.

5. For each laser beam k: This inner loop computes the pseudo-coefficients θkij(t) for each
laser beam (k = 1 . . . num lasers).

6. QUESTION: Is laser beam k turned on?: This step allows to simulate asynchronous
laser beams by asking at the current time t if the laser is turned on / off. Therefore, each
laser beam might have its own internal time frame [tk0 , t

k
f ], different from the simulation time

frame [0, Tf ].

7. Set power Pk / Set null power Pk ← 0: In the previous step, the program checks the state
(on / off) of the current laser beam k. The laser is turned on by the simulation by setting
its corresponding power input Pk. In the case of the laser being turned off, the simulation
simply sets its power to 0.

8. Compute the pseudo-coefficients for each laser beam: The pseudo-coefficiens in Eq. (IV-D.3.7)
are solved analytically for each laser beam as described in [162]. The number of coefficients
computed is truncated to num coeffs.

9. QUESTION: k < num lasers?: Check if the pseudo-coefficients have been computed for
all the laser beams.

10. Compute the Fourier coefficients as per Eq. (IV-D.3.6): This step computes the real
Fourier coefficents Θij(t) from the pseudo-coefficients θkij(t) as per Eq. (IV-D.3.6).
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Figure IV-D.3.2: Diagram of the analytic multi-laser simulation algorithm.
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11. If required, compute temperature: The temperature field is computed on a set of discrete
points sampled on the sheet [(x0, y0), (x1, y1) . . . ] as per Eq (IV-D.3.4). This step is optional
since the result may be stored in the frequency domain (Θij(t)). Therefore, the temperature
is made available only when requested by the user, allowing to skip iterations of no interest
and improving the performance in the process.

12. t < Tf?: Check if the simulation has reached the final step.

13. END SIMULATION

There are several concepts in the previous algorithm that help to improve its efficiency, crucial
for the interactive nature of the simulation:

1. In step 1 of the previous algorithm, the curved laser beam trajectories ~xk0(t) are discretized
as piece-wise linear ones [~xk0(0), ~xk0(t1), . . . , ~xk0(Tf )], which inherently produces the time dis-
cretization [0, t1, . . . , Tf ]. This time discretization does not affect the numerical accuracy of
the temperature solution. Therefore, as opposed to most numerical methods (namely FEA),
the time step size ∆t = tl+1 − tl of our algorithm can be arbitrarily large.

2. Step 6 allows turning on / off any laser beam at any point of the simulation. In addition,
the algorithm allows to change any laser parameters at will, resulting in time-dependent
parameters Pk(t) (laser power) and rk(t) (spot radius). For simplicity, this manuscript uses
constant parameters.

3. The complete information of the solution is stored in the frequency domain (step 10) and tem-
perature data is computed only when requested. Therefore, the user requests the temperature
only at specific times and in specific zones (i.e. at the middle or the end of the simulation).
Furthermore, since the space discretization does not affect the solution, any sheet sampling
can be used to render the temperature (rectangular grid, triangular mesh, a curve or a single
point in the sheet).

4. In step 10, each pseudo-coefficient θkij is independent from the rest of the pseudo-coefficients
(Eq. (IV-D.3.6)). Similarly, in step 11, the temperature value u at a given point ~x is in-
dependent from the temperature on the rest of the sheet (Eq. (IV-D.3.4)). Therefore, the
computation in both of these steps is parallelized.

IV-D.3.4 Results

This section presents the simulation results of our algorithm. For all the simulations, a Fourier
discretization of 512 × 512 coefficients and a spatial (grid) discretization of 512 × 512 points are
used. These resolutions have been chosen as they have shown in our experiments enough accuracy
within our desired execution time ranges (see Sections IV-D.3.4.1 and IV-D.3.4.3, respectively).

Table IV-D.3.1 presents the geometric and physical parameters of the sheet used in the simula-
tions. The first study case presents two different laser beams heating the sheet simultaneously. The
first laser beam follows a star-shaped trajectory on the sheet while the second laser beam follows
a rectangular trajectory. Table IV-D.3.2 presents the parameters of each laser beam. As discussed
in Section IV-D.3.3, our algorithm not only enables different parameters for multiple lasers (path,
power, speed, spot radius), but it also allows independent time frames for each trajectory.
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Table IV-D.3.1: Heat transfer parameters for the simulations (same as in [76,163]).

PARAMETER VALUE
Geometry

a 0.01m
b 0.01m

∆z 0.001m
Material AISI 304 Steel

ρ 8030 kg/m3

cp 574 J/(kg ·K)
κ 20W/(m ·K)
R 0

Convection Type Natural
h 20W/(m2 ·K)
u∞ 300K

Table IV-D.3.2: Parameters for the simultaneous laser heating trajectories of Fig. IV-D.3.3(a)

Parameter Star trajectory Square trajectory
tk0 0.00 s 0.06 s
tkf 0.16 s 0.13 s

Pk 100W 200W
rk 0.0003m 0.0005m
‖~vk‖ 0.1 m

s 0.2 m
s

Fig. IV-D.3.3 plots the simulation results for two laser beams heating the sheet surface. Fig. IV-
D.3.3(a) shows the star and square laser trajectories planned on the sheet. The laser beam param-
eters for each trajectory are described in Table IV-D.3.2. At the beginning of the simulation, a
unique laser beam (star) heats the surface (Fig. IV-D.3.3(b)). As discussed in Sect. IV-D.3.3.3, our
algorithm allows independent time frames for the multiple laser beams. Therefore, the second laser
is introduced in the simulation at t = 0.065 s (Fig IV-D.3.3(c)). Fig. IV-D.3.3(d) plots the temper-
ature when the two lasers are near each other (the trajectories do not intersect). Finally, both laser
beam trajectories end at different steps: tkf = 0.13 s for the square trajectory (Fig. IV-D.3.3(e))

and tkf = 0.16 s for the star trajectory (Fig. IV-D.3.3(f)).

IV-D.3.4.1 Comparison with FEA

To validate the analytic approach, FEA simulation is performed. The FEA linear system for
Eq. (IV-D.3.1) becomes [162]:

[(
ρcp
∆t

+
h

∆z

)
M + κL

]
U(t+∆t) = M

(
ρcp
∆t

U(t) +
1

∆z

num lasers∑
k=1

∫ t+∆t

t

F
(τ)
k dτ +

h

∆z
u∞

)
(IV-D.3.9)

where U and Fk are the vectors of temperature and heat sources sampled on the sheet, and L
and M are the stiffness and mass matrices, respectively [162].
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(a) Laser trajectories for the simulation (b) t = 0.060 s. Only Star trajectory occurs.

(c) t = 0.075 s. Square trajectory enters the
simulation.

(d) t = 0.094 s. Lasers are simultaneously near
each other.

(e) t = 0.13 s. Square trajectory finishes. Star
trajectory continues.

(f) t = 0.166 s. Star trajectory finishes.

Figure IV-D.3.3: Laser trajectories and sheet temperature history for simultaneous diverse shape
laser trajectories.
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(a) Coarse FEA mesh (2.1k triangles) (b) Intermediate mesh refinement at laser tra-
jectory (13k triangles)

(c) t = 0.094 s. FEA temperature. (d) 10x zoom on Fig IV-D.3.4(c)

Figure IV-D.3.4: ANSYS FEA simulation results for the same test case presented in Fig. IV-D.3.3

The software ANSYS is used to perform the FEA simulations. ANSYS element SHELL131 is
employed. Element thickness and material properties are set as per Table IV-D.3.1. The elements
are configured to have a constant temperature along the thickness and to evaluate convection at the
sheet surface, so as per Eq. (IV-D.3.1). To represent the area heated by the laser beams at every
time step, ANSYS surface loads (Heat Fluxes) are applied on the FEA elements that lie inside the
heated zone.

Fig. IV-D.3.4 plots the FEA results for the study case presented in Table IV-D.3.2. The mesh
of the domain is generated so that it is more dense in the neighborhoods of the laser trajectories.
Fig. IV-D.3.4(a) shows the initial triangular mesh computed using the FEA software which is then
refined several times (Fig. IV-D.3.4(b)) to improve the numerical accuracy of the solution. After
five re-meshing iterations, the final mesh contains 126k triangles and 63k nodes. Fig. IV-D.3.4(c)
plots the FEA temperature at the moment the two laser beams get closer to each other (t = 0.094 s).
The temperature peak is in the middle of the two trajectories (Fig. IV-D.3.4(d)), due to both paths
not intersecting each other.

Fig. IV-D.3.5 plots the relative error distribution of our analytic solution (Fig. IV-D.3.3(d))
with respect to FEA (Fig. IV-D.3.4(c)). The maximum relative error is 3.9%, located around the
laser spots (Fig. IV-D.3.5(b)). The small square shape of the error in Fig. IV-D.3.5(b) is due to
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(a) Relative error. Analytic solution w.r.t. FEA
(max. relative error: 3.9%).

(b) 10x zoom on Fig IV-D.3.5(a)

Figure IV-D.3.5: Appraisal of our analytic solution (Fig IV-D.3.3(d)) vs the FEA solution (Fig IV-
D.3.4(c))

the squared laser model presented in Eq. (IV-D.3.3).

IV-D.3.4.2 Multiple Laser Beams

The algorithm introduced in this manuscript allows multiple laser beams heating the surface at
the same time. This section presents additional experiments with more than just two laser beams.
Fig. IV-D.3.6 presents a study case with 4 simultaneous laser beams drawing different shapes on the
sheet: a square, a star, a spiral and a circle trajectory (Fig. IV-D.3.6(a)). All the laser beams have
the same parameters (power and radius) and start at the same time (Fig. IV-D.3.6(b)). However,
they do not finish at the same time (Fig. IV-D.3.6(c)).

As discussed in Section IV-D.3.3.3, our algorithm allows to define different independent time
frames for each laser beam by turning on/off specific laser beams. Such approach even allows to
turn off all the laser beams and continue the simulation. Fig. IV-D.3.6(d) illustrates this approach
by continuing the simulation after all the laser beams have finished their trajectories, where only
thermal conduction and thermal convection are taken into account.

In order to visually compare our algorithm with other simulation approaches in the literature,
the study case presented in [160] is replicated in this manuscript (Fig. IV-D.3.7). In this study case,
7 simultaneous laser are distributed uniformly in the y-axis. Each laser beam follows a straight line
trajectory and together they draw an arc in the heating front (Figs. IV-D.3.7(a) and IV-D.3.7(b)).
Our algorithm is able to produce similar results to [160] despite the simplification of the analytic
model (Figs. IV-D.3.7(c) and IV-D.3.7(d)).

Fig. IV-D.3.8 plots the temperature distribution along the arc for different number of laser
beams. As the number of laser beams increase (and the arc length remains the same), the oscillations
of the temperature are mitigated and the temperature increases. Such a result is consistent with
the analysis presented in [160]. As discussed in Section IV-D.3.3.3, our algorithm allows to compute
easily the temperature along the arc without even requiring to calculate the temperature on the
rest of the sheet, which improves the computation time for this particular case.

155



(a) Planned laser trajectories: Square, Star, Spi-
ral, Circle

(b) t = 0.03 s. All trajectories start at t = 0 s.

(c) t = 0.158 s. Square and Circle trajectories
finished.

(d) t = 0.2 s. All trajectories finished. The sheet
cools down.

Figure IV-D.3.6: Laser trajectories and temperature history for time and space overlapping trajec-
tories
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(a) Complete sheet. Simultaneous linear trajec-
tories based on [160].

(b) Laser trajectories (zoom near laser spots).

(c) Temperature map (full sheet). (d) Temperature map (zoom).

Figure IV-D.3.7: Laser trajectories and temperature results for the simulation case presented in
[160]. Similar simulation parameters have been used to replicate the experiment.

Figure IV-D.3.8: Temperature along the arc for the simulation presented in Fig. IV-D.3.7. Our
results are similar to those in [160]. ns represents the number of lasers.
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Figure IV-D.3.9: Comparison of CPU and GPU execution times (s) for the computation of 512×512
Fourier coefficients as the number of lasers increase

IV-D.3.4.3 Performance Assessment

This section evaluates the performance of our algorithm under hardware-accelerated (GPU) and
non-accelerated (CPU) platforms. The presented algorithm has been implemented using the OpenCL
framework to create an optimized solution that targets both CPU and GPU. On systems where only
a CPU is available, our implementation makes use of multi-core parallelization and vectorization
to speed-up computation. On systems where a GPU is available, the memory hierarchy can be
explicitly controlled using the OpenCL API. The workload is divided into small groups, in order
to exploit reuse of computed data using local memory. In this manner, a high speed-up is achieved
due to both efficient use of memory and massive parallelization.

The performance results have been measured with the following test platform: A desktop PC
using Windows 10 OS with an Intel i5-6500 (CPU), 8GB RAM and NVIDIA GTX 960 graphics
card. Our algorithm is able to simulate any number of laser beams. Fig. IV-D.3.9 plots the
execution times for the computation of the Fourier coefficients as a function of the number of laser
beams. The figure compares the execution times of the CPU against the GPU to compute 512×512
Fourier coefficients. The computational cost increases with a large slope in the CPU approach while
being nearly constant in the GPU approach. The more laser beams are added, the more it benefits
from GPU parallelization. In addition, the computation of the Fourier coefficients in the GPU is
preferable. In this way, there is no need to transfer the coefficients back and forth from host-to-
device on each iteration since they always stay in GPU memory. For this analysis, a single time
step has been considered instead of the whole simulation.

Fig. IV-D.3.10 shows the computation times of the temperature retrieval in a mesh grid as a
function of the grid size. While the curves for Fourier resolutions (number of coeffs) below 512×512
display a computational cost relatively low (< 0.5 s) for any spatial resolution, Fourier resolutions
above that point (1024× 1024) become expensive (> 0.5 s) for our simulation purposes. Therefore,
on our test platform, we have observed that a good balance between accuracy and computation
time can be achieved by setting a resolution of 512 × 512 for both the frequency (Fourier) and
spatial (grid) domains.
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Figure IV-D.3.10: Execution times (s) for the computation of the temperature as the resolution
(mesh size) increases. Results for different number of Fourier coefficients are presented.

Additionally, since the computation of the temperature is not compulsory at each iteration of
the algorithm (as discussed in Section IV-D.3.3.3), the simulation may ignore irrelevant time steps
(defined by the user). Moreover, the independence of the algorithm accuracy from the spatial
discretization allows the user to specify specific domains (e.g. a sheet section, a curve or a single
point) without requiring the whole sheet temperature. These aspects improve the computation
efficiency of the simulation for specific requirements of the user.

IV-D.3.4.4 Integration within an Interactive Laser Cutting Simulation
Environment

Nowadays, multi-laser machines with multi-trajectory capabilities do not represent a significant
share of the market. The current state-of-the-art laser cutting machines can be divided in three main
groups: (1) multi-laser machines with independent and disjoint working areas for each laser head,
(2) multi-laser machines with parallel heads working simultaneously and (3) multi-laser machines
with fully individual and autonomous laser heads (whose trajectories may intersect or get close
enough). The first scenario can be reduced to a collection of mono-laser machining scenarios, since
the individual working areas for each laser head avoid interference with the neighbouring laser
heads and their heat effects. Therefore, the approach introduced in [162] is still valid to simulate
the temperature for each laser head of these multi-laser machines.

In the second type of multi-laser machines, all laser heads receive the same trajectories and
machining commands, but their separation or offset can be setup and reconfigured during the
machining. Additionally, each laser head can be switched off and on individually. The offset
between the heads does not guarantee disjoint working zones. Therefore, the simulation approach
presented in this work is used to address the potential interference between the multiple heat
sources.

The last type of multi-laser machines use mirrors and lenses to move the spot of the available
laser heads. Each laser spot can be commanded independently of the others, even allowing two or
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more spots to converge at the same physical point on the sheet metal. The methodology presented
in this work is used to simulated such scenarios.

In the context of the second scenario, this section presents an interactive simulator of a laser
cutting machine with three laser heads. All laser heads are arranged side by side in the bridge
of the machine (X axis of the machine). Each individual laser head can be switched on and off
individually and their relative positions among them (Y axis of the machine) can be changed by
means of specific machining instructions.

The virtual simulator itself uses a contour-based representation to model the geometry of the
processed sheet [138, 147], presenting a virtual 3D interactive scenario with the multi-laser CNC
machine that receives the machining instructions. In this virtual scene, the moving and cutting
instructions move the corresponding axis of the machines (bridge, laser heads offset along the bridge
and laser head height over the sheet metal). The heat sources are then calculated and sent to the
heat simulation procedure, updating the temperature of the sheet, which is rendered as a texture
over the virtual sheet metal.

Since all the laser heads receive the same machining instructions (although their position along
the bridge differ), all movements start and end at the same time. As discussed in Section IV-
D.3.3.3, the laser beam trajectories must share the same time discretization, which in this case, is
guaranteed by design. If a unrestricted multi-laser machine is used with independent laser heads,
i.e, receiving different machining instructions, a global time clock must be used in order to trigger
the update of the temperature computation with the correct positions of the moving laser heads.

The introduction of the multi-laser machines in the industrial world has an impact from the
design point of view. Even with just one laser, the designer of the NC (Numerical Control) programs
must take into account the expected produced heat and how it spreads over the sheet metal in order
to optimize the nesting of the produced parts. With a multi-laser machine, this procedure is even
more critical, as the resulting heat of the multiple sources can accumulate in some areas. A NC
designer is expected to use the presented virtual simulator to visualize how the cutting process
produces the parts and to analyze the computed temperature through the sheet. If any situation
becomes problematic, the designer would make changes to the NC program in order to address the
situation.

The presented multi-laser simulator runs at interactive rates. Therefore, the designer can im-
prove the optimization workflow, as many simulations can be run in a short period of time. In
contrast, high quality simulations with FEA software, although being highly precise, are computa-
tionally expensive. Thus, the number of test configurations that the designer can test during the
design phase is limited. Nevertheless, at the end of the optimization phase, the interactive heat
simulations can be complemented with high quality FEA simulations.

From the industrial point of view, this improved design workflow, assisted with the interactive
multi-laser simulation, (1) provides better NC programs in terms of the quality of the produced
parts, (2) produces economical benefits due to shorter machining times or less wasted resources,
and (3) improves the safety of the operators in the factory floor, reducing unnecessary risks due to
unexpected behaviour of the NC programs.

Figure IV-D.3.11(a) shows a machine with three laser heads working simultaneously, i.e, they
receive the same machining instructions with fixed spatial offsets). Each laser head machines a
star figure. The stars machined by the first and second laser heads overlap, while the third laser
head produce an isolated star figure. Figure IV-D.3.11(b) shows a closer view of the cutting area
while IV-D.3.11(c) shows the same viewpoint but the cut stars removed from the visualization.
The simulation results show that intersecting trajectories present temperature peaks (black zones)
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(a) Virtual multi-laser machine

(b) Temperature shown on the sheet surface (c) Geometric cut of the sheet

Figure IV-D.3.11: Multi-laser machining in the interactive simulator. A star shape is machined by
the three laser heads.

where the trajectories overlap (see Fig. IV-D.3.11(b)).

IV-D.3.5 Conclusions

This manuscript presents a novel methodology for the simulation of heat transfer on rectangular
sheet metal under multi-laser beam heating. The algorithm is based on an analytic solution to the
heat transfer equation which considers some simplifications (2D domain, constant material param-
eters) in favor of simulation speed. Such simplifications allow the algorithm to solve the transient
temperature map on large space / time domains and complex laser trajectories. Furthermore, the
algorithm allows many simultaneous laser beams with independent parameters (laser power, speed
and spot radius) and time frames (i.e., each laser beam can be turned on / off during the simula-
tion). The numerical accuracy of the algorithm is independent from the space / time discretization,
which helps to improve its numerical efficiency. Our simulation tests show that the algorithm is
able to render correctly the temperature maps for several laser beams with different trajectories
using mesh grids. A numerical comparison with FEA shows that our algorithm solution deviates
from the FEA one a maximum of 3.9%, and only around the laser spot. An assessment of the
algorithm performance shows that in an implementation using GPUs, the number of laser beams
barely affects the simulation time. Finally, the algorithm is implemented into an interactive laser
cutting simulation environment for the assessment in real time of laser cutting processes in real
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manufacturing scenarios.
The presented algorithm simplifies by design the mathematical model of the problem in favor of

interactive simulations. As future work we work on: (1) to simulate the non-linear behaviour of the
material properties which arises due to the high temperature gradients, (2) to simulate physically
the laser ablation and material removal in sheet cutting processes, (3) to couple the model with an
analytic stress model in order to evaluate the potential structural damage due to thermal stress.
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Abstract

In flexible manufacturing systems, fast feedback from simulation solutions is required for effec-
tive tool path planning and parameter optimization. In the particular sub-domain of laser heat-
ing/cutting of thin rectangular plates, current state-of-the-art methods include frequency-domain
(spectral) analytic solutions that greatly reduce the required computational time in comparison
to industry standard finite element based approaches. However, these spectral solutions have not
been presented previously in terms of Fourier methods and FFT implementations. This manuscript
presents four different schemes that translate the problem of laser heating of rectangular plates
into equivalent FFT problems. The presented schemes reduce the computational time complexity
of the problem from O(M2N2) to O(MN log(MN)) (with M × N being the discretization size
of the plate). The test results show that the implemented FFT schemes outperform previous ap-
proaches both in CPU and GPU hardware, resulting in 100× faster runs. Future work addresses
thermal/stress analysis, non-rectangular geometries and non-linear interactions (such as material
melting/ablation).

Keywords: Spectral Method; Fast Fourier Transform; Laser Heating; GPU; Rectangular Metal
Plate; Industry 4.0.

Glossary

PDE Partial Differential Equation
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DST Discrete Sine Transform
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
a, b,∆z Width, height and thickness of the thin plate (m3).
Tf Total simulation time (s).
~x, t Spatial ~x = (x, y) ∈ [0, a]× [0, b] and temporal 0 ≤ t ≤ Tf coordinates.
u = u(~x, t) Temperature field u : [0, a]× [0, b]× [0, Tf ]→ R on the metal plate (K).
ρ Plate density (kg/m3).
cp Plate specific heat (J/(kg K)).
κ Plate thermal conductivity (W/(mK)).
R Plate reflectivity (0 ≤ R < 1).
q = q(u) Temperature-dependent heat convection field q : R→ R (W/m2).
h Natural convection coefficient at the plate surface (W/(m2K))
u∞ Ambient temperature (K).
~x0 = ~x0(t) Laser spot location at a given time ~x0(t) = (x0(t), y0(t)).
f = f(~x, t) Power Density Field f : [0, a]× [0, b]× [0, Tf ]→ R for the laser beam (W/m2).
P Laser power (W ).
r Laser spot radius (m).
M ×N 2D plate discretization size (M,N ∈ N).
θmn(t) mth, nth Fourier coefficient (m,n = 0, 1, . . . ) for the temperature solution u at time

t.
αm, βn Coefficients αm = (m + 1)π/a and βn = (n + 1)π/b for the Fourier basis in the X-

and Y - axis, respectively.
γm, δn γm = mπ/M and δn = nπ/N are the discrete equivalent of αm (m = 0, 1, . . . ,M−1)

and βn (n = 0, 1, . . . , N − 1), respectively.
ωmn mth, nth eigenvalue of the heat (Laplace) operator defined on the rectangular plate.
~Ci(t) Piecewise linear discretization of the laser trajectory ~x0(t).

IV-D.4.1 Introduction

Based on virtual modelling and simulation of physical phenomena, Industry 4.0 solutions aim to
integrate interactive virtual worlds to their equivalent physical part (e.g. using digital twins).
These solutions enable the development of decision making tools that can be of great use in the
optimization of manufacturing processes.

In this context, engineering solutions use extensively Finite Element Analysis (FEA) for simula-
tion of such physical phenomena (e.g. acoustics, heat transfer, structural analysis, fluid flow, etc).
However, FEA approaches require a great amount of computation resources. In contrast, spectral
analysis and spectral methods are competitive alternatives to numerical simulations. These meth-
ods provide frequency-domain solutions (infinite sum of trigonometric functions) to the Partial
Difference Equations (PDEs) that model such physical phenomena.

In the particular sub-domain of laser heating/cutting simulation, frequency-based algorithms
have been developed for heat transfer analysis on rectangular plates. These algorithms are faster
than traditional numerical methods (such as Finite Element Methods) at the cost of some model
simplifications. In addition, these methods provide some advantages over FEA, such as allowing to
zoom into asynchronous time intervals without computing or storing the complete history of the
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solution.
This property makes frequency-based algorithms more adequate for decision making tools that

require rapid response times, allowing to be more flexible towards changes in the heating/cutting
manufacturing process. Fast simulation of laser heating/cutting problems is very important for
different engineering problems, such as: tool path planning, laser parameter optimization, waste
and resources optimization, etc. Moreover, interactive simulation and visualization of laser machin-
ing processes contributes to many different challenges and opportunities currently present in the
Industrie 4.0 framework (already identified in Ref. [55]).

The aforementioned methods for laser heating/cutting simulation allow simulation of complex
laser trajectories on rectangular plates, including parametric trajectories and the introduction of
multiple laser beams simultaneously. However, there are no Fast Fourier Transform (FFT)-based
solutions to the laser heating/cutting problem in the current state of the art.

The FFT is a widely used algorithm not only in the context of PDEs simulation, but also
in other areas such as signal analysis and image processing. Thus, its development has been
refined and studied extensively in the literature. Several FFT algorithms exist in the literature
that further optimize the computation in function of the input signal properties (e.g. symmetry,
real/imaginary, size, etc.). In general, the FFT is a key algorithm that retrieves the original spatial-
based solution by performing a factorization of the Discrete Fourier Transform (DFT) and avoids
redundant computations, reducing the computational complexity of the original DFT problem.

This article presents four different schemes that cast the laser heating/cutting problem into DST
(Discrete Sine Transform) and DFT (Discrete Fourier Transform) ones. Such casting enables the
use of FFT libraries to implement these schemes. The test results show a significant improvement
of the computational time, both in CPU and GPU over existing methods, due to the computational
complexity reduction.

This manuscript is an extension of the work presented in Ref [164], in which only two schemes
were briefly introduced for the FFT computation of the laser heating problem. The current re-
search discusses in more detail each of the four schemes, including mathematical and algorithmic
descriptions but also the intuition behind the schemes followed by illustrations. Furthermore, a
different simulation case is designed and tested. Finally, the presented schemes are in the process
of being applied in an Industry 4.0 application prototype. The ongoing prototype implements an
interactive virtual model of a laser heating/cutting machine using geometry operations and physical
simulation.

The remainder of this manuscript is organized as follows: Sect. IV-D.4.2 discusses the relevant
literature. Sect. IV-D.4.3 presents the proposed FFT schemes. Sect. IV-D.4.4 discusses the test
results. Finally, Sect. IV-D.4.5 presents the conclusions and discusses what remains for future
work.

IV-D.4.2 Literature review

IV-D.4.2.1 Laser Heating/Cutting Simulation

Finite Element Analysis (FEA) is one of the most used methods for thermodynamic simulation
of laser heating/cutting of metal plates. Using non-linear FEA, Ref. [165] simulates triangular
cuts for residual stress analysis. Similarly, Refs. [166, 167] perform the same non-linear FEA
analysis for rectangular cuts, and Ref. [168] studies circular cuts using the same approach. In order
to account for laser ablation (material melting and evaporation), different methods such as the
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enthalpy method [165–168], element birth and death [113], volume fractions [140], and temperature
thresholds [114,116,158] have been presented.

Other numerical methods include Finite Differences [117,119,120], Boundary Elements [121,122]
and Finite Volumes [123, 124]. However, numerical methods are computationally expensive in
general, limiting their application to small plate geometries and simple laser trajectories, requiring
full time history simulations.

Analytic methods provide significantly faster computations at the cost of some model simpli-
fications. Ref. [129] presents a uni-dimensional analytic model for laser drilling processes when
the laser beam is static. Ref [128] presents a solution for a moving laser on an infinite 2D plate.
Ref. [132] presents a frequency-based solution for rectangular plates when the moving laser follows
a straight path. Similarly, Refs. [54, 169] present a frequency-based solution for arbitrary laser
trajectories. Finally, Ref. [170] extends the previous frequency-based solutions to multiple laser
beams simultaneously heating the plate surface.

IV-D.4.2.2 FFT-based Laser Heating Simulation

FFT-based methods are relevant in the solution of physical problems by solving the inherent PDE
in the frequency domain. As a consequence, these methods have been successfully implemented in
the simulation of different physics phenomena. For example, in the context of heat transfer analysis,
Ref. [171] presents an FFT-based method for the solution of the thermoelastic equation on infinite
domains, while Ref. [172] applies the FFT to the solution of a heat transfer problem that arises
in treatments of tissue with cancer. In structural analysis, Refs. [173–176] develop FFT-based
methods for the solution of different elasticity and plasticity problems, and Ref. [177] presents a
FFT-based solver for fluid mechanics. Other applications of the FFT include electromagnetism
[178], 1D signal processing [179], and 2D image processing [180].

As discussed previously, Refs. [54,132,169,170] solve the problem of laser heating simulation in
the frequency domain. However, none of these references are able to cast their problems into the
FFT domain.

IV-D.4.2.3 Conclusions of the Literature Review

Current analytic methods for simulation of the laser heating/cutting problem already provide fast
solutions to the problem in the frequency domain. However, such methods perform brute-force
evaluation of the Fourier transforms, whose computation complexity for a 2D plate is O(M2N2).
As a consequence, these applications quickly become computationally expensive as more resolution
of the plate is required.

To overcome this problem, this manuscript presents four different schemes that cast the existing
brute-force solutions into equivalent DST and DFT problems. Mathematical proof for the validity
of each scheme is presented and algorithms that make use of FFT libraries are introduced, reduc-
ing the computational complexity of the problem from O(M2N2) (squared) to O(MN log(MN))
(logarithmic). These algorithms are implemented both in CPU and GPU architectures. Numeri-
cal validation against the brute-force approach results in a measured absolute error that is below
10−10K along the 2D plate. The results show significant computation improvements to such brute-
force simulations (i.e. Refs. [54, 132, 169, 170]), reducing the measured computation times from 1s
to 0.01s (100× faster) for a 1024×1024 rectangular plate, and enabling simulations for larger plate
discretization sizes (up to 4096× 4096).
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This manuscript extends the work presented in Ref. [164]. In this previous work, two of the
four presented schemes are briefly introduced. The research presented in this paper presents two
new FFT schemes, and provides further details of the four schemes (with added illustrations) for
better understanding of the algorithms. Furthermore, new simulations have been executed and an
application case of the algorithms being implemented into an interactive simulator is presented.

IV-D.4.3 Methodology

IV-D.4.3.1 Heat Transfer Equation for Laser Heating on Thin Plates

The temperature u(x, y, t) on a 2D rectangular plate for a continuous laser beam source satisfies
the following partial differential equation with initial and boundary conditions:

f − q
∆z

= ρcp
∂u

∂t
−∇ · (κ∇u)

q(x, y, t) = h · (u(x, y, t)− u∞)

u(x, y, 0) = u∞

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = u∞

(IV-D.4.1)

where a× b×∆z are the plate dimensions, ρ is the plate density, cp is the specific heat and κ is the
thermal conductivity. q = q(x, y, t) is the heat loss due to convection at the plate surface, h is the
convection coefficient and u∞ is the ambient temperature. Finally, the heat source f = f(x, y, t) is
defined as a square-shape moving laser beam:

f(x, y, t) =

{
P (1−R)
πr2 , ‖~x− ~x0(t)‖∞ < r

√
π

2

0, otherwise
(IV-D.4.2)

where R is the plate reflectivity, P is the laser power, r is the laser radius and ~x0(t) = [x0(t), y0(t)]
is the location of the laser spot at time t. ~x0 is the parametric curve that defines the laser trajectory,
discretized as a sequence of piecewise linear trajectories as described in Refs. [54,169]. The function
f describes the laser power on the plate according to the distance (infinity norm) ‖~x− ~x0(t)‖∞ =
max(x− x0(t), y − y0(t)) of each plate point ~x = [x, y] to the laser spot ~x0(t) = [x0(t), y0(t)]. Fig.
IV-D.4.1 presents an scheme of the laser heating problem on thin metal plates.

IV-D.4.3.2 Analytic Solution

According to Refs. [54, 169], the solution to Eq. (IV-D.4.1) can be expressed as Fourier series:

u(x, y, t) = u∞ +

∞∑
m=0

∞∑
n=0

θmn(t) sin(αmx) sin(βny) (IV-D.4.3)

with αm = (m+ 1)π/a and βn = (n+ 1)π/b. Each Fourier coefficient θmn(t) is defined as:

θmn(t) =
4

abρcp∆z

∫ t

0

∫ b

0

∫ a

0

f(x, y, τ) sin(αmx) sin(βny)e−ωmn(t−τ)dxdydτ (IV-D.4.4)
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Figure IV-D.4.1: Scheme for the laser heating problem on thin metal plates.

with Laplace eigenvalues ωmn:

ωmn =
κ

ρcp
(α2
m + β2

n) +
h

ρcp∆z
(IV-D.4.5)

Let ~C1(t), ~C2(t), . . . be a sequence of piecewise linear sub-trajectories that discretize the complete

laser trajectory (see Fig. IV-D.4.2), i.e. ~x0(t) ≈ ~C1(t), ~C2(t), . . .. Each sub-trajectory ~Ci (i > 0) is
defined as a linear trajectory:

~Ci(t) = ~x0(ti)
t− ti−1

ti − ti−1
+ ~x0(ti−1)

ti − t
ti − ti−1

, ti−1 ≤ t < ti (IV-D.4.6)

where the original laser trajectory ~x0 is sampled at t = t0, t1, t2, . . . , Tf .
The analytic solution for Eq. (IV-D.4.4) for the given piecewise linear discretization is presented

in Refs. [54, 169].
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(a) Continuous laser trajectory (b) (Coarse) Piecewise linear discretization of the trajec-
tory

Figure IV-D.4.2: Continuous laser trajectory (from point A to B) and piecewise linear discretization
of the trajectory on a rectangular plate

IV-D.4.3.3 Discrete Fourier Transform (DFT) and Fast Fourier Trans-
form (FFT)

The Discrete Fourier Transform (DFT) [181] allows to write any sequence of M real numbers as a
finite sum of sine and cosine functions, i.e. a Fourier series. The (1D) DFT of the sequence of real
values G = {g0, g1, . . . , gM−1} ⊂ R is defined as:

gk =

M−1∑
m=0

φme
− i2πM km =

M−1∑
m=0

φm

[
cos

2πkm

M
− i sin

2πkm

M

]
(IV-D.4.7)

where φm ∈ C is the mth Fourier coefficient and i =
√
−1 is the imaginary unit. The computational

complexity for direct evaluation of Eq. (IV-D.4.7) isO(M2), in which each gk requiresM evaluations
(one for each Fourier term φm).

The Fast Fourier Transform (FFT) [179] is an algorithm that performs a factorization of the
DFT, reordering the Fourier terms and grouping them (into pairs) in order to avoid redundant
computations between different gk terms. Such a grouping is possible due to symmetries of the
sine and cosine functions, and the resulting evaluation is performed in binary-tree recursive form
[179]. As a consequence, the FFT algorithm reduces the computational complexity of the problem
to O(M logM)[179].

The above DFT and FFT complexity orders are true for 1D arrays. Therefore, for a 2D discrete
plate of size M ×N , the computational complexities become O(M2 ×N2) and O(MN log(MN))
for the DFT and the FFT, respectively.

The remainder of this section describes how to cast Eq. (IV-D.4.3) as a DFT problem and
therefore, solve it using any FFT algorithm. Such casting effectively improves the computational
complexity of the problem with respect to the current state of the art [54,132,169,170].
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IV-D.4.3.4 Scheme 1 - Discrete Sine Transform (DST)

The Discrete Sine Transform (DST) [182] is a particular case of the DFT transform in which
only the sine terms of the Fourier series are considered. The (1D) DFT of the sequence G =
{g0, g1, . . . , gM−1} ⊂ R is defined as:

gk =

M−1∑
m=0

φk sin
(m+ 1)(k + 1)π

M + 1
(IV-D.4.8)

Intuitively, this is the easiest of the schemes for casting the problem as Eq. (IV-D.4.3) only
considers the sine terms of a Fourier series. The algorithm of such casting is discussed below. The
reader may refer to Appendix V-.0.B.1 for the mathematical proof of the scheme.

IV-D.4.3.4.1 Algorithm

Algorithm 1 presents the method used to retrieve the temperature at any given time t with the
DST method (see Eq. (8)). Line 2 applies the 2D DST of any FFT library, while Line 3 applies
the initial and boundary conditions presented in Eq. (IV-D.4.1) to the computed solution. The
complexity of the presented algorithm is O(MN log(MN)).

Algorithm 1: Retrieve temperature using a 2D DST

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R

Ensure: U ∈ RM×N

1: U ← zeros(M,N)

2: U [1 : M − 1, 1 : N − 1]← dst2d(Θ)

3: U ← U + u∞

4: return U

IV-D.4.3.5 Scheme 2 - FFT Padded with Zeros

In this scheme, the original list of Fourier coefficients is duplicated in size in each direction (2M ×
2N). The added coefficients are set to zero and the FFT algorithm is applied in each direction.
The final temperature result is obtained from the imaginary (sine) components of the FFT result.
The mathematical proof of the scheme is presented in Appendix V-.0.B.2.

IV-D.4.3.5.1 Algorithm

Algorithm 2 presents the method used to retrieve the temperature at any given time t using the zero
padding method (see Eq. (10)). Line 1 initializes the extended matrix of Fourier coefficients with
M,N trailing zeros (as per Fig. IV-D.4.3). Lines 4 and 8 compute the 1D FFT of the padded arrays
for the y and x dimensions, respectively. Lines 5 and 9 extract the complex (imaginary component)
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of the results. Finally, Line 12 removes the trailing zeros from the solution while Line 13 applies
initial and boundary conditions. The complexity of the presented algorithm is O(MN log(MN)).

Algorithm 2: Retrieve temperature using a FFT with zero padding

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R

Ensure: U ∈ RM×N

1: ΘPADDED ← zeros(2M, 2N)

2: ΘPADDED[1 : M − 1, 1 : M − 1]← Θ

3: for n = 1, n < N − 1, n← n+ 1 do

4: arr ← fft(ΘPADDED[:, n])

5: ΘPADDED[:, n]← imag(arr)

6: end for

7: for m = 1,m < M − 1,m← m+ 1 do

8: arr ← fft(ΘPADDED[m, :])

9: ΘPADDED[m, :]← imag(arr)

10: end for

11: U ← zeros(M,N)

12: U ← ΘPADDED[0 : M − 1, 0 : N − 1]

13: U ← U + u∞

14: return U
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Figure IV-D.4.3: Matrix structure for the zero padding FFT. The blue block contains the original
Fourier coefficients θmn. The remainder of the matrix is filled with zeros.

IV-D.4.3.6 Scheme 3 - Odd-Symmetry 1D FFT

In this scheme, the original list of Fourier coefficients is also duplicated in size in each direction
(2M × 2N). The idea is to take advantage of the odd symmetry of the sine function at kπ (with
k ∈ N, see Fig. IV-D.4.4). Therefore, the added coefficients are set by mirroring the original M
or N coefficients (multiplied by −1) in each direction (rows and columns). The final temperature
is obtained from the imaginary (sine) components of the 1D FFT result in each direction. The
mathematical proof of this scheme is presented in Appendix V-.0.B.3.

Figure IV-D.4.4: Odd symmetry of the sine function at kπ (k = 0, 1, 2, . . . )

IV-D.4.3.6.1 Algorithm

Algorithm 3 presents the method used to retrieve the temperature of Eq. (16) at any given time
t using two nested 1D FFTs. Line 1 initializes the extended matrix of Fourier coefficients with
M,N trailing zeros. Lines 3-5 and Lines 6-8 add the reversed sequences of Fourier coefficients (with
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negative sign) in each dimension, respectively (see Fig. IV-D.4.5). Lines 10 and 14 compute the
1D FFT of the padded arrays for the y and x dimensions, respectively. Lines 11 and 15 extract the
complex (imaginary component) of the results. Finally, Line 12 removes the mirrored part from
solution while Line 13 applies initial and boundary conditions. The complexity of the presented
algorithm is O(MN log(MN)).

Algorithm 3: Retrieve temperature using 1D FFTs by applying odd symmetry to the original
coefficients

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R

Ensure: U ∈ RM×N

1: ΘODD SYM ← zeros(2M, 2N)

2: ΘODD SYM [1 : M − 1, 1 : M − 1]← Θ

3: for m = M + 1,m < 2M − 1,m← m+ 1 do

4: ΘODD SYM [m, :]← −ΘODD SYM [2M −m− 1]

5: end for

6: for n = N + 1, n < 2N − 1, n← n+ 1 do

7: ΘODD SYM [n, :]← −ΘODD SYM [2N − n− 1]

8: end for

9: for n = 1, n < N − 1, n← n+ 1 do

10: arr ← fft(ΘODD SYM [:, n])

11: ΘODD SYM [:, n]← imag(arr)

12: end for

13: for m = 1,m < M − 1,m← m+ 1 do

14: arr ← fft(ΘODD SYM [m, :])

15: ΘODD SYM [m, :]← imag(arr)

16: end for

17: U ← zeros(M,N)

18: U ← ΘODD SYM [0 : M − 1, 0 : N − 1]

19: U ← U + u∞

20: return U

174



Figure IV-D.4.5: Matrix structure for the odd symmetric FFT (1D and 2D). The blue block contains
the original coefficients and the remaining blocks contain their odd symmetric counterpart. All
blocks are separated by rows and columns of zeros.

IV-D.4.3.7 Scheme 4 - Odd-Symmetry 2D FFT

Finally, in this scheme the original list of coefficients is duplicated and mirrored in each direction
exactly as in Sect. IV-D.4.3.6. However, this scheme also takes advantage of the even symmetry of
the cosine function at 2kπ (k ∈ N, see Fig. IV-D.4.6). Similar to the 1D odd symmetric approach,
the duplicated coefficients are mirrored in each direction (rows and columns), and multiplied by
−1. The final temperature is retrieved from the the real component of the 2D FFT, which considers
the sine components and the cosine components (that become 0 due to the cosine symmetry). The
mathematical proof of the scheme is presented in Appendix V-.0.B.4.

Figure IV-D.4.6: Even symmetry of the cosine function at 2kπ (k = 0, 1, 2, . . . )

IV-D.4.3.7.1 Algorithm

Algorithm 4 presents the method used to retrieve the temperature of Eq. (23) at any given time
t using a 2D FFT. Line 1 initializes the extended matrix of Fourier coefficients with M,N trailing
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zeros. Similar to the 1D odd symmetric method, Lines 3-8 add the reversed sequences of Fourier
coefficients (with negative sign) in each direction (see Fig. IV-D.4.5). Line 9 computes the 2D FFT
of the extended Fourier matrix. Line 11 extracts the real part of the FFT solution and removes the
mirrored part. Finally, Line 12 applies the initial and boundary conditions. The complexity of the
presented algorithm is O(MN log(MN))

Algorithm 4: Retrieve temperature using 2D FFTs by applying odd sine symmetry and even cosine
symmetry to the original coefficients

Require: Θ ∈ R(M−2)×(N−2), u∞ ∈ R

Ensure: U ∈ RM×N

1: ΘODD SYM ← zeros(2M, 2N)

2: ΘODD SYM [1 : M − 1, 1 : M − 1]← Θ

3: for m = M + 1,m < 2M − 1,m← m+ 1 do

4: ΘODD SYM [m, :]← −ΘODD SYM [2M −m− 1]

5: end for

6: for n = N + 1, n < 2N − 1, n← n+ 1 do

7: ΘODD SYM [n, :]← −ΘODD SYM [2N − n− 1]

8: end for

9: Mat← fft2d(ΘODD SYM )

10: U ← zeros(M,N)

11: U ← real(Mat[0 : M − 1, 0 : N − 1])

12: U ← U + u∞

13: return U

IV-D.4.4 Results

This section presents the results of the implementation of the presented DST and FFT schemes
using different state-of-the-art FFT libraries for the solution of the laser heating problem on thin
metal plates. All the simulations are executed with the parameters presented in Table IV-D.4.2
and the laser trajectory presented in Fig. IV-D.4.2(a). Sect. IV-D.4.4.1 presents the numerical
validation of the presented schemes with respect to the brute-force algorithms [54, 132, 169, 170].
Finally, Sect. IV-D.4.4.2 discusses the computational performance of the implemented schemes
using available FFT libraries.
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Table IV-D.4.2: Parameters for the physical simulation

Parameter Description Value Units

a Plate width 0.01 m
b Plate height 0.01 m

∆z Plate thickness 0.001 m
ρ Plate density 8030 kg/m3

cp Specific heat 574 J/(kg K)
κ Thermal conductivity 20 W/(mK)
R Plate reflectivity 0 1
h Convection coefficient 20 W/(m2K)
u∞ Ambient temperature 300 K
P Laser power 500 W
r Laser spot radius 0.0003 m

IV-D.4.4.1 Numerical Validation

Sect. IV-D.4.3 validates the mathematical correctness of the presented schemes. However, a numeri-
cal validation is presented in this section with numerical and graphical results for a 0.01×0.01×0.001
rectangular plate. Laser and material parameters are presented in Table IV-D.4.2 while the laser
trajectory used for the tests is the same presented in Fig. IV-D.4.2(a). As a groundtruth, we choose
the method presented in Refs. [54, 169, 170]. This method already solves the problem presented
in Eq. (IV-D.4.1) using a brute-force approach, which requires O(M2N2) operations (as already
discussed in Sect. IV-D.4.3.3. Fig. IV-D.4.7 plots the temperature distribution results obtained
with this brute-force method.

Figure IV-D.4.7: Temperature solution for the laser trajectory presented in Fig. IV-D.4.2(a) ob-
tained by the brute-force method [169]. No FFT or DST is used.

Fig. IV-D.4.8(a) plots the temperature distribution at the end of the laser trajectory, computed
with the DST algorithm for a 1024 × 1024 plate discretization. Fig. IV-D.4.8(b) plots the same
result computed with the zero padding FFT algorithm. The absolute error for the DST and the
zero paddding FFT result (w.r.t. the brute-force approach) is presented in Figs. IV-D.4.8(c) and
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IV-D.4.8(d), respectively. The measured absolute error is below 10−10(K) in both cases. It is worth
pointing out that this error is evenly distributed through the 2D plate, which means that such error
is not sensitive to the laser path or any other geometric features (such as the domain boundaries).

(a) DST temperature distribution (b) Zero padding temperature distribution

(c) DST error distribution (d) Zero padding error distribution

Figure IV-D.4.8: Temperature and absolute error distributions (w.r.t. the brute-force approach
[169]) on the thin plates for the DST and the zero padding FFT simulations

Similarly, Figs. IV-D.4.9(a) and IV-D.4.9(b) plot the temperature distributions at the end of
the laser trajectory for the 1D symmetric FFT and the 2D symmetric FFT algorithms, respectively.
Figs. IV-D.4.9(c) and IV-D.4.9(d) plot the absolute error for the 1D symmetric and 2D symmetric
FFTs, respectively. Again, the error is below 10−10, evenly distributed through the 2D plate.
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(a) 1D odd symmetry temperature distribution (b) 2D odd symmetry temperature distribution

(c) 1D odd symmetry error distribution (d) 2D odd symmetry error distribution

Figure IV-D.4.9: Temperature and absolute error distributions (w.r.t. the brute-force approach
[169]) on the thin plates for the odd symmetry FFT approaches (1D and 2D)

IV-D.4.4.2 Computational performance

This section evaluates the performance of the proposed methods under CPU and GPU hardware
architectures by making use of highly optimized FFT libraries. The Python programming language
includes in its scientific package ecosystem high level wrappers to C/C++ libraries. For this reason,
Python has been selected for the rapid prototyping of the proposed schemes in this work.

The FFT algorithm is used in a wide range of performance demanding applications. Therefore,
the optimization degree of its implementation is highly relevant. On the one hand, to target
the CPU, the FTTPACK, MKL and FFTW libraries have been selected. On the other hand, to
target the GPU, the cuFFT library from the NVIDIA CUDA Toolkit has been used. All these
libraries make use of multi-core parallelization, vectorization instructions, efficient memory usage,
and apply specific FFT algorithms to exploit the underlying hardware to the highest degree. It is
worth noticing that the FFTPACK library is the only one (between the aforementioned ones) that
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provides an implementation of the DST.
Table IV-D.4.3 summarizes the selected libraries along the Python wrapper packages and the

targeted hardware device during the performance tests.

Table IV-D.4.3: Selected libraries and corresponding Python packages

Library Python package Hardware

FFTPACK scipy.fft CPU
MKL numpy.fft CPU

FFTW pyfftw CPU
cuFFT pyCUDA, scikit-cuda GPU

Two test platforms have been used for the performance measurements: i) a desktop PC using
Windows 10 with an Intel Core i5-6500 (CPU), 16 GB RAM and NVIDIA GeForce GTX 960 (GPU)
and ii) a desktop PC using Manjaro (GNU/Linux) with an Intel Core i7-4700K (CPU), 16GB RAM
and NVIDIA GeForce RTX 2060 (GPU). To measure the execution times of each proposed method,
each test has been computed 5 times and the minimum time has been registered.

This section is divided into four subsections. Sect. IV-D.4.4.2.1 presents the computation times
using the CPU, while Sect. IV-D.4.4.2.2 presents the computational times using GPU hardware.
Then, Sect. IV-D.4.4.2.3 compares the performance difference between both devices. Finally,
Sect. IV-D.4.4.2.4 presents the achieved speed-up against the state of the art brute-force solution
[54,132,169,170].

IV-D.4.4.2.1 CPU performance measurements

Fig. IV-D.4.10 shows the computation time of the proposed schemes using the FFTPACK, MKL
and FFTW libraries, respectively. These are all implemented to be executed in general CPU
hardware.

Fig. IV-D.4.10(a) and IV-D.4.10(b) show all the proposed schemes implemented with the FFT-
PACK library. The FFTPACK is the only library (between the used ones in this manuscripts)
that has an implementation of the DST algorithm. This DST implementation is efficient for plate
discretization sizes of 512 × 512 and 1024 × 1024. However, its performance is not as consistent
as the FFT based methods. Overall, the performance of the FFT-based methods with different
input size are more stable, being the 1D odd symmetric FFT scheme the best approach using the
FFTPACK library.

Fig. IV-D.4.10(c) and IV-D.4.10(d) show the execution times of the temperature evaluation
making use of the MKL library. In this case, from the FFT-based methods, both the 1D and 2D
odd symmetric schemes are the most efficient.

Fig. IV-D.4.10(e) and IV-D.4.10(f) show the computation times using the FFTW library. Al-
though, quite close to the results obtained with the MKL library, the FFTW results are the best
when using the CPU device. In this case, also both the 1D and 2D odd symmetric schemes are the
most efficient.
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(b) FFTPACK with Intel i7-4700K
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(c) MKL with Intel i5-6500
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(e) FFTW with Intel i5-6500
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Figure IV-D.4.10: CPU computation times using the FFTPACK, MKL and FFTW libraries for
the proposed schemes using different plate sizes. The odd symmetric schemes (1D and 2D) present
the best performance overall.
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The optimization degree achieved for the FFT algorithms with the MKL and FFTW libraries
is higher. These libraries make better use of the underlying hardware, obtaining faster results than
the FFTPACK library for the FFT-based methods. Results obtained with the FFTW library are
slightly better (faster) than the MKL ones. However, this can be due to the usage of wrappers, as
the pyfftw (FFTW) wrapper offers more control over the implementation. Nonetheless, the obtained
results greatly surpass the state of art, both FFTW and MKL have shown execution times under
1s for plate sizes up to 4096× 4096.

IV-D.4.4.2.2 GPU performance measurements

Fig. IV-D.4.11 shows the computation time for the three proposed FFT schemes using different
GPU hardware: i) GeForce GTX 960 and ii) GeForce RTX 2060. The implementation is based in
the cuFFT (CUDA toolkit) library and makes use of the PyCUDA and scikit-cuda python packages.
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(a) NVIDIA GeForce GTX960
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(b) NVIDIA GeForce RTX2060

Figure IV-D.4.11: GPU computation times for the FFT-based methods using the cuFFT library
with different plate sizes. The 2D odd symmetric scheme outperforms the remainder FFT-based
ones.

While the zero padding and the 1D odd symmetric implementations produce similar results (in
terms of computation time), the 2D odd symmetric scheme is by far the most performant. As the
Fourier coefficients can be computed in the GPU before performing the temperature computation,
the input for the FFT is already in GPU memory. It is worth to point out that the transfer of these
coefficients from host memory (CPU) to device memory (GPU) is not measured.

IV-D.4.4.2.3 Comparison of CPU and GPU performance

Fig. IV-D.4.12(a) shows an overview of the computation times for the proposed DST (FFTPACK
only) and FFT (FFTPACK, MKL, FFTW and cuFFT) methods. The FFTPACK (red) is the
slowest and cuFFT (yellow) is the fastest. Execution times for both the MKL (blue) and FFTW
(green) libraries are similar, obtaining slightly faster results with FFTW. Overall, the GPU hard-
ware acceleration (with cuFFT) provides a considerable speed-up, making it a good alternative to
consider for simulations on plates with large discretization sizes.

182



Fig. IV-D.4.12(b) compares the execution times of the two test platforms considering both CPU
and GPU devices for the most performant FFT method: the 2D odd symmetric algorithm. This
comparison shows that the GPU hardware effectively accelerates the computation time, between
the fastest CPU (i7-4700K) and the slowest GPU (GTX 960), obtaining up to a 2× speed-up
for plate sizes larger than 1024 × 1024. The performance difference increases as the input plate
increases in size. Using more recent GPU hardware (RTX 2060) results show a bigger difference in
the achievable compute time speed-up.
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Figure IV-D.4.12: CPU and GPU computation time comparison using different plate resolutions

IV-D.4.4.2.4 Comparison against state of the art

Fig. IV-D.4.13 compares the proposed FFT method with the state of the art (SoA) GPU brute-
force solution [170]. The presented FFT method is much faster for plate sizes larger than 128×128,
showing a big difference in computing times with a plate of size 1024×1024, where the FFT approach
obtains a 124× speed-up (2.255s against 0.018s). Fig. IV-D.4.13 demonstrates the potential of
the presented FFT method to perform the temperature evaluation for high resolution plate sizes
(1024 × 1024 and beyond). Furthermore, the current brute-force solution [170] has a limit size of
1024×1024 due to GPU shared memory usage, while the proposed FFT approach can compute the
temperature for plates of sizes up to 4096× 4096 under the same GPU hardware, without resorting
to out-of-core GPU memory management. For small plate sizes (smaller than 128×128), the brute-
force approach is faster due to the FFT method requiring extra processing of input coefficients and
dispatching of kernels (scheduling time), adding a small computation overhead.
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Figure IV-D.4.13: Appraisal of the computation times using an NVIDIA GeForce GTX960 (GPU)
for the presented 2D odd symmetric FFT method vs the brute-force method presented in [170]

IV-D.4.4.3 Interactive Simulator Prototype

This section presents the integration of the presented FFT-based schemes into a 3D interactive sim-
ulator for CNC (Computer Numeric Control) laser machining. The prototype integrates a physical
module for the temperature computation and a geometry module that computes the plate cutting
through time (see Ref. [54]). The physical module implements the GPU-based FFT algorithms pre-
sented in this manuscript for the temperature computation at interactive rates while the geometry
module performs boolean operations as discussed in Refs. [138,183].

The current prototype provides interactive simulation of the laser heating/cutting process, visu-
alized as a continuous animation. Interactively, the user can inspect the plate and its temperature
at any specific timestep. Furthermore, the fast computation speed enables the possibility to run
different simulations with different parameters in an interactive manner. Fig. IV-D.4.14 shows the
virtual simulator for the test case discussed in this manuscript.

(a) M-trajectory interactive simulation (b) Close-up view of the laser head and laser spot

Figure IV-D.4.14: Interactive laser heating/cutting simulator. A virtual CNC machine follows the
laser trajectory defined by the program and the physical module computes the temperature using
the FFT.
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The development of interactive virtual worlds connected with physical objects (e.g. digital
twins), has become a key technology for fast assessment of manufacturing processes [55]. In this
context, an interactive CNC machine (as the integrated prototype) provides several tools to the
engineer for the design of efficient CNC programs (plate, laser parameters and trajectory), reducing
the requirement of real-world tests and consequently, reducing costs in terms of energy consumption,
material waste, machining times, etc.

IV-D.4.5 Conclusions and Future Work

This manuscript presents four different schemes for the solution of the laser heating problem on thin
metal plates using the DST and the FFT. The presented methods reduce the computational com-
plexity of the problem from O(M2N2) to O(MN log(MN)) (with M ×N being the discretization
size of the metal plate).

These schemes are implemented in both CPU and GPU architectures using available optimized
FFT libraries. Mathematical and numerical proofs of the correctness of the schemes are presented
and the numerical error is measured below 10−10K (and independent of the laser trajectory).

The performance evaluation shows that the minimum achievable computation time varies in
function of the used library, specially for big input sizes. Furthermore, the obtained results improve
the state of the art [170] in both CPU and GPU platforms for all the proposed schemes. Specifically,
using GPU hardware, the computation times for the temperature evaluation are reduced from 1s
to 0.01s (100× faster), measured in an NVIDIA GeForce GTX 960 (GPU).
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Abstract

Point-cloud-to-mesh registration estimates a rigid transformation that minimizes the distance be-
tween a point sample of a surface and a reference mesh of such a surface, both lying in different
coordinate systems. Point-cloud-to-mesh-registration is an ubiquitous problem in medical imaging,
CAD CAM CAE, reverse engineering, virtual reality and many other disciplines. Common registra-
tion methods include Iterative Closest Point (ICP), RANdom SAmple Consensus (RANSAC) and
Normal Distribution Transform (NDT). These methods require to repeatedly estimate the distance
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between a point cloud and a mesh, which becomes computationally expensive as the point set sizes
increase. To overcome this problem, this article presents the implementation of a Perfect Spatial
Hashing for point-cloud-to-mesh registration. The complexity of the registration algorithm using
Perfect Spatial Hashing is O(NY × n) (NY : point cloud size, n: number of max. ICP iterations),
compared to standard octrees and kd-trees (time complexity O(NY log(NT ) × n), NT : reference
mesh size). The cost of pre-processing is O(NT + (N3

H)2) (N3
H : Hash table size). The test results

show convergence of the algorithm (error below 7e-05) for massive point clouds / reference meshes
(NY = 50k and NT = 28055k, respectively). Future work includes GPU implementation of the
algorithm for fast registration of massive point clouds.

CCS Concepts
Theory of computation → Convex optimization; Computational geometry
Computing methodologies → Mesh models; Point-based models
Applied computing → Computer-aided design

IV-E.1.1 Introduction

Point set registration is ubiquitous in Reverse Engineering, Medical Imaging, Visual (Dimensional)
Inspection, Robotics, among other disciplines.

Consider two point set samples of an object, each one conducted in its own coordinate system.
The points in one set do not exactly correspond to object locations sampled in the other set.
Moreover, parts of the object visible in one coordinate system may be unaccessible for sample in
the other coordinate system (e.g. two clipped depth scans of the same object). The point set
registration problem consists of finding a rigid transformation that rotates and translates one point
set onto the other, producing the best possible matching between the transformed and the static
point sets.

Point set registration is strongly qualified by the underlying structure of the point sets. Regis-
tration of surface point samples is very different from registration of point samples obtained from
the interior of the same object (such as the volumetric point sets obtained from Computed Tomog-
raphy Scans) [184]. It is an important advantage the fact that a 2-manifold structure (i.e. non
self-intersecting surface) might be recognized as underlying the point sets. The present publication
refers to registration between a point set which is optically sampled on an object surface vs. a
triangular mesh (i.e. a planar triangular graph) obtained from a CAD representation of the object.
The problem of point-cloud-to-mesh registration is relevant in CAD CAM CAE applications where
the CAD (or triangular mesh) model of the object to register is known a priori. These applications
include (but are not limited to) Dimensional Inspection [169,185] and Robotic Bin Picking [186].

Within point-cloud-to-mesh registration, the sub-problem of point-cloud-to-mesh distance is
central and heavily contributes to the computing expenditure. For the later problem, existing liter-
ature relies on spatial partition structures (such as octrees or kd-trees), which produce logarithmic
search times. Given the massive amount of points of the sets to be registered, it is of interest
to find a more economic strategy. Therefore, this manuscript presents the implementation of a
point-cloud-to-mesh registration algorithm based on a Spatial Hashing data structure. This Spa-
tial Hashing structure provides constant time access (O(1)) to the list of close triangles to a given
point p. Consequently, the point-cloud-to-mesh registration based on Perfect Spatial Hashing is
significantly faster than its hierarchical-based counterparts for massive point sets.
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In this manuscript, Section 2 presents a literature review of relevant approaches. Section 3
conveys the methodology applied. Section 4 discusses the results obtained with several data sets.
Section 5 concludes the manuscript and mentions possible related future enhancements to the
present approach.

IV-E.1.2 Literature Review

The problem of point cloud registration has gotten a lot of research interest due to its relevancy in
many engineering areas. Refs. [187, 188] present a survey on point cloud registration algorithms.
The Iterative Closest Point (ICP) algorithm is one of the most widely used method for mesh regis-
tration in such literature. The algorithm consists of computing the closest points (correspondences)
between the point cloud to register and the reference mesh. Such a procedure is performed itera-
tively until a convergence criteria is met [189]. The ICP extends the quaternion method [190] for
correspondent point-to-point registration.

To avoid local minima, the ICP requires the point-cloud-to-register and the reference mesh to
be locally close enough. User-assisted alignment of correspondences is used to compute a pre-
registration of the point cloud, which is finally registered by the ICP [185]. Other ICP variations
include feature-based mesh registration, in which some key points are automatically matched be-
tween the point-cloud-to-register and the reference mesh [187]. These feature-based registration
methods rely on spherical harmonics [191] or surface signatures [192].

The main problem with ICP registration is the computation of correspondences (set of closest
points from the reference mesh to the point cloud to register). The most naive approach is the
exhaustive search, which is quadratic in time complexity O(NY ×NT ) (NY is the point-cloud-to-
register size and NT is the number of triangles in the reference mesh). Thus, spatial partitions of
the domain are usually used to reduce the computational cost of the registration. Approaches to
such spatial partitions include kd-trees [193], heuristic search [194], R-trees [195] and octrees [196],
whose search complexity becomes O(NY log(NT )). Refs. [197, 198] use 1-D hash tables to index
octree entries, reducing the octree search to O(NY log(log(NT ))). Ref. [199] computes a regular
grid that encloses the reference mesh, reducing the registration search complexity to linear O(NY ).
However, this last approach demands excessive storage resources as the full rectangular grid needs
to be stored.

Other algorithms for cloud-to-mesh registration have been presented in the literature. RAN-
dom SAmple Consensus (RANSAC) is a registration algorithm which takes many different sets of
samples from the point cloud to register, and then fits a different model to each of these sets. The
algorithm returns the best fitted model according to the optimization criteria [200]. The Normal
Distribution Transform (NDT) algorithm computes a 3D grid enclosing the point cloud to register
and the reference mesh, which are used to compute a spatial probability distribution function. The
registration of the obtained probability functions is performed using the Hessian matrix method
[201]. RANSAC and NDT methods have shown to perform faster than standard ICP methods.
However, their result is non-deterministic and highly sensitive to algorithm parameters. A full
review on mesh registration algorithms is presented in [187,202].

IV-E.1.2.1 Conclusions of the Literature Review

Current mesh registration algorithms rely on spatial partitions of the 3D domain to search the cloud-
to-mesh closest points. Most of these algorithms are linear-logarithmic. Table IV-E.1.1 summarizes
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the mesh registration algorithms presented in the literature with their respective time complexity.

Table IV-E.1.1: Summary of closest point search algorithms in the literature. NY is the point-
cloud-to-register size and NT is the reference mesh size.

Reference Computational Complexity

K-d tree search [193] O(NY log(NT ))
Heuristic search [194] O(NY log(NT ))

R-tree search [195] O(NY log(NT ))
Octree search [196] O(NY log(NT ))

Hash-Octree search [197,198] O(NY log(log(NT )))
Cubic grid search [199] O(NY )

Perfect Spatial Hash (this manuscript) O(NY )

To overcome these problems, this manuscript presents the integration and implementation of a
Perfect Spatial Hashing [203] data structure into the ICP registration process. Given a point to be
registered, the Perfect Spatial Hashing defines a hash function which returns the closest point from
the reference mesh in constant time. As a consequence, the complexity of our registration algorithm
is O(NY × n), improving previous spatial partition approaches. In contrast to the discretization
presented in [199], the Spatial Hash partition reduces significantly the storage requirements of the
data structure, as the Hash table is optimized to reach the smallest size possible, at the cost of
some pre-processing time.

IV-E.1.3 Methodology

Given a point cloud to register Y = {y1,y2, . . . ,yNY } and a reference triangle mesh M = (T ,P)
(T = {t1, t2, . . . , tNT }, P = {p1,p2, . . . ,pNP }), the mesh registration problem consists of finding
a rigid transformation (rotation R ∈ SO(3) and translation p0 ∈ R3) that minimizes the distance
between the point cloud Y and the reference mesh M:

min
R,p0

NY∑
i=1

d(Ryi + p0,M)2 (IV-E.1.1)

where d(y∗i ,M) is shortest distance between the registered point y∗i and the meshM. The registered
point cloud is the set of points Y∗ = {y∗1,y∗2, . . . ,y∗NY } such that y∗i = Ryi + p0.

The following sections describe the Iterative Closest Point (ICP) algorithm [189] that solves the
above minimization problem and the integration of Perfect Spatial Hashing [203] in the registration
process.

IV-E.1.3.1 Mesh Registration of Correspondences

Let xi ∈ M be the closest point to the registered point y∗i (see Fig. IV-E.1.1). The set X =
{x1,x2, . . . ,xNY } is a resample ofM, known as the set of correspondences of Y. As a consequence,
Eq. IV-E.1.1 becomes:

min
R,p0

NY∑
i=1

‖Ryi + p0 − xi‖2 (IV-E.1.2)
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Figure IV-E.1.1: Registered point y∗i and its correspondent (closest) point xi ∈ M. xi does not
belong to the original discretization of M.

It is worth noting that X and Y share the same number of points (|X| = |Y| = NY ) and the
set X does not contain the same points as the initial discretization ofM (i.e. X 6= P). In addition,
since the solution Y∗ is an unknown of the problem, the set X is not known a priori. However,
an estimation of X can be computed using the initial point set Y. Such an estimation is discussed
later in this section.

The minizimation problem presented in Eq. IV-E.1.2 becomes the following maximization prob-
lem [189]:

max
R

NY∑
i=1

(yi − µy)TR(xi − µx) (IV-E.1.3)

and the optimal solution to p0 becomes:

p0 = µx −Rµy (IV-E.1.4)

where µx ∈ R3 and µy ∈ R3 are the centroids of the point clouds X and Y, respectively. Let S be
the 3× 3 cross-covariance matrix between X and Y, defined as follows:

S =

NY∑
i=1

(xi − µx)(yi − µy)T (IV-E.1.5)

The rotation R can be expressed as a unit quaternion q̇ ∈ R4, ‖q̇‖ = 1. Using quaternion
algebra [190], Eq. IV-E.1.3 becomes:

max
‖q̇‖=1

NY∑
i=1

q̇TQiq̇ = max
‖q̇‖=1

q̇TQq̇ (IV-E.1.6)

where q̇ ∈ R4 is the unit quaternion (‖q̇‖ = 1) representation of R and Qi is the 4× 4 symmetric
matrix associated to the cross-covariance (xi − µx)(yi − µy)T . The matrix Q (Q =

∑
i Qi) is

defined in terms of the cross-covariance matrix S as follows [190]:

Q =


S00 + S11 + S22 S12 − S21 S20 − S02 S01 − S10

S12 − S21 S00 − S11 − S22 S01 + S10 S02 + S20

S20 − S02 S01 + S10 S11 − S22 − S00 S12 + S21

S01 − S10 S02 + S20 S12 + S21 S22 − S00 − S11

 (IV-E.1.7)
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Finally, Eq. IV-E.1.6 has the form of a Rayleigh quotient, thus becoming an eigenvector problem.
The optimal rotation q̇ that registers the set of correspondences X,Y is the eigenvector of the matrix
Q, corresponding to its largest eigenvalue.

IV-E.1.3.2 Iterative Closest Point

As previously discussed, the set of correspondences X is not known a priori since the solution y∗i =
Ryi+p0 is not known. The ICP algorithm [189] proposes to estimate a sequence of correspondences

X(k) based on a previous known point cloud Y(k−1). The correspondent point x
(k)
i ∈ M is the

closest point in M to the point y
(k−1)
i :

x
(k)
i = arg min

x∈M
‖x− y

(k−1)
i ‖ (IV-E.1.8)

In Eq. IV-E.1.8 it is reasonable to assume that ‖x(k)
i − y

(k−1)
i ‖ < ∆, with ∆ > 0 being a

distance threshold. This assumption means that the point cloud Y(k−1) is locally close enough to

the reference mesh M (i.e., d(y
(k−1)
i ,M) < ∆). Any point y

(k)
i not satisfying such assumption is

discarded from Y(k−1). Such an assumption is made in order to: (1) avoid falling in local minima
and, (2) filter outliers from Y(k−1) [189]. Other methods already presented in the literature can be
used as a pre-processing to guarantee that most of the points in Y satisfy the previous assumption
before our algorithm starts [185].

With such a set of correspondences, it is possible to solve the optimization problem presented
in Eq. IV-E.1.2, which becomes:

min
R(k),p

(k)
0

NY∑
i=1

‖R(k)y
(k−1)
i + p

(k)
0 − x

(k)
i ‖2 (IV-E.1.9)

where R(k) ∈ SO(3), p
(k)
0 ∈ R3 originate the rigid transformation at the current iteration k. Finally,

the point cloud Y(k) is updated by using the obtained transformation:

y
(k)
i = R(k)y

(k−1)
i + p

(k)
0 (IV-E.1.10)

The sequences Y(k), R(k) and p
(k)
0 have been proved to converge to the optimal solution Y∗, R

and p0, respectively [189]:

y∗i = lim
n→∞

y
(n)
i

R = lim
n→∞

n∏
i=0

R(k)

p0 = lim
n→∞

[
n−1∑
k1=0

(
n∏

k2=k1+1

R(k2)

)
p

(k1)
0

]
+ p

(n)
0

(IV-E.1.11)

The ICP works iterating over k = 1, 2, . . . , n for the previous sequences, until either one of the
following criteria is satisfied:

1. Max. number of iterations n reached.
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2. Approximation error below a given threshold (
∑
i
‖y(k)
i −y

(k−1)
i ‖2

NY
< ε)

The algorithm is initialized from the original point cloud Y(0) = Y, and the identity transformation

R(0) = I3×3, p
(0)
0 = 03×1. Fig. IV-E.1.2 summarizes the mesh registration algorithm. The most

expensive procedure in the ICP algorithm is the computation of the cloud-to-mesh distance (steps
4 and 5), which computed by an exhaustive search drives the complexity of the registration to
O(NY × NT × n), with NY being the point cloud size, NT being the number of triangles in the
mesh M and n being the maximum number of ICP iterations. It is common in the literature to
use hierarchical partition structures (such as kd-trees and octrees) which improve such a search
to O(NY log(NT ) × n). Our registration algorithm implements instead a Perfect Spatial Hashing
strategy (step 1), whose search complexity is constant (O(1)) [203]. As a consequence, the overall
time complexity of our mesh registration algorithm becomes O(NY × n). The following sections
discuss the construction of the Spatial Perfect Hash and the distance computation.

Figure IV-E.1.2: Scheme of the Iterative Closest Point mesh registration algorithm. Our registration
uses Perfect Spatial Hashing to compute the cloud-to-mesh distances.

IV-E.1.3.3 Perfect Spatial Hash

Given a triangular mesh M ⊂ R3, consider V ⊂ P(R3) (P(·) is the power set) as a rectangular
prism, oriented along the coordinate axes, which contains M and is the union of small (disjoint)
cubic cells (voxels vijk) of side length ∆ (Fig. IV-E.1.3):

V = {vijk|i ∈ [0, NV ) ∧ j = [0, NV ) ∧ k ∈ [0, NV )} (IV-E.1.12)

where each voxel vijk is also oriented along the coordinate axes, and the interiors of two different
voxels never intersect.
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Figure IV-E.1.3: Full min-max voxel set V (gray). Non triangle-empty voxel set VM (red). Triangle
mesh M (blue). |VM | << |V|.

The size of the previous spatial partition is |V| = N3
V , with i < NV , j < NV and k < NV being

the 3D indices of each voxel. Define D(vijk) as the triangles ofM that intersect vijk (Fig. IV-E.1.4),
i.e.:

D(vijk) = {t ∈ T |t ∩ vijk 6= ∅} (IV-E.1.13)
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Figure IV-E.1.4: Set of triangles D(vijk) (dark blue) that intersect the voxel vijk (red)

Finally, the set VM ⊂ V is the set of voxels vijk ∈ V that intersect at least one triangle of M,
i.e. VM = {vijk ∈ V|D(vijk) 6= ∅}. It is worth noting that the set size |VM | is much smaller than
the full grid size |V| (Fig. IV-E.1.3).

A Perfect Spatial Hash table H : N3 → P(T ), is a 3D table with indices hi, hj , hk. Each entry
H[hi, hj , hk] contains the set of triangles associated to the voxel h−1(hi, hj , hk), i.e.:

H[h(vijk)] = H[hi, hj , hk] = D(vijk) (IV-E.1.14)

where h : VM → N3 is a function which takes a voxel vijk and returns its respective position indices
hi, hj , hk in the Hash table H. h is known as the hash function of H. The Perfect Spatial Hash is
denoted as (H,h).

The objective of the Perfect Spatial Hash is to produce a table H which stores the information
VM , and its respective hash function h. A trivial hash function would be the identity function
h(vijk) = [i, j, k] (implicitly used by [199]). However, such a function implies storing the full
rectangular prism V in the table H (|H| = |V| >> |VM |), and the content of most of the table cells
would be empty (most cells of V are empty, Fig. IV-E.1.3). Instead, the Perfect Spatial Hash [203]
aims to produce the smallest table H possible able to store the set VM , such that |VM | ≤ |H| << |V|
(ideally, |H| = |VM |).

The Perfect Spatial Hashing (H,h) satisfies by definition the following conditions:

1. The function h is bijective. As a consequence, there are no collisions in the table H (i.e.
different voxels in VM never point to the same cell of H).
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2. The size of H is greater or equal than the size of VM (|H| > |VM |).

In addition, (H,h) should satisfy (by construction) the following conditions:

1. The size of H is smaller than the size of V (|H| < N3
V ).

2. Evaluation of the hash function h should be O(1).

The first step to build the Spatial Hash (H,h) is to compute the table size |H| = N3
H , as the

smallest table size able to store the set VM :

NH = arg min
NH∈N

|VM | ≤ N3
H (IV-E.1.15)

The hash function h is then defined as a sum of an auxiliar function f and a displacement Φ
[203]:

h(vijk) = f(vijk) + Φ[g(vijk)] (IV-E.1.16)

The auxiliar function f : VM → N3 is defined as:

f(vijk) = [fi, fj , fk] = [i, j, k] mod NH (IV-E.1.17)

By taking the modulo of each of the voxel indices, the values of the function f are guaranteed
to never exceed the size of the Hash table H (i.e. fi < NH , fj < NH and fk < NH). The function
f is not bijective as NH ≤ NV . As a consequence, an auxiliar 3D table Φ is computed as follows:

Let Φ ◦ g : VM → N3 be an (auxiliar) 3D table of size N3
Φ, NΦ 6= NH , and its corresponding

auxiliar function g : VM → N3. The objective of the table (Φ,g) is to provide a translation term
Φ[g(vijk)] = [φi, φj , φk] such that f(vijk) + Φ[g(vijk)] is bijective, guaranteeing that there are no
collisions in H.

Similar to the auxiliar function f , the function g is defined as:

g(vijk) = [gi, gj , gk] = [i, j, k] mod NΦ (IV-E.1.18)

where gi < NΦ, gj < NΦ and gk < NΦ indicate the position of the voxel vijk in the auxiliar table
Φ, i.e. [φi, φj , φk] = Φ[gi, gj , gk]. It is worth noting that, by construction, f 6= g (since NΦ 6= NH).

Fig. IV-E.1.5 illustrates the aforementioned translation Φ. In the example, the non-empty voxels
v11 and v33 map to the same f value. However, the same voxels map to a different g value. The
Φ table stores the respective translations φ11 = [0, 0] and φ33 = [1, 1]. The Perfect Hash Table
presents no collisions as the hash function is bijective (h11 = [1, 1], h33 = [0, 0]).
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Figure IV-E.1.5: Perfect Spatial Hash 2D example. The auxiliar function f is not bijective, but the
Hash function h is.

The table Φ and its size NΦ is computed using an heuristic approach as described in Ref. [203],
as follows:

1. Locate all collisions in f .

2. Initialize the size of Φ as NΦ ← ceil( 3
√
|VM |/6).

3. Initialize Φ as an empty N3
Φ 3D table.

4. Locate all free indices of f (i.e. f(vijk) is undefined).

5. For each collision f(vijk), set Φ[g(vijk)] as c − f(vijk), where c = [ci, cj , ck] ∈ N3 is a free
index in f .

6. If there are no collisions in f + Φ, return Φ.

7. Otherwise, increase NΦ and go to step 3.
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6. Initialize auxiliar function 𝐠

𝑁Φ ← 𝑐𝑒𝑖𝑙
3 𝑚

6

𝐠 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁Φ

1. Compute the cube containing the mesh
𝒱 ← 𝑐𝑢𝑏𝑖𝑐_𝑔𝑟𝑖𝑑 ℳ,Δ

• ℳ = 𝒯,𝐏 : Triangle mesh
• Δ: Voxel side length

• 𝒱: Cubic grid

2. For each
𝑡𝑖 ∈ 𝒯

3. Compute the set of voxels 𝑣𝑖𝑗𝑘 ⊂ 𝒱 that intersect 𝑡𝑖
𝐷 𝑣𝑗𝑘𝑙 ← 𝑡𝑟𝑖_𝑣𝑜𝑥_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝒱, 𝑡𝑖

• Set of voxels that intersect ℳ:

𝒱𝑀 = 𝑣𝑖𝑗𝑘 ∈ 𝒱 | 𝑣𝑖𝑗𝑘 ∩ℳ ≠ ∅

• Set of triangles that intersect 𝑣𝑖𝑗𝑘:

𝐷 𝑣𝑖𝑗𝑘 = 𝑡 ∈ 𝒯 | 𝑡 ∩ 𝑣𝑖𝑗𝑘 ≠ ∅

4. Compute the size of 𝒱𝑀, and size of Hash table 𝐇
𝑚 ← 𝑠𝑖𝑧𝑒 𝒱𝑀
𝑁𝐻 ← 𝑐𝑒𝑖𝑙 3 𝑚

• 𝒱𝑀 = 𝑚
• 𝐇 = 𝑁𝐻

3

5. Compute auxiliar function 𝐟
𝐟 𝑣𝑖𝑗𝑘 = 𝑖, 𝑗, 𝑘 mod 𝑁𝐻

7. While
𝐟 𝑣𝑖𝑗𝑘 +𝚽 𝑔 𝑣𝑖𝑗𝑘 is not bijective

• Auxiliar function 𝐟

• Initial auxiliar function 𝐠

8. Compute auxiliar table 𝚽
𝚽 ← 𝑏𝑢𝑖𝑙𝑑_𝑎𝑢𝑥_𝑡𝑎𝑏𝑙𝑒 𝒱𝑀, 𝐟, 𝐠

• Auxiliar table 𝚽
• Bijective hash function

𝐡 𝑣𝑖𝑗𝑘 = 𝐟 𝑣𝑖𝑗𝑘 +𝚽 𝐠 𝑣𝑖𝑗𝑘

10. For each
𝑣𝑖𝑗𝑘 ∈ 𝒱𝑀

9. Initialize Hash table 𝐇
𝐇 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑁𝐻

11. Fill the Hash table 𝐇
𝐇 𝐡 𝑣𝑖𝑗𝑘 ← 𝐷 𝑣𝑖𝑗𝑘

• Empty Hash table 𝐇

• Perfect Hash table 𝐇

• Perfect Hash function 𝐡 𝑣𝑖𝑗𝑘

𝑖
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𝑖
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Figure IV-E.1.6: Algorithm scheme for the construction of the Perfect Spatial Hash (H,h)
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In the previous heuristic, it is worth noting that there is no theoretical guarantee that the
computed Perfect Spatial Hash (H and Φ) is smaller than the full grid V. In fact, it is possible
that |H|+ |Φ| is larger than |V|. However, our experiments and the experiments presented in [203]
have shown that the Perfect Spatial Hash is always smaller than the full grid discretization (i.e.,
|H|+ |Φ| < |V|).

After Φ, h and NH have been computed, the table H is filled with the elements of the set
VM . At this point, the function h is guaranteed to be bijective and as a consequence, H presents
no collisions. Fig. IV-E.1.6 summarizes the algorithm to compute the Perfect Spatial Hashing.
Note that if the reference mesh M slightly changes (due to a small rigid transformation or shape
deformation), the Perfect Spatial Hash table changes dramatically, requiring to rebuild it from
scratch. However, since our registration algorithm assumes that M does not change at any time,
the aforementioned problem is out of the scope of this research.

For the computation of the set of voxels that intersect the triangulation (i.e. VM ), our algorithm
visits each triangle of the mesh as illustrated in steps 2-3 of Fig. IV-E.1.6. The triangle-voxel
intersection for each ti ∈ T is implemented as follows: (1) all the voxels that intersect the bounding
box of ti are identified and then, (2) all the voxels inside the bounding box, which also intersect
the plane defined by ti are kept, discarding the non-intersecting ones.

From the algorithm presented in Fig. IV-E.1.6, steps 2-3 are O(NT ), steps 7-8 are O((N3
H)2) and

steps 10-11 are O(N3
H). Therefore, the computational cost for the Perfect Spatial Hash construction

is O(NT + (N3
H)2). Such a cost becomes reasonable for large point cloud and reference mesh sizes

as this pre-processing is performed only once. In addition, the storage complexity of the Perfect
Spatial Hash is O(N3

H +N3
Φ), which is considerably less expensive than storing the full grid O(N3

V )
(such as in Ref. [199]).

IV-E.1.3.4 Point-to-mesh Distance Computation

Given a point yi ∈ Y, it is necessary to locate its closest point xi ∈ M (as per Eq. IV-E.1.8,
Fig. IV-E.1.1). This problem is equivalent to find the closest triangle t ∈ T to yi, and then find
the closest point xi ∈ t to yi, as described below.

Given any triangle t ∈ T , the distance from a point yi ∈ Y to t is defined as follows:

d(yi, t) = min
α,β∈R

‖αq0 + βq1 + (1− α− β)q2 − yi‖

s.t.

α+ β ≤ 1

α, β ≥ 0

(IV-E.1.19)

where q0, q1 and q2 are the vertices of the triangle t, and α, β, (1−α−β) are their corresponding
barycentric coordinates, respectively. Therefore, the closest point q∗ ∈ t to yi is defined as the
point q∗ = αq0 + βq1 + (1− α− β)q2 that minimizes Eq. (IV-E.1.19). The closest point xi ∈ M
to yi is defined as:

xi = arg min
q∗∈M

‖yi − q∗‖ (IV-E.1.20)

A naive evaluation of Eq. IV-E.1.20 requires searching the closest triangle t through the full
mesh M. However, the Perfect Spatial Hash H reduces such an evaluation by only requiring to
evaluate triangles that are already close to yi. Let vjkl ∈ V be the voxel that contains the point
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yi. The Hash cell H[h(vjkl)] stores the set of triangles D(vjkl) that intersect vjkl (as illustrated in
Fig. IV-E.1.4).

Let Bjkl ⊂ V be the set of adjacent voxels to vjkl (vjkl included). The set of closest triangles
to yi can be extracted from the intersection between Bjkl and M, i.e. the set H[h(Bjkl)] (see
Fig. IV-E.1.7). Therefore, Eq (IV-E.1.20) is equivalent to:

xi = arg min
q∗∈H[h(Bjkl)]

‖yi − q∗‖ (IV-E.1.21)

where clearly |H[h(Bjkl)]| << T . Since each voxel side size is ∆, the set Bjkl is guaranteed to
contain a triangle whose distance to yi is less than ∆ (if such triangle exists in M). It is worth
noting that if such triangle does not exist, then d(yi,M) > ∆, and the registration algorithm treats
yi as an outlier (as discussed at the beginning of Sect. IV-E.1.3.2) [189].

Reference mesh ℳ = (𝒯, 𝐏)

𝐵𝑗𝑘𝑙: Voxels adjacent to 𝑣𝑗𝑘𝑙

Point 𝐲𝑖 ∈ 𝐘

Voxel 𝑣𝑗𝑘𝑙 containing 

the point 𝐲𝑖

Set of triangles 𝐇 𝐡(𝐵𝑗𝑘𝑙) ⊂ 𝒯

Figure IV-E.1.7: The closest point of M to yi is in the set Bjkl (|Bjkl| << |T |). Bjkl is the set of
triangles that intersect vjkl and all its adjacent voxels.

The algorithm for computing the closest point xi is summarized as follows:

1. Compute the voxel vjkl that contains the point to register yi (i.e., yi ∈ vjkl).

2. Compute the set of voxels Bjkl, adjacent to vjkl (as illustrated in Fig. IV-E.1.7).

3. Compute the Hash indices h(Bjkl) as per Eq. (IV-E.1.16).

4. Extract from the Spatial Hash, the triangles H[h(Bjkl)] closest to yi (Fig. IV-E.1.7).
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5. Compute the closest triangle t ∈ H[h(Bjkl)] as per Eq. IV-E.1.19.

6. Compute xi as per Eq. (IV-E.1.21).

Since the evaluation of h in Eq. (IV-E.1.16) and the access to the table H is O(1), the compu-
tational cost of the above algorithm is O(1).

IV-E.1.4 Results

Four different models have been used to test our registration algorithm: Gargoyle, Dragon, Buddha
and Lucy [204]. The point-cloud-to-register is extracted from the original model by computing
a uniform re-sample of each model surface. Figs. IV-E.1.8(a), IV-E.1.8(c), IV-E.1.8(e) and IV-
E.1.8(g) plot the unregistered point-clouds of each model, respectively. As mentioned in Sect. IV-
E.1.3.2, the point-cloud-to-register should be close enough to the reference mesh to avoid falling
into a local minima solution [189]. Figs. IV-E.1.8(b), IV-E.1.8(d), IV-E.1.8(f) and IV-E.1.8(h)
plot the result of our registration process for each model, respectively. The registration algorithm
minimizes the point-cloud-to-mesh distance as per Eq. (IV-E.1.1).

Table IV-E.1.2 shows Spatial Hashing and ICP convergence results of our registration algorithm.
The 4 point-clouds-to-register are of size NY = 50k, while the size of the reference meshes (NT )
is 20k, 871.4k, 1631.6k and 28055.7k for the Gargoyle, Dragon, Buddha and Lucy, respectively.
The smallest Spatial Hash constructed is for the Gargoyle dataset, consisting of a N3

H = 512 Hash
table and a N3

Φ = 1.3k3 auxiliar table, and the largest Spatial Hash is constructed for the Lucy
(N3

H = 5.8k3 Hash table and N3
Φ = 2.2k3 auxiliar table). The convergence error is measured as

the difference between the last iteration and the previous iteration
∑
i ‖y

(n)
i −y

(n−1)
i ‖2

NY
, as discussed in

Sect. IV-E.1.3.2. All the 4 test cases converge at 34, 19, 30 and 53 ICP iterations (n), respectively,
with an error below 7e-05.

Table IV-E.1.2: Perfect Spatial Hashing and ICP convergence results for the 4 datasets presented
in Fig. IV-E.1.8

Dataset NY NT N3
H N3

Φ n
∑
i ‖y

(n)
i −y

(n−1)
i ‖2

NY

Gargoyle 50k 20k 512 1.3k 34 6.20e-05
Dragon 50k 871.4k 2.1k 4.9k 19 5.87e-05
Buddha 50k 1631.6k 3.4k 1.3k 30 6.06e-05

Lucy 50k 28055.7k 5.8k 2.2k 53 5.97e-05

Table IV-E.1.3: Buddha dataset. Execution times for the construction of the Perfect Spatial
Hashing (H,h) and the registration of a NY = 50k point cloud for different voxel resolutions
NV . Note that the performance for the registration significantly improves as NV increases.

N3
V N3

H N3
Φ n Time to build (H,h)

(min)
Registration time

(min)
Total time (min)

4096 343 216 31 0.0317 232.6 232.7
32.8k 1728 2197 30 0.0334 41.077 41.111
262.1k 8000 4913 32 0.0407 9.6378 9.6785
2097.2k 32.8k 19.7k 40 0.0587 2.6352 2.6939
16777.2k 140.6k 91.1k 0 0.2210 NA NA
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(a) Gargoyle mesh and unregistered
point cloud

(b) Gargoyle point cloud registration (c) Dragon mesh and unregistered
point cloud

(d) Dragon point cloud registration (e) Buddha mesh and unregistered
point cloud

(f) Buddha point cloud registration

(g) Lucy mesh and unregistered
point cloud

(h) Lucy point cloud registration

Figure IV-E.1.8: Point-cloud-to-mesh registration of 4 different models: Gargoyle, Dragon, Buddha
and Lucy [204]. The registration algorithm minimizes the cloud-to-mesh distance.

Table IV-E.1.3 presents the execution times for the registration of a N3
V = 50k point cloud to

the Buddha mesh (Figs. IV-E.1.8(e), IV-E.1.8(f)). For a prism of size N3
V = 4096, the construction

of the Hash table requires 0.032 minutes, while the ICP registration takes about 232.6 minutes to
perform 31 iterations and converge to the solution. Increasing the prism resolution to N3

V = 32.8k,
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the construction of the Hash table requires 0.033 minutes while the registration takes 41.1 minutes
to perform 30 iterations. In the case of a prism of size N3

V = 2097.2k, the construction of the Hash
table and the mesh registration times are 0.06 and 2.6352 minutes, respectively, which is 15× faster
than the N3

V = 32.8k and 86× faster than the N3
V = 4096 test cases. Finally, the high resolution

of the last test case (NV = 16777.2k) implies that the voxel size ∆ is significantly smaller than the
average distance between the point cloud Y and the reference meshM, resulting in the registration
algorithm exiting at 0 iterations without converging.

IV-E.1.5 Conclusions

This manuscript presents the implementation of a Perfect Spatial Hash Hashing for point-cloud-
to-mesh registration. The registration algorithm uses the Perfect Spatial Hashing data structure
to aid the computation of point-to-mesh distance of the Iterative Closest Point (ICP) algorithm.
Compared to standard spatial partition techniques (such as octrees and kd-trees), our algorithm
reduces the closest-point-search complexity from logarithmic (O(log(NT )), NT : reference mesh size)
to constant O(1) complexity. As a consequence, the cost of the mesh registration algorithm becomes
O(NY × n) (NY : point-cloud-to-register size, n: number of max. ICP iterations). The cost of pre-
processing (pre-computation of the Perfect Spatial Hashing) is O(NT + (N3

H)2) (N3
H : Hash table

size). Our algorithm is able to register a point cloud of size NY = 50k against a mesh of size NT =
28055.7k, converging with an error below 7e-05. We also show that the mesh registration algorithm
improves significantly in performance as the Spatial Hashing resolution increases. However, if the
voxel size ∆ becomes too small (smaller than the average distance between the point cloud and the
reference mesh), the registration algorithm fails.

IV-E.1.5.1 Future Implementation on GPU

The main shortcoming of our point-cloud-to-mesh registration algorithm lies in the construction of
the Perfect Spatial Hashing computational cost, as the worst case scenario complexity is squared in
the size of the Hash table (O((N3

H)2), see Sect. IV-E.1.3.3). To mitigate this problem, we intend to
implement Perfect Spatial Hash mesh registration in a Graphic Processing Unit (GPU) paralleliza-
tion architecture. By taking advantage of Graphics Processing Units (GPUs), the Hash structure
can be computed in a more efficient way, reducing the pre-processing time [203]. In addition, the
independence in the computation of the closest point (Eq. (IV-E.1.21)) between any two different
points yi,yj ∈ Y permits an implementation following a highly parallelizable approach, resulting
in fast registration of considerably larger point clouds.

Glossary

ICP: Iterative Closest Point.
M: Triangular meshM = (T ,P) of a 2-manifold embedded in R3, defined by the

triangle set T = {t1, t2, · · · , tNT } and the point set P = {p1,p2, · · · ,pNP }.
M is the reference mesh for registration.

Y: Point cloud to register Y = {y1,y2, · · · ,yNY }. Y is a noisy sample of M,
conducted in an unknown coordinate system.
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R,p0: Rigid transformation R ∈ SO(3) (Special Orthogonal Group), p0 ∈ R3, that
matches the coordinate system of Y to the coordinate system of M.

Y∗: Rigidly transformed point cloud Y∗ = {y∗1,y∗2, · · · ,y∗NY }, such that y∗i =
Ryi + p0.

X: Point cloud X = {x1,x2, · · ·xNY } sampled fromM, such that xi is the closest
point in M to yi (|X| = |Y|). X is the set of correspondences of Y.

µx, µy: Centroids µx, µy ∈ R3 of the point sets X and Y, respectively.
S: 3× 3 matrix of cross-covariances between X and Y.
q̇: Unit quaternion q̇ ∈ R4 (‖q̇‖ = 1), equivalent to the rotation matrix R.
Y(k),X(k): Values for the points sets Y, X at the current ICP iteration k.

R(k),p
(k)
0 : Values for the rigid transformation R, p0 at the current ICP iteration k.

n: Maximal Number of iterations n > 0 allowed by the ICP algorithm.
∆: Distance below which a point yi ∈ Y is not considered an outlier w.r.t. mesh

M (i.e. d(yi,M) < ∆).
P(A): Power set of A, defined as all the subsets of A. P(A) = {a|a ⊂ A}.
vijk: A cubic cell (i, j, k) ∈ N3, of side length ∆, oriented along the coordinate

axes.
V: Rectangular prism V ⊂ P(R3) oriented along the coordinate axes, defined as

a set of disjoint voxels vijk that build the bounding box of M. |V| = N3
V .

D(vijk): Set of triangles in M that intersect voxel vijk ∈ V. D : V → P(T ).
VM : Set of voxels vijk ∈ V that intersect at least one triangle ofM (i.e. D(vijk) 6=

∅).
H: Perfect Spatial Hash table H : N3 → P(T ). H is a 3D table where each entry

H[hi, hj , hk] stores a subset of triangles D(vijk). |H| = N3
H .

h: (Bijective) Hash function h : VM → N3 of H. h takes a voxel vijk ∈ VM
and returns the respective indices hi, hj , hk in H, such that H[hi, hj , hk] =
D(vijk).

f ,g: Auxiliar functions f ,g : VM → N3 used by the function h to compute a
bijective mapping.

Φ: Auxiliar 3D table table Φ : N3 → N3 used by the function h to compute a
bijective mapping. |Φ| = N3

Φ.
q0,q1,q2: Vertices of triangle tj ∈ T with qi ∈ P.
α, β: Barycentric coordinates on a triangle t ∈ T with α, β ≥ 0, and α+ β ≤ 1.
Bjkl: Set Bjkl ⊂ V of all adjacent voxels to vjkl (including vjkl).

204



IV-E.2

In-Line Dimensional Inspection of Warm-Die Forged Rev-

olution Workpieces Using 3D Mesh Reconstruction

Daniel Mejia-Parra 1,2, Jairo R. Sánchez 2,*, Oscar Ruiz-Salguero 1, Marcos Alonso 3, Alberto
Izaguirre 4, Erik Gil 5, Jorge Palomar 5 and Jorge Posada2

1 Laboratory of CAD CAM CAE, Universidad EAFIT, Cra 49 no 7-sur-50, 050022 Medelĺın, Colombia; dmejiap@eafit.edu.co
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Abstract

Industrial dimensional assessment presents instances in which early control is exerted among “warm”
(approx. 600 ◦C) pieces. Early control saves resources, as defective processes are timely stopped and
corrected. Existing literature is devoid of dimensional assessment on warm workpieces. In response
to this absence, this manuscript presents the implementation and results of an optical system which
performs in-line dimensional inspection of revolution warm workpieces singled out from the (form-
ing) process. Our system can automatically measure, in less than 60 s, the circular runout of warm
revolution workpieces. Such a delay would be 20 times longer if cool-downs were required. Off-line
comparison of the runout of T -temperature workpieces (27 ◦ C ≤ T ≤ 560 ◦C) shows a maximum
difference of 0.1 mm with respect to standard CMM (Coordinate Measurement Machine) runout
of cold workpieces (27 ◦C), for workpieces as long as 160 mm. Such a difference is acceptable for
the forging process in which the system is deployed. The test results show no correlation between
the temperature and the runout of the workpiece at such level of uncertainty. A prior-to-operation
Analysis of Variance (ANOVA) test validates the repeatability and reproducibility (R&R) of our
measurement system. In-line assessment of warm workpieces fills a gap in manufacturing processes
where early detection of dimensional misfits compensates for the precision loss of the vision system.
The integrated in-line system reduces the number of defective workpieces by 95%.

Keywords: in-line dimensional inspection; warm forming; 3D mesh reconstruction; optical system;
revolution workpiece

IV-E.2.1 Introduction

In the context of warm forming of motorcar parts, current production lines of stub axles process
around 1200 pieces per hour. The tools used to form these parts are constantly subjected to
high structural and thermal stresses [205–207], requiring continuous monitoring and dimensional
assessment of the produced parts for process and quality control.

In the case of forged revolution workpieces, the produced parts are not final product, requiring
subsequent machining operations. The assessment of the punch orientation with respect to the
forming matrix orientation in the forging process is crucial since a severe misalignment between
the punch press and the forming matrix axes disables the posterior machining process, resulting in a
scrapped part. The circular runout [208] of the forged revolution workpiece indicates the deviation
between the punch orientation and the forming matrix axis.

Standard tools for dimensional assessment of these workpieces rely on contact between the
probe and the measured workpiece. Such is the case of Coordinate Measurement Machines (CMMs),
which provide highly accurate measurements [209]. However, dimensional assessment with standard
CMMs (and contact methods in general) is not convenient due to (1) the high temperatures directly
affect (or even damage) the probe and, (2) long measurement times for the cooled-down workpieces.
Consequently, a delay of nearly 20 min between the production of a single part and its dimensional
assessment (including its cooling down, transportation to the metrology office and measuring times)
arises. Such time delay translates into an uncertainty in the quality control process of approximately
400 potential defective workpieces (worst case scenario) for each measurement.

This manuscript presents an optical (i.e., contact-avoiding) system for in-line dimensional as-
sessment of warm forming of revolution workpieces. Our system can continuously measure the
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circular runout of the parts at around 600 ◦C in less than 60 s per part. Results from experiments
conducted in this manuscript show no temperature vs. runout correlation for the system uncer-
tainty level (0.1 mm). The system is integrated and deployed in a warm-die forge industry, in the
supply chain of world-class auto makers. Such a system allows continuous monitoring for quality
and process control of the production line, providing an early detection mechanism of manufactur-
ing failures which reduces the number of potential defective parts from 400 to 20 (95%) between
consecutive measurements. This dimensional assessment for warm workpieces fills a gap in warm-
die manufacturing processes in which the advantage of early detection of process bias compensates
for the disadvantage of precision loss regarding higher-precision mechanisms (such as contact-based
CMM).

The deployed system improves on the classic approaches for dimensional assessment in warm-die
industry. Using technologies from Visual Computing and Industry 4.0 [55], the system allows in-line
visual assessment of warm workpieces, either by metrologists, engineers, or operators. Furthermore,
the increased cadence of the measurements (from 1 measurement every 20 min to 1 measurement
per minute) improves the efficiency in product quality and process control, and leaves open future
lines of dimensional assessment focused on data analytics.

Table IV-E.2.1: Comparison between standard contact-based Coordinate Measurement Machines
(CMMs) vs optical scanners for dimensional assessment.

CMM Optical Scanner
Highly accurate measurements [209]. Less-accurate measurements [209].
Data collection relying on probe vs. piece con-
tact.

Contact probe vs. piece not required.

Technician assistance required for definition of
piece feature coordinate systems [210].

Technician assistant required for point sample
vs. B-Rep (i.e., CAD model) registration. [211,
212]

Time-consuming data acquisition protocol
[210].

Real-time data acquisition and post-processing
of the digitized mesh (triangulation, mesh reg-
istration, feature extraction) [213,214].

Inherently sparse point samples, conducted ac-
cording to discrete trajectories. Analytic form
fitting needed as a consequence [210].

Dense point samples. Both mesh computation
and analytic form fitting possible [211].

Competing equipment precision at the cost of
off-line measurements [207].

Accurate measurement systems for in-line di-
mensional assessment [207].

Requires specific clamps for each reference
model, introducing additional complexity in the
management of measuring resources.

Allows the use of fixed universal setups for many
different workpiece references.

The remainder of this manuscript is organized as follows: Section IV-E.2.2 reviews the relevant
literature. Section IV-E.2.3 describes the developed system. Section IV-E.2.4 presents and discusses
the results. Section IV-E.2.5 concludes the manuscript and introduces what remains for future work.

IV-E.2.2 Literature Review

In the automotive and aeronautic industry, dimensional inspection of manufactured parts requires
high precision methods to assess the quality of the final product. Currently, CMMs are one of the
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most common tools used to inspect forged workpieces due to their high precision [209]. However,
CMMs are not suitable for in-line dimensional inspection of warm-die manufacturing parts due to:
(1) their contact-based nature requires the workpieces to be in a cooled state to avoid damaging
the measuring probe and, (2) taking measurements with the probe is highly time-consuming (even
with cold workpieces). Visual computing provides contact-avoiding technologies and methodologies
for Reverse Engineering and dimensional inspection which improve the productivity and efficiency
of such CAD CAM CAE processes [55]. While sacrificing accuracy to some extent, optical scanners
have become an alternative for dimensional inspection of different kinds of warm-die manufacturing
processes [209,215]. Table IV-E.2.1 presents a comparative of standard CMMs vs. optical scanner
dimensional assessment.

IV-E.2.2.1 Off-Line Dimensional Inspection in Warm-Die Manufacturing

In warm-die manufacturing, constant monitoring of forming tools is crucial for the quality control
of produced parts. Forming tools such as punches, are subjected to high structural and thermal
stresses that limit their lifetime [205]. Refs. [216,217] analyze the progressing wear of forging tools
and forging defects by monitoring volume changes in the manufactured workpieces using 3D mesh
reconstruction. In addition, the use of optical scanners allows the integration of numerical methods
(such as Finite Element Analysis) in the dimensional inspection pipeline to quantify the thermal
and structural damage of the forging tool [205, 207]. Other dimensional inspection methods in
warm forming include computed tomography [215,218], thermographic assessment [219], ultrasonic
assessment [220], liquid penetrant testing [221], among others.

IV-E.2.2.2 In-Line Dimensional Inspection

All the previously presented methods only execute off-line measurements on cooled-down work-
pieces. Measurements directly performed on warm and hot workpieces have been rarely reported [205].
Their main shortcoming is that high temperatures affect the measurements of contact-based meth-
ods while the strong radiation affects the optical equipment, thus reducing the quality of the cap-
tured images [222]. The spectrum selective method presented in [223] filters specific wavelengths
from the captured images to allow the reconstruction of the hot parts. Ref. [224] integrates a
specific wavelength and power laser beam with surface fitting to measure the length and diameter
of hot cylindrical workpieces. Refs. [225, 226] presents an in-line measurement system which uses
two-dimensional laser range sensors (TLRS) coupled with servo motors for 3D reconstruction of
hot cylindric workpieces. As an alternative to optical scanners, ref. [227] presents a vision system
with two cameras that capture and process the hot workpiece without requiring any laser beams.
These in-line approaches for hot dimensional assessment have been developed for workpieces with
non-complex geometries (such as cylindrical workpieces).

It is worth mentioning in-line dimensional inspection approaches for cooled-down workpieces.
Point cloud filtering [213] and accelerated mesh registration algorithms [214] have been developed to
allow real-time inspection using 3D optical scanners and mesh reconstruction. Applications of these
algorithms for in-line dimensional inspection of cooled-down workpieces include flatness inspection
of rolled parts [228], inspection of large parts [229], and inspection of generic parts using geometric
features [76,211].
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IV-E.2.2.3 Conclusions of the Literature Review

CMMs have been used in the warm forming industry due to their high measurement precision
[209]. However, they are not suitable for in-line processes due to (1) the high temperatures of
the workpiece affecting or even damaging the measuring probe and, (2) the long measurement
times of the probe even for cooled-down workpieces. Other alternatives for dimensional inspection
include optical scanner technologies, which do not rely on contact with the workpiece. However, the
radiation due to the high temperatures can affect the data acquired by the scanners [222]. Current
literature for in-line dimensional inspection of warm workpieces is very limited [205] and accounts
only for very simple geometries (such as cylindrical workpieces) [223,224,226,227].

Responding to the current state of the art, we present an optical system for in-line dimensional
assessment of forged still-warm workpieces. Whereas previous cold-state methods would require
approximately 20 min for the assessment of a single workpiece, our system spends less than 60 s per
part. In-line assessment of these warm (approx. 600 ◦C) workpieces fills a gap in manufacturing
processes in which early detection of an inherent planning, design, or manufacturing error is more
important than the higher precision obtained with standard cold-state measurement methods. The
system is implemented and deployed in a global automotive part maker plant, where the number of
defective workpieces is reduced by a 95% with respect to previous dimensional assessment methods
(i.e., cold-state CMM).

The implemented system executes 3D scanning, mesh registration and comparison (against a
CAD database) of the geometry of a forged still-warm workpiece. The system is capable of in-
line measurements of circular runout of revolution warm workpieces, singled out from the forming
process. Contrast test against cold-state CMM measurements show that the warm-workpiece mea-
surement is good enough for the manufacturing plant in which the system is deployed (error below
0.1 mm for parts as long as 160 mm). The temperature-vs.-runout analysis shows no correlation
between these two variables at such level of uncertainty. A prior-to-operation ANOVA test with
cold workpieces validates the repeatability and reproducibility (R&R) of our measurement system.

IV-E.2.3 Methodology

Given an input reference CAD model C and the triangular mesh M = (X,T ) of a scanned workpiece,
the objective of the optical system is to compute key dimensional measurements on M with respect
to C. In the case of revolution workpieces, the circular runout dimension ∆Φ measures how much
a circular feature oscillates when the workpiece is rotated around the revolution (datum) axis
A = (~v, a0) [210]. Such a dimension is crucial to assess the quality of the process and the produced
parts in the production line.

The optical system for dimensional inspection has been designed as a process of two phases
(Figure IV-E.2.1). In the first phase, the metrologist defines the parameters of the reference CAD
model C required for the dimensional inspection of all workpieces of such reference. In the second
phase, the system in-line and automatically estimates the revolution axis A and the circular runout
∆Φ of each workpiece M . The operator in the production line is immediately provided with the
results, with no intervention of the metrologist. The following sections describe the process in
detail.
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Figure IV-E.2.1: Workflow of the reverse engineering system for dimensional inspection. The system
provides the dimensional inspection results to the operator directly in the production line.

IV-E.2.3.1 Planning for the Dimensional Inspection

The first phase of the optical system consists in the definition of the dimensional inspection pa-
rameters for a given reference CAD model C. The metrologist defines the features of interest in
C, which are worth of early assessment in warm workpieces. This phase takes about 5 min, but is
performed only once per CAD reference.

IV-E.2.3.1.1 Mesh Pre-Registration

To compare the scanned mesh M with the reference CAD model C, it is crucial that both of these
surface representations share the same coordinate system W = { ~wx, ~wy, ~wz; ~pw}. If W and WM are
the coordinate systems of C and M , respectively, the objective is to compute a rigid transformation
T0 ∈ SE(3) such that T0(WM ) ≈W .

To compute T0, the developed system uses an alignment-of-correspondences algorithm [230].
Let {p0, p1, p2} ⊂ C and {q0, q1, q2} ⊂ M be three non-collinear points sampled from the reference
CAD and the workpiece mesh, respectively. The alignment-of-correspondences algorithm computes
the rigid transformation T0 that minimizes the distance between the two sets of points:

T0 = arg min

2∑
i=0

‖pi − T0(qi)‖

s.t. T0 ∈ SE(3)

(IV-E.2.1)

where SE(3) = SO(3) × R3 is the special Euclidean group (group of all rigid transformations in
R3).
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In Equation (IV-E.2.1), pi, qi are corresponding points in the CAD and the mesh, respectively.
These points are interactively selected by the metrologist as illustrated in Figure IV-E.2.2. This
pre-registration is performed only once per CAD reference C.

(a) (b) (c)

Figure IV-E.2.2: User-assisted alignment of correspondences [230]. The metrologist selects 3 cor-
responding points in both the CAD (orange) and a scanned mesh (gray). (a) CAD reference and
its coordinate system W ; (b) Scanned mesh and its coordinate system WM ; (c) Alignment of
corresponding points [230].

IV-E.2.3.1.2 Feature Selection

As mentioned starting Section IV-E.2.3, the metrologist interactively selects the different CAD fea-
tures (FACEs) from C associated with the workpiece revolution axis A = (~v, a0) (Figure IV-E.2.3a).
In this case, the metrologist selects the CAD FACEs Cbore (blue) of the cylindric surface which
dictate the rotation of the workpiece. The axis vector of Cbore defines the theoretical revolution
axis vector ~v (green).

On the other hand, the metrologist must define the axis point a0 as a reference point. In the
context of stub axle forming, the point is computed as follows:

1. The metrologist selects the CAD FACEs Ccone (red) corresponding to a conical surface at the
bottom of the punch zone of the workpiece (Figure IV-E.2.3a).

2. The metrologist defines the datum diameter d > 0. In this case, the metrologist defines d as
the diameter of the supporting fixture for the machining of the workpiece (after it has been
formed).

3. The point at the revolution axis A where the surface Ccone attains the diameter d is the
theoretical axis point a0. The diameter d is measured perpendicular to the axis A (see
Figure IV-E.2.3b). The point a0 is a reference point for machining operations (after the piece
has been formed).

The features Cbore and Ccone (Figure IV-E.2.3a) have been chosen for the definition of the
reference axis A due to two main reasons:
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1. Cbore is the part of the punch that suffers less wearing since the direction of the compression
load during the forging process is parallel to its axis. This fact makes this geometry more
stable from a dimensional assessment perspective.

2. The surfaces Cbore and Ccone are the same surfaces used to hold the workpiece during the
posterior machining process. In this way, the algorithm uses the same coordinate system
that will be used in the next step of the manufacturing process. In addition, it can be said
that any possible registration error induced by the tool wearing is not relevant given that the
subsequent machining process will use the same defective geometries to establish its reference
frame.

The runout height h > 0 is the distance from a0 along the axis A (Figure IV-E.2.3b) where the
circular runout is measured. This height h is manually defined by the metrologist.

𝐴

𝒞𝑏𝑜𝑟𝑒

𝒞𝑐𝑜𝑛𝑒

(a) (b)

Figure IV-E.2.3: Cylindrical Cbore (blue) and conical Ccone (red) features on the CAD reference
used to compute the revolution axis A (green). (a) CAD features Cbore, Ccone and A; (b) Reference
axis point a0 defined where Ccone achieves an specific diameter d.

IV-E.2.3.2 In-Line Dimensional Inspection

After the planning has been carried for a given reference C, the automatic inspection for every
workpiece M related to that reference is automatically performed. The following sections detail the
3D scanning of the warm workpiece, the registration of the mesh regarding the reference CAD C,
the computation of the revolution axis A (datum) on M based on the CAD features, and finally
the calculation of the circular runout ∆Φ of the workpiece.

IV-E.2.3.2.1 3D Scanning System

Figure IV-E.2.4 presents the setup for the 3D scan of the warm workpiece.
Laser triangulation is used to reconstruct the surface. Two independent laser line projectors

impact the workpiece inner (punch zone) and outer (forming matrix zone) sides, respectively. Since
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the surface emits light in the red spectrum due to the high temperatures of the workpiece, the two
lasers are chosen to work in the blue spectrum.

The first laser is placed above the workpiece, with an elevation near 45 degrees with respect to
the plane that supports the workpiece. This laser allows to scan the inner (punch zone) surface of
the axle. This laser is observed by 2 cameras since the geometry of such surface is self-occluding.
The cameras must be as close to the workpiece as the heat emitted by it permits (approx. 500
mm), in accordance to the operating temperature prescribed for them.

The second laser is positioned underneath the plane supporting the workpiece (elevation near
−45 degrees). The external surface (forming matrix zone) of the workpiece is scanned from below,
through slots of the supporting table. The laser projection on such surface is captured by a single
camera since no occlusions occur.

Since the laser projections do not lie on a plane parallel to their respective camera plane,
Scheimpflug adapters [231] are incorporated in all the cameras to fix their plane of focus. In
addition, each camera has an interference filter which allows it to only see light near the laser
wavelength (450 nm ± 25 nm, see Table IV-E.2.2).

A 3-grip system holds the workpiece from the shaft. The grip system is made of steel with
ceramic coating to stand the high temperatures. The 3-grip system is mounted on a rotating disk
such that the workpiece is rotated 360 degrees around its revolution axis during the scanning.
The cameras capture a static image of the workpiece at each pulse of the encoder. Thus, the
reconstruction is performed with 360 images per camera.

Table IV-E.2.2: Properties of the laser line projectors used to irradiate the warm workpiece surface.

Property Value
Power 20 mW

Wavelength 450 nm

Warm work-piece

Pyrometer

Cameras for the 
inner surface

Laser for the 
inner surface

Rotating mechanism

Laser for 
outer 
surface

Camera for 
outer surface

Figure IV-E.2.4: Setup of the 3D optical system designed to digitize the warm workpiece.
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The 3D mesh reconstruction from the acquired images is executed with HALCON [232]. The ac-
quisition and reconstruction of the warm workpiece takes about 5 s (average). Finally, a pyrometer
is used to track the average temperature of the workpiece during the 3D reconstruction.

The full setup has been installed on a foam cushion layer to isolate the sensors form the vibrations
induced by the forging presses.

IV-E.2.3.2.2 Device Calibration

The calibration of the scanner involves the characterization of the laser triangulators and their rel-
ative positions regarding the axis of the rotating disk. The scanner has a total of two triangulators,
with one and two cameras respectively (see Figure IV-E.2.4). Assuming that the reference system
of the machine is in the center of the rotating disk, the calibration involves the estimation of the
three camera poses.

Both laser projectors have been mechanically positioned and aligned so that their intersection
coincides with the axis of the rotating disk. During the construction of the scanner this alignment
is verified with a gauge specifically designed for this task, and it does not need further adjustments.
This alignment ensures that the points reconstructed by the cameras belong to the plane XZ of
the reference system, which is defined by the rotation axis and the two laser lines.

The pose of the cameras is estimated using a calibration object with a hollow revolution geom-
etry, as shown in Figure IV-E.2.5. Such a calibration object has been measured using a CMM by
a metrology laboratory certified by an ENAC (National Accreditation Entity).

During the calibration process the object rotates around the axis of the turn table while the
cameras observe the projections of the lasers on its surface. Each camera captures an image for
each pulse of the encoder, which has been set to 360 pulses per complete revolution. From these
images the intersection of the different segments (laser projections) are obtained.

Since the geometry of the calibration object is known, it is possible to establish 3D-2D point
matches that relate points from a common reference frame with their corresponding observations
in the camera images. In this way, it is possible to obtain the pose of the three cameras solving the
homography matrices induced by the sets of correspondences [233].

Experimentally, it has been found that the residual error of the homography evaluated in the
intersection points after the calibration is under 0.01 mm. Figure IV-E.2.6 shows some dimensions
measured in the calibration object. As it can be deduced from the results, the uncertainty of the
scanner is better (less deviation) in the central area of the scanning volume. This effect can be
attributed to the fact that the images of the cameras have better focus quality in this area, even
after adding the Scheimpflug adapters.
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Figure IV-E.2.5: Front and top views of the calibration object geometry.

Figure IV-E.2.6: Deviations (mm) after calibration in a cross-section of the scanned pattern (pur-
ple), through the XZ plane.
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IV-E.2.3.2.3 Mesh Registration

It is imperative for our system that the scanned triangular mesh M is represented in the same
coordinate system W of the CAD reference C. The mesh registration process computes the rigid
transformation Tf ∈ SE(3) that maps the mesh coordinate system WM to the global coordinate
system W i.e., Tf (WM ) = W . The rigid transformation Tf is computed by minimizing the distance
between the transformed mesh and the reference CAD model:

Tf = arg min
∑
xi∈M

d(Tf (xi), C)

s.t. Tf ∈ SE(3)

(IV-E.2.2)

where d(Tf (xi), C) is the closest distance from the point Tf (xi) to the reference C. To solve the
minimization problem in Equation (IV-E.2.2), the Iterative Closest Point (ICP) algorithm is im-
plemented [234]. The ICP algorithm, transforms the previously defined minimization problem into
the following equivalent one:

Ticp = arg min
∑
xi∈M

d((Ticp ◦ T0)(xi), C)

s.t. Ticp ∈ SE(3)

(IV-E.2.3)

where Tf = Ticp ◦T0. To avoid local minima, the ICP algorithm requires an initial solution T0 such
that T0(W0) is close to the optimal solution W . T0 has been previously computed in the planning
step (Equation (IV-E.2.1)).

In optical-based dimensional inspection, selection of reference geometries for mesh registration is
crucial for adequate estimation of datums and measurements [211,212]. Therefore, the registration
of the scanned mesh M is performed using only the punch zone of the workpiece, which characterizes
the revolution axis A. Figure IV-E.2.7 plots the results of the registration process. The colormap
shows the distance from the scanned mesh M to the reference CAD C, with green zones indicating
closeness between the models (d(xi, C) ≈ 0 mm), and red and blue zones indicating remoteness
(d(xi, C) > 0.5 mm)

To save computational expenses, the distance d(Tf (xi), C) is computed by previously meshing
the CAD reference. This is done because we have observed from our experiments that computing
point-to-CAD distance is more time-consuming than point-to-mesh distance.
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(a) (b)

Figure IV-E.2.7: Mesh registration results. The colormap shows the signed distance from the
scanned mesh M to the CAD model C. (a) Initial guess from np-align (Figure IV-E.2.2c); (b)
Iterative Closest Point (ICP) mesh registration.

IV-E.2.3.2.4 Feature Extraction

After the mesh registration of M has been computed, the system proceeds to extract the mesh
features required for the dimensional assessment. To compute the revolution axis, we need to first
extract the sub-mesh Mbore ⊂ M which corresponds to the cylindric surface that dictates the
rotation of the workpiece. Such cylindric surface has been already identified by the metrologist in
the CAD model during the planning phase (Figure IV-E.2.3a). Mbore is computed by extracting
the mesh points close to the corresponding CAD feature Cbore:

Mbore =
{
x ∈M | d(x, Cbore) < ε ∧ cos−1(~n(x) · ~u(x)) < θ

}
(IV-E.2.4)

where ε > 0, 0◦ ≤ θ ≤ 180◦ are a threshold distance (mm) and a threshold angle (degrees),
respectively, ~n(x) is the vector normal to the surface at x ∈ M , and ~u(x) is a vector pointing to
the theoretical revolution axis A = (~v, c0), defined as follows:

~u(x) = ((x− c0) · ~v)~v − (x− c0) (IV-E.2.5)

The term cos−1(~n(x)·~u(x)) is introduced in Equation (IV-E.2.4) to filter mesh noise and improve
the estimation of the revolution axis on the scanned mesh. From our experiments, we have found
that the threshold values ε = 0.5 mm and θ = 10◦ produce good results, considering the thermal
contraction of the workpiece, mesh noise, etc.

The vector ~v is computed by fitting a cylinder to the mesh Mbore. The RANSAC algorithm
from the Point Cloud Library (PCL) [235] is used to perform the surface fitting.

An approach similar to the previous one is used to calculate the reference axis point a0. The cone
surface feature Mcone ⊂ M is computed by extracting the mesh points close to the corresponding
CAD feature Ccone:

Mcone = {x ∈M | d(x, Ccone) < ε} (IV-E.2.6)
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We have found in our experiments that fitting a cone surface to Mcone produces highly unstable
results. Instead of fitting the analytical surface, the developed system computes a cylinder S~v,d/2
with axis vector ~v and cylinder radius d/2. This cylinder is then intersected with Mcone, which
produces a polyline Q (Figure IV-E.2.8a). Finally, the intersection between ~v and the plane that
contains the polyline Q (in a least-squares sense), is the point a0 (Figure IV-E.2.8b).

𝑄
(Intersection 
Polyline)

(a) (b)

Figure IV-E.2.8: Computation of the reference point a0 on Ccone. (a) Mesh-cylinder intersection;
(b) Plane-axis intersection.

IV-E.2.3.2.5 Dimensional Measurements

After the workpiece revolution axis A has been calculated, the circular runout can be computed
on M . Given a circular feature P ⊂ M , perpendicular to the revolution axis A (i.e., P ⊥ A),
the circular runout of P with respect to A measures how much the feature P oscillates when the
workpiece is rotated around the axis A [210].

The following steps describe the system’s approach to compute the circular runout of the work-
piece:

1. Compute the plane Th with normal vector ~v and pivot point a0 + h~v (the parameter h has
been defined already by the metrologist in the planning step, Section IV-E.2.3.1.2). See Figure
IV-E.2.9a,b.

2. Compute the circular feature P defined as:

P = M ∩ Th (IV-E.2.7)

3. Filter outliers by removing all points in P whose distance to the theoretical section is greater
than a given threshold.

4. Compute the inscribed circle Bsmall and circumscribed circle Blarge of P with center A and
respective radii rsmall, rlarge (Figure IV-E.2.9c). 0 < rsmall ≤ rlarge.
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5. Compute the circular runout ∆Φ defined as [210]:

∆Φ = rlarge − rsmall (IV-E.2.8)

Runout 
Plane 𝑇ℎ

𝐴

(a) (b) (c)

Figure IV-E.2.9: Calculation of the workpiece runout ∆Φ regarding the revolution axis A. ∆Φ =
rlarge − rsmall. (a) Runout plane Th perpendicular to the revolution axis A; (b) The runout plane
Th is defined at a height h from the reference point a0; (c) rsmall and rlarge radii computed at the
plane Th.

Before the computation of the circular runout, our system performs circle fitting on the feature
P using RANSAC. Such a fitting improves the robustness of the runout estimation by filtering noise
and outliers from the scanned mesh.

It is worth noting that the runout deviation includes the eccentricity of both axes and round-
ness deviations of the measured circle. This is an expected behavior following the standards for
geometrical dimensioning and tolerancing [210].

IV-E.2.4 Results

Section IV-E.2.4.1 presents and discusses the application of the system to assess the runout of
a scanned workpiece at different temperatures. Section IV-E.2.4.2 shows the results of prior-to-
operation testing the system using an ANOVA R&R test on cold-state workpieces. Section IV-
E.2.4.3 discusses the deployment of the developed system in the automotive manufacturing plant.
Finally, Section IV-E.2.4.4 discusses the application of the system in the context of Visual Com-
puting and Industry 4.0 technologies.

IV-E.2.4.1 Warm-Workpiece Measurements

In the manufacturing line, each workpiece leaves the forming press at nearly 800 ◦C. Each part is
then left to be cooled naturally by air convection, which takes around 60 min. For this section, two
different workpieces are measured continuously during the cool-down. The height of each workpiece
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is 161.63 mm, and the runout height h (from the axis point a0 to the runout plane—see Figure IV-
E.2.9b) is 64 mm. The objective of this test is to evaluate the accuracy of the system (agreement
with the CMM result). Figure IV-E.2.10 plots the runout measurements at different temperatures
for the two different workpieces. The workpieces have been measured in the temperature range
27 ◦C ≤ T ≤ 560 ◦C. Each workpiece runout also has been measured with a CMM after cool-
down (27 ◦C). The CMM value is used as ground-truth for assessment purposes. The CMM value
obtained for the first workpiece is 0.66 mm. Figure IV-E.2.10a shows that our system measurements
deviate in less than 0.1 mm from the CMM measurement. The CMM value obtained for the second
workpiece is 0.8 mm. Similar to the first workpiece, our system measurements deviate in less than
0.1 mm from the CMM measurement (Figure IV-E.2.10b). It is worth noting that this deviation is
dependent on the height h, increasing as longer workpieces are measured (and decreasing for shorter
ones). Such a deviation (vs. height) is small enough for the dimensional assessment purposes of the
forging process in which the system is deployed.

0.1 mm

(a) (b)

Figure IV-E.2.10: Measurements of 2 warm workpieces until cool-down (27 ◦C≤ T ≤ 560 ◦C).
Results of our measurement system (blue line) do not deviate more than 0.1 mm from Coordinate
Measurement Machine (CMM) measurements (red line). (a) Workpiece 1. CMM runout = 0.66
mm; (b) Workpiece 2. CMM runout = 0.8 mm.

In Figure IV-E.2.10, there is no apparent correlation between the runout and the temperature
of the workpiece at this scale of uncertainty (0.1 mm). Consequently, assessment of the work-
piece runout can be performed in our system without the necessity of a correction due to thermal
contraction. A more robust study on this matter for this measurement (and other dimensional
measurements on the workpiece) is out of the scope of this manuscript, and it is left for future
work.

IV-E.2.4.2 ANOVA Gauge Repeatability and Reproducibility (R&R)
Test

To assess the robustness of the implemented system, a prior-to-operation ANOVA Gauge R&R test
is executed. The ANOVA test is performed with cold-state workpieces, which is outside of normal
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operations. The purpose of the test is to assess the precision (repeatability and reproducibility) of
the system but not its accuracy (agreement with the real result). For the control testing, a = 3
different workpieces (Figure IV-E.2.11) are measured m = 10 times by b = 3 different operators,
resulting in a sample of 90 measurements. Table IV-E.2.3 presents the measurement results of each
experiment.

Figure IV-E.2.11: Cold workpieces used to run the ANOVA R&R test. The three workpieces share
the same CAD reference.

Table IV-E.2.3: Runout results (mm) of our system for 3 different cold workpieces (Figure IV-
E.2.11), measured 10 times by 3 different operators.

Workpiece 1 Workpiece 2 Workpiece 3
Op 1 Op. 2 Op. 3 Op. 1 Op. 2 Op. 3 Op. 1 Op. 2 Op. 3

Msh 1 0.71 0.60 0.77 0.78 0.82 0.74 0.79 0.84 0.89
Msh 2 0.63 0.71 0.72 0.79 0.85 0.87 0.77 0.81 0.81
Msh 3 0.64 0.61 0.65 0.81 0.79 0.82 0.80 0.79 0.83
Msh 4 0.70 0.65 0.56 0.79 0.80 0.80 0.77 0.80 0.77
Msh 5 0.65 0.74 0.65 0.79 0.83 0.74 0.79 0.86 0.78
Msh 6 0.69 0.68 0.60 0.84 0.84 0.83 0.82 0.76 0.85
Msh 7 0.68 0.67 0.67 0.85 0.80 0.82 0.84 0.77 0.80
Msh 8 0.70 0.74 0.72 0.75 0.80 0.81 0.76 0.78 0.76
Msh 9 0.61 0.67 0.65 0.81 0.78 0.74 0.82 0.81 0.78
Msh 10 0.72 0.64 0.58 0.75 0.77 0.81 0.84 0.79 0.79
Mean 0.67 0.67 0.66 0.80 0.81 0.80 0.80 0.80 0.80

Std. Dev. 0.03 0.04 0.06 0.03 0.03 0.04 0.03 0.03 0.04
Max-Min 0.11 0.14 0.20 0.10 0.09 0.13 0.08 0.10 0.12

Table IV-E.2.4 shows the ANOVA results for the conducted experiments. The degrees of freedom
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(DOG) for each sum of squares are defined as:

DOGoperator = b− 1 = 2

DOGworkpiece = a− 1 = 2

DOGinteraction = (a− 1) ∗ (b− 1) = 4

DOGvision system = ab ∗ (m− 1) = 81

(IV-E.2.9)

The test shows that the variable Workpiece is statistically significant for the computed runout
(p-value ¡ 0.05). This means that our system can difference each workpiece from the others due
to the inherent manufacturing process bias. On the other hand, the operator and the interaction
(operator/workpiece) are not statistically significant (p-value ¿ 0.05), which means that the operator
is not a significant source of error for our measurement system (reproducibility).

Table IV-E.2.4: Analysis of Variance (ANOVA) table.

Source of
Variability

Degrees of
Freedom

Sum of
Squares

Mean
Square

F Statistic p-Value

Operator 2 0.0010 0.0005 1.2282 0.3838
Workpiece 2 0.3575 0.1787 438.5964 0.0000
Interaction 4 0.0016 0.0004 0.2419 0.9137
Vision Sys-
tem

81 0.1364 0.0017

Total 89 0.4966

Table IV-E.2.5 presents the Gauge Repeatability & Reproducibility (GRR) [236] results for
the executed experiments. The variations induced by the different operators account only for the
0.04% of the total variance of the data, which is an indicator of the reproducibility (less variation
equals to more reproducibility) of the developed system. Similarly, the variation introduced by the
vision system accounts for the 22.07% of the total variance of the data, which is the indicator of the
repeatability (less variation equals to more repeatability) of the system. The manufacturing process
accounts for the rest of the variance (77.89%). The Gauge R&R (repeatability + reproducibility)
accounts for the 22.11% of the total variance. Such Gauge Repeatability and Reproducibility (GRR)
variation is acceptable for the warm forge plant in which the system is deployed (GRR ¡ 25%), where
the early detection of dimensional misfits in warm workpieces compensates for the precision loss of
the measuring system.

Table IV-E.2.5: Gauge Repeatability and Reproducibility (GRR) table.

Source Variance % of Total Variance
Operators (Reproducibility) 0.0000 0.04%
Vision System (Repeatability) 0.0017 22.07%
Gauge R&R (GRR) 0.0017 22.11%
Interaction 0.0000 0.00%
Workpieces 0.0059 77.89%
Total 0.0076 100.00%
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Figure IV-E.2.12 presents a boxplot of the data collected in Table IV-E.2.3. Each box represents
the 10 measurements taken by an operator. The central marker shows the median of the samples,
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers are the maximum and minimum obtained runout values.

Figure IV-E.2.12: Boxplot of the runout measurements presented in Table IV-E.2.3.

As previously discussed, the manufacturing process induces most of the variance in the form of
workpieces with three different runouts (0.67 mm, 0.8 mm and 0.8 mm, respectively). On the other
hand, the variance induced by each operator and our measuring system is less significant (largest
standard deviation—0.06 mm—in workpiece 1, operator 3).

IV-E.2.4.3 Deployment

The metrology system has been deployed in the shop floor of an automotive warm forge of motorcar
stub axles, next to one of the press lines. The press line forges around 1200 workpieces per hour.
As shown in Figure IV-E.2.13, in this initial setup an operator places manually the warm workpiece
into the scanner directly from the press ramp. In the future this operation will be assumed by a
robot arm to obtain higher measuring cadences.

To avoid damages to the optical equipment, all the devices are protected with a metal cover.
The chassis has been mounted on a foam cushion layer to absorb the vibrations caused by the press.

The measurement software is connected to the Manufacturing Execution System (MES) of the
factory. This integration allows automatic loading of the measurement program for the reference
that is being manufactured, as well as other data, such as the manufacturing order, the operator
name, etc. This data is stored in the report for each workpiece along with the calculated measure-
ments for traceability purposes.

The implemented system automatically assesses the runout of the revolution-like workpieces in
less than 60 s. Current measurements are performed with the warm workpiece at approximately
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600 ◦C. The system works as an early detection mechanism for manufacturing and process failures,
mainly due to deviations between the forging punch axis and the forming matrix axis. The previous
dimensional assessment mechanism (cold-state CMM) used to take only one measurement for every
400 fabricated parts (i.e., every 20 min). On the contrary, our system performs a measurement every
20 fabricated parts (i.e., every minute). Therefore, the system improves the previous measurement
method by reducing the number of defective workpieces by around an estimated 95%.

Figure IV-E.2.13: Deployment of the optical system into the production line of warm forming of
motorcar stub axles. The temperature of the workpiece is approximately 600◦C.

IV-E.2.4.4 Industry 4.0 and Visual Computing

The use of optical systems and visual computing technologies has become an important factor for
the improvement of recently developed and classic manufacturing processes [55]. In the context of
Industry 4.0, the deployed system improves the classic approaches for dimensional assessment in
the warm-die forge industry as follows:

1. Our system performs measurements directly on warm workpieces. Such approach changes the
classic scheme for dimensional assessment, which demands workpieces in cold state, limiting
in-line metrology application in the warm-die and hot-die forge industry.

2. Thanks to Visual Computing and Industry 4.0 technologies, the developed system can perform
fast dimensional measurements on warm workpieces. Over standard cold-state measurement
methods, our measurement system reduces the time required to process a warm part by a
factor of 95% (from 20 min to 1 min per part).
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3. As already mentioned, the Visual Computing technologies provide a framework that allows
deployment of the measurement system directly in the manufacturing line. Consequently, the
efficiency of the process and product control highly increases as measurements and lines of
action can be performed in-line.

4. The deployed system results are shown in a display using a web report tool with visual
feedback about the dimensional quality of the measured workpiece. Thanks to the use of
such web technologies [76], the report becomes available in real time to any computer of the
factory and any member of the manufacturing plant, including operators, metrologists, and
engineers.

5. The visual feedback provided by the visual computing techniques allows easier understanding
and more intuitive dimensional assessment of scanned workpieces [211], in contrast to standard
CMM numerical data.

6. The automation of the process, together with the high cadence of data acquisition and the
aid of web reporting tools, enable a global perspective of the manufacturing process in the
context of data analytics. However, such approach is out of scope of the current manuscript,
and it is left for future work.

IV-E.2.5 Conclusions

This manuscript presents the implementation and deployment of an optical system for automatic
in-line dimensional inspection of revolution warm workpieces. The circular runout of warm-
forged revolution workpieces is critical as a severe misalignment between the punch press and the
forming matrix axes disables the posterior machining, resulting in a scrapped part. The system
splits the inspection in two steps: (1) the dimensional assessment planning, performed only once
by the metrologist, off-line the production, and (2) the in-line automated dimensional inspection.
The developed system automatically assesses, in less than 60 s, the circular runout of the workpiece,
whose temperature nears 600 ◦C. Our prior-to-operation test results show that the measurements
of the developed system for warm workpieces (27 ◦C ≤ T ≤ 560 ◦C) deviate less than 0.1 with
respect to the standard CMM measurements of the cooled-down workpieces, for workpieces as long
as 160 mm. In addition, the temperature-vs.-runout analysis shows no correlation between these
two variables at such level of uncertainty. The measuring system repeatability and reproducibility
(R&R) has been validated with an ANOVA test. This assessment of dimensions in warm workpieces
fills a gap in processes in which the advantage of early detection of an inherent planning, design,
or manufacturing error compensates for the disadvantage of precision loss due to the cooling of the
workpiece.

Our system has been deployed by an automotive part manufacturer in a warm forming pro-
duction line of stub axles, working as early detection of dimensional misfits. This early detection
reduces the time needed to detect a defective part from 20 min to 1 min. Since the forge is a highly
repetitive manufacturing process, when a defective part is found, all the pieces between the last
correct part and the defective one are systematically scrapped. Thus, considering the production
cadence, the number of parts that are scrapped each time a defective part is detected has been
reduced from 400 to 20 (95%).

Future work concerns: (1) A warm-workpiece assessment method for data which are highly sen-
sitive to cooling effects, which accounts for the heat loss effects on the workpiece geometry. (2) The
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integration of a robot arm for automatic placement of forged workpieces, to increase the measure-
ment efficiency. (3) Metrological certification of the equipment by an ENAC accredited laboratory.
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IV-E.2.6 Abbreviations

The following abbreviations are used in this manuscript:

CMM Coordinate Measurement Machine.
ANOVA ANalysis Of VAriance.
R&R Repeatability and Reproducibility.
FACE A connected region on a parametric surface in R3.
C Boundary representation (CAD model) of the reference geometry. C ⊂ R3 is a 2-manifold,

represented as set of BODY, LUMPSs, FACEs, LOOPs, EDGEs, and VERTICES.
M Triangular mesh M = (X,T ) of the scanned workpiece. X = {x0, x1, . . . , n} and T =

{t0, t1, . . . , n} are the points (geometry) and triangles (topology) of the mesh, respectively.
M ⊂ R3 is a 2-manifold.

A Revolution (datum) axis A = (~v, a0) of the workpiece M . The vector ~v ∈ R3 defines the
direction of the axis and a0 ∈ R3 is a point lying on the axis.

∆Φ Circular runout (mm) of the scanned workpiece M . ∆Φ ≥ 0 measures how much a
cylindrical feature oscillates when rotated around the revolution axis A.

h Height h > 0 (mm) where the circular runout ∆Φ is measured in the workpiece. This
height is measured from a0, in the direction of ~v.

W Reference coordinate system W = {wx, wy, wz; pw}. W is the coordinate system of C and
the coordinate system of M after mesh registration.

WM Coordinate system of M before mesh registration.
SE(3) Special Euclidean group. Group of all rigid transformations in R3. SE(3) is composed

by all the possible rotation matrices and all possible translations in R3, i.e., SE(3) =
SO(3)× R3.

T0 Initial rigid transformation T0 ∈ SE(3) that approximately maps WM to W .
Ticp Rigid transformation Ticp ∈ SE(3) that maps T0(WM ) to W . Ticp is the result of regis-

tering the mesh M to the reference C.
Tf Rigid transformation Tf ∈ SE(3) that maps WM to W . Tf = Ticp ◦ T0.
Mbore Cylindrical surface Mcylinder ⊂ M whose axis vector is the revolution axis vector of the

workpiece ~v.
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Mcone Conical surface Mcone ⊂M used to compute the axis reference point a0.
Cbore Subset of FACES Cbore ⊂ C which define a cylindrical surface in the CAD reference. These

set of faces are used to extract Mbore from M .
Ccone Subset of FACES Ccone ⊂ C which define a conical surface in the CAD reference. These

set of faces are used to extract Mcone from M .
ε Distance threshold (mm) used to extract the mesh features Mbore, Mcone.
d Datum diameter d > 0 (mm). The point a0 is located on the plane where the conical

surface Mcone attains the diameter d.
P Circular feature P ⊂M where the circular runout ∆Φ is measured with respect to A. P

defines a polyline perpendicular to the axis A (P ⊥ A).
Th Plane Th ⊂ R3 used to extract P from M . The plane Th has normal ~v and pivot point

a0 + h~v.
T Temperature of the workpiece (◦C).
a Number of workpieces for the ANOVA test.
b Number of operators for the ANOVA test.
m Number of measurements for the ANOVA test.
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Abstract

Traditionally, the data generated by industrial metrology software is stored as static reports that
metrology experts produce for engineering and production departments. Nevertheless, industry
demands new approaches that provide ubiquitous and real time access to overall geometry, man-
ufacturing and other data. Web3D technologies can help to improve the traditional metrology
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methods and offer new ways to convey this information in web-based continuous friendly manner.
However, enriched point clouds may be massive, thus presenting transmission and display limita-
tions. To partially overcome these limitations, this article presents an algorithm that computes
efficient metrology textures, which are then transferred and displayed through Web3D standards.
Texture coordinates are computed only once for the reference CAD mesh on the server using in-
house thermal-based segmentation and Hessian-based parameterization algorithms. The metrology
data is then encoded in a texture file, which becomes available instantly for interactive visual in-
spection through the Web3D platform.

Keywords: Web3D, Texture Mapping, Mesh Segmentation, Dimensional Inspection, Metrology.

IV-E.3.1 Introduction

Dimensional inspection is usually considered as the last step in a manufacturing process, to verify
the deviations between the ideal model (coming from CAD systems) and the actual piece. In
many cases, this happens in specialized metrology laboratories (in-house or external) depending
from the quality control department. However, advanced production metholodologies such as lean
manufacturing, are demanding real time control of dimensional deviations in order to eliminate
manufacturing defects.

In contrast to traditional metrology approaches, these production environments need new tools
that can be deployed directly on the manufacturing line instead of a laboratory. In this context, the
authors have already presented a non-destructive dimensional inspection solutions based on three
key tools specifically targeted to in-process metrology processes [237]: (i) a tool that defines the
measurement process according to a base (CAD) model, (ii) a tool that aids the measuring of the
manufactured part in the production line, and (iii) a tool that provides a complete web metrology
report according to such measurements and the reference model. In the assembly line, these three
tools target different roles: (i) the metrologist, (ii) the machine operator, and (iii) the production
manager, respectively.

Visual computing technologies provide a set of methodologies that improve the productivity and
efficiency of CAD and Manufacturing processes [55]. In such context, tools (i) to (iii) should allow
an interactive data workflow with small time overheads. Current limitations in visual metrology
are mostly centered in shortcomings and interaction among (i) analytics, (ii) visualization [238],
and (iii) transfer of massive measurement and CAD data [239].

Web3D technology enables easy deployment of tools for visual metrology software and data.
This paper presents a WebGL-based application that presents metrology results as a color-mapped
model of the manufactured part. That is, a 3D representation of the part in which the color at each
surface point represents a deviation from its theoretical shape. Our metrology software computes
deviations at each vertex of the mesh obtained from scanning the real part. There are different
possible approaches for this visualization: to present a mesh with per-vertex colors or to present
a mesh with a texture map that contains the colors. The mesh itself can be the one obtained
generated by the scanner, which represents the real part, or a mesh obtained from the reference
CAD model, which represents the perfect theoretical shape. Displaying the reference shape with
a texture map has clear advantages: when inspecting results of different parts corresponding to
the same reference all share the same mesh but differ in their applied texture. The mesh data
is transmitted only once for the given design. For each tested piece only the metrology texture
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image is transmitted, instead of the full per-vertex deviation color code. In addition, image files
containing the color maps are easily compressed and use much less bandwidth than per-vertex color
information.

Applying a texture map to a triangular mesh requires the mesh to have a valid parameterization.
That is, each vertex needs a pair of (u, v) coordinates that map this vertex to a corresponding pixel
in the texture image. In order to apply a meaningful color map, these texture coordinates must be
unique (no two vertices can map to the same u, v point) and such parameterization should present
low distortions (i.e. it should preserve to a large extent triangle areas and angles). Therefore, a
segmentation of the mesh into developable components (i.e. submeshes that can be flattened with
low distortion on the plane) must be achieved prior to computing such parameterization. A survey
on several mesh parameterization/segmentation techiques is presented by [30].

This manuscript presents an approach for real time dimensional inspection on Web-based ap-
plications. Our method allows rendering of the metrology data on the surface for visual inspection.
The color map of the manufactured part is transferred to the users through the WebGL interface
as a texture file. The texture file is computed by segmenting the CAD mesh model with a heat-
based segmentation algorithm and then parameterized with the Hessian-based parameterization
algorithm. The texture map file poses the advantage of carrying the visual information of the
metrology measures while being relatively small compared to colored meshes from point clouds of
scanned pieces.

IV-E.3.2 Literature review

The use of color maps to represent metrology data on a 3D surface is a well known technique for
metrology analysis. [240] use VTK libraries to plot metrology data on the surface. [241] plot surface
deviations between fitted NURBs surfaces and the CAD reference model using end-user commercial
reverse engineering tools. At the same time, current quality standards require that these metrology
applications preserve high precisions resulting in large volume data [242], expensive to handle,
render and transfer through Web-based applications. [238] render the metrology data directly on
the web server and transfers screenshots of the rendering. However, the metrology data is lost
during the transfer.

Other metrology applications only collect the key information from the measured object. [215]
estimate deviations of the scanned primitive shape parameters (such as planes and spheres) from
the reference CAD model while [243] use electromagnetic sensors that measure the conductance
of carbon-fiber polymer composites at different frequencies in order to find manufacturing defects.
These closed reports can be computed more efficiently. However, they do not allow visual interaction
with the metrology data nor the use of such data in advanced analytics.

The aforementioned metrology methods produce metrology files which can not be processed in
web-based visual applications due to (i) large file sizes in case of visual reports, or (ii) the un-
availability of visual data in text-based reports. This manuscript presents a methodology for visual
dimensional inspection of manufactured parts in a Web3D context. A texture map of the metrology
data is computed with mesh segmentation/parameterization algorithms. Such texture map is trans-
ferred and rendered on the reference CAD mesh of the workpiece using WebGL. The texture maps
present the advantage of carrying visual information while being relatively small in size, allowing
real time visualization of the data. Other geometry formats such as the BinaryGeometry container
[244], provide more efficient data structures including incremental geometry update. However, they
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are not suitable for this application due to the topologic incompatibility between different scans.

IV-E.3.3 Methodology and Results

A typical dimensional inspection pipeline based on 3D optical systems has the following steps:

1. Piece geometry acquisition: It can be done using several techniques such as structured light,
laser scanners, etc. The output data is a triangle mesh in the reference frame of the scanner.

2. Registration: to align the data in (1) with its CAD representation so that they share the
same reference system. There are several methods to get this alignment, being ICP fitting
the most common [245].

3. Comparison: the distance of each point of the 3D scan to the CAD reference model is com-
puted. One common method for representing visually the distance is converting it to a color
using a transfer function.

In our previous work [237] the result from (3) is sent to a server and displayed using a Web3D
application. However, the size of the geometry makes it prohibitive to store the full 3D data for
each measurement. In order to overcome this problem, this manuscript presents an approach to
generate a texture image from (3). The texture is mapped to the CAD model so that it is necessary
to send the geometry only once for each reference that is going to be processed with the system.

The mapping from the 3D digitization to the texture map is done as follows:

1. For each vertex of the scanned mesh, the nearest point of the CAD model is obtained as the
barycentric coordinates of the vertex projection in the nearest triangle.

2. The corresponding texture coordinates are obtained interpolating the texture coordinates of
the intersected triangle using the barycentric coefficients of the projected vertex.

3. The color of the projected vertex is assigned to its corresponding texel using the interpolated
texture coordinates.

In order to map the CAD model, it is necessary to segment and parameterize its mesh represen-
tation. Following sections describe the implemented algorithms for achieving an optimal solution
of (1) to (3) from a point of view of metrological data representation.

IV-E.3.3.1 Heat-based Mesh Segmentation

Mesh parameterization algorithms require the input mesh to be highly developable. That is, the
mesh should be able to be flattened with low distortion onto the plane. As a precondition, a
segmentation of the original mesh is required, which allows the parameterization.

We segment the mesh solving the following steady state, heat diffusion process on the surface:

∇T (x) = 0, ∀x ∈M (IV-E.3.1)

where T (x) is the temperature at a given point x on the meshM and ∇ is the Laplace-Beltrami op-
erator [30], which dictates how heat propagates by diffusion on the surface. To solve Eq. (IV-E.3.1),
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we impose temperature constraints (addressed in future manuscripts) which define the segmentation
submeshes. Fig. IV-E.3.1 plots the segmentation field for the CAD mesh. Temperature constraints
have been selected manually (red dots).

Figure IV-E.3.1: Heat-based mesh segmentation. The red dots show the location of temperature
constraints (cluster centers).

IV-E.3.3.2 Hessian-based Texture Maps

After the mesh has been segmented into developable components, we process each submesh with
our Hessian-based mesh parameterization algorithm [246]. Our parameterization algorithm adds
HLLE dimensional reduction [69] with more robust local coordinates for degenerate cases. For
computing texture coordinates, this parameterization algorithm estimates a Hessian functional H
on each submesh:

Hf =

∫
Mi

‖Htan
x f‖2FdA (IV-E.3.2)

where Htan
x is the tangent Hessian at a given point x on the submesh Mi, ‖ · ‖2F is the Frobenius

(matrix) norm (for matrices) and dA is the area differential defined on the surface of Mi. The
texture coordinates u(x), v(x) are extracted from the first two non-constant eigenvectors of the
Hessian functional H. Fig. IV-E.3.2 plots the texture coordinates for the segmented CAD mesh.
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Figure IV-E.3.2: Texture coordinates for two submeshes of the segmented CAD mesh model using
Hessian parameterization.

IV-E.3.3.3 3D Rendering with WebGL

Our metrology software processes scanned parts and uploads the resulting deviation data to a
database server. Two kinds of files are uploaded: (a) for each reference CAD model, a mesh
approximating it is stored in a JSON-based format that includes the generated texture coordinates,
then for each measured part, (b) a texture image containing the measurements represented as colors
is stored as a PNG image. The visualization application running in a web browser displays a list
of currently measured parts and allows the user to select one. Upon selection, the application
downloads the reference model mesh data only if it is different from the currently displayed part.
Then, it downloads and applies the deviation color map image as a texture to the mesh. Fig. IV-
E.3.3 presents the result of the metrology data rendered on the reference model using the computed
texture map.

New measurement data are readily available to all users in the network as soon as it is computed.
When an operator or engineer selects a different part for review corresponding to the same reference,
only a texture image file needs to be downloaded. This takes a fraction of a second enabling a quick
review of a number of results.

In addition to the mentioned color map image, a second image is stored which encodes the
actual deviation values. This is used to retrieve the deviation at specific points clicked by the user
on the part. Deviation distances are encoded into the RGB components of this second image in a
way that can be reconstructed.
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Figure IV-E.3.3: Rendering of the texture of the metrology data on the CAD mesh.

IV-E.3.3.3.1 X3D considerations

Measurement results can be represented in X3D using IndexedFaceSet or IndexedTriangleSet.
In the case of per-vertex colored scanned meshes, the color filed is included with a Color node
containing all color values, together with a colorIndex field. In the case of textured models,
which is the solution addressed by this paper, meshes include the texCoord and texCoordIndex

fields. The texture image is specified as a TextureImage node within an Appearance node. The
part shown in the interactive viewer is embedded using an Inline node that includes the currently
shown geometry. Normals can be omitted in order to reduce space and transfer times, letting the
client compute them.

Experimentation has been done using X3DOM. In order to load the shape of a new CAD refer-
ence, the page script sets the url field of the Inline node. When a new scanned part measurement
belonging to the same reference needs to be shown, the script simply sets the url field of the
TextureImage node, and the color map quickly updates. In order to access the url field of this
node which is inside an externally loaded Inline node, the system uses X3DOM’s nameSpaceName
attribute.

IV-E.3.4 Deployment

The metrology system comprising the three tools mentioned in section IV-E.3.1 has been imple-
mented and deployed in a forging manufacturing plant. The third tool, the metrology reporting
subsystem based on 3D Web technology is accessible throughout the plant, both in the shop floor
HMIs and in the engineering and metrology labs. Fig. IV-E.3.4 shows the interactive web reporting
tool on different devices. New measurements are made every few minutes and are instantly available
to all interested staff members.
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Figure IV-E.3.4: Interactive 3D web report of the metrology data deployed in a manufacturing
plant.

IV-E.3.5 Conclusions and future work

This manuscript presents a methodology for Web3D real time rendering of metrology data for
quality control of manufactured parts. The implemented method computes a texture map of the
metrology data on the reference model by using a heat-based mesh segmentation algorithm and the
Hessian-based mesh parameterization algorithm. Previous methods produce metrology files from
scanned point cloud meshes which could not be processed in web-based applications in real time due
to its large file sizes. In contrast, our approach produces small texture map files of the metrology
data which are transferred and rendered on the CAD mesh reference model with WebGL. These
metrology results are available for visualization and inspection on the server in real time.

Ongoing work addresses: (i) alternative mesh segmentation and parameterization algorithms
for visual metrology, and (ii) automation of metrology web reporting.
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CONTEXT

Manuscript in progress.

Abstract

In the context of Additive Manufacturing, the problem of mesh slicing is relevant for the compu-
tation of level sets used to produce the additive infill patterns. The currently used methods make
use of strong Morse functions for the generation of such level sets. However, in the presence of
weak-Morse functions, these methods produce level sets with incomplete information that lead to
wrong infill patterns and consequently, a 3D printed piece different from the original. To partially
overcome these limitations, this article presents an application of Morse theory to improve the
fidelity of the computed level sets. Our method develops the computation and characterization
of Morse and non-Morse level sets on closed (without border) 2-manifold triangular meshes. The
test runs show that the algorithm correctly characterizes the different types of level sets, used to
generate the additive infill patterns. Ongoing work addresses the integration of the slicer into an
Additive Manufacturing framework for industry applications.

Indexing: Additive Manufacturing, Morse Theory, Level Sets.
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IV-F.1.1 Introduction

In the context of Additive Manufacturing, 3D printing of CAD models is mandatory for industry
applications. These CAD workpiece are well-known for presenting weak-Morse behaviour. As a
consequence, computer design of additive programs requires to bear in mind these weak-Morse
behaviours and must correctly identify Morse and non-Morse cases during the slicing step.

This manuscript describes and classifies the different Morse and non-Morse cases for level sets of
a height function on a triangular 2-manifold mesh without border. Such classification enables the
computation of infill patterns using a line-polygon intersection algorithm. The resulting patterns
can be used to design 3D printing programs for additive manufacturing of the original workpiece.

IV-F.1.2 Methodology

IV-F.1.2.1 Morse Function

ConsiderM as a closed (without boundary) 2-manifold embedded in R3. Then, for any given point
p ∈M, there exists a plane TpM that is tangent to M at the point p.

Let M be a closed (without boundary) 2-manifold embedded in R3. Then, consider a twice
differentiable function f :M→ R. The function f , is a Morse function if all the critical points of
f are non-degenerate, or equivalently:

det(HTpMf(p)) 6= 0 (IV-F.1.1)

where TpM is the plane that is tangent toM at the point p ∈M, and HTpM is the 2× 2 Hessian
matrix at the tangent plane TpM.

IV-F.1.2.2 Height Function

Consider f :M→ R as the height function:

f(p) = pz (IV-F.1.2)

which maps each point p ∈ M to its corresponding elevation (z) value. The selection of such a
function is not arbitrary as the level sets of f define the planar slices of M, orthogonal to the
z−axis.

IV-F.1.2.3 Level Sets of Morse Functions

A level set Lc of the function f is defined as:

Lc = {p ∈M| f(p) = c} (IV-F.1.3)

which is the set of points in M that hold the value c ∈ R under the mapping f . Without loss of
generality, assume Lc is connected.

In the case that f is a Morse function, one of the following three cases arises for the level set
Lc:
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1. If Lc contains no critical points, i.e.:

∇TpMf(p) 6= 0, ∀p ∈ Lc (IV-F.1.4)

then Lc defines a simple closed curve (1-manifold embedded in R2) without border (see Fig.
IV-F.1.1(a)).

2. If Lc contains a single non-degenerate critical point, i.e.:

Lc = {p}, ∇TpMf(p) = 0 (IV-F.1.5)

then p ∈M is a local minimum (or local maximum), and Lc is composed of an isolated point
(0-manifold, see Fig. IV-F.1.1(b)).

3. If Lc contains a non-isolated, non-degenerate critical point, i.e.:

∃p, q ∈ Lc : ∇TpMf(p) = 0 ∧∇TqMf(q) 6= 0 (IV-F.1.6)

then, p is a non-degenerate saddle point and Lc defines a non-manifold closed curve that
self-intersects only once (see Fig. IV-F.1.1(c)).

(a) Non-intersecting Lc. No critical
points.

(b) Isolated point at LC . Local min-
imum/maximum.

(c) Self-intersecting level set. Non-
degenerate saddle point.

Figure IV-F.1.1: Types of Morse level sets

It is important to note that ∇TpM is the tangent gradient operator, defined only at the tangent
plane TpM.

IV-F.1.2.4 Weak-Morse Function

We call f a weak-Morse function if the set of all degenerate critical values in f is finite, i.e. if the
set:

Df = {f(p) ∈ R | det(HTpMf(p)) = 0} (IV-F.1.7)

is finite.
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IV-F.1.2.5 Level Sets at Non-Morse Critical Points

In the case that f is a weak-Morse function, the following additional cases are considered for the
level set Lc:

1. If Lc contains a non-isolated, degenerate critical point p as per Eq. (IV-F.1.6), then p is a
degenerate saddle point and Lc defines a closed (non-manifold) curve that self-intersects more
than once. As an example, Fig. IV-F.1.2 presents a degenerate saddle point that self-intersects
three times at p.

Figure IV-F.1.2: A degenerate saddle point occurs when the level set self-intersects more than
once at the same critical point p

2. If Lc is a 1-manifold critical region, i.e.:

∀p ∈ Lc,∇TpMf(p) = 0 ∧ Lc is a 1-manifold (IV-F.1.8)

then, Lc is a local minimum (or maximum) along a 1-manifold path. Fig. IV-F.1.3 illustrates
this case. It is worth noting that Lc can be an open path (i.e. with boundaries).

Figure IV-F.1.3: A degenerate 1-manifold occurs when the critical region is degenerate along a
1-manifold (possibly with boundary) path
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3. If Lc is a 2-manifold critical region, i.e.:

∀p ∈ Lc,∇TpMf(p) = 0 ∧ Lc is an open 2-manifold (IV-F.1.9)

then, Lc is a critical 2-manifold region. Since Lc is embedded in a linear subspace (i.e. R2),
then Lc is open (i.e. it has a boundary). Fig. IV-F.1.4 illustrates this case.

Figure IV-F.1.4: A degenerate 2-manifold occurs when the critical region is degenerate through
a surface

IV-F.1.2.6 Summary of Level Set Cases

In summary, given a closed connected 2-manifoldM⊂ R3 and a weak-Morse function f :M→ R,
a level set Lc of f can be one of the following types:

1. 1-manifold closed contour with no critical points (Morse set).

2. 0-manifold local minimum/maximum (Morse set).

3. Non-degenerate saddle point (Morse set).

4. Degenerate saddle point (non-Morse set).

5. Degenerate critical 1-manifold region (non-Morse set).

6. Degenerate critical 2-manifold region (non-Morse set).

IV-F.1.3 Results

According to previously discussed classification of level sets, an algorithm for slicing triangular
meshes is implemented. Given a height value c, the algorithm computes the level set Lc using the
presented classification. The data structure that holds Lc stores the type of level set. Finally, since
multiple cases can occur at once, the algorithm stores Lc as a union of subsets.

Fig. IV-F.1.5 presents the slicing results of different weak-Morse meshes. In Fig. IV-F.1.5(a),
the level set Lc is computed as the union of a 1-manifold non-critical region and a 2-manifold critical
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region. Similarly, Fig. IV-F.1.5(b) computes the union of 1-manifold non-critical region and a 1-
manifold critical regions. Finally, Fig. IV-F.1.5(c) presents the union of degenerate 1-manifold and
2-manifold regions in Lc.

(a) Non-critical 1-manifold ∪ Critical 2-manifold (b) Non-critical 1-manifold ∪ Critical 1-manifold

(c) Critical 1-manifold ∪ Critical 2-manifold

Figure IV-F.1.5: Computation of levels sets for several weak-Morse meshes

IV-F.1.3.1 Application in Additive Manufacturing

Our level set computation algorithms allows to back track easily the normals ofM from each level
set Lc. Using this information, and a line-polygon intersection algorithm (Clipper [247]), we are
able to produce filling patterns for each Lc. Fig. IV-F.1.6 presents the computed fill patterns for
a weak-Morse CAD workpiece. The resulting filling pattern can be used to produce 3D printing
routines that accurately fabricate the original CAD model, even in the presence of non-Morse level
sets.

Figure IV-F.1.6: Pattern filling results on a weak-Morse CAD workpiece using level sets
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IV-F.1.4 Conclusions and Future Work

This manuscripts develops a classification of closed 2-manifold level sets in terms of Morse and
non-Morse critical points. The presented classification allows the identification of different types of
critical points and the resulting topology of the level set. An implementation of such classification
is presented for the computation of triangular mesh slices. Using existing line-polygon intersection
algorithms, our method is used to produce fill patterns for the level sets of processed mesh. The
implemented slicer algorithm allows backtracking of surface normals at each level set, enabling
consistent line-polygon operations (specially in weak-Morse cases). The resulting filling patterns
are relevant in the context of Additive Manufacturing, for the generation of 3D printing code.

Future work addresses: (a) the integration of these algorithms into an Additive Manufacturing
framework, (b) analysis of optimal separation between level sets and (c) evaluation of different fill
patterns in manufacture.
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Part V

General Conclusions
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This Thesis presents the following contributions in the topic of Differential Operators applied
to different areas of CAD CAM CAE and Computer Graphics:

In the area of Mesh Parameterization/Segmentation, this Thesis implements different
Differential Operators on Triangular Meshes such as: Laplace-Beltrami, Hessian, Heat, Curvature,
and Angle/Area Distortion. These operators enable the computation of mesh fields that preserve
geometric properties (area, angle, distance) as well as topologic properties (connectivity), from
which mesh parameterizations and segmentations are retrieved.

The Reverse Engineering (RE) process is a user-intensive task, requiring extensive amounts of
time from the engineer for the reconstruction and analysis of digitized CAD workpieces. The devel-
oped algorithms in this Thesis contribute in the automatization of segmentation/parameterization
phases, reducing significantly the workload required from the user in such phases.

Furthermore, this Thesis contributes with the development of multiple Computational Geome-
try algorithms in Medicine (Dentistry) applications.

In the area of Thermal Simulation of CNC Laser Machining, this Thesis contributes with
the development of an analytic method for the solution of the transient, non-homogeneous heat
equation on 2-manifold rectangular plates under the effect of 1-manifold moving point sources. The
developed solution enables the simulation of single-beam and multi-beam laser heating problems.
In addition, this solution is implemented in GPU hardware following brute-force and Fast Fourier
Transform (FFT) evaluation of the temperature for fast assessment of the simulation results.

The developed algorithms are integrated within an interactive simulator framework, which al-
lows visualization of thermal and geometry changes in the plate during the laser heating/cutting
process. Such an integration enables real-time visual interaction with the engineer for the develop-
ment and optimization of CNC laser machining programs.

In the area of Dimensional Inspection, this Thesis contributes with:
(a) Implementation of spatial partition data structures (Perfect Spatial Hashing) for fast mesh

registration of large point clouds.
(b) Implementation of mesh registration algorithms for In-line Dimensional Inspection of warm-

die forged workpieces. Using Computer Vision techniques, fast reconstruction of manufactured parts
is performed. Afterwards, spatial partition techniques and specific mesh sampling allow registration
of the scanned workpiece with the theoretical model. Finally, assessment of dimensional compliance
is performed for the registered model. The developed method enables fast direct inspection of warm-
die forged workpieces in the manufacturing line, with measurement errors that satisfy industry
thresholds.

(c) Implementation of mesh segmentation/parameterization algorithms for the application of
dimensional deviation fields as texture maps. These texture maps enable the deployment of visual
dimensional assessment reports under a Web3D framework, allowing all operators and engineers in
the plant immediate access to such reports.

Finally, in the area of Level Sets in Additive Manufacturing, this Thesis contributes with
the classification and implementation of Morse and non-Morse critical points for the computation
of triangular mesh level sets. A line-polygon intersection algorithm is used to compute fill patterns
for the computed level sets. The developed classification allows correct filling of non-Morse level
sets. The computed fill patterns are relevant in the design of Additive Manufacturing programs.
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Overall, contributions to CAD CAM CAE domains include Reverse Engineering, Medicine,
CNC Laser Machining, Dimensional Inspection and Additive Manufacturing. Furthermore, Com-
puter Graphics contributions in this Thesis include Mesh Segmentation/Parameterization, Texture
Mapping, Interactive Visual Simulation and Virtual Environments, Computer Vision and Web3D.

The aforementioned contributions are the product of the joint collaboration of Universidad
EAFIT and Vicomtech Research Center, Laboratorio de CAD CAM CAE (EAFIT), Department of
Industry and Advanced Manufacturing (Vicomtech), and all the doctoral research team. Most of the
aforementioned contributions have been screened and accepted by the international scientific com-
munity, achieving publication in indexed International Journals and Conferences. Non-published
work . Published and non-published work has been approved, integrated and is being exploited
commercially by different Manufacturing industries, including LANTEK Sheet Metal Solutions,
GKN Driveline and BTI Biotechnology Institute.
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Appendix

V-.0.A Closed Form for the Laser Heating Equation

The analytic solution to Eq. (IV-D.1.8) for a linear trajectory x0(t) = vt + p (v = [vx, vy] and
p = [px, py]) is presented here for a point source (Dirac delta) laser beam and a square-shape laser
beam.

V-.0.A.1 Dirac Delta Laser Coefficients∫ t

t0

∫ b

0

∫ a

0

fd(x,x0)Xi(x)Yj(y)e−ωij(t−τ)dxdydτ

= P (1−R)

∫ t

t0

e−ωij(t−τ) sin
iπx0(τ)

a
sin

jπy0(τ)

b
dτ

= P (1−R)[
sinβx sinβy

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ cosαyτdτ

+ sinβx cosβy

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ sinαyτdτ

+ cosβx sinβy

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ cosαyτdτ

+ cosβx cosβy

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ sinαyτdτ

]

(1)
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V-.0.A.2 Square-Shape Laser Coefficients∫ t

t0

∫ b

0

∫ a

0

fs(x,x0)Xi(x)Yj(y)e−ωij(t−τ)dxdydτ

=
P (1−R)

∆x2

∫ t

t0

e−ωij((t−t0)−τ)(∫ x0(τ)+ ∆x
2

x0(τ)−∆x
2

sin
iπx

a
dx

)(∫ y0(τ)+ ∆x
2

y0(τ)−∆x
2

sin
jπy

b
dy

)
dτ

=
abP (1−R)

ijπ2∆x2[
c1c3

∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ cosαyτdτ

− c1c4
∫ t−t0

0

e−ωij((t−t0)−τ) cosαxτ sinαyτdτ

− c2c3
∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ cosαyτdτ

+ c2c4

∫ t−t0

0

e−ωij((t−t0)−τ) sinαxτ sinαyτdτ

]

(2)

Where:

c1 = cosβx − cos γx, c2 = sinβx − sin γx,

c3 = cosβy − cos γy, c4 = sinβy − sin γy,

αx =
iπvx
a

, αy =
jπvy
b

,

βx =
iπ(px + ∆x/2)

a
, βy =

jπ(py + ∆x/2)

b
,

γx =
iπ(px −∆x/2)

a
, γy =

jπ(py −∆x/2)

b

(3)

∫ t

0

e−ω(t−τ) cosατ cosβτdτ

= C
[
α3 sinαt cosβt+ β3 cosαt sinβt+ ω3 cosαt cosβt

− α2β cosαt sinβt+ α2ω cosαt cosβt− αβ2 sinαt cosβt

+ β2ω cosαt cosβt+ αω2 sinαt cosβt+ βω2 cosαt sinβt

+2αβω sinαt sinβt− ωe−ωt(α2 + β2 + ω2)
]

(4)
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∫ t

0

e−ω(t−τ) sinατ sinβτdτ

= −C
[
α3 cosαt sinβt+ β3 sinαt cosβt− ω3 sinαt sinβt

− α2β sinαt cosβt− α2ω sinαt sinβt− αβ2 cosαt sinβt

− β2ω sinαt sinβt+ αω2 cosαt sinβt+ βω2 sinαt cosβt

−2αβω(cosαt cosβt− e−ωt)
]

(5)

∫ t

0

e−ω(t−τ) cosατ sinβτdτ

= C
[
α3 sinαt sinβt− β3 cosαt cosβt+ ω3 cosαt sinβt

+ α2β cosαt cosβt+ α2ω cosαt sinβt− αβ2 sinαt sinβt

+ β2ω cosαt sinβt+ αω2 sinαt sinβt− βω2 cosαt cosβt

−2αβω sinαt cosβt− βe−ωt(α2 − β2 − ω2)
]

(6)

C =
1

α4 + β4 + ω4 − 2α2β2 + 2α2ω2 + 2β2ω2
(7)

V-.0.B Laser Heating Problem. Fast Fourier Transform Schemes.

V-.0.B.1 Scheme 1 - Discrete Sine Transform (DST)

Let {x0, x1, . . . , xM} and {y0, y1, . . . , yN} be uniform discretizations of the intervals [0, a] and [0, b],
respectively. It is worth noting that for such a uniform sampling, the equalities xk/a = i/M and
yl/b = l/N hold. Therefore, after truncating the number of Fourier coefficients to (M−1)×(N−1),
Eq. (IV-D.4.3) is approximated as:

ukl(t) = u∞ +

M−2∑
m=0

N−2∑
n=0

θmn sin(γm+1k) sin(δn+1l),

k = 0, 1, . . .M − 1, l = 0, 1, . . . , N − 1

(8)

with ukl(t) = u(xk, yl, t) the temperature at the discrete points of the plate and γm = mπ/M ,
δn = nπ/N the discrete versions of αm and βn, respectively. This equation is equivalent to a 2D
DST of the temperatures on the discrete plate (as per Eq. (IV-D.4.8)).

V-.0.B.2 Scheme 2 - FFT Padded with Zeros

Consider {x0, x1, . . . , xM} be a uniform discretization of the interval [0, a]. For M Fourier coeffi-
cients the following equation holds:

M−2∑
m=0

θmn sin(γ(m+1)k) = −I
[
−
M−2∑
m=0

θmni sin
2γ(m+1)k

2

]
= −I

[
M−2∑
m=0

θmne
− i2π2M k(m+1)

]
n = 0, 1, . . . N − 1

(9)
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where I[·] corresponds to the complex component of the series and γm = mπ/M . This corresponds
to a 1D DFT (Eq. (IV-D.4.7)) with M trailing zeros.

After applying the same procedure to the sequence {y0, y1, . . . , yN}, Eq. (IV-D.4.3) becomes:

ukl(t) = u∞ + I
[
N−2∑
n=0

I
[
M−2∑
m=0

θmne
− i2π2M k(m+1)

]
e−

i2π
2N l(n+1)

]
,

k = 0, 1, . . .M − 1, l = 0, 1, . . . , N − 1

(10)

The previous equation is equivalent to 2 nested 1D DFTs (Eq. (IV-D.4.7)) after adding 1 zero
at the beginning of the Fourier sequence and M , N zeros (x and y components, respectively) at
the end of the sequence.

V-.0.B.3 Scheme 3 - Odd-Symmetry 1D FFT

Consider {x0, x1, . . . , xM} be a uniform discretization of the interval [0, a]. Since sin(x) = − sin(−x)
and sin(x) = sin(x+ 2kπ) (with k ∈ N+) the following equation holds:

M−2∑
m=0

θmn sin
(m+ 1)kπ

M
=−

M−2∑
m=0

θmn sin
−(m+ 1)kπ

M

=−
M−2∑
m=0

θmn sin

(−(m+ 1)kπ

M
+ 2kπ

)

=−
M−2∑
m=0

θmn sin

(
(2M −m− 1)kπ

M

)
,

n =0, 1, . . . N

(11)

The previous series can be expressed in reverse form by setting m←M −m− 2:

M−2∑
m=0

θmn sin
(m+ 1)kπ

M
= −

M−2∑
m=0

θ(M−m−2)n sin

(
(M +m+ 1)kπ

M

)
(12)

Afterwards, consider the sequence shift m = M + 1,M + 2, . . . , 2M − 1. Eq. (12) becomes:

M−2∑
m=0

θmn sin
(m+ 1)kπ

M
= −

2M−1∑
m=M+1

θ(2M−m−1)n sin

(
mkπ

M

)
(13)

which is the second half of a sine transform with negative coefficients in reverse order. Therefore,
the series can be split in two as follows:

M−2∑
m=0

θmn sin
(m+ 1)kπ

M
=

1

2

M−2∑
m=0

θmn sin
(m+ 1)kπ

M
+

1

2

2M−1∑
m=M+1

−θ(2M−m−1)n sin

(
mkπ

M

)
(14)

On the other hand, from Eq. (IV-D.4.7):

φm sin
mkπ

M
= −I

[
−φmi sin

2mkπ

2M

]
= −I

[
φme

− i2π2M km
]

(15)
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where I[·] corresponds to the complex component of the Fourier term.
Putting together Eqs. (14) and (15), Eq. (IV-D.4.3) becomes:

ukl(t) = u∞ +
1

4
I
[
N−2∑
n=0

I
[
M−2∑
m=0

θmne
− i2π2M k(m+1)

]
e−

i2π
2N l(n+1)

]

− 1

4
I
[
N−2∑
n=0

I
[

2M−1∑
m=M+1

θ(2M−m−1)ne
− i2π2M km

]
e−

i2π
2N l(n+1)

]

− 1

4
I
[

2N−1∑
n=N+1

I
[
M−2∑
m=0

θm(2N−n−1)e
− i2π2M k(m+1)

]
e−

i2π
2N ln

]

+
1

4
I
[

2N−1∑
n=N+1

I
[

2M−1∑
m=M+1

θ(2M−m−1)(2N−n−1)e
− i2π2M km

]
e−

i2π
2N ln

]
k = 0, 1, . . .M − 1, l = 0, 1, . . . , N − 1

(16)

The previous equation is equivalent to 2 nested 1D DFTs (Eq. (IV-D.4.7)) after padding the
M−2, N−2 coefficients in reverse order (and negative) at the end of the original Fourier coefficients
in each direction (x and y), respectively. The final result is retrieved by taking the complex part
(i.e. the sine component) of each 1D DFT.

V-.0.B.4 Scheme 4 - Odd-Symmetry 2D FFT

In this scheme, consider the real part Dkl (instead of the complex one) of Eq. (16) as follows:

Dkl =
1

4
Re
[
N−2∑
n=0

Re
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m=0
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− 1

4
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− 1

4
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+
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4
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]
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]
k = 0, 1, . . .M − 1, l = 0, 1, . . . , N − 1

(17)

251



which in fact consists of the cosine parts of the Fourier series:

Dkl =
1

4

N−2∑
n=0
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− 1
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(18)

Consider the second term of the previous expansion, and the change of the series variable
m ← 2M −m − 1. Since cos(x) = cos(−x) and cos(x) = cos(x + 2πk) (with k ∈ N+), then the
following equation holds:

1
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(19)

Applying the same procedure to the fourth term in Eq. (18), we obtain:
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(20)
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Substituting Eqs. (19) and (20) into Eq. (18):

Dkl =
1

4

N−2∑
n=0

M−2∑
m=0

θmn cos

(
2πk(m+ 1)

2M

)
cos

(
2πl(n+ 1)

2N

)

− 1

4

N−2∑
n=0

M−2∑
m=0

θmn cos

(
2πk(m+ 1)

2M

)
cos

(
2πl(n+ 1)

2N

)

− 1

4

2N−1∑
n=N+1

M−2∑
m=0

θm(2N−n−1) cos

(
2πk(m+ 1)

2M

)
cos

(
2πln

2N

)

+
1

4

2N−1∑
n=N+1

M−2∑
m=0

θm(2N−n−1) cos

(
2πk(m+ 1)

2M

)
cos

(
2πln

2N

)
k = 0, 1, . . .M − 1, l = 0, 1, . . . , N − 1

(21)

in which the first and second terms cancel out, as well as terms three and four, respectively.
Therefore:

∀k,l Dkl = 0 (22)

Finally, we add Dkl to Eq. (16):

ukl(t) = ukl(t) +Dkl

= u∞ +
1
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(23)

The above equation is true since Re(xy) = Re(x)Re(y) + I(x)I(y) (i.e. the real part of the
product of two complex numbers is the sum of their real parts and their imaginary parts). Eq.
(23) is equivalent to a 2D DFT (Eq. (IV-D.4.7)) after padding the M − 2, N − 2 coefficients in
reverse order (and negative) at the end of the original Fourier coefficients in each direction (x and
y), respectively. The final result is retrieved by taking the real part of the result.

With more modern GPU hardware (GeForce RTX2060) even faster results can be acquired which
shows the potential of the proposed algorithms towards real-time laser heating/cutting simulations
and flexible manufacturing scenarios that require fast tool-planning capability and laser parameter
optimization to easily adapt to customer order changes.

Future work includes (1) the inclusion of thermal/stress models for structural analysis of the
plate after the generated high temperature gradients, (2) analysis of non-rectangular plate ge-
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ometries, and (3) consideration of non-linear interactions such as temperature-dependent thermal
properties and phase changes.
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