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ABSTRACT
Simulation of Laser Metal Deposition (LMD) is central to the planning of Additive
Manufacturing processes. This manuscript presents the computational implementation of

10 a 2D-plus-thickness nonlinear thermal simulation of LMD, which considers: (i) temperature-
dependent material properties, (ii) heat losses due to convection and radiation, (iii) geometrical
update during material deposition, (iv) phase change and (v) the interaction between the laser
and the substrate. The implementation computes the history of the temperature field at
a cross-cut normal to the laser trajectory and the history of the bead accumulation. The

15 material deposition model is based on the spatial distribution of the delivered powder. This
manuscript presents the mathematical and numerical foundations to execute an efficient local
re-meshing of the growing bead. The numerical estimation of the bead geometry is compared
with experimental results found in the existing literature. The present model shows reasonable
accuracy to predict the bead width (15% error) and bead height (22% error). This implementa-

20 tion is an in-house one, which allows for the inclusion of additional physical effects. Additional
work is needed to account for the particle (thermo) dynamics over the substrate, responsible
for a significant material and energy waste, which in turn leads to the actual temperature and
molten depth being over-estimated in the executed simulations.
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1. Introduction

25 Laser Metal Deposition (LMD) is an additive manu-
facturing process in which metal powder is delivered
on top of a substrate while a laser melts the added
material to produce a new layer. LMD has gained
importance during the last several years because of

30 its applications in the repair, coating and manufactur-
ing of high-valued industrial parts (Leino, Pekkarinen,
and Soukka 2016).

This manuscript presents the implementation of
a nonlinear 2D-plus-thickness thermal model for the

35 simulation of LMD. The simplification is justified
under the assumption of process stability along the
direction of movement of the tool head. The laser
energy source is modelled©as a flux boundary condi-
tion. The present implementation considers the fol-

40 lowing aspects: (1) the variation of the material
properties with respect to the temperature, (2) con-
vection and radiation heat losses and (3) the
dynamic evolution of the domain due to material
deposition.

45 This manuscript reports the implementation of
the Finite Element Method (FEM) for 2D triangular
elements. This manuscript discusses the corre-
sponding FEM matrices of the considered phenom-
ena (heat equation, temperature-dependent material

50 properties, radiation, and convection). A model for

the representation of the material addition based on
the spatial distribution of the delivered powder is
formulated. Its theoretical foundations and its inte-
gration into the Finite Element Analysis (FEA) ana-

55lysis pipeline are also presented in this manuscript.
The remainder of this article is organised©as follows:

Section 2 provides a review of the previous works.
Section 3 presents the governing equations, numerical
schemes and the methods to model material deposi-

60tion. Section 4 presents and discusses the results of the
implementation. Section 5 concludes the manuscript
and suggests potential future work.

2. Literature review

2.1. Simulation of laser metal deposition

65Within LMD, recent studies (Corbin et al. 2017; El
Cheikh et al. 2012; Goodarzi, Pekkarinen, and
Salminen 2015; Ocelík et al. 2014; Nenadl et al.
2014) have employed physical experimentation and
statistical techniques (e.g. design of experiments

70and ANOVA) to devise empirical models that
link the process parameters with the final bead
geometry. These studies have focused on the influ-
ence of the laser power, tool-head speed and mass
feed rate on the height, width and dilution ratio of

75the final bead.
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In LMD, the substrate and bead thermal histories
are relevant because they allow the prediction of the
mechanical properties, the microstructure and resi-
dual stresses of the workpiece (Cheng, Shrestha, and

80 Chou 2016; Costa et al. 2002; Heigel, Michaleris, and
Palmer 2015; Michaleris 2014; Montoya-Zapata et al.
2021b; Ravi et al. 2013). Authors have relied on
numerical simulation to represent complex phenom-
ena involved in the modelling©of LMD. Pure thermal

85 models (Michaleris 2014; Cordovilla et al. 2019; Ya,
Pathiraj, and Liu 2016) have allowed the prediction of
the thermal history of the melt-pool during deposi-
tion. Ref. (Ya, Pathiraj, and Liu 2016) presents a 2D
thermal model that considers convection, radiation

90 and phase change. The model is fed with the powder
efficiency to estimate the final bead geometry and
thermal history during deposition. The research in
(Michaleris 2014) confirms the importance of consid-
ering convection and radiation heat losses to obtain

95 accurate temperature estimations. Thermal models
have also been used to study the impact of the process
parameters on the resulting workpiece. In this regard,
Cordovilla et al. (2019) uses a 2D thermal model to
study the influence of the material flow rate, nozzle

100 speed and laser power on the melting depth in the
substrate.

Thermo-fluid models (Arrizubieta et al. 2017;
Manvatkar, De, and DebRoy 2015; Tian et al. 2019)
have incorporated fluid flow effects into the thermal

105 simulations to study the dynamics of the melt-pool.
Apart from the temperature, thermo-fluid models pre-
dict the velocity field in the melt-pool. Models in Refs.
(Arrizubieta et al. 2017; Manvatkar, De, and DebRoy
2015) include Marangoni and capillary effects, which

110 produce more accurate temperature predictions than
pure thermal models. Tian et al (2019) uses a 2D
thermal-fluid model to study the effects of the material
flow rate and the laser power on the shape of the melt-
pool.

115 Thermo-mechanical approaches (Caiazzo and
Alfieri 2019; Farahmand and Kovacevic 2014;
Stender et al. 2018) have calculated residual stresses
and distortions by estimating the temperature and
displacements during deposition. Farahmand and

120 Kovacevic 2014 and Stender et al. 2018) consider the
same phenomena as pure thermal models: radiation,
convection, temperature-dependent properties and
phase change phenomena. However, they include the
effects of thermal expansion to execute solid

125 mechanics analysis via the estimation of the displace-
ment field. Farahmand and Kovacevic (2014) studies
the residual stress in several contiguous single-layer
tracks. Stender et al. (2018) analyzes the residual stress
and distortion of multi-layer cylindrical geometries.

130 Most of the approaches mentioned above have been
executed on commercial software and the implemen-
tation has not been discussed. More comprehensive

literature reviews on the simulation of LMD can be
found in (Pinkerton 2015; Tamanna, Crouch, and

135Naher 2019).

2.2. Assessment of temperature predictions and
computational resources

The experimental measurement of the temperature
in the LMD process is a very challenging task. The

140high-temperature conditions of LMD make unfeasi-
ble the temperature measurement within the melt-
pool. Researchers have used non-contact devices
(e.g. infrared cameras and pyrometers) to gather
temperature data of the melt-pool surface. The accu-

145racy of the measurements of non-contact devices is
affected by several conditions, such as (i) the inter-
ference of the laser and the powder metal, (ii) non-
constant (unknown) thermal emissivity of the melt-
pool and (iii) the calibration of the sensing devices

150(Chua, Ahn, and Moon 2017; Tang et al. 2020). As
an alternative, other authors have used metallogra-
phy as an indirect method to infer the temperature
history in the LMD process (Cordovilla et al. 2019;
Arrizubieta et al. 2017; Tian et al. 2019; Caiazzo and

155Alfieri 2019). Metallography is a destructive techni-
que, which requires the cross-sectioning of the
workpiece.

The authors in Cordovilla et al. (2019), Ya, Pathiraj,
and Liu (2016), Arrizubieta et al. (2017), Tian et al.

160(2019), Caiazzo and Alfieri (2019) and Stender et al.
(2018) do not report the execution times of the
numerical simulation. The lack of this data is related
to the use of commercial software. Commercial soft-
ware does not inform the execution time of each sub-

165process of the simulation (e.g. remeshing, powder
metal and laser interaction, and thermal/fluid/
mechanical FEM solution). Michaleris (2014) informs
the execution time of the simulation. However, the
scope of the simulation and the mathematical models

170are different in each work. It is, therefore, unfeasible to
compare the execution time of the simulation or its
sub-process with other related studies.

2.3. Representation of the bead geometry

One of the main tasks in the numerical simulation of
175LMD is the representation of the deposited material.

In the literature, two approaches can be identified. The
first one pre-defines the cross-section of the final bead
geometry. Several functions are used: circular and
elliptical (El Cheikh et al. 2012; Ocelík et al. 2014;

180Nenadl et al. 2014; Zhou, Dai, and Zheng 2011), sinu-
soidal (Ocelík et al. 2014; Nenadl et al. 2014; Caiazzo
and Alfieri 2019) and parabolic (Ya, Pathiraj, and Liu
2016; Tian et al. 2019). This approach does not repre-
sent the intermediate states of the bead geometry dur-

185ing the deposition.
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In the second approach, the bead geometry is
induced by the spatial (3D) distribution of the deliv-
ered metal powder delivered on top of the substrate.
The powder metal distribution is modelled© as

190 a function of the process parameters (powder spatial
flow rate profile and nozzle velocity) and material
properties (density). Authors have used two functions:
Gaussian (El Cheikh et al. 2012; Arrizubieta et al. 2017;
Montoya-Zapata et al. 2021a; Tabernero et al. 2010,

195 2013) and circular (El Cheikh et al. 2012). These
models give a complete description of the amount
and distribution of material on top of the substrate,
which can be used to describe the evolution of the
bead geometry during the deposition.

200 2.4. Conclusions of the literature review

This literature survey has identified the following
numerical approaches to calculate the thermal history
during the deposition in LMD: pure thermal, thermo-
fluid and thermo-mechanical models. These

205 approaches exploit the capabilities of numerical simu-
lation to include complex phenomena, such as melt-
pool dynamics, phase change, variation of the material
properties with respect to the temperature, and radia-
tion/convection/conduction heat losses. Many of these

210 publications report the use of commercial software.
Therefore, the discussion of the numerical implemen-
tation of the mathematical models is missing.

This manuscript presents an in-house implementa-
tion of a 2D-plus-thickness nonlinear simulation of

215 LMD. Since no commercial FEA software is used, (i) it
is flexible and extensible, (ii) it is particularised©to
LMD and (iii) the mathematical models are thor-
oughly presented and discussed. This manuscript
reports a thermal model which considers: (i) tempera-

220 ture-dependent material properties, (ii) convection
and radiation heat losses, (iii) material deposition
and (iv) phase change. The energy input to the system
is modelled©as a boundary condition of the type flux.
This flux occurs at the upper border of the FEA mesh,

225 which contains both substrate and bead elements. This
manuscript thus discusses the interaction among phy-
sical, mathematical, and numerical considerations in
LMD simulation.

This manuscript also reports the remeshing strat-
230 egy used between time frames. The addition of mate-

rial causes a (constrained Delaunay) remeshing, which
is confined to the bead domain alone. This strategy
saves resources both for geometry and temperature
field re-computing at successive time steps.

235 The implemented method does not model (i) laser
andmetal powder flight interaction, (ii) powder evapora-
tion (c) powder scattering away from bead due to the gas
jet dynamics, (d) fluid dynamics within the molten
material.

2403. Methodology

3.1. Problem description

This work aims to study the geometry and tempera-
ture evolution of a linear track of the Laser Metal
Deposition process, as shown in Figure 1. This work

245considers that the process parameters (tool-head
cruise speed, powder deposition rate and laser
power) remain constant throughout the deposition.
This study is limited to a 2D cross-section (plus
thickness Δz). Features of the computer simulations

250follow.
1. Material deposition is considered. As a result, the

bead cross cut and its FEmesh evolve as the time domain
increases. This manuscript discusses the theoretical and
numerical aspects of the material deposition model.

2552. The energy delivered by the laser is modelled©as
a flux boundary condition that acts on the top of the
domain.

3. The physical properties (density, specific heat
and conductivity) of the substrate and the cladding

260materials are functions of the temperature. The simu-
lation also contemplates the phase-change (from
solid to liquid and vice-versa) of the substrate and
cladding materials.

4. Heat loss due to radiation and convection is
265included.

5. The Newton-Raphson method is used to execute
the nonlinear computation of temperature-dependent
material properties, radiation/convection/conduction
heat migration, and phase change.

2706. This work does not consider molten metal fluid
dynamics nor energy attenuation due to the interac-
tion between the laser beam and the powder.

3.2. Governing equations

The present work uses the heat equation to describe the
275temperature distribution Tðx; tÞ in the 2D domain Ω

Figure 1. Simulation of the deposition of LMD. Graphical
representation of the domain, reference frame and parameters
involved.
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ρC
@T
@t

# ! $ κ !Tð Þ ¼ s (1)

where ρ;C and κ denote the density, specific heat and
thermal conductivity, respectively. This work consid-
ers that the material properties depend on the tem-
perature. The function s ¼ sðx; tÞ represents the heat

280 source (which in this case is equal to 0).
At the beginning of the simulation, the domain is at

room temperature (300 K):

Tðx; 0Þ ¼ T0ðxÞ ¼ 300 (2)

Temperature (Dirichlet) and flux (Neumann) condi-
tions may be imposed on the boundary ofΩ (@Ω). The

285 regions of @Ω with imposed Dirichlet and Neumann
boundary conditions are denoted as @ΩT and @Ωq,
respectively. They fulfill the following conditions:

@ΩT [ @Ωq ¼ @Ω; @ΩT \ @Ωq ¼ ; (3)

The boundary conditions are formally stated as
follows:

Tðx; tÞ ¼ Tðx; tÞ; x 2 @ΩT ;
qðx; tÞ $ nðxÞ ¼ qðx; tÞ; x 2 @Ωq

(4)

290 where T and q are known scalar functions, and n is the
normal vector that points outwards. The heat flux q
satisfies the Fourier law q ¼ #κ!T.

3.2.1. Weak form and finite element discretisation©
The weak form of the problem stated in Equations

295 (1)–(4) is given by:
ð

Ω
wρC

@T
@t

dV þ
ð

Ω
!w $ κ!Tð ÞdV

¼
ð

Ω
wsdV #

ð

@Ωq

wqdA (5)

where w is a weighting function. The differential ele-
ments of volume and area in Equation (5) become
dV ¼ ΔzdA and dA ¼ ΔzdL where Δz is the thickness
of Ω.

300 To find an approximate solution of the temperature
field T, the domain Ω is partitioned into (3-node)
triangular finite elements Ωe. Say Th is the approxi-
mated solution for T. The interpolation of Th in the
triangular element Ωe is given by

Thðx; tÞ ¼
X3

a¼1

NaðxÞeθaðtÞ; x 2 Ωe (6)

305where eθaðtÞ is the temperature at node a of the ele-
ment Ωe. The functions N1;N2 and N3 are the shape
functions for the triangular FEA elements. They also
define the mapping between a reference triangle Ω!

with vertices fð0; 0Þ; ð1; 0Þ; ð0; 1Þg and any element Ωe

310in the FEA mesh (see Figure 2(a)):

N1ð!; ηÞ ¼ 1# ! # η; N2ð!; ηÞ ¼ !; N3ð!; ηÞ ¼ η;
!; η 2 ½0; 1(

(7)

After the spatial discretisation©, the semi-discrete (dis-
crete in space and continuous in time) formulation for
Equation (5) is obtained:

M _θþ K θ# f ¼ 0 (8)

where the vector of nodal temperatures θðtÞ is
315a continuous function of time. The components of

the mass and conductivity matrices, M ðtÞ and
K ðtÞ, are

eM ab ¼
ð

Ωe
ρCNaNbΔzdA; a; b ¼ 1; 2; 3 (9)

eK ab ¼
ð

Ωe
!Na $ ðκ!NbÞΔzdA; a; b ¼ 1; 2; 3 (10)

Let @Ωe
q be the edge of the elementΩe that is subjected

to flux boundary conditions. The interpolation for the
320temperature along the edge Thðx; tÞ is given by

Thðx; tÞ ¼
X2

a¼1

Nq
aðxÞ

eθaðtÞ; x 2 @Ωe (11)

The functions Nq
1 and Nq

2 are the shape functions for
the mapping between a reference segment @Ω! with
vertices fð0; 0Þ; ð1; 0Þg and any triangle segment @Ωe

q

in the FEA mesh (see Figure 2(b)):

Nq
1ð!Þ ¼ 1# !; Nq

2ð!Þ ¼ ! (12)

325The components of the local force vector efðtÞ are

Figure 2. Mapping between the reference entities (triangle/edge) and the ones in the FEA mesh.
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efa ¼
ð

Ωe
NasΔzdA#

ð

@Ωe
q

Nq
a!qΔzdL; a ¼ 1; 2 (13)

The simulations in the present work does not consider
heat sources (s ¼ 0). The function q : qðx; tÞ accounts
for the flux boundary conditions that are consider: the
energy input of the laser ql, radiation qrad and convec-

330 tion qconv. The corresponding functions associated to
each flux boundary condition are described in detail in
the following sections.

Temperature (Dirichlet) boundary conditions are
applied at the bottom of the domain. The temperature

335 in this region is set to T ¼ 300 K during all the
simulation.

3.2.2. Time discretisation©and Newton-Raphson
scheme
To obtain the fully discrete formulation of Equation (8)

340 it is still necessary to execute the time discretisation©.
The simulation time interval ½0; tmax( is divided into N
sub-intervals: ½t0; t1(; ½t1; t2(; ; ½tN#1; tN (, such that t0 ¼
0 and tN ¼ tmax.

The vector θs ¼ θðtsÞ denotes the nodal tempera-
345 tures at ts. The backward Euler method is used for the

time discretisation©by approximating the time deriva-
tive _θs as follows (Ibrahimbegovic 2009):

_θs ) θs # θs#1

Δt
(14)

Equation (14) is inserted into Equation (8). The reader
may notice that, since ρ;C; κ and q depend on the

350 temperature, M s, K s and f s are functions of the tem-
perature (see Equations (9), (10) and (13)). Therefore,
at every instant ts, one obtains a system of nonlinear
equations R in which the variables are the nodal tem-
peratures θs

RðθsÞ ¼ M s θs # θs#1" #
þ ΔtK sθs # Δtf s ¼ 0 (15)

355 The Newton-Raphson scheme is used to solve this
system of equations. The characteristics of this
method requires several iterations to solve for θs at
every time instant ts. Let θs;k be the nodal temperature
at iteration k. The Newton-Raphson updating rule for

360 iteration k is given by

θs;k ¼ θs;k#1 þ u; u ¼ #dR
dθs

$$$$
θs;k
Rðθs;kÞ (16)

The matrix dR
dθs is known as the tangent matrix. It is

equal to:

dR
dθs

¼ dhs

dθs
# Δt

df s

dθs
(17)

where hs is the following vector

hs ¼ M s θs # θs#1" #
þ ΔtK sθs (18)

In the following sections, the components of the
365matrix dR

dθs are discussed.

3.3. Model of the energy provided by the laser

The energy of the laser is modelled©as a flux (or
Neumann) boundary condition that acts on the top
boundary of the domain Ω. This work uses the

370approach in Ref. (Caiazzo and Alfieri 2019) to calcu-
late the corresponding heat flux. The function Iðx; zÞ
[W/mm2] describes the energy distribution of the laser
on the plane XZ, parallel to the substrate surface.

Let Ωe be an FE element whose edge @Ωe is at the
375top boundary. Let @Ωe

proj be the projection of @Ωe onto
the plane XZ. Let Re be the extrusion in direction Z,
with thickness Δz, of @Ωe

proj (see Figure 3). The input
power Pe [W] and the corresponding heat flux qel [W/
mm2] at @Ωe are

Pe ¼
ð

Re
Iðx; zÞdA; qel ¼

1
Δz

Pe

j@Ωe
projj

: (19)

380Since the laser moves in Z direction, the laser intensity
function I is also a function of time. Therefore, the
heat flux over each edge must be calculated at every
time step of the simulation.

The present work uses a Gaussian laser energy
385distribution:

Iðx; z; tÞ ¼ 2λPL
πR2

L
exp ##2ð x# PxðtÞð Þ2 þ z # PzðtÞð Þ2Þ

R2
L

 !

(20)

Figure 3. Calculation of the laser heat flux. Only the laser
power that lies inside Ω (dotted lines) is considered.
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where PL is the laser power, λ is the laser absorption
efficiency, RL is the laser beam radius and P ¼ ðPx; PyÞ
is the laser position. Figure 3 shows a graphical repre-
sentation of the process to compute the input heat flux

390 associated to the energy provided by the laser.

3.4. Temperature-dependent material properties

This work considers that the material thermal proper-
ties ρ;C and κ depend on the temperature. This sec-
tion provides the framework to include this

395 consideration into the numerical scheme.
Recalling Equation (18), the component of the local

vector ehs at node a is:

ehsa ¼
X3

b¼1

eM s
ab

eθsb#
eθs#1

b

" #
þ Δt

X3

b¼1

eK s
abeθ

s
b;

a ¼ 1; 2; 3

(21)

The corresponding contribution to the tangent matrix
dR
dθs (Equation (17)) is given by:

@ehsa
@eθsc

¼eM s
ac þ

X3

b¼1

@eM s
ac

@eθsc
eθsb#

eθs#1
b

" #

þ Δt eK s
ac þ

X3

b¼1

@eK s
ac

@eθsc

e

θsb

 !

;

a; c ¼ 1; 2; 3

(22)

400 Recalling Equations (9) and (10):

@ehsa
@eθsc

¼eM s
ac

þ
X3

b¼1

ð

Ωe

@ðρCÞ
@eθsc

NaNbΔzdA
% &

eθsb#
eθs#1

b

" #
þ

Δt eK s
ac þ

X3

b¼1

ð

Ωe

X2

i¼1

@Na

@xi

@κ
@eθsc

@Nb

@xi
ΔzdA

 !e

θsb

 !

(23)

¼eM s
ac

þ
X3

b¼1

ð

Ωe
ρ
@C
@T

þ C
@ρ
@T

% &
NaNbNcΔzdA

% &
eθsb#

eθs#1
b

" #

þ

Δt eK s
ac þ

X3

b¼1

ð

Ωe

X2

i¼1

@Na

@xi

@κ
@T

Nc
@Nb

@xi
ΔzdA

 !e

θsb

 !

(24)

The present work uses numerical integration (Gauss
quadrature) to evaluate the integrals described above.

3.5. Phase change

The present work uses the equivalent specific heat
405method (Bergheau and Fortunier 2008) to model the

change of state (from solid to liquid and vice-versa). In
this approach, the phase change is modelled©by mod-
ifying the specific heat of the material C. The new
function is called the equivalent specific heat Ceq and

410it must add the energy of the latent heat of fusion L [J/
kg] into the specific heat of the material in the tem-
perature range T 2 ½Ts;Tl( where the phase change
occurs.

This work uses the following equivalent specific
415heat Ceq (Mayi et al. 2020) function:

CeqðTÞ ¼ CðTÞ þ 2Lffiffiffi
π

p
ΔT

exp # T # Tm

ΔT=2

% &2
 !

(25)

where Tm ¼ ðTs þ TlÞ=2 and ΔT ¼ Tl # Ts

3.6. Convection and radiation heat losses

This work considers heat losses due to convection and
radiation during the cladding process. Both radiation

420and convection are included into the model as flux
(Neumann) boundary conditions. The regions of the
domain subjected to heat loss considerations are the
top, left- and right-hand sides of the domain.

Given the convection coefficient hc and the ambient
425temperature T1, the convection heat loss is accounted

as qconv ¼ hc T # T1ð Þ. Using the interpolation of the
temperature (Equation (11)) along the edge with flux
boundary condition:

qconv ¼ hc
X2

b¼1

Nq
bðxÞ

eθbðtÞ # T1

 !
; (26)

Given the thermal emissivity ε and the Stefan-
430Boltzmann constant σ ) 5:67 * 10#8 [W/(m2 K4)],

the radiation heat loss is represented by
qrad ¼ εσ T4 # T4

1
" #

. Applying Equation (11) for the
temperature interpolation:

qrad ¼ εσ
X2

b¼1

Nq
bðxÞ

eθbðtÞ

 !4

# T4
1

 !

; (27)

To ease the readability of the Equations (28)–(31), one
435may drop the indices e and s of the components of the

vector of nodal temperatures eθs ¼ ½θ1; θ2(T of the
edge @Ωe

q subjected to radiation and convection.
Equation (13) is applied to calculate the local force

vector associated to the convection and radiation
440boundary conditions:

ef sconv ¼
Δz @Ωe

q

$$$
$$$hc

6
2 1
1 2

( )
θ1
θ2

( )
#
Δz @Ωe

q

$$$
$$$hc

2
T1
T1

( )

(28)
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ef srad ¼
Δz @Ωe

q

$$$
$$$εσ

30
5 4 3 2 1
1 2 3 4 5

( )
θ41
θ31θ2
θ21θ

2
2

θ1θ
3
2

θ42

2

66664

3

77775

#
Δz @Ωe

q

$$$
$$$hc

2
T4
1

T4
1

( )
(29)

The contributions of the radiation and convection to
the local tangent matrix are:

def sconv
deθs

¼
Δz @Ωe

q

$$$
$$$hc

6
2 1
1 2

( )
(30)

def srad
deθs

¼

Δz @Ωe
q

$$$
$$$εσ

30
5 4 3 2 1

1 2 3 4 5

( )
4θ31 0

3θ21θ2 θ31
2θ1θ

2
2 2θ21θ2

θ32 3θ1θ
2
2

0 4θ32

2

6666664

3

7777775

(31)

where @Ωe
q

$$$
$$$ is the length of the edge.

3.7. Material deposition

445 During the deposition stage, the shape of the bead is
induced by the distribution of powder particles deliv-
ered by the nozzle. The function f ðx; z; tÞ [kg/(mm2 s)]
represents the powder particle density projected by the
nozzle on top of the substrate. The present model

450 assumes f follows a Gaussian distribution:

f ðx; z; tÞ ¼ 2μ
πR2

L
exp

#2 x # PxðtÞð Þ2 þ z # PzðtÞð Þ2
" #

R2
L

 !

(32)

where μ is the material flow rate [kg/s] and PðtÞ ¼
ðPxðtÞ; PzðtÞÞ is the laser position at time t.

The height H [mm] at time t is given by:

Hðx; z; tÞ ¼ 1
ρp

ðt

0
f ðx; z; !Þd!: (33)

where ρp is the density of the cladding material
455 Given Equation (33), the height grow rate is

obtained:

@Hðx; z; tÞ
@t

¼ 1
ρp

f ðx; z; tÞ (34)

Equation (34) approximates the height change ΔH for
the given time increment Δt. Material is added if the
temperature on the top boundary is higher than the

460 melting point of the deposited material.

3.8. Remeshing strategy

In the implementation reported, there are two meshes:
substrate mesh and bead mesh. The substrate mesh
remains constant with respect to the time evolution.

465However, the substrate mesh variates with respect to
the space. The mesh is finer in the neighbourhoods©of
the laser impact point (Figure 4).

Figure 4. FEA mesh of the substrate.

Figure 5. Remeshing strategy. Workflow for the generation of
the bead mesh at every time step.
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The bead mesh, on the other hand, must be updated
at every time step. Figure 5 shows the proposed pro-

470 cedure to conduct the bead remeshing. A description
of this procedure follows

1. Calculation of the bead grow: Let Xtop ¼
x1; x2; . . . ; xT

* +
; xk 2 R ; be the x-coordinates of the

FEA nodes on top of the substrate (see Figure 6(a)).
475 Equation (34) is used to calculate the height grow ΔH

at z ¼ 0 for every xkðk ¼ 1; . . . ;TÞ. The information
required to execute this step is: (i) the nozzle position
P ¼ ðPx; PzÞ, (ii) the material feed rate μ [kg/s], (iii)
the powder particle distribution function f ðx; z; tÞ [kg/

480 (m2 s)], (iv) the density of the powder material ρp [kg/
m3] and (v) the time increment Δt [s].

2. Calculation of the top boundary of the bead:
LetMi ¼ ðVi;TiÞ, with Vi as the set of nodes and Ti as
the set of triangles, be the bead mesh at time step i.

485 Given the mesh Mi and the height grow ΔH, the
piecewise linear (PL) curve B ¼ b1; b2; . . . ; bM

, -
; bk 2

R2; that describes the top boundary of the new mesh
is calculated. The x-coordinate of every vertex bk ¼
ðbkx; bkyÞ 2 B belongs to Xtopðbkx 2 XtopÞ. Figure 6(b)

490 shows an example of the resulting PL curve B.
3. Generation of the FEA nodes: Let Viþ1 denote

the set of nodes of the bead mesh at time step iþ 1.
Firstly, Viþ1 contains the nodes of the previous mesh
Vi and the vertices of B

Viþ1 + Vi [ b1; . . . ; bM
* +

: (35)

495Given the goal edge length l [m], new nodes are
added to Viþ1 when: (i) the height grow is large
(ΔHðxk; z ¼ 0Þ> l) and (ii) the segments of B are
long (jjbkþ1 # bkjj> l), as shown in Figure 6(b).

4.Mesh generation: A meshM,
iþ1 ¼ ðViþ1;T,

iþ1Þ is
500generated using constrained Delaunay triangulation

(Carbonell, Rodrguez, and Oñate 2020; Rodriguez
et al. 2016). The constraints of the triangulation are
given by the edges of the bead boundary B. The trian-
gulation may contain spurious triangles that do not

505belong to the bead (see Figure 6(c)). These spurious
triangles are removed to produce the bead mesh for
time step iþ 1: Miþ1 ¼ ðViþ1;Tiþ1Þ, Tiþ1 - T,

iþ1, as
shown in Figure 6(d).

In this work, triangular elements are preferred over
510other topologies (e.g. quadrilateral) because they

straightforwardly adapt to the geometry of the grow-
ing bead. The quadrangular elements present singula-
rities when 2 nodes coincide, which is unavoidable in
corners whose geometry – topology is triangular.

5153.8.1. Evaluation of the remeshing strategy
The time complexity of the proposed remeshing
method is dictated by the time complexity of the
Delaunay triangulation. The time complexity of the
Delaunay triangulation is OðN logNÞ (Shewchuk

Figure 6. Graphical description of the stages of the remeshing strategy.
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520 1996; Engwirda 2014), where N is the number of
nodes in the triangulation. In this case, N corresponds
to the number of nodes in the bead mesh. Table 1
presents the time complexity of other relevant meth-
ods used for 2D FEA remeshing: (i) advancing-front

525 methods, (ii) Delaunay-based methods, (iii) Laplacian
smoothing and (iv) spring-based smoothing. Methods
(i)-(ii) are pure meshing procedures while methods
(iii)-(iv) are smoothing procedures used in the context
of remeshing.

530 The proposed remeshing method has the same time
complexity (OðN logNÞ) as the other two pure mesh-
ing methods. Smoothing methods, on the other hand,
have lower time complexity (OðNÞ) but produce lower
quality meshes (Engwirda 2014).

535 The proposed approach avoids nodes removal or
node repositioning. It is advantageous compared to
other remeshing approaches because (i) it is confined
to the bead domain alone and (ii) the temperature field
must not be re-computed when the bead mesh is

540 updated. Since nodes are not repositioned, the repre-
sentation of the deposited material requires additional
nodes. Therefore, the number of nodes in the bead
mesh increases at every time step, which leads to
higher simulation time at every time step.

545 3.9. Material properties for the computational
simulations

Cordovilla et al. (2019) executed several LMD experi-
ments with an IPG Photonics YLS-6000 fibre©laser of
wavelength 900 nm. Cordovilla et al. (2019) used S355

550carbon steel as substrate and AISI 316L stainless steel as
cladding material. These same materials were used for
the numerical simulations. The physical properties of
S355 and AISI 316L are listed in Table 2. The thermal
conductivity κ and specific heat C are considered as

555functions of the temperature (Zhu, Khurshid, and
Barsoum 2019; Mills 2002), as shown in Figure 7(a,b).
The equivalent specific heat is calculated using Equation
(25). The resulting functions are shown in Figure 7(c).
In order to compare the numerical results with the

560experimental results in Cordovilla et al. (2019), the
simulations use the same domain size and process para-
meters reported in (Cordovilla et al. 2019).

4. Results

Regarding LMD simulation, the present implementa-
565tion computes the time history of bead geometry and

temperature field as well as the substrate temperature
field. These computations are carried out in a substrate
cross cut Δx * Δy (with thickness Δz) which is normal
to the laser velocity (vz). The powder feed μ, laser

Table 1. Meshing and remeshing methods. Time complexity.
Method Time complexity Advantages Limitations

Proposed method OðN logNÞ (Shewchuk 1996,
Engwirda 2014)

(i) Good mesh quality and (ii) avoids
temperature re-computing

High computational cost

Advancing-front
method

OðN logNÞ (Engwirda 2014) Very good mesh quality Requires temperature re-computing

Delaunay-based
method

OðN logNÞ (Engwirda 2014) Very good mesh quality Requires temperature re-computing

Laplacian smoothing
method

OðNÞ (Sorkine et al. 2004) Computational efficient (i) Mesh quality is compromised and (ii) requires
temperature re-computing

Spring-based
smoothing method

OðNÞ (Bakhshi 2018) Computational efficient (i) Mesh quality is compromised and (ii) requires
temperature re-computing
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Figure 7. Material properties of the substrate material (S355) and cladding material (AISI 316L). Figures built using the data in
References (Zhu, Khurshid, and Barsoum 2019; Mills 2002).

Table 2. Material properties of the substrate material (S355)
(Zhu, Khurshid, and Barsoum 2019) and cladding material (AISI
316L) (Mills 2002) used in the numerical simulations.
Property S355 AISI 316L

Density ρ 7840 kg/m3 7950 kg/m3

Thermal conductivity κ See Figure 7(a) See Figure 7(a)
Specific heat Cp See Figure 7(b) See Figure 7(b)
Latent heat of fusion L 2:7 * 104 J/K 2:7 * 104 J/K
Solidus temperature Ts 1673 K 1658 K
Liquidus temperature Tl 1778 K 1723 K
Melting point Tm 1725:5 K 1690:5 K
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570 power PL and laser cruise speed vz are constant during
the simulation. The parameters used in the numerical
simulation are listed in Table 3. The time increment Δt
between time steps was constant during the simula-
tion. This parameter was empirically set to guarantee

575 the convergence of the Newton-Raphson method, and
to avoid abrupt changes in the geometry and tempera-
ture of the domain.

Figure 4 displays the FEA mesh of the substrate
domain, which remained constant along the time-

580 axis simulation. The mesh presents increased levels

of detail in the neighbourhoods©receiving the metal
powder and the laser impact. Preliminary simulations
without considering material addition were conducted
to determine the size of the FEA elements. The sub-

585strate mesh used for LMD simulation shown in
Figure 4 has 17213 triangular elements. The average
edge length in the most detailed zone is 0:05 mm,
which is in concordance with the values reported in
the literature (Ya, Pathiraj, and Liu 2016; Tian et al.

5902019). The aspect ratio is lower than 2 for 98% of the
triangles, and lower than 3 for 100% of the triangles.
Thus, this substrate mesh presents very good quality.

4.1. Computational results

The implementation of the FEM, Newton-Raphson
595and material deposition model was executed in

MATLAB. Figure 8(a–f) show the evolution of the
bead geometry in the time interval that the laser spot
requires to engage, to heat and to leave behind the
relevant cross section. In this simulation, the deposi-

600tion takes place from the time in which the substrate
reaches the material melting point (circa t ¼ 12Δ).

Figure 8(f) depicts the final shape of the domain.
The FEA mesh of the final domain has 21862 trian-
gular elements. Almost all the triangles in the FEA

Table 3. Domain size and process parameters used for the
numerical simulations.
Parameter Value

Width (size in X) of the substrate Δx 30 mm
Height (size in Y) of the substrate Δy 10 mm
Thickness of the domain Δz 4:6 mm
Laser power 2800 W
Laser absorption efficiency λ 0:6
Laser radius RL 2:3 mm
Laser speed vz 10 mm/s
Powder flow rate μ 0:3 * 10#3 kg/s
Initial position of the laser ½0; 0;#4:6(
Ambient temperature T1 300 K
Convection coefficient hc 20 W/(m2 K)
Emissivity ε 0:5
Total simulation time 2:44 s
Number of time steps 90
Time increment (Δt) 0:027 s

(a) Bead shape at t = 0.  Triangles with aspect ratio
< 3: 100%. 

(c) Bead shape at t = 16∆t. Triangles with aspect ratio
< 3: 100%. 

(e) Bead shape at t = 22∆t. Triangles with aspect ratio
< 3: 100%. 

(b) Bead shape at t = 13∆t. Triangles with aspect ratio
< 3: 100%. 

(d) Bead shape at t = 19∆t. Triangles with aspect ratio
< 3: 100%. 

(f) Bead shape at t = 25∆t. Triangles with aspect ratio
< 3: 99.97%.

Figure 8. Evolution of the shape of the bead during deposition. Finer mesh resolution in the deposition region.
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605 mesh had aspect ratio lower than 3 at all times in the
simulation. In particular, in the final mesh 98:20% and
99:97% of the triangles have aspect ratio lower than 2
and 3, respectively.

Figure 8(f) shows that the final bead height and
610 width are 1:22 mm and 3:68 mm, respectively. For

a physical experiment with the same materials and
conditions of this simulation, Ref. (Cordovilla et al.
2019) reported a bead height of 1:067 mm and a bead
width of 4:697 mm. Figure 9 shows a graphical scheme

615 of the geometrical involved in the comparison
between the numerical and experimental results in
(Cordovilla et al. 2019). The relative errors between

the simulated and the experimental (Cordovilla et al.
2019) bead height and width are 14:4% and 21:7%,

620respectively.
Figure 10(a–i) depict the substrate and bead tem-

perature fields. While the laser energy is being deliv-
ered at this particular cross section, the highest
temperature appears at the top of the bead. This

625trend is expected, as this neighbourhood©directly
receives the molten metal and the laser energy.
Figure 10(f–i) correspond to the metal dispenser noz-
zle no longer delivering energy or material at this
particular cross section. Between t ¼ 25Δt (Figure 10

630(f)) and t ¼ 34Δt (Figure 10(i)), the temperature of the
bead decreases whereas the temperature in the sub-
strate does not suffer large variations.

Figure 11 displays the temperature history at four
locations: (1) the top point of the bead, (2) the top of

635the substrate, (3) 0:3 mm depth in the substrate and
(4) 0:6 mm depth in the substrate. The top of the bead
and the top of the substrate coincide until the start of
the deposition. The temperature of the substrate
increases rapidly while it interacts directly with the

640laser. It stabilises©during the deposition stage and
decreases once the bead cools down. The results of
the simulation show that 0:6 mm is the largest depth at

Figure 9. Sketch on the semantics of the geometrical para-
meters in Ref. (Cordovilla et al. 2019). (Contains typical names
used in the related literature).

Figure 10. Temperature field of the cladding zone during deposition.
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which the substrate melts. Experimentally, Ref. (Ravi
et al. 2013) reports a melting depth of 0:36 mm. This

645 discrepancy is discussed in Section 4.2.
The temperature of the top of the bead increases in

the presence of the laser and quickly decreases in the
absence of it. The heat in the bead dissipates due to (1)
conduction to the substrate, and (2) radiation and

650 convection. The temperature plateau registered at the
top of the bead around Tm ¼ 1690:5 K corresponds to
a phase change. An amount of energy is released by the
system due to the solidification of the powder while
temperature remains constant. The maximum tem-

655 perature is close to 4000 K. Other numerical simula-
tions report similar temperature values for stainless
steel under comparable ratios of power per powder
deposition rate (Ya, Pathiraj, and Liu 2016).

4.2. Discussion

660 This section discusses the discrepancies between the
numerical predictions of the non-linear 2.5D implemen-
tation reported here and experimental work by other
investigators. The comparison is carried out with respect
to Ref. (Cordovilla et al. 2019). It represents, with this

665 manuscript, two prongs of a common initiative.
An important remark about experimental measure-

ments in LMD is that direct temperature measure-
ment is not feasible within the bead and substrate
and very difficult on the bead surface at the melting

670 time. Experimental investigations resort to the after-
process cross-sectioning of the bead and substrate and
indirect inference of the temperatures reached by
observation of the metal micro-structures (Chua,
Ahn, and Moon 2017; Tang et al. 2020).

675 There are several experimental effects that are not
accounted for in the in-house non-linear FEA
implementation:

1. An important portion (near 50%) of the powder
metal delivered by the nozzle and heated by the laser

680 does not reach the bead and deforms the space

distribution of the powder and power input (Ya,
Pathiraj, and Liu 2016; Pinkerton 2015). The present
implementation does not consider this effect, therefore
over-estimating the power input in the energy balance.

685A consequence of this neglect is the over-estimation of
molten depth (67% error) and bead temperature.

2. A significant portion of the laser power is lost to
the environment by direct radiation, convection, and
reflection by the powder.

6903. Metal powder vaporisation©produces mass and
energy losses. Proposals have been published (Bayat
et al. 2021; Gu and Li 2019; Song et al. 2020) to
account for such losses in LMD and AM (e.g. powder
bed fusion). Required parameters include vaporisation©

695rate, boiling point and latent heat of vaporisation©.
4. Molten powder fluid dynamics transforms part of

the thermal energy in fluid friction. Parameters required
include molten metal viscosity and surface tension.

The present implementation uses two 2D radial
700Gaussian distributions, mathematically defined in

a plane ðx; zÞ parallel to the substrate surface: (i)
laser power and (ii) metal powder distribution. The
experiments show that the Gaussian distributions
incorrectly emphasise©power and powder deliver at

705the laser axis, thus predicting a sharper deposition
(i.e. smaller spot). In reality, the bead height is lower
and the bead extent is wider than in the prediction.
This result is also influenced by effect (1) above.

The absorption coefficient ðλÞ in the literature
710(Arrizubieta et al. 2017; Tian et al. 2019; Stender et al.

2018) expresses the portion of the laser power actually
delivered to the bead-substrate domain. This para-
meters must be calibrated via experimentation.
Likewise, all of the effects mentioned above imply the

715use of new experimentally calibrated parameters. This
manuscript does not intend to contribute in this realm.

Table 4 summarises©the numerical and experimen-
tal results for the bead height, bead width and melting
depth. The relative error in Table 4 measures the

720deviation of the numerical result with respect to the

Figure 11. Temperature history at the top of the bead and substrate depths 0 mm, 0:3 mm and 0:6 mm.
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experimental result. The error in the estimation of the
melting depth is related to an over-estimation of the
temperature field during simulation. The causes for
the temperature over-estimation and bead width

725 under-estimation are the ones discussed above.

5. Conclusions

This manuscript presents the implementation of
a nonlinear thermal simulation to model the Laser
Metal Deposition (LMD) process. The implementation

730 considers temperature-dependent material properties,
phase change, radiation and convection. The energy of
the laser is represented as an energy flux boundary
condition. The manuscript details the mathematical
derivation of the FEM implementation. The nonlinear

735 iterations inherent to each particular time step are exe-
cuted using the Newton-Raphson method. The non-
linear FEM implementation is written for triangular 2D-
plus-thickness elements. The LMD model is dictated by
the delivery rate of powder (feed rate μ [kg/s]) and its

740 associated Gaussian function of the radii from the noz-
zle axis. The model does not assume a particular geo-
metry (parabolic, circular, sinusoidal, etc.) for the bead
cross-section, as some previous works do.

Computer simulations are conducted using mate-
745 rial and process parameters whose experimental coun-

terpart is already reported in Ref (Ravi et al. 2013). The
results show reasonable accuracy to predict bead geo-
metry (width error 15%, height error 22%). The model
over-estimates the temperature at the domain and the

750 maximal depth, in the substrate, at which melting
occurs. The absorption coefficient (λ), which expresses
the portion of the laser power input to the bead-
substrate domain requires further investigation. It is
affected by phenomena not yet understood or even

755 identified. It is not the intention or capacity of this
manuscript to contribute in this realm. Future work is
also needed to account for the particle (thermo)
dynamics over the substrate, responsible for
a significant material and energy waste.

760

Glossary

AM
Additive manufacturing.

765
FEA
Finite element analysis.

FEM
770Finite element method.

LMD
Laser metal deposition.

775PL
Piecewise linear.

Ω - R2

2D-plus-thickness FEA domain.
780

@Ω
1D border of domain Ω.

M ¼ ðV;TÞ
785FEA triangular mesh defined by the set of nodes V and the

set of triangles T.

Δz 2 R
Thickness of the domain Ω [mm]

790
Δt 2 R
Time increment for the FEM simulation [s]

Tðx; tÞ : R2 * R ! R
795Temperature at x 2 Ω in the instant t [K]

Thðx; tÞ : R2 * R ! R
Approximated temperature function at x 2 Ω in the instant
t [K]. It is the result given by the finite element method.

800
θðtÞ : R ! RNnodes

Global vector of nodal temperatures at time t [K].

θs 2 RNnodes

805Global vector of nodal temperatures at time ts [K].

θs;k 2 RNnodes

Global vector of nodal temperatures at time ts and iteration
k in the Newton-Raphson scheme [K].

810
M ðx; tÞ : R2 * R ! RNnodes * RNnodes

Global mass matrix in the FEM formulation [J/K].

M sðx; tÞ : R2 * R ! RNnodes * RNnodes

815Global mass matrix at time ts [J/K].

K ðx; tÞ : R2 * R ! RNnodes * RNnodes

Global conductivity matrix in the FEM formulation [W/K].

820K sðx; tÞ : R2 * R ! RNnodes * RNnodes

Global conductivity matrix at time ts [J/K].

fðx; tÞ : R2 * R ! RNnodes

Global force vector in the FEM formulation [W].
825

fsðx; tÞ : R2 * R ! RNnodes

Global force vector at time ts [W].

Table 4. Comparison between the numerical simulation and
the experimental results reported in Ref. (Cordovilla et al.
2019).
Parameter Numerical result Experimental result Relative error

Bead height 1:22 mm 3:68 mm 14:4%
Bead width 1:067 mm 4:697 mm 21:7%
Melting depth 0:6 mm 0:36 mm 66:7%
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T0ðxÞ : R2 ! R
830 Initial (at t ¼ 0) temperature at x [K]

Tðx; tÞ : R2 * R ! R
Temperature function at the region with Dirichlet boundary
conditions [K]

835
qðx; tÞ : R2 * R ! R
Heat flux function at the region with Neumann boundary
conditions [W/m2]

840 R
System of nonlinear equations associated to the semi-
discrete FEM formulation.

qðx; tÞ : R2 * R ! R2

845 Heat flux into or out of the medium at x 2 Ω at time t [W/
m2]

sðx; tÞ : R2 * R ! R
Volumetric heat sources at x 2 Ω in the instant t [W/m3]

850
nðxÞ : R2 ! R2

Outward unit normal to the boundary at x 2 Ω

ρðTÞ : R ! R
855 Density of the material [kg/m3] as a function of the

temperature.

κðTÞ : R ! R
Thermal conductivity of the material [W/(m K)] as

860 a function of the temperature.

CðTÞ : R ! R
Specific heat capacity of the material [J/(kg K)] as function
of the temperature.

865
CeqðTÞ : R ! R
Equivalent specific heat capacity of the material [J/(kg K)],
used to incorporate phase change into the simulation.

870 N1ð!; ηÞ;N2ð!; ηÞ;N3ð!; ηÞ : R2 ! R
Shape functions in the FEM formulation for 3-node trian-
gular elements. Interpolation functions inside the triangular
elements.

875 Nq
1ð!Þ;N

q
2ð!Þ : R ! R

Shape functions in the FEM formulation for the edges of
3-node triangular elements. Interpolation functions along
the edges with Neumann boundary conditions.

880 Iðx; z; tÞ : R2 * R ! R
Laser energy intensity distribution [W/mm2]

PL 2 R
Laser nominal power [W]

885
RL 2 R
Laser beam radius [W]

½Ts;Tl( - R
890 Melting range of the material [K].

μ 2 R
Material flow rate [kg/s]

895f ðx; z; tÞ : R2 * R ! R
Powder particle distribution projected by the nozzle onto
the substrate at time t [kg/(mm2 s)].

Hðx; z; tÞ : R2 * R ! R
900Height of the bead at time t [mm].

L 2 R
Latent heat of fusion [J/kg].

905hc 2 R
Convection coefficient [W/(m2 K)].

ε 2 R
Material thermal emissivity.

910
σ 2 R
Stefan-Boltzmann constant [W/(m2 K4)].

T1 2 R
915Ambient temperature [K].
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