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Abstract. In the context of shape processing, the estimation of the medial axis is relevant for 

the simplification and re-parameterization of 3D bodies. The currently used methods are based 

on (1) General fields, (2) Geometric methods and (3) voxel-based thinning. They present 

shortcomings such as (1) overrepresentation and non-smoothness of the medial axis due to high 

frequency nodes and (2) biased-skeletons due to skewed thinning. To partially overcome these 

limitations, this article presents a non-deterministic algorithm for the estimation of the 1D 

skeleton of triangular B-Reps or voxel-based body representations. Our method articulates (1) 

a novel randomized thinning algorithm that avoids possible skewings in the final 

skeletonization, (2) spectral-based segmentation that eliminates short dead-end branches, and 

(3) a maximal excursion method for reduction of high frequencies. The test results show that 

the randomized order in the removal of the instantaneous skin of the solid region eliminates 

bias of the skeleton, thus respecting features of the initial solid. An Alpha Shape-based 

inversion of the skeleton encoding results in triangular boundary Representations of the 

original body, which present reasonable quality for fast non-minute scenes.  Future work is 

needed to (a) tune the spectral filtering of high frequencies off the basic skeleton and (b) extend 

the algorithm to solid regions whose skeletons mix 1D and 2D entities. 

Keywords: Skeletonization, 3D thinning, 1D medial Axis, Randomization, Spectral segmentation, 

Graph representation. 

1.  Introduction 

The medial axis (𝑀𝐴) of a compact 3D region Ω ⊂ 𝑅3, is defined as the set of all points 𝑥 ∈ Ω such 

that the closest point in the boundary 𝜕Ω is not unique. Such a medial axis is unique, defined as the 

finite union of compact 1- and 2-manifold sets. An approximation of the 𝑀𝐴(Ω) is called an skeleton 

𝑆𝐾(Ω). Some applications for skeletonization algorithms include shape decomposition, animation, 

medical images, virtual navigation and computational mechanics [18,20]. This manuscript presents a 

skeletonization algorithm based on non-deterministic voxel thinning and graph spectral decomposition 

which articulates: (1) a novel non-deterministic thinning algorithm for computing non-skewed 1-

manifold 𝑆𝐾(Ω), (2) spectral graph segmentation for clearing small death branches, and (3) 

application of a maximal excursion algorithm to smooth the resulting skeleton and reduce high 

frequencies. Finally, our algorithm applies Alpha-Shape inversion on the computed skeleton 𝑆𝐾(Ω), 
producing a retrieved surface 𝑀𝐿 that is an approximation of the input body surface 𝑀 = (𝑋, 𝑇). The 

remainder of this article is organized as follows: Section 2 discusses the skeletonization methods 



 

 

 

 

 

 

2 

 

already present in the literature. Section 3 discusses our skeletonization method. Section 4 presents 

skeletonization and alpha-shape inversion results for different triangle meshes. Finally, Section 5 

presents the conclusions and introduces what remains for future work. 

2.  Literature Review 

Skeletonization methods are algorithms that produce an estimation of the Medial Axis of a 3D solid 

body that provides a lower dimensional (1D and 2D) representation of the original model. Depending 

on the approach for this dimensional reduction, skeletonization algorithms can be classified as: (1) 

general-field methods, (2) geometric methods and (3) voxel-thinning methods. The state of the art for 

the afore mentioned methodologies is briefly discussed below. For a more detailed survey, we refer 

the reader to [22]. 

 

General Field methods estimate the medial axis by computing a map field on Ω. The skeleton of Ω is 

extracted by connecting singularities on the map field [11,22]. Refs [2,23] compute a distance field 

map that have proven to be efficient and becoming suitable for large datasets [4]. Refs [10,22] 

compute potential fields that improves the robustness of the methods in the presence of input noisy 

shapes. Other methods use projection planes and inscribed balls to find the 2D curve skeleton. 

Afterwards, a convex hull operation is applied to generate the 1D skeleton [14]. General field methods 

can be applied to mesh and voxel data inputs [14,22]. In addition, they can produce also 2-manifold 

skeletons [2,22]. However, they (1) do not ensure the connectivity of the resulting skeleton [10,23] 

and, (2) they produce non-smooth skeletons with small dead-branches [19,20,22].  

 

Geometric methods find the symmetries and geometric properties in the boundary of a shape region 

to generate the medial axis [19,20]. Voronoi diagrams [7], mesh contraction [25], octree-graphs [3], 

and union-of-balls [16] are popular geometric methods to compute the skeleton. These methods are 

applied to mesh or point-cloud representations [20], preserving the connectivity of the resulting 

skeleton [25] and generating non-skewed skeletons [25]. However, these methods still produce 

skeletons with small dead-branches and high frequencies [19,20,22].  

 

Voxel-based thinning methods iteratively remove the boundary set of a voxel representation of the 

original region [6,11,18]. These algorithms usually preserve the connectivity of the skeleton by 

defining explicit rules such as: simple point criterion [15,17] or removing and recovering templates 

[12]. In addition, some thinning methods are able to produce 2D (surface) skeletons [11]. Current 

thinning-based methods present shortcomings such as: (1) computational expensive algorithms, (2) 

biased skeletons [13,27], and (3) non-smooth skeletons with small dead-branches [19,20,22]. Some 

authors have reduced the computational cost of these algorithms by applying parallel programming 

[6,12,27]. However, the resulting skeleton does not preserve the connectivity.  

2.1. Conclusions of the literature review  

Based on the literature review, the algorithms for skeletonization can be classified in: (1) General field 

methods are efficient for large datasets, robust to noisy shapes and some methods produce curve and 

surface skeletons but can present problems like discontinuities, (2) Geometric method conserve 

connectivity and generate well centered skeletons, and (3) Voxel-based thinning can be robust to noisy 

shapes, preserve connectivity and some methods produce curve and surface skeletons but are 

computationally expensive and the skeletons are skewed. Also, the surveys show that the most part of 

the algorithms are not smoothed and/or produce small death branches. To partially overcome this 

problem, this article presents (1) a random labelling that neutralizes the bias, (2) deletion of the small 

death branches using a spectral segmentation of the graph skeleton to improve the centricity and 

smoothness of the skeleton and (3) the use of maximal excursion algorithm to improve the 

smoothness. We also perform an alpha-shape-based inversion that retrieve an approximation of the 

original body. 
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3.  Methodology 

This section discusses the method used to compute the skeleton that approximates the Medial Axis 

𝑀𝐴(Ω) of a compact and connected 3D solid Ω ⊂ 𝑅3. Our method requires a triangle mesh 𝑀 =
 (𝑋, 𝑇) as input. The mesh M discretizes the boundary ∂Ω of the solid body Ω. M is a closed 2-

manifold defined by the set of points 𝑋 and the set of triangles 𝑇. The proposed method proceeds as 

follows: (1) Our algorithm converts 𝑀 into a voxel representation 𝑉𝑜𝑥(Ω)0, where a point 𝑥 ∈ Ω is 

called a black voxel and a point 𝑥 ∈ 𝑅3\Ω  is called white voxel. (2) A voxel-based thinning algorithm 

is applied to compute 𝑆𝐾(Ω). In order to neutralize the skeleton bias of Voxel-based algorithms, a 

random labelling is applied to the voxelization in this step. The Graph Laplacian 𝐿 of 𝑆𝐾(Ω) and its 

corresponding spectral decomposition are computed. The spectral decomposition enables a 

segmentation of the skeleton in the frequency domain, which characterizes the large branches of 

𝑆𝐾(Ω). (4) Aided by the spectral segmentation, a shortest path algorithm is applied to 𝑆𝐾(Ω), 
resulting in the suppression of the small death-branches. (5) A maximal excursion algorithm is applied 

to reduce high frequencies and improve the smoothness of 𝑆𝐾(Ω). (6) Finally, an alpha-shape-based 

inversion is used to retrieve the original body Ω. Figure 1 shows the flowchart of the proposed 

algorithm. The remainder of this section describes the details of the skeletonization algorithm. 

 

 
Figure 1. Flowchart of the proposed skeletonization 
method. Our algorithm articulates: (a) random labelling, 
(b) spectral segmentation, (c) skeleton smoothing and, 
(d) alpha-shape-based inversion. 

3.1 Voxel-based thinning 

In order to apply a thinning algorithm to the solid body Ω, the triangle mesh 𝑀 =  (𝑋, 𝑇) is converted 

into a voxel representation 𝑉𝑜𝑥(Ω)0. For this purpose, the voxelization algorithm presented in [1] is 

implemented. Thinning algorithms iteratively detect the boundary voxels 𝑉𝑜𝑥(𝜕Ω) of 𝑉𝑜𝑥(Ω)0, and 

delete the voxels in 𝑉𝑜𝑥(𝜕Ω) that comply with an elimination criterion. To understand the 

implemented thinning algorithm, it is necessary to describe: (1) The neighbours of a voxel, (2) the 

simple point criterion, and (3) the end point criterion. 
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The neighbours of a voxel 𝑝 ∈ Ω are the 26 voxels that surround such a voxel. This neighborhood is 

sub-classified as 6- 18- and 26- neighbors, as follows: (a) 6-neighbor voxels share one face with the 

central voxel p. (b) 18-neighbor voxels share at least one edge with the central voxel p. (c) 26-

neighbor voxels share at least one vertex with the central voxel [17]. In order to preserve the 

connectivity of the skeleton, the simple point criterion is implemented [15,17]. The simple point 

criterion, requires a voxel p to satisfy the following conditions: 

 

1. The central voxel p has a white voxel in its 6-neighbor. 

2. The central voxel p has a black voxel in its 26-neighbor. 

3. The set of black 26-neighbors of the central voxel p is 26-connected. 

4. The set of white 6-neighbors of the central voxel p is 6-connected in the set of white 18-

neighbors. 

 

On the other hand, the end point criterion is implemented to preserve the shape of the input body. A 

voxel satisfies the end point criterion if it has a single voxel neighbor in its 26-neighbor set. 

 

The implemented thinning algorithm follows the next steps: (1) To voxelize the input mesh 𝑀 =
(𝑋, 𝑇) generating the voxel set 𝑉𝑜𝑥(Ω)0. (2) The boundary voxels 𝑉𝑜𝑥(𝜕Ω)𝑘 are detected by 

evaluating the simple point and the end point criteria. (3) The voxel set is compared with the boundary 

voxel set. If the voxel set is equal to the boundary (𝑉𝑜𝑥(Ω)𝑘 =  𝑉𝑜𝑥(𝜕Ω)𝑘?), the thinning procedure 

finishes. (4) the random labelling 𝑅𝑎𝑛𝑑(𝑉𝑜𝑥(Ω)𝑘) is applied. (5) The voxels in the skin 𝜕Ω that 

comply with the simple point criterion are removed. Finally, (6) steps 2-5 are repeated until step 4 is 

satisfied, generating the resulting skeleton 𝑆𝐾(Ω). 

3.2 Volume estimate 

To retrieve the original body Ω from the skeleton 𝑆𝐾(Ω), it is necessary to estimate the distance of 

each voxel in 𝑆𝐾(Ω) to the boundary 𝜕Ω. For this purpose, the next two methods can be used: 

 

1. Arcelli et. al. [2] use the method of reverse distance transform to retrieve the original region. 

This method find the radius inscribing the sphere with the minimum radius that is tangent to 

∂Ω in one or more points. 

2. Munoz et. al. [18] use a measure of mass (Computed using the diffusive advection proposed 

by Jalba et. al. [11]) in each voxel of SK(Ω) to approximate a cylinder in each segment and 

considering a constant density. 

3.3 Graph skeleton representation 

To generate the spectral representation, it is necessary to convert the voxelized skeleton 𝑆𝐾(Ω) to its 

graph representation 𝐺 =  (𝑉, 𝐸), where 𝐺 is a connected and non-oriented graph defined by a set of 

vertices 𝑉 and a set of edges 𝐸. In graph representation, each point 𝑝𝑖 ∈  𝑉 is represented by the center 

point of each voxel in 𝑆𝐾(Ω), and each edge 𝑒𝑖 ∈  𝐸 is computed by connecting the adjacent black-

voxels in each 26-neighborhood. A function 𝑓𝑖: 𝑖𝑛𝑡(𝑒𝑖)−> 𝑅 is assigned to each edge 𝑒𝑖 ∈  𝐸. 𝑓𝑖 stores 

the radius of every point contained in the line segment 𝑖𝑛𝑡(𝑒𝑖), defined by the edge 𝑒𝑖. In this process, 

any 3-vertex closed cycle (triangle) is deleted and replaced with its respective barycenter. 

3.4 Spectral segmentation 

The spectral decomposition of the graph 𝐺 = (𝑉, 𝐸) is a representation of the skeleton 𝑆𝐾(Ω) in the 

frequency domain. As such, this spectral decomposition preserves the topology of 𝐺. However, the 

low frequencies of this skeleton can be extracted from the first 3 eigenvectors (i.e. with lowest non-

zero eigenvalue) of the Laplacian operator on graphs [24,28]. The graph Laplacian L and its 

corresponding spectrum is computed as follows: 
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1. Find the 𝑛 𝑥 𝑛 weighted Laplacian matrix 𝐿 of 𝐺, defined as follows: 

 

𝐿𝑖𝑗  =

{
 
 

 
 − ∑ 𝐿𝑖𝑘

𝑣𝑘∈𝑁𝑖

𝑖𝑓 𝑖 = 𝑗

−
1

‖𝑣𝑖 − 𝑣𝑗‖
𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸

 (1) 

 
2. Find the first 3 eigenvectors (𝜆1, 𝜆2, 𝜆3) of L, with smallest (non-zero) eigenvalues 

(𝜆1, 𝜆2, 𝜆3). That is to say, the eigenpairs (𝜆𝑖 > 0, 𝜇𝑖 ∈ 𝑅
𝑛) that satisfy the following 

equation: 

 

𝐿𝜇 = 𝜆𝑘𝜇𝑘 (2) 

 

With the lowest frequencies of 𝐺 =  (𝑉, 𝐸) identified, a manual segmentation is applied generating 

𝐺𝑆 = (𝐺1, 𝐺2, . . . ) that represent the large features of 𝑆𝐾(Ω). Each 𝐺𝑖 with 𝑖 =  {1,2, . . . } is defined 

by the extreme vertices of the large features. 

3.5 Small death branches removal 

With the identification of the large features 𝐺 =  (𝐺1, 𝐺2, … ), the next step is use the shortest path 

algorithm of Dijkstra [8] to remove the small death branches in 𝐺 =  (𝑉, 𝐸). This process compute a 

new graph 𝐺𝐿  =  (𝑉𝐿 , 𝐸𝐿) without the small death branches where 𝐺𝐿 ⊂ 𝐺, the vertices 𝑉𝐿 ⊂ 𝑉 and the 

edges 𝐸𝐿 ⊂ 𝐸.  

3.6 High frequencies removal 

To reduce the oscillations in the skeleton, a maximal excursion algorithm (edge linearization) is used 

[18]. This reduce the high frequencies and improve the smoothness of 𝐺𝐿  =  (𝑉𝐿 , 𝐸𝐿), generating a 

smoothed graph 𝐺𝑀  =  (𝑉𝑀, 𝐸𝑀). In each iteration of this algorithm, is evaluated if the maximum 

distance of each new segment is greater than a predefined threshold. The algorithm stops when the 

maximum distance of all new segments is less than the threshold. The mass of a new segment is the 

sum of the mass of all the vertices in the new segment created by the old skeleton. 

3.7 Retrieval of the original region 

To retrieve the original body Ω, an alpha-shape based inversion is used [9], generating a 2-manifold 

triangular mesh 𝑀𝐿  =  (𝑋𝐿 , 𝑇𝐿) that is an estimation to 𝜕Ω, defined by a set of points 𝑋𝐿  ⊂  𝜕Ω and a 

set of triangles 𝑇𝐿. For this propose, a set of discs with different radius are created in each segment of 

𝐺𝐿  =  (𝑉𝐿 , 𝐸𝐿). The points of these discs are the input of the alpha-shape. 

4.  Results 

The boundary representation 𝑀 =  (𝑋, 𝑇) models were voxelized to find the medial axis. Figure 2 

shows the models Truss, Snake (Extracted from [26]) and Horse (Extracted from [5]). Figures 3(a), 

3(b) and 3(c) shows the voxel skeletons 𝑆𝐾(Ω) with their respective mass distribution. Figures 3(d), 

3(e) and 3(f) shows graph skeletons with the set of computed radius using the reverse distance 

transform method. In this step SK(Ω) presents high frequencies (e.g. Figure 3(b)) and small death 

branches (Figure 3(c)). 
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(a) 

 
(b) 

 
(c) 

Figure 2. Boundary representation 𝑀 =  (𝑋, 𝑇) of the test datasets. (a) Truss dataset. 
(b) Snake dataset. (c) Horse dataset. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(d) 

 
(e) 

Figure 3. Resulting skeletons from our unskewed thinning algorithm and the respective 
node masses.   The skeletons present high frequencies and short dead branches. (a) Truss 
(b) Snake and (c) Horse skeleton with the distribution of mass. (d) Truss (e) Snake and (f) 
Horse graph skeleton with the computed radius. 

 

Figure 4(a) shows the skewed Horse graph skeleton produced using the algorithm without the 

proposed randomization. Figure 4(b) shows the unskewed Horse graph skeleton produced using the 

algorithm with the randomization. The comparison between the red squares in Figures 4(a) and 4(b) 

shows that the small death branches are skewed in Figure 4(a) due the direction of analysis, while the 

branches are unskewed in the randomized version (our algorithm). 

 

Figures 5(a) and 5(b) shows the skewed and unskewed retrieved model Snake (beige color) computed 

using the reverse distance transform method and compared with the input mesh 𝑀 = (𝑉, 𝐸) (blue 

color). Compared with the Figure 5(b) (unskewed), Figure 5(a) (skewed) have significant less volume 

that the original body, indicating a deviation grater from the medial axis. 
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(a) 

 
(b) 

Figure 4. Comparison between skewed and unskewed graph 
skeletons. 

 

 
(a) 

 
(b) 

Figure 5. Comparison retrieval models (Beige color) and 
the original region (Blue color). 

 

Figure 6(a) shows the graph skeleton 𝐺 = (𝑉, 𝐸) of the Horse dataset with the small death branches 

and high frequencies. Figure 6(b) shows the eigenvalues with the lowest frequencies of 𝐿 were the 

small death branches are squashed and allows the manual graph segmentation 𝐺 = (𝐺1, 𝐺2, . . . ). Figure 

6(c) shows 𝐺 = (𝑉, 𝐸) after the application of the shortest path algorithm using the 𝐺𝑠 =
(𝐺1, 𝐺2, . . ), that deletes the small death branches. Figure 6(d) shows 𝐺 = (𝑉, 𝐸) after the application 

of the maximal excursion algorithm that reduce the high frequencies. The qualitative comparison 

shows that the final model (Figure 6(c)) is smoothed in comparison with the initial graph skeleton 

(Figure 6(a)). Also, the number of points that represent the model decrease significantly, from 735 

points (Figure 6(a)) to 25 points (Figure 6(d)).  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

Figure 6. Geometric simplification of the graph skeleton. (a)  Horse graph skeleton with small 
death branches and high frequencies. (b) Lowest frequency eigenfunction of Horse graph. (c)   
Horse graph skeleton after deleting small death branches. (d) Horse graph skeleton after reducing 
high frequencies. 
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Figure 7 shows the retrieval model using an alpha shape-based inversion. Figures 7(a), 7(b) and 7(c) 

shows the retrieval after the deletion of the small death branches that is a good approximation to Ω.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Retrieval of the original model using alpha-shape based inversion. 
Retrieval of the model (a) Truss (b) Snake and (c) Horse. 

5.  Conclusions and future work 

This manuscript presents a novel method to improve the centeredness centricity and the smoothness of 

the skeletons generated by thinning algorithms. The presented method articulates: (a) a random 

labelling applied to the voxel-based algorithm that neutralize the skewed produced by the order of 

analysis in the skeletons, (b) the deletion of the small death branches using a spectral segmentation, 

and (c) the smoothing of the skeleton reducing the high frequencies with a maximal excursion 

algorithm (edge linearization). The results show that using the spectral segmentation in graph of 

skeleton is an effective method to produce a smoothed skeleton and delete undesirable noise. Also, the 

retrieved models show that our method can produce a good approximation of the original body. Future 

work includes (1) the tune the spectral filtering of high frequencies off the basic skeleton and (b) 

extend the algorithm to solid regions whose skeletons mix 1D and 2D entities. 
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