

©2022 Universidad EAFIT. All rights reserved.

Universidad EAFIT

Thesis of Master in Science

Compendium on:

Computational Geometry Application in
Dimensional Assessment and Boundary

Elements

Master Student
Cristian Camilo Rendón Cardona

Supervisor
Prof. Dr. Ing. Oscar E. Ruiz Salguero

Laboratory of CAD CAM CAE
Universidad EAFIT

Co-supervisor
Dr. Ing. Jorge Eduardo Correa Panesso

Industry and Cloud Computing in Computer Graphics
Manufactura Cohesiva S.A.S.

Dissertation
Submitted in partial fulfillment of the requirements for the degree of Master of Engineering in the
College of Engineering of Universidad EAFIT. This thesis results from joint research collaboration

between Universidad EAFIT (Colombia) and Manufactura Cohesiva S.A.S.(Colombia).

UNIVERSIDAD EAFIT
COLLEGE OF ENGINEERING

MASTER PROGRAM IN ENGINEERING
MEDELLIN, COLOMBIA

JULY 2022

Dedication

To my friends and family.

i

Acknowledgments

Keep Ithaca always in your mind.
Arriving there is what you’re destined for.
But don’t hurry the journey at all. Better
if it lasts for years, so you’re old by the
time you reach the island, wealthy with
all you’ve gained on the way, not
expecting Ithaca to make you rich. Ithaca
gave you the marvelous journey. Without
her you wouldn’t have set out. She has
nothing left to give you now.

Constantine Peter Cavafy, 1911.
Translated by Edmud Keeley

To my mother, my father, and my sister: the people in my life that have always supported me.
Without you and your love, this would not have been possible.

I want to express my gratitude to Prof. Dr. Ing. Oscar Ruiz Salguero for his guidance, patience,
compromise, and constant attention. For making me not only a better professional but also, a better
human being.

I am grateful to Dr. Jorge Correa, it has been a honor to work with you and I hope we keep
creating incredible technology together.

I am sincerely thankful to Universidad EAFIT and Manufactura Cohesiva for helping and pro-
viding the funding for my research and my studies.

I am grateful to the whole team of Laboratory of CAD CAM CAE. Thank you for your friend-
ship, help, and humor. All of you are marvelous people and deserve the best.

ii

Contents

1 Introduction 1
1.1 Summary of Manuscripts . 1
1.2 List of Co-authors of this Compendium 2
1.3 Projects . 2
1.4 Distinctions . 3
1.5 Academic Impact . 3
1.6 How to Read this Document 5

2 Analytic Form Fitting 6
2.1 Introduction . 7

2.1.1 Research Target. 7
2.1.2 Context. 7

2.2 Literature Review . 8
2.2.1 Stochastic Methods . 8
2.2.2 Mapping to Parameter Space 9
2.2.3 Mesh Segmentation Fitting Methods 9
2.2.4 Conclusions of Literature Review 9

2.3 Methodology. 10
2.3.1 Preprocessing . 12

Spatial Hashing . 12
Boundary Representation Construction 16

2.3.2 Primitive Fitting from Triangle Set. 18
Cylinder Fitting . 18
Cone Fitting . 21
Sphere Fitting . 23
Conclusions of Fitting Section . 24

2.3.3 Extraction of Subset S Based on Dihedral Angle 24
2.3.4 Extraction of Subset S Based on Fitting Quality 26

Fitting-Based Extraction of Cylinders and Cones 30
Fitting-Based Extraction of Spheres 32

2.4 Results . 32
2.4.1 Cylinder Fitting . 33
2.4.2 Cone Fitting . 36
2.4.3 Sphere Fitting . 37
2.4.4 Comparison with Competitor Approaches 39
2.4.5 Complexity . 44

iv

2.4.6 Reduction in Computing Time by Using Hashing 45
2.5 Conclusions and Future Work 45

3 BEM Singularities for Fluid Dynamics 48
3.1 Introduction . 50

3.1.1 Problem Specification . 50
3.2 Literature Review . 51

3.2.1 Conclusions of Literature Review 52
3.3 Methodology. 52

3.3.1 Domain Layout . 52
3.3.2 Governing Equations . 53
3.3.3 Continuous Formulation of the BEM Integral Equation 54

Green Functions . 54
3.3.4 Numerical Implementation 55

Spatial Discretization . 55
Discretized BEM Equation . 56

3.3.5 Integral Approaches . 57
Boundary and Surface Elements Non-singular and Singular Situations 57
Non-singular Boundary and Surface Integrals 58
Singular Boundary Integrals . 59
Singular Surface Integrals . 62
Transformations to the Real Elements for Boundary and Surface Analytic Integrals . 63
Influence Matrices Assembly . 65

3.3.6 System of Equations . 66
3.3.7 Iterative Process . 67

3.4 Results . 67
3.4.1 Numerical Examples . 67
3.4.2 Integral Coefficients Results for Green Functions Gij(X − ξ) and Fij(X − ξ). 72

3.5 Conclusions and Future Work 74

4 Conclusions 76

Bibliography 78

v

List of Figures

2.1 Overall primitive extraction process. 11
2.2 Fitting process. Left (red) block: segmentation/fitting decoupled. Real-time identi-

fication of g(). Right (blue) block: codependent segmentation and fitting. 12
2.3 (a) Bounding box and (b) rectangular voxel subdivision. 13
2.4 Spatial hashing preprocessing. The hashing is executed before the fitting process

starts. 15
2.5 Input triangle set M with inconsistent FACE orientation. Output B-Rep of M .

(a) and (b) displayed with culling based on the triangle orientations. 17
2.6 Result of border identification in the triangle set. (a) and (b) present the identified

border of the triangle set after weaving the B-Rep. 18
2.7 p0 calculation with the intersection of lines [bi, ni] whose directions are triangle nor-

mal vectors ni and pass through triangle baricenters bi. 19
2.8 Set of points Cp approximating the cylinder axis. 20
2.9 Cylinder fitting. Coplanar circular set of tips of cylinder normal unitary vectors,

applied at origin. v̂: direction of minimal dispersion of disk d, cylinder axis direction. 21
2.10 Cone fitting. Dual cone formed with Origin as apex. Unitary vectors normal to S are

generatrices for the dual cone. Origin-located tails of ni vectors normal to triangles
ti at Origin. Normal vector tips contained in a plane form a flat disk d. Minimal
dispersion direction (principal component analysis) of disk d is the direction of cone
axis v̂. 22

2.11 Cone 2D example. Vectors ei point to pv and are perpendicular to ni. 23
2.12 Dihedral angle equivalence Eα(). ∠(n1, n2) → 0 and Eα(t1, t2) (blue equivalence

class). ∠(n1, n3) > αmax and t3 (red) is outside the equivalence class (blue) of t1
and t2. 25

2.13 Algorithm for simultaneous fitting of g() and extraction of g() support subset S. . . 27
2.14 Expansion of box/process “select candidate triangle from B(S)” from Figure 2.13. . 29
2.15 S immaturity function w(). w → 1: S is immature set, with few triangles (NS → 0).

w → 0: S is mature set, with many triangles (NS > NT). NT = threshold in
number of triangles to consider g() as stable analytic form. 30

2.16 Rigid mapping M of local tangent plane of a ruled surface S onto the XY plane for
the purpose of computing maximal and minimal curvature directions on S. 31

2.17 Red: user input seed triangle (C(ts, 0)). Blue: topological circle C(ts, 2). White:
topological circle C(t, 1). Red + White + Blue: topological ball B(ts, 2). The initial
guess for the analytic form g() is computed with C(ts, 0) ∪ C(ts, 2). 32

2.18 Step-wise execution of the S extraction g() fitting algorithm, applied to a cone which
does not accept S extraction based on dihedral angles. 33

vi

2.19 Cylinder fit. S extraction based on dihedral angles. Pink: extracted S support
subset. Yellow: fitted g(). 34

2.20 Cylinder fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g(). 35

2.21 Test 1. Cone fitting test using dihedral angle-based extraction. Pink: segmentation.
Yellow: cone fitting. 36

2.22 Cone Fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g(). 37

2.23 Sphere fitting using dihedral angle-based extraction. Pink: segmented sphere. Yel-
low: fitted sphere. Notice that S = M . 38

2.24 Sphere fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g(). The process leaves out of S few sphere triangles at the C1 border with
M−S. However, it succeeds in rejecting inclusion in S of triangles actually belonging
to the cylinder. 39

2.25 Execution times for B-Rep construction with and without previous spatial hashing. 45

3.1 BEP domain layout. Ω = R ∪B. 53
3.2 Block diagram for the general process to achieve a numerical solution for B̃EP . f :

Flow conditions variables. 55
3.3 Boundary (left) and surface (right) elements. 56
3.4 Boundary (S) ξ and X elements positions for boundary integrals. Surface (S) is the

relevant non-linear convection zone. 58
3.5 Surface (S) ξ and X elements positions for surface integrals. Integral evaluation cases

for the calculation of σo between iterations. 58
3.6 Analytic integration over the singular element m (see Fig. 3.4 (b)) ξ = Xm. Canon-

ical coordinate system. Integrating for U1 ∈ [−l/2 → l/2] in local canonical coordi-
nates. Scenario (subFig. (a)) of our contribution. 60

3.7 General integration case for region S. Singularity occurs when i = j (triangles il and
j l coincide) and points ξ and X are coincident (~r = 0). 62

3.8 Canonical element (axis U1, U2). Domain for the analytic integration of
∂Gij(X−ξ)

∂Uk
.

Scenario of our contribution. 62
3.9 Boundary element in canonical and real orientation. Canonical (U1 U2) and real (x y)

coordinate systems. 64
3.10 Transformation from canonical element (right) to mesh element (left). 64
3.11 Matrix G composition. Block matrix representation. Results from boundary inte-

gration of G(X − ξ). ξ and X placed in B. 65
3.12 Matrix D composition. Block matrix representation. Results from surface integra-

tion of ∂G(X−ξ)
∂x . ξ and X placed in S. 66

3.13 System of equations (Eq. 3.34). Known Boundary Conditions (green). Unknown
Boundary Conditions (red). M: Total number of boundary B elements. L: Total
number of surface S cells. 66

3.14 Indication of the angle of attack for the airfoils. 68
3.15 Mesh of airfoil at 0◦ angle of attack. 69
3.16 Mesh of airfoil at 3◦ angle of attack. 69
3.17 Mesh of 0.5m radius circle. 2000 boundary elements. 7866 cell elements. 70
3.18 Mesh of 0.2m side square. 2001 boundary elements. 4445 cell elements. 70

vii

3.19 Mesh of ellipse. 2000 boundary elements. 11976 cell elements. 71
3.20 Elbow flow mesh. 448 boundary elements. 7732 cell elements. 71
3.21 Selected neighbourhoods normals for Figs. 3.22 and 3.23. 72
3.22 Analytic and numerical results for the integrals of Green function G. Airfoil at 0◦

angle of attack (mesh in fig 3.15). A: Result of analytic integration for singular
case in the boundary. B: C0 Discontinuity produced by neighbourhood with strong
normal changes. 73

3.23 Analytic and numerical results for the integrals of Green function F. Airfoil at 0◦

angle of attack (mesh in fig 3.15). A: Result of analytic integration for singular
case in the boundary. B: C0 Discontinuity produced by neighbourhood with strong
normal changes. 74

viii

List of Tables

1.1 List of manuscripts related to this Master Thesis. 2
1.2 Co-authors of this compendium. 2
1.3 Universities acceptance of the student. 3
1.4 Informatics and industrial abilities . 4
1.5 Relevant Courses . 4

2.1 Competitor approaches vs. current approach. 10
2.2 VERTEX table. 16
2.3 FACE table constructed from B-Rep. 16
2.4 EDGE table. If counter-EDGE cell is empty, indicates border. 16
2.5 BORDER table. 16
2.6 Cylinder fit. Set vs. found parameters. Tests 1–4: S extraction based on dihedral

angles. Tests 5–6: Fitting-based S extraction. 36
2.7 Cone fit. Set vs. found parameters. Test 1: S extraction based on dihedral angles.

Test 2: fitting-based S extraction. 37
2.8 SPHERE Fit. Set vs. found parameters. Test 1: S extraction based on dihedral

angles. Test 2: fitting-based S extraction. 39
2.9 Test with reference datasets of competitor approaches. 39
2.10 Complexities of existing approaches and of our algorithm (n is the number of points or

triangles of the input set). ∗ Obtaining initial guess of g(). ∗∗ Applying optimization
to g(). † Segmentation and fitting are codependent. 44

3.2 Different approaches and our contribution . 52
3.3 Terms description for the Discretized BEM equation. T : Time units, L: Distance

units, M : Mass units. 57
3.4 Results for singular surface integrals of

∂Gij

∂Uk
. Results for canonical element (see Fig.

3.8). SymPy [1] used for integral evaluation. 63
3.5 Flow conditions. Fluid properties. V1: free flow velocity in x direction. V2: free flow

velocity in y direction. 72

ix

1
Introduction

Computational geometry plays a crucial role in digital manufacturing. Two-manifold representation
of manufacturing elements presents several challenges. In many cases, the mesh conditioning of 3D
surfaces produces massive datasets which are complex and slow to process. Digital collaborative
environments require rapid and reliable technologies for detecting features and analytic forms in
different datasets. Therefore, special interest is placed on heterogeneous and anisotropic statistically
poor triangular meshes.

The Fluid Dynamics problem has always been a field of interest and research, providing numer-
ous ways to predict it. Numerical simulations are one of the most common for the simulation of
complex flows. The Boundary Element Method (BEM) is a broad method that can be applied to
such a field. The BEM equations present singularities on their integrals that must be addressed.

This work presents a compilation of different contributions to the problems stated in this in-
troduction. Sections 1.1 and 1.2 summarize the articles included in this compendium and list all
the co-authors associated to each manuscript. Section 1.3 summarizes the industrial and academic
research projects associated with the Master Thesis. Section 1.4 reports the distinctions of the
student during his Master Thesis. Finally, Section 1.6 explains to the reader how to follow this
document.

1.1 Summary of Manuscripts

In Table 1.1 are listed the published and submitted articles with their respective authorship and
bibliographic information.

1

Table 1.1: List of manuscripts related to this Master Thesis.

Item Bibliographic Information Type /
Status

1 Cristian Rendon-Cardona, Jorge Correa, Diego A. Acosta, Os-
car Ruiz-Salguero. Algorithms, p-ISSN: 1999-4893, volume 14,
issue 11, Publisher MDPI. url= https://www.mdpi.com/1999-
4893/14/11/304, DOI: https://doi.org/10.3390/
a14110304, Received: 10 July 2021; Published: 22 October 2021. In-
dexed in Scopus (Q2), Scimago (Q3), Publindex (B).

Journal
Article
/ Pub-
lished.

2 Samuel Velez-Sanin, Cristian Rendon-Cardona, Juan
Diego-Jaramillo, Nicolás Guaŕın Zapata, Oscar Ruiz
Salguero. Computation, ISSN: 2079-3197, Journal webpage:
https://www.mdpi.com/journal/computation/about.

Submitted
to Jour-
nal.

1.2 List of Co-authors of this Compendium

The names and affiliations of the co-author of the articles presented in this compendium are listed
in Table 1.2.

Table 1.2: Co-authors of this compendium.

Name Affiliation
Prof. Dr. Eng. Diego Andrés
Acosta Maya

Process Development and Design Research Group
(DDP), Universidad EAFIT, Colombia

Dr. Eng. Jorge Eduardo Cor-
rea Panesso

Manufactura Cohesiva S.A.S., Medelĺın, Colombia

Eng. Samuel Vélez-Sanin Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia

Eng. Cristian Rendon-Cardona Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia

Prof. Dr. Eng. Juan Diego-
Jaramillo

Applied Mechanics Laboratory, Universidad EAFIT,
Colombia

Dr. Eng. Nicolás Guaŕın Zap-
ata

Applied Mechanics Laboratory, Universidad EAFIT,
Colombia

Prof. Dr. Eng. Oscar Ruiz
Salguero

Laboratory of CAD CAM CAE, Universidad EAFIT,
Colombia

1.3 Projects

The student executed the previously cited research in the context of industrial projects hosted by
Manufactura Cohesiva S.A.S. The student was granted an 24-month research internship at Cohe-
siva in the context of the colaboration agreement between Manufactura Cohesiva and Universidad
EAFIT for Master and PhD students. Part of this work is product of research conducted by the
student during his undergraduate studies. The student participated in the following projects:

2

1. Project: COHESIVE VIEWER 2020-2021: development a rapid algorithm for segmen-
tation of triangular meshes representing 2-manifolds. Institutions: Manufactura Cohesiva,
Colombia; Laboratory of CAD CAM CAE, Universidad EAFIT, Colombia.

2. Boundary Element Method: implementation of the equations that tackle the boundary
element problem in the field of Fluid Dynamics. Institutions: Laboratory of CAD CAM CAE,
Universidad EAFIT, Colombia.

1.4 Distinctions

The following table presents a list of the universities where the student was accepted to continue his
postgraduate studies. The acceptances were possible due to the abilities acquired by the student
during his master’s and the industrial internship.

Table 1.3: Universities acceptance of the student.

University Level of Education Date
Southern University of Den-
mark

Posgraduate Program April 23rd 2021

Chalmers University of Tech-
nology

Posgraudate Program April 7th 2022

University of Illinois at
Urbana-Champaign

Postgraduate Program April 17th 2020

University Paris-Saclay PhD Program June 17th 2022

1.5 Academic Impact

The table below lists the industrial and informatics abilities acquired by the effect of the master
and the industrial internship.

3

Table 1.4: Informatics and industrial abilities

Abilities Period Description
Computational geometry for
web technologies

August 2020 - June 2022 Development of computer
graphics technologies applied
in the web and cloud com-
puting industry.

Servers security protocols February 2021 - November
2021

Implementation servers pro-
tocol https and configura-
tion of endpoints to effec-
tively communicate with web
applications.

Data structures and algo-
rithms

November 2020 - June 2022 Necessary for all projects

Computational simulations August 2021 - June 2022 Development of an engine for
simulation of human-cloth in-
teractions.

Table 1.5 presents the courses that provided the student with the necessary tools and knowledge
to conduct the research projects.

Table 1.5: Relevant Courses

Course Semester
IM0242 Introduction to CAD CAM
Systems∗

2017-1

IC0916 Introduction to the Boundary Ele-
ment Method

2020-1

IC0717 Introduction to the Finite Ele-
ments Method

2020-1

IC0896 Mechanics of Advanced Continu-
ous Media

2020-1

IC0920 Advanced Mathematics for Engi-
neers

2020-1

IM0904 Optimization Techniques 2020-2
IM0912 Numerical Solution of Differential
Equations

2020-2

IM0603 Geometric Modeling 2021-1
EI0813 Academic Writing and Research
Skills

2021-1

ST1004 Interactive Visualization of Point
Clouds

2021-2

∗Although the IM0242 course was completed during the undergraduate studies of the student, it
established the basis in computational geometry, programming and computer science for his master
and the industrial internship.

4

1.6 How to Read this Document

This document presents the developments of a research executed at the Laboratory of CAD CAM
CAE at Universidad EAFIT (Colombia), and Manufactura Cohesiva S.A.S. The results are a com-
bination of data structures and algorithms, computational geometry, mathematics, and numerical
simulations. All the articles included in this compendium have been submitted peer-
reviewed journals.

Chapter 2 proposes a methodology to fit cylinders, spheres, and cones to statistically poor
triangular meshes. The devised algorithm executes a segmentation of the input set and applies the
respective fitting to the obtained submesh. There are two segmentation methods depending on the
continuity of the submesh supporting the analytic form. C-0 continuity allows real-time execution.
Otherwise, the segmentation and fitting are codependent.

Chapter 3 proposes a methodology to overcome the singularities present on the Green functions
in the boundary and surface integrals when using Boundary Element Method in fluid dynamics
simulations. The implemented methodology applies a displacement d to the source node and eval-
utes de integral when d→ 0. It shows a detailed description of the implementations and results of
the simulation compared with the commercial software ANSYS.

Finally, relevant conclusions of this work as well as possible future improvements on this research
are presented in Chapter 4.

5

2
Analytic Form Fitting in Poor Triangular Meshes

Cristian Rendon-Cardona1,2, Jorge Correa2, Diego A. Acosta3 and Oscar Ruiz-Salguero1.

1 CAD CAM CAE Laboratory - Universidad EAFIT, Colombia

2 Manufactura Cohesiva SAS, Medelĺın Colombia

3 Grupo de Desarrollo y Diseño de Procesos (DDP) - Universidad EAFIT, Colombia

Context

Cristian Rendon-Cardona, Jorge Correa, Diego A. Acosta, Oscar Ruiz-Salguero. Algorithms,
p-ISSN: 1999-4893, volume 14, issue 11, Publisher MDPI. url= https://www.mdpi.com/1999-
4893/14/11/304, DOI: https://doi.org/10.3390/
a14110304, Received: 10 July 2021; Published: 22 October 2021.

Abstract

Fitting of analytic forms to point or triangle sets is central to computer-aided design, manufacturing,
reverse engineering, dimensional control, etc. The existing approaches for this fitting assume an in-
put of statistically strong point or triangle sets. In contrast, this manuscript reports the design (and

6

industrial application) of fitting algorithms whose inputs are specifically poor triangular meshes.
The analytic forms currently addressed are planes, cones, cylinders and spheres. Our algorithm
also extracts the support submesh responsible for the analytic primitive. We implement spatial
hashing and boundary representation for a preprocessing sequence. When the submesh supporting
the analytic form holds strict C0-continuity at its border, submesh extraction is independent of
fitting, and our algorithm is a real-time one. Otherwise, segmentation and fitting are codependent
and our algorithm, albeit correct in the analytic form identification, cannot perform in real-time.

2.1 Introduction

2.1.1 Research Target

This manuscript reports an algorithm for analytic form (cone, cylinder, sphere) submesh extraction
and fitting, using as input low statistical quality triangular meshes. Our algorithm has been success-
fully applied in actual industrial low-quality datasets, when good quality ones are impractical due
to their large size and processing times. Our method favors sequential small submesh probing and
vector closure formulation for the identification of analytic form parameters. Our method avoids,
as much as possible, multi-variable regression, which requires a statistically rich input.

2.1.2 Context

Point samples of a two-manifold (surface) in 3D are achieved by contact, ultrasound or optical scan-
ning. Under Nyquist–Shannon conditions of this geometrical point cloud information, topological
(i.e., connectivity) information may be inferred. A widely used result of the topology inference
is the triangular mesh surface approximation. This manuscript addresses the next step of shape
inference, namely the fitting of a analytic form g() to a subset of the triangular mesh M .

This manuscript is concerned with triangular meshes whose facets strongly depart from equi-
lateral, isotropic, and homogeneous size conditions. The reason for this choice is that in many
cases, mesh conditioning is not only labor-expensive but is produces massive triangle sets. Fitting
analytic form to heavy datasets is prohibitively slow for many industrial applications.

A strong demand exists in industrial applications for planar, cylindrical, conical and spherical
forms, identified in low-quality triangle sets. Therefore, this manuscript addresses those surface
types, tessellated with such low-quality triangles. The implicit form (g(x, y, z) = k) is pursued. In
this manuscript, g() equally notes the parametric or implicit forms, as well as the defining feature
set of the form, as follows:

a For cylinders: axis pivot point p0, axis direction v̂, radius R.

b For cones: axis pivot point p0, axis direction v̂, cone angle γ.

c For spheres: center pivot point p0, radius R.

This manuscript addresses the following problem:

Given:

1 M(T ,P): triangular mesh representing a shell with manifold properties.

7

2 ts ∈ T : seed triangle (selected by the user).

3 T : type of analytic form (selected by the user from the options cylinder, sphere, and cone).

Goal:

i S: largest connected subset of M , formed by triangles from M , containing ts and fitting the
analytical form of T .

ii g() : analytic form of the chosen primitive, fit to subset S.

where the analytic form is expressed by the identified parameters in (a)–(c) above.
It is important to note that the continuity level (C0, C1 or higher) at the borders ∂S triangle

subset S and M−S has a dramatic impact on the decoupling of solutions for items (i) and (ii) above.
If the surface M has only C0-continuity at border ∂S, this fact determines S, without influence
from the fitting stage. Then, the fitting of g() proceeds in real time. On the other hand, if M
presents continuity C1 or higher at border ∂S, there is a codependency between S and g(). S
can be extended only as far as it produces a good quality fit g(). Low-quality g() fitting indicates
that the subset S includes mistaken triangles. Those triangles must be eliminated from S, other
triangles might be included, and a new guess for g() is computed. This iteration is obviously more
expensive than the one in which identification of S does not depend on the quality of g() fitting.

This manuscript is organized as follows: Section 2.2 reviews the existing literature and argues
our claim for novelty in our initiative. Section 2.3 explains the methodology followed. Section 2.4
conveys the results of our implementation and compares it in some aspects against similar competi-
tor approaches. Section 2.5 concludes the manuscript and discusses relevant future endeavors.

2.2 Literature Review

This section executes a taxonomy on the prevailing methods for fitting of analytic forms to point of
triangle sets. The available literature may be divided into (1) stochastic, (2) parameter-space, and
(3) mesh segmentation fitting methods. This taxonomy is based on the one described by Ref. [2].

2.2.1 Stochastic Methods

These methods randomly segment the input (point or triangle) set. They apply local regressions
with alternative goal primitives (cylinder, cone, sphere, etc.), keeping the one with the best fit. The
methods allow for the evolution of the primitive type and its parameters as well as evolution of the
partition of the input mesh into local support submeshes. The methods require a dense, isotropic,
homogeneous input set.

Ref. [3] requires point clouds with surface normal information. It fits cones and cylinders by
solving local linear regressions. It intends to keep a small support point set, at the expense of
actually producing a collection of guesses for the user to choose from. Ref. [4] presents analytical
fitting of cones, cylinders and ellipsoids from dense, noisy point clouds. Ref. [4] finds an initial
guess for the analytical surface by calculating their characteristic variables. Then, tuning of the
analytic form parameters takes place by minimizing the point vs. analytic surface accumulated
distances.

8

2.2.2 Mapping to Parameter Space

In these methods, type T of the analytic form is assumed. For a given point sample support
set, a regression is performed, thus finding an estimate of the n parameters which that particular
form type has. A point in the parameter space Rn is then located with such values. As other
neighborhoods of the input point set are used as support sets, a point population of Rn arises,
with clusters in the most likely parameter combinations. These high-density clusters are identified
with standard statistical tools and the parameters of the analytic form are determined. Mapping
to parametric space is particularly expensive when computing (storage), sharply growing with n,
the dimension of the Rn parameter space. They also require dense input point sets. Due to these
reasons, these methods are mostly applied to identification of polygonal flat faces in a polytope.

Ref. [5] uses the Hough transform as mapping to parametric space to identify planes. Ref. [6]
lowers the high cost of detecting cylinders (parameter space R6) by breaking the six parameter sets
(i.e., 6D Hough transform) into axis vector, axis pivot, and cylinder radius and carrying sequential
lower-dimension Hough transforms.

2.2.3 Mesh Segmentation Fitting Methods

In these methods [7–9], the priority is to segment the input (point-normal vector set or point
graph). The fitted analytic form is a by-product. These methods create input clusters using
diverse strategies: fitting-segmentation iteration, grouping using X-means or mean shift (separate
segmentation), or classification by ranges of additional information (scalar or vector fields) such as
color, depth, abrupt dihedral angle, etc. These methods have limitations as they need at least one
of the additional pieces of information mentioned above and also require dense datasets.

Ref. [7] describes a hierarchical segmentation of dense point clouds. This method generates the
k-nearest graph by merging edges of the input connectivity graph. This merging uses as criteria a
penalty function related to the quality of fitting of the point clusters to a given primitive (one of
sphere, cone, plane, torus). Ref. [8] applies segmentation-fitting iterations seeking to simultaneously
segment the full input set and to fit quadratic analytic primitive options (plane, sphere, cylinder,
ellipsoid, paraboloid) to the support subsets. It executes an initial segmentation of the input dataset
before the iterative process. Ref. [8] does not provide detailed information on such a preprocessing.
Ref. [9] executes a color-based segmentation of indoor 3D depth map scenarios. Then, a matching is
conducted between the generated patches and a template database of predefined 3D indoor furniture
models. Finally, the user refines the segmentation. The authors train a matching algorithm of
random-regression forest to obtain the desired result. The process of matching the support set S
to various reference models is an expensive task and is out of our scope since we do not need to
train any learning algorithm. Ref. [10] executes a rough segmentation of a dense good quality
point cloud or triangular mesh. This segmentation seeks to find neighborhoods of the input data
which present slippage compatibility, i.e., which can slide onto themselves (e.g., spheres, cylinders,
planes). The segmentation is carried out by using a greedy clustering, based on the local slippage
compatibility. This reference aims for an approximate segmentation. It does not determine the g()
analytic form, nor presents execution times or complexity information.

2.2.4 Conclusions of Literature Review

The literature reveals that most fitting techniques require statistically dense datasets complying
with the Nyquist–Shannon theorem. Additionally, these input datasets must include supplementary

9

information (i.e., scalar maps or vector fields). Therefore, our approach offers (1) fitting of analytic
surfaces to statistically poor triangulations as the industry demands it. (2) When the continuity
and the border ∂S is exclusively C0, we provide real-time performance. (3) When the border ∂S
presents C1 or higher continuity with M −S, segmentation and fitting are codependent. The fitted
form g() guarantees the perfecting of the support subset S. In turn, the support subset S provides
the grounds for the g() fitting. Table 2.1 presents a summary of the different approaches with their
advantages and drawbacks.

Table 2.1: Competitor approaches vs. current approach.

Approach Refs. Advantages Disadvantages

Stochastic Methods.
Randomly apply local
regressions of alternative
goal primitives and keep-
ing the best fit.

[3, 4, 11–
13]

(1) Robust to outliers;
(2) application-specific

(1) Requires dense,
isotropic, homoge-
neous input dataset.

Mapping to Parame-
ter Space. Implement a
mapping to the parameter
space, identify the number
of parameters needed and
search for clusters of simi-
lar parameters.

[5, 6, 14,
15]

(1) Robust to noise and
outliers; (2) work with
missing data

(1) High computa-
tional cost; (2) re-
quires dense datasets

Mesh Segmentation
Fitting Methods. Cre-
ate clusters of the dataset
using different grouping
techniques. Fitting can
occur during or after the
segmentation.

[7–10, 16–
18]

(1) Spatial consistency (1) Sensitive to noise
and outliers; (2) re-
quire supplementary
information in the
dataset.

Our approach. A prim-
itive fitting in poor trian-
gular meshes. Segmenta-
tion driven by dihedral an-
gle is implemented when
continuity is strict C0.
Segmentation and fitting
are codependent for C1 or
higher continuity.

(1) Fitting in poor
datasets; (2) low compu-
tational cost; (3) real-time
performance for C0-
continuity; (4) perfecting
of S for C1 or higher
continuity.

(1) Requires the type
of analytic form in-
tended to be fitted as
an input.

2.3 Methodology

Fitting of an analytic primitive g() to the support (triangle) subset S requires (obviously) the de-
termination of S. Extraction of support subset S from the input set M is heavily based on triangle

10

neighborhood interrogations on M . The acceleration of neighborhood queries on M was imple-
mented by building the triangular boundary representation of the triangle set. This construction
was itself accelerated by applying a spatial hashing process on input M (Spatial Hashing based on
techniques from [19,20]). Spatial hashing and B-Rep construction are reported in Section 2.3.1 on
preprocessing. Section 2.3.2 discusses the specific problem of inferring the analytic form g() from a
triangle set S. Sections 2.3.3 and 2.3.4 address the determination of triangle subset S for applying
Section 2.3.2. Section 2.3.4 focuses on cases where the border between support subset S and M −S
is sharp (C0-continuity), thus allowing identification of S by using continuity information alone.
Section 2.3.4 addresses more difficult cases where continuity at the border between S and M − S
is C1 or better. In these cases, S is legitimated by a good fitting g(), but at the same time, g()
depends on S. In these cases, fitting (g()) and segmentation (S) are codependent and cannot be
executed independently from each other.

Preprocessing

The process of extracting and identifying analytic forms from a manifold triangle set (Figure 2.1)
is preceded by a preprocessing stage encompassing: (1) a spatial hashing; (2) boundary represen-
tation (B-Rep) construction.

Figure 2.1: Overall primitive extraction process.

Analytic Form Fitting

If the triangle subset S supporting the analytic form has C0 -continuity alone at the border ∂S
between S and MS , the determination of S is exclusively based on the dihedral angle at ∂S (red
box, left portion of Figure 2.2). Otherwise, if the continuity at ∂S is C1 or higher, the identification
of support subset S and the fitting of g() on that S are codependent (blue box, right portion of
Figure 2.2). Triangles are added to S, or rejected, according to their effect on the fitting quality of
the analytic form g(). Growth of the support subset S stops when all triangles at border ∂S have
an adverse effect on g().

11

Figure 2.2: Fitting process. Left (red) block: segmentation/fitting decoupled. Real-time identifi-
cation of g(). Right (blue) block: codependent segmentation and fitting.

2.3.1 Preprocessing

Spatial Hashing

Spatial hashing on the input triangle set M is used in this work for accelerating the construction
of explicit triangle neighborhood information (boundary representation). The I/O specification of
the spatial hashing preprocessing follows.

Input:

1 M(T ,P): Triangle (two-manifold) set with geometry P and topology T .

2 Ω: Rectangular prism in R3, orthogonally oriented w.r.t. coordinate axes, equipped with a
regular grid of voxels with dimension deltax, deltay, deltaz.

3 Nv : A predefined number of voxels per dimension of Ω.

Output:

1 h: Hashing function: h : P → N ×N ×N , which maps each vertex of the input triangle set
M into the (i,j,k) indices of the voxel vijk ⊂ Ω, which contains such a vertex.

2 H: Ω→ T 2, which maps each voxel vijk of Omega to the set of triangles of M which contain
a vertex inside voxel vijk. 2T denotes the power set of T (all sets made with triangles from
T).

The algorithm divides the prism Ω into a set of rectangular voxels. These voxels are represented
by a three-dimensional array where each cell contains the indices of the triangles with vertices in

12

that voxel. Figure 2.3 shows a graphical representation of the voxel subdivision for an input triangle
set.

(a)

(b)

Figure 2.3: (a) Bounding box and (b) rectangular voxel subdivision.

The hash function [i, j, k] = h(pi) maps a point pi ∈ Ω to a position [i, j, k] in the hash table H.

i = floor((pi.x− Ω.xmin)/δx),

j = floor((pi.y − Ω.ymin)/δy),

k = floor((pi.z − Ω.zmin)/δz).

(2.1)

where Ω.xmin, Ω.ymin, Ω.zmin are constants corresponding to the minimal positions of the prism
Ω. δx, δy, δz are the x, y, and z voxel side dimensions.

Figure 2.4 represents a block a diagram of the algorithm and how the vertices are stored in
the hash table. As the input triangles sets are representation of two-manifold shells, H is a sparse
array.

13

Notice that the spatial hashing [H,h] ensures that all triangles incident on (EDGEs of) a given
triangle are stored in at most three voxels of the hash array H, and they are directly accessible via
the function h(). Due to this reason, the spatial hashing accelerates the construction/weaving of
the boundary representation of the input triangle set M .

14

Figure 2.4: Spatial hashing preprocessing. The hashing is executed before the fitting process starts.

15

Boundary Representation Construction

After the spatial hashing process, a boundary representation, B-Rep, of the input triangle set M is
constructed. We use a variation of the half-edge data structure [21]. The construction of the B-Rep
produces the FACEs, EDGEs, VERTEXs and BORDER tables (see Tables 2.2–2.5).

Input:

• A two-manifold triangular mesh M(T , P).

Output:

• Boundary representation for M (Tables 2.2–2.5).

Table 2.2: VERTEX table.

Vertex x y z Edge

1 2.34 3.00 1.12 13
2 2.22 9.00 10.36 27
3 5.20 4.00 9.12 53

Table 2.3: FACE table constructed from B-Rep.

Face Edge 1 Edge 2 Edge 3

1 1 2 3
2 3 5 4
3 3 1 4

Table 2.4: EDGE table. If counter-EDGE cell is empty, indicates border.

Edge Vertex 1 Vertex 2 Counter-EDGE Face

1 1 2 4 1
2 2 3 5 1
3 3 4 - 1

Table 2.5: BORDER table.

Border
Loop

Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5 Vertex 6 . . .

1 4 7 8 91 <End-of-loop>
2 10 71 31 11 1 90 <End-of-loop>
3 63 83 47 121 9 <End-of-loop>

In the present case, the SHELL table is omitted because the input mesh is connected (i.e.,
there is only one SHELL). The B-Rep guarantees that all FACEs within a SHELL have consis-
tent orientation. The B-Rep delivers constant time expenses O(k) in the following interrogations:

16

(a) EDGES incident on a VERTEX, (b) FACEs incident on an EDGE, (c) FACEs neighboring a
FACE, (d) ordered LOOPs of a SHELL border, (e) SHELL owner of a FACE, (f) EDGEs of a
LOOP, (g) LOOPs of a FACE. Figures 2.5 and 2.6 present plain-sight visible effects of building
the B-Rep of two input triangle sets M . Those visible effects are the consistent orientation of the
FACEs in a SHELL and the identifications of the SHELL BORDER.

(a) Raw triangle set M . Disoriented triangles
become transparent.

(b) B-Rep woven from the raw triangle set M .
No disoriented triangles are present.

Figure 2.5: Input triangle set M with inconsistent FACE orientation. Output B-Rep of M . (a) and
(b) displayed with culling based on the triangle orientations.

17

(a) (b)

Figure 2.6: Result of border identification in the triangle set. (a) and (b) present the identified
border of the triangle set after weaving the B-Rep.

2.3.2 Primitive Fitting from Triangle Set

This section addresses the determination of the parameters of a given analytic form (cylinder, cone,
sphere) of type T , which the user wants to fit to a triangle set S. The strategy used in our algorithm
is to locally probe the triangle set, progressively determining parameters of the form (radius, center,
axis, apex, etc.). This strategy was chosen instead of statistical fitting, which requires statistically
meaningful (dense, large, homogeneous, isotropic) triangle set inputs. Our implementation does use
quadratic form fitting for the purpose of determining minimal and maximal curvature directions on
specific and small neighborhoods of the triangle set S.

The fitting of the g() analytic form to set S ⊂M is indifferent to the manner in which triangle
subset S is determined. The description of the fitting follows.

Input:

1 S: triangle support set (S ⊂M) to fit the analytic form g().

2 T : primitive type, selected by the user from the set {Cylinder, Sphere, Cone}

Output:

1 g(): The analytic form of the chosen primitive, fit to subset S.

For each analytic form, we implement an approach for the identification of its parameters.

Cylinder Fitting

The geometrical parameters to define the cylinder are:

1 p0: axis pivot point.

18

2 v̂: axis direction.

3 R: radius.

Our algorithm takes advantage of the fact that the input triangle set provides information on
the vectors locally normal to the cylinder. This information enables the calculation of p0 and v̂.

Axis point p0

The axis pivot point is calculated as follows:

1 Create a set of lines Ln = {`1, `2, ..., `n}, where `i is a line generated by the baricenter bi and
the normal ni of the triangle ti.

2 Obtain Cp: as the set containing the points of the minimum distance between each pair of
lines from Ln. Every line `i is approximately perpendicular to, and nearly intersects, the
cylinder axis [p0, v̂]. Therefore, Cp is a point sample of the axis [p0, v̂].

3 Compute p0 as the geometric center of gravity of Cp.

Figure 2.7 presents an axial view of a cylindrical triangle set. Lines [bi, ni] ideally intersect, and
are perpendicular to, the cylinder axis [p0, v̂]. Figure 2.8 displays an actual example set Cp and
cylinder axis identification.

Figure 2.7: p0 calculation with the intersection of lines [bi, ni] whose directions are triangle normal
vectors ni and pass through triangle baricenters bi.

19

Figure 2.8: Set of points Cp approximating the cylinder axis.

Cylinder Axis direction v̂

To calculate the cylinder axis, the method relies on the ability to:

1 Translate the unitary vectors ni normal to the triangles from their supposed pivot point
(triangle baricenter bi) to the origin.

2 Collect the tips of the origin-based vectors resulting from step (1). These tip points form a
tilted flat disk d centered at the origin (Figure 2.9).

3 Obtain (via Principal Component Analysis (PCA)) the cylinder axis direction v̂ as the one of
smallest dispersions of the points of disk d (Figure 2.9).

20

Figure 2.9: Cylinder fitting. Coplanar circular set of tips of cylinder normal unitary vectors,
applied at origin. v̂: direction of minimal dispersion of disk d, cylinder axis direction.

Cylinder Radius R

Knowing the cylinder axis [p0, v̂], the radius R of the cylinder is determined as follows:

1 Rigidly move the triangle set S so its axis [p0, v̂] maps to the Yw World axis and the geometric
center of S maps to the origin Ow.

2 Project the point set resulting from (1) onto the XwZw plane, resulting in a flat circular point
set.

3 Compute the radius of such a circular point set.

Cone Fitting

The geometrical parameters of the cone are:

1 p0: cone apex.

2 v̂: axis direction.

3 γ: opening angle.

Cone axis direction v̂

As in the cylinder case (Section 2.3.2), the vectors normal to the cone triangles allow us to
estimate the direction of the cone axis.

The unitary vectors ni normal to the cone triangles are translated to the origin (Figure 2.10).
Their tips form a planar circle which is the base of a dual cone whose apex is at the origin. Observe
that this dual cone is not the one contained in triangle input S. This dual cone in Figure 2.10 is

21

obtained by using the normal vectors in the triangle set S as cone generatrices, but it has the same
axis direction vector as the sough cone g().

Figure 2.10: Cone fitting. Dual cone formed with Origin as apex. Unitary vectors normal to S are
generatrices for the dual cone. Origin-located tails of ni vectors normal to triangles ti at Origin.
Normal vector tips contained in a plane form a flat disk d. Minimal dispersion direction (principal
component analysis) of disk d is the direction of cone axis v̂.

Cone apex p0

The straight line [bi, êi] (Figure 2.11) tangent to triangle ti passes through the triangle baricenter
bi and has direction êi (i.e., direction of the cone generatrix at bi). The point at which the lines
[bi, êi] are nearest to (or intersect) each other are the elements of Cp. The cone apex p0 is the center
of gravity of Cp.

22

Figure 2.11: Cone 2D example. Vectors ei point to pv and are perpendicular to ni.

Each set of vectors [ni, êi, v̂] lies in a plane that intersects the cone and contains the apex p0.
We calculate a temporal vector temp which is normal to such a plane as the cross product between
ni and v̂. The cross product between the temp vector and ni guarantees that êi is perpendicular
to ni and lies in the aforementioned plane. Equation (2.2) summarizes the process.

temp = ni × v̂
ei = temp× ni

(2.2)

Opening Angle γ

The opening angle of the cone is computed as the average of the angles γi (Equation (2.3))
between the cone axis direction v̂ and the calculated vectors êi.

γ =
1

m

∑
i

γi. (2.3)

Sphere Fitting

The geometrical parameters to define the sphere are:

1 p0: sphere center.

2 R: radius.

Sphere center p0

23

We consider a sphere which is faceted by a manifold set S of triangles t. The straight line
[b1, ni] normal to triangle ti passes through the triangle baricenter bi. This line has direction ni.
The points at which all lines [bi, ni] are nearest to (or intersect) each other are the elements of set
Cp (Figure 2.7) and probabilistically lie at the sphere center p0 . The center of the sphere p0 is
estimated to be the center of gravity of Cp.

Sphere Radius R

The radius of the sphere is calculated by computing the mean distance from p0 to all the vertices
of the triangle subset.

R =
1

m

m∑
i

||pi − p0||. (2.4)

Conclusions of Fitting Section

This section presents methods based on progressive probing rather than statistical fitting to estimate
the g() parameters of the analytic cones, cylinders, and spheres which has been faceted with manifold
sets S of irregular, anisotropic, heterogeneous triangles. The extraction of the g() support triangle
subset S ⊂M follows.

2.3.3 Extraction of Subset S Based on Dihedral Angle

This method for extracting from M the triangle subset S (⊂ M) which contains the seed triangle
ts, is applicable when the EDGE border between S and M − S holds only C0- continuity (i.e., ∂S
is a sharp border). In this case, (a) S is indifferent to the T type of analytic form sought and
(b) the extraction of S precedes and is independent from the g() fitting process.

In this manuscript, we say that two EDGE-sharing triangles ti, tj ∈M hold only C0-continuity
if their dihedral angle is above a threshold αmax. The dihedral angle ∠(ti, tj) between triangles ti
and tj is the one between their normal vectors (under a uniform LOOP traversal direction). We
measure the dihedral angle in the interval [0, 180) degrees. Notice that ∠(n1, n2) = 180 implies
that M would be non-manifold.

The first method for extraction of the triangle subset S is based on the dihedral angle between
the triangles of M . This method is employed when the target segment of the triangulation holds
strict C0-continuity with respect to the other segments of M . This extraction process is indifferent
to the type T of the analytic form and occurs separately from the fitting process as shown in
Figure 2.2 (red).

Input:

1 M(T ,P): triangle (two-manifold) set with geometry P and topology T .

2 ts: selected seed triangle from T .

3 αmax: maximum angle value for dihedral angle-based extraction.

4 Eα(): dihedral angle equivalence relation defined on M .

Output:

24

1 S: the equivalence class (or block) containing ts, of M under the equivalence relation Eα().

Definition. Equivalence Relation Eα()

The triangles are equivalent under Eα() if there is a triangle sequence (Figure 2.12) L =
[t0, t1, ..., tf] such as:

1 L ⊂M

2 Any two consecutive triangles of L, ti and ti+1 share an EDGE.

3 ∠(ti, ti+1) < αmax

The equivalence character of relation Eα() is not proved here. However, it is easy to verify that
Eα() is symmetric, reflexive and transitive. The reason we show this small digression here is that
the g() support subset S ⊂ M containing the seed triangle ts is computable (when S and M − S
hold only C0-continuity at ∂S) by using well known algorithms for transitive closure.

Figure 2.12: Dihedral angle equivalence Eα(). ∠(n1, n2) → 0 and Eα(t1, t2) (blue equivalence
class). ∠(n1, n3) > αmax and t3 (red) is outside the equivalence class (blue) of t1 and t2.

The boundary representation of input triangle set M supports FACE, VERTEX, EDGE neigh-
borhood interrogations in constant time. Therefore, the dihedral angle-based extraction process of
the g() support subset S presents low computational cost and fast execution times.

25

2.3.4 Extraction of Subset S Based on Fitting Quality

The dihedral angle-based extraction presents limitations when the input triangle set presents C1 or
higher continuity at border ∂S. The extraction of the g() support subset S depends on the quality
of the g() fitting and on the type T of the analytical form as follows.

Input:

1 M(T ,P): Triangle (two-manifold) set with geometry P and topology T .

2 ts: selected seed triangle from T .

3 T : type of analytic form (selected by the user from the options cylinder, sphere, cone).

Output:

1 S: Largest connected subset of M , formed by triangles from M , containing ts and fitting the
analytical form of type T .

2 g(): The parameters to define the analytic form that fits S.

Figure 2.13 presents a diagram with the general structure of the fitting-based extraction algo-
rithm. The quality of g() and the extent of the S support subset impact on each other at every
iteration. The algorithm in Figure 2.13 assumes the existence of an initial set S, its border triangles
B(S) (in M − S) and an initial estimation for the analytic form g(). This basic S is formed by the
seed triangle (marked by the user) and its neighbor triangles in M . The initial form g() is estimated
as per Section 2.3.2. B(S) contains the triangles in M − S that encircle S.

26

Figure 2.13: Algorithm for simultaneous fitting of g() and extraction of g() support subset S.

In Figure 2.13, the process/box “select candidate triangle from B(S)” selects a triangle in M−S
adjacent to the border triangles of current S to be screened for its belonging to the currently fitted
analytic form g(). Figure 2.14 addresses this task. Its discussion appears after explaining the main
algorithm of Figure 2.13.

In Figure 2.13, B(S) denotes a set of triangles which encircle S, in M − S, and represent an
opportunity to expand S (i.e., they do not differ from g()). The algorithm acts as long as B(S)
is not empty. A triangle t from the B(S) border set is chosen (Figure 2.14, discussed later). If t
strongly fits g(), it is accepted in S. If t does not fit g() in a clear manner, the validity of S is
examined. If S is a “mature” set (w()→ 0, Figure 2.15, discussed below), g() it is supposed to be
reliable and t is rejected. If the set S is “immature” (w()→ 1, t is re-assessed: if its distance to g()
is large, it is rejected. If it is near g(), it is accepted in S. If t is accepted in S, then it is removed
from B(S) and its neighbors in M − S are included in B(S). Additionally, g() is re-computed
against the new, augmented S.

If a triangle t is rejected, it is removed from B(S). In this case, obviously, its neighbors in M−S
will not be considered to expand S.

We use a w() : R+ → [0, 1] heuristic function (Figure 2.15) as a measure of the immaturity of

27

S. Let u = NS/NT be the ratio between the instant size of S and a threshold number of triangles
NT , which is considered the size of a “mature” S. The function w(u) satisfies:

i w(0) = 1 (S is immature, has few triangles).

ii w(u) = 0 for all u ≥ 1.0 (S is mature, has many triangles).

iii w(u) is monotonically decreasing in R+

Figure 2.14 presents an expansion of the process/box “select candidate triangle from B(S) ”
in Figure 2.13, as follows: (1) A triangle t of the triangle border of S (B(S)) is selected. (2) The
neighbors of triangle t outside S are determined, forming set Nt. (3) From the set Nt, triangles
are eliminated whose dihedral angle with t is large (i.e., form sharp edges with t). (4) From the
remaining eligible neighbors of triangle t, Nt, the direction umax of largest curvature is determined.
(5) The triangle ts, neighbor of t, is selected, which materializes this large curvature (i.e., direction
umax from t). This algorithm has an implicit bias of considering that expansion of the support
triangle subset S in the direction of largest smooth curvature will speedily lead to a meaningful
fitting of g(). Thus, the evolving of g() would be most efficient. Eventually, all feasible triangles
around t are included in the expansion and tested accordingly. It is important to emphasize that
the segmentation/fitting algorithm (Figure 2.13), both support subset S and analytic primitive g()
results.

28

Figure 2.14: Expansion of box/process “select candidate triangle from B(S)” from Figure 2.13.

29

Figure 2.15: S immaturity function w(). w → 1: S is immature set, with few triangles (NS → 0).
w → 0: S is mature set, with many triangles (NS > NT). NT = threshold in number of triangles
to consider g() as stable analytic form.

This codependent fitting-segmentation process probes and expands the g() support subset S ⊂
M , authorized by the quality of the g() fitting (Section 2.3.2). Due to this codependency, this
process is slower than the dihedral angle-based identification of S.

Fitting-Based Extraction of Cylinders and Cones

Cones and cylinders are ruled surfaces. As a consequence (Figure 2.16), at each point of them,
there is a direction umin of Kmin = 0 minimal curvature (i.e., generatrix direction). As always, the
direction of Kmax maximal curvature umax is normal to the umin and both span the plane tangent
to the surface at such a point.

Our algorithm aims to fit a reliable g() analytic form to the support triangle subset S as early
as possible. Triangles in the direction of maximal curvature umax (obviously) provide information
on the cone or cylinder radii in addition to generatrices. Due to this reason, S primarily grows in
the direction umax (box “select candidate from B(S)” in Figures 2.13 and 2.14). However, it is
important to notice that S must eventually encompass the whole set of triangles supporting g().

The process to calculate the local curvature at a given seed triangle ts (with normal vector n
and baricenter b) is described below.

1 Build a homogeneous coordinate frame Si:

Si =

[
e1 e2 n̂ b
0 0 0 1

]
,

with e1, e2 spanning the plane tangent to surface M at b and making [e1, e2, n] a Special
Orthogonal SO(3) (3× 3) submatrix.

30

2 Apply a coordinate transformation T to rigidly move ts and support subset S to the World
Coordinate System Sw with n and b mapped to direction z and point [0, 0, 0]′, respectively
(Figure 2.16).

T Si = Sw,

T = Si S
−1
w .

(2.5)

3 Fit a quadratic surface (Equation (2.6)) to T ∗ S by multi-variable linear regression.

f(x, y) = a+ bx+ cy + dxy + ex2 + fy2. (2.6)

4 Find the minimum and maximum curvature directions vmax, vmin with the Hessian eigenvalues
and eigenvectors.

H(f) =

[
2e d
d 2f

]
,

H[vmax vmin] = [vmax vmin]

[
Kmax 0

0 Kmin

]
.

(2.7)

5 Convert direction vmax vmin back to global coordinates, with:

[umax umin] = T−1[vmax vmin], (2.8)

where, for the sake of simplified notation, we use the same symbols for 2D, 3D and 3D
homogeneous vectors. Notice that T−1 does not involve inverting a matrix. Instead, as T is
an SO(3) rotation plus translation, the transpose of the rotation is its inverse.

Figure 2.16: Rigid mapping M of local tangent plane of a ruled surface S onto the XY plane for
the purpose of computing maximal and minimal curvature directions on S.

31

Fitting-Based Extraction of Spheres

This section corresponds to the cases in which the primitive g() and triangle support subset S
to extract from M correspond to a sphere making a smooth blend with M − S. The fitting and
extraction algorithm appears in Figure 2.13 and is commented on in Section 2.3.4; at this point, we
only add some particularities of the box “select candidate triangle from B(S)” from Figure 2.13.

This section uses the concept of a topological circle C(t, k) and topological ball B(t, k) defined on
a triangular mesh M . C(t, k) consists of the triangles of M that have distance k with respect to a
“center” triangle t. A distance k between any triangles ta and tb of M corresponds to the minimal
number of neighboring triangles in M to be traversed to travel from triangle ta to triangle tb, or
vice versa. For this definition, two triangles are considered to be a distance of 1 apart if they share
an EDGE or a VERTEX. The topological ball B(t, k) includes all triangles of M whose topological
distance to triangle t is less than or equal to k. Figure 2.17 presents a graphical example of the
topological circle C(ts, 2) and topological ball B(ts, 2).

Figure 2.17: Red: user input seed triangle (C(ts, 0)). Blue: topological circle C(ts, 2). White:
topological circle C(t, 1). Red + White + Blue: topological ball B(ts, 2). The initial guess for the
analytic form g() is computed with C(ts, 0) ∪ C(ts, 2).

2.4 Results

Sections 2.4.1–2.4.3 present support subset extraction and fitting for forms cylinder, cone and
sphere, respectively. In each section, (1) dihedral angle-based and (2) fitting-based support subset
S extractions are presented, along with the g() analytic forms fitted to S. Section 2.4.5 presents
a complexity analysis comparison of our approach vs. competitor approaches. Section 2.4.6 dis-
cusses the real-time application of our implementation, achieved via spatial hashing and boundary
representation preprocessing.

Figure 2.18 presents an execution of the fitting-extraction algorithm of Figures 2.13 and 2.14.
The execution fits and extracts a cone S from a triangle set M in which the cone sector S keeps

32

C1-continuity with the remaining M − S subset, and therefore the dihedral angle criteria are not
able to identify S. Figure 2.18a displays the current S triangle set containing the seed triangle
ts (red) and already accepted neighboring triangles (blue). Figure 2.18b shows the grey boundary
of S, B(S). The bases of the cone contain triangles of B(S) are not considered to be part of the
cone due to their abrupt dihedral angle at the border of S, ∂S. The green triangle is detected in
the direction of maximal curvature umax. This green triangle fits into the current g() estimation.
Figure 2.18c shows that the green triangle is added to the support subset S, extracted from the
boundary (B(S)) and its neighbors (grey) are added to B(S), ready for the next iteration. The
final result of the S extraction and g() estimation is shown in Section 2.4.2.

(a) Initial support set S and
B(S).

(b) S expansion in umax direction. (c) Inclusion of accepted triangle
in S and its neighbor in B(S).

Figure 2.18: Step-wise execution of the S extraction g() fitting algorithm, applied to a cone which
does not accept S extraction based on dihedral angles.

2.4.1 Cylinder Fitting

Cylinder. Dihedral Angle-based Support Subset S Extraction

Figure 2.19 presents results for g() cylinder fitting when the g() support subset S has only
C0-continuity with the rest (M − S) of the input set M . S is extracted at sharp dihedral angle
EDGEs. As g() support subset S extraction is independent of g(), the extraction and fitting are
real-time processes (taking less than 1 s).

33

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 2.19: Cylinder fit. S extraction based on dihedral angles. Pink: extracted S support subset.
Yellow: fitted g().

Cylinder. Fitting-based Support Subset S Extraction

Figure 2.20 displays cases in which the support subset S for g() holds C1-continuity or higher
with M−S. In these cases, g() fitting and g() support subset S extraction take place simultaneously.

34

Figure 2.20: Cylinder fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g().

Cylinder. Fitting performance

Table 2.6 presents the numerical results for the test on cylinder extraction, comparing the preset
parameters against the parameters obtained by the fitting. Subindex fit indicates the variable
obtained via fitting, as opposed to the experimental preset value.

An interesting result is that for the more difficult cases (fitting-based extraction), the estimated
g() is more accurate than the one achieved in the simpler cases (C0-continuity between S and
M − S). This result shows that the algorithm discussed in Figures 2.13 and 2.14, albeit more
complex, renders a better accuracy.

Dihedral angle-based extraction cases (1–4) perform in real time, while fitting-based extraction
cases (5–6) do not. The former are faster not only because extraction and fitting are independent
from each other, but also because g() is fitted to small triangle subsets of S. These triangle subsets
are scattered to make reasonable even though fast estimations.

35

Table 2.6: Cylinder fit. Set vs. found parameters. Tests 1–4: S extraction based on dihedral angles.
Tests 5–6: Fitting-based S extraction.

R Rfit v̂ v̂fit ∠(v̂, v̂fit)
Degrees

Test #1 47 46.9999

−0.6104
0.6169
0.4967

 −0.6104
0.6169
0.4968

 0◦

Test #2 14 13.9972

1
0
0

 0.9999
0.0008
0.0003

 0.0497◦

Test #3 13 13.00004

0
0
1

 0.00003
−0.0002
0.9999

 0.0136◦

Test #4 5 5.0037

 0.4968
−0.1904
0.8467

 0.4967
−0.1903
0.8468

 0.0051◦

Test #5 20 20.0000

0
0
1

 0
0
1

 0◦

Test #6 2.5 2.4999

0
0
1

 0
0
1

 0◦

2.4.2 Cone Fitting

Figures 2.21 and 2.22 illustrate the results for cone fitting with dihedral angle-based and fitting-
based extraction, respectively. Table 2.7 presents numerical results comparing the actual vs. fitted
g() parameters.

(a) (b)

Figure 2.21: Test 1. Cone fitting test using dihedral angle-based extraction. Pink: segmentation.
Yellow: cone fitting.

36

(a) (b)

Figure 2.22: Cone Fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g().

Table 2.7: Cone fit. Set vs. found parameters. Test 1: S extraction based on dihedral angles. Test
2: fitting-based S extraction.

Ap Ap fit γ γfit v̂ v̂fit ∠(v̂, v̂fit)
degrees

Test #1

 0
0

144

 0.0010
0.0063

144.1274

 13.87 13.8852

0
0
1

 0.0000
0.0000
0.9999

 0.0033◦

Test #2

 0
0

72.27

 −0.1258
−3.0241
72.2727

 19 18.9716

0
0
1

 −4.57×10−11

−5.96×10−9

1

 0.0033◦

2.4.3 Sphere Fitting

For the sphere fitting, the dihedral angle-based extraction does not produce a segmentation of the
input mesh M . Therefore, S = M and the fitting occurs over M . Figure 2.23 presents the results
for that particular case. However, the parameters obtained by the fitting are accurate (see Table
2.8).

37

(a) Sphere sample r = 35 (b) Sphere fit rf it = 2.99

Figure 2.23: Sphere fitting using dihedral angle-based extraction. Pink: segmented sphere. Yellow:
fitted sphere. Notice that S = M .

Figure 2.24 illustrates the results for a fitting-based extraction in a sphere coupled with a cylinder
and presenting C1-continuity at the cylinder–sphere border.

38

(a) Input mesh. Sphere (b) Segmentation and sphere detection.

Figure 2.24: Sphere fit. Fitting-based S extraction. Pink: extracted S support subset. Yellow:
fitted g(). The process leaves out of S few sphere triangles at the C1 border with M −S. However,
it succeeds in rejecting inclusion in S of triangles actually belonging to the cylinder.

Table 2.8: SPHERE Fit. Set vs. found parameters. Test 1: S extraction based on dihedral angles.
Test 2: fitting-based S extraction.

R Rfit p0 p0fit

Test #1 3 2.9752

0
0
0

 −0.0118
−0.0074
−0.0399

Test #2 25 25.0216

0
0
0

 0.0357
0.1242
−0.0333

2.4.4 Comparison with Competitor Approaches

The datasets, or code, used by competitor approaches are not publicly available. In searching
benchmark datasets for analytic form fitting, we found that they consist of point clouds. In contrast,
the input for our algorithm should be (poor quality) triangle meshes. In consequence, we resorted
to (a) executing CAD models or (b) downloading triangular meshes presenting object similarity and
the same challenges as the ones in those references. The results of the comparison are presented in
Table 2.9.

Table 2.9: Test with reference datasets of competitor approaches.

39

Test Reference +
Dataset

Input Tri-
angular Set
M

Primitive
+ Seg-
menta-
tion

Our Re-
sult

1 Ref. [10]. Dataset:
Sphere-in-Cube
Ref. [10] fails to
include all triangles
in S Ref. [10]
does not inform
execution times.
Requires dense
datasets. Our ex-
ecution is correct,
both in S and g().

Sphere +
Dihedral
Segmenta-
tion

2 Ref. [18]. Dataset:
C1-cylinder
Ref. [18] requires
dense datasets.
Ref. [18] does
not give execution
times. Our exe-
cution is correct,
both in S and g().

Cylinder
+ Fitting
Segmenta-
tion

fitted cylinder
g()

g()support subset Sg() support subset S

40

3 Ref. [17]. Dataset:
Lamp Post
Ref. [17] uses
triangle aspect ra-
tios ≈ 1. Ref.
[17] does not in-
form exc. Times.
Our execution is
correct, both in S
and g().

Cone +
Dihedral
Segmenta-
tion

4 Cylinder
+ Di-
hedral
Segmenta-
tion

Test Reference +
Dataset

Input Tri-
angular Set
M

Primitive
+ Seg-
menta-
tion

Our Re-
sult

41

5 Ref. [8]. Dataset:
Crankshaft
Ref. [8] uses dense,
good quality trian-
gle set ≈ 1. Ref. [8]
gives global execu-
tion times. Our ex-
ecution is correct,
both in S and g().

Cylinder
+ Di-
hedral
Segmenta-
tion

6 Cylinder
+ Fitting
Segmenta-
tion

fitted cylinder g()

g() support subset S

42

7 Cylinder
+ Di-
hedral
Segmenta-
tion

8 Cylinder
+ Fitting
Segmenta-
tion

43

9 Ref. [8] does not
cover cone extrac-
tion. Our execution
is correct, both in S
and g().

Cone +
Dihedral
Segmenta-
tion

Our algorithm does not fail in any one of the datasets presented by competitor approaches. In
row 9, our algorithm is able to fit a correct g() conical analytic form, while Ref. [8] does not attempt
this fit. These competitor approaches ([8,10,17,18]) either do not publish execution times at all or
publish lumped times spent for fitting the full set of primitives sought in the input triangle set M .

2.4.5 Complexity

Table 2.10 exhibits the complexities for distinguishable existing approaches in the literature. The
complexity is calculated based on the standard costs of the diverse subprocesses required for each
method.

Table 2.10: Complexities of existing approaches and of our algorithm (n is the number of points
or triangles of the input set). ∗ Obtaining initial guess of g(). ∗∗ Applying optimization to g(). †

Segmentation and fitting are codependent.

Approach Preprocessing B-Rep Extraction
of S

Fitting Extraction
+ Fit-
ting †

Overall

[8] Yan et al. O(n2) - O(n2) O(n2) O(n4) O(n4)
[7] Attene et al. O(n2) - - - O(n3) O(n3)
[4] Ruiz et al. O(n3)∗ - - O(n2)∗∗ - O(n3)
[13] Li et al. O(n2) - O(n) O(n3) O(n4) O(n4)
[5] Hulik et al. O(n) - - O(n3) - O(n3)
Our approach O(n) O(n2) O(n) O(n2) O(n3) O(n3)

Notice that the methods (rows) analyzed in Table 2.10 have diverse goals. Therefore, their
overall complexity is not comparable on an equal basis. The standard cost for extracting the support
set S (i.e., computation of neighboring triangles) is O(n2). However, we achieve complexity O(n)
when profiting off the boundary representation for input triangle set M . This B-Rep construction
holds a complexity O(n2), but the hashing preprocessing reduces the search set (n) to, at most,
three voxels. Section 2.4.6 presents the time reduction due to the hashing execution.

44

2.4.6 Reduction in Computing Time by Using Hashing

The preprocessing present in our algorithm contains the sequence: 1. spatial hashing and 2. bound-
ary representation. The B-Rep makes the neighborhood relations (among VERTEXs, EDGESs and
FACEs) in the input triangle set M explicit. At the same time, it is a diagnosis of non-manifold
conditions and guarantees uniform orientation of the input triangle set M .

Although the B-Rep is the visible database for interrogation of M , it is the spatial hashing
that enables the efficient construction of B-Rep and subsequent extraction of support subset S and
fitting of g() to S. Due to this reason, this section focuses on the acceleration of B-Rep construction
due to the spatial hashing.

The spatial hashing reduces the search set space for interrogations of VERTEX, EDGE and
FACE neighborhoods. Figure 2.25 presents the reduction in execution time of the B-Rep construc-
tion for different input sizes before and after applying the spatial hashing. The figure shows a
reduction factor of about 1000 in the execution time. It is also relevant to mention that the B-Rep
+ hashing cost represents a very faithful logarithmic reduction in the bare B-Rep expenses.

0,01

0,1

1

10

100

1000

10,000

100,000

0 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Ti
m

e
[s

]

Number of triangles

Execution times

Hashing

No hashing

Figure 2.25: Execution times for B-Rep construction with and without previous spatial hashing.

2.5 Conclusions and Future Work

This manuscript presents the implementation of an algorithm to identify user-requested analytic
forms (cone, cylinder, sphere) and their triangle support subsets S, in a connected manifold triangle
set M .

The statistical quality of M is low as it is a heterogeneous and anisotropic, with a poor aspect
ratio triangulation. This characteristic aligns with specific industrial applications in which low-
polygon sets are purposely preferred at the expense of mesh quality.

Our algorithm favors a one-by-one progressive estimation of the parameters of the g() form,
based on local probing. Our approach does not favor the application of generic statistical multi-
parameter fittings, which renounce the exploitation of g()-specific properties and require a dense,
good quality input M .

Three different types of primitives (cylinder, cone, and sphere) were fitted. Two methods were
implemented for the extraction of g() support subset S, depending on the C-continuity level at the
border ∂S with M − S. The results are consistent and accurate in obtaining g() for statistically

45

poor triangulations. The precision in the parameters of each analytical form was sufficient for our
industrial application, presenting (for example) a maximal error of ≈ 0.1 % in the opening angle of
the cone.
As expected, fitting-based extraction presents higher execution times than a dihedral angle-based
one. The iterative process of calculating the primitive parameters introduces an additional cost to
the identification of the g() support subset S. In contrast, real-time execution was achieved for
all cases of dihedral angle-based S extraction. Both methods are accelerated by the connectivity
information provided by the B-Rep.
The spatial hashing is central in accelerating the B-Rep construction, and thus the S support
subset extraction and g() primitive fitting. Our approach takes advantage of the B-Rep benefit of
constant-time access to VERTEX, EDGE and FACE neighborhoods. Spatial hashing reduces time
complexity but adds storage complexity. Therefore, it is not a theoretical advantage. In practice,
however, spatial hashing dramatically speeds up B-Rep construction because it delivers bounded
neighborhood search times as it (B-Rep construction) acts in a constant search space. Future work
is required on the acceleration of fitting-based extraction. A natural upgrade of our method is
envisioned for cases in which the primitive sought type T is not specified but instead is one out
of a given finite set.

Abbreviations

The following abbreviations are used in this manuscript:

Term Description
M(T ,P) Triangle (2-manifold) set with geometry P and topology T .
T = {t1, t2, ...} Set of triangles of the input mesh M .
P = {t1, t2, ...} Set of vertices of the input mesh M .
ts Seed triangle.
T User-specified type of the analytic form {Cylinder, Sphere, Cone}.
g() Analytic form denoting one of the cone, cylinder or spheric prim-

itives. g() equally expresses parametric or implicit forms, as well
as the set of parameters determining a primitive.

Et User-specified method for the analytic form fitting.
S Support set of triangles that fit a particular analytic form.
C(t, k) Topological circle on a triangular mesh M , with center triangle t

and distance k.
p0 Distinguished point of cylinder, sphere or cone definition.
R Cylinder or sphere radius.
v̂ Axis vector for cylinder or cone.
γ Opening angle for cone.
δx, δy, δz Voxel side length in the x, y, z directions, respectively.
Ω Rectangular prism orthogonally oriented w.r.t. the coordinate

axes, containing a Nv ×Nv ×Nv grid of rectangular voxels vijk.
Nv Number of voxels per side of Ω

46

h Hashing function: h : P → Nv × Nv × Nv, which maps each
vertex of the input triangle set M into the (i,j,k) indices of the
voxel vijk ⊂ Ω, which contains such a vertex.

H Ω → T , which maps each voxel vijk of Omega into the set of
triangles of M which contain a vertex inside voxel vijk.

Cp Set of auxiliary points to calculate the axis of the analytic forms
(center for sphere case).

n̂i, n Vector normal to triangle i.
bi, b Baricenter of triangle i.
Kmin,Kmax Maximal and minimal surface curvatures.
umin, umax Directions of maximum and minimal curvatures.
T Homogeneous rigid transformation mapping the point b of mesh

M onto the [0, 0, 0]′ of R3, and the plane tangent to M at p onto
the plane XY in R3.

Ln = {`1, `2, ...} Set of lines generated by the baricenter bi and normal n̂i.
NS Number of triangles in triangle subset S.
NT Threshold in number of triangles needed to obtain a stable ap-

proximation of an analytic form.
w(|S|) Maturity measure of the set S. 1 → 1 if |S| is small (S imma-

ture) w → 0 if |S| is large (S mature).
u Relation between the number of triangles in subset NS and the

threshold NT .

47

3
Singularity Correction in Boundary Element

Method for Steady Incompressible Viscous Flow

Samuel Velez-Sanin1, Cristian Rendon-Cardona1, Juan Diego-Jaramillo2, Nicolas Guaŕın-Zapata2

and Oscar Ruiz-Salguero1

1 CAD CAM CAE Laboratory - EAFIT University, Colombia
2 Applied Mechanics Laboratory - EAFIT University, Colombia

Context

Samuel Velez-Sanin, Cristian Rendon-Cardona, Juan Diego-Jaramillo, Nicolás Guaŕın Zapata, Os-
car Ruiz Salguero. Computation, ISSN: 2079-3197, Journal webpage: https://www.mdpi.com/
journal/computation/about. Sumbitted to Journal

Abstract

In the domain of Boundary Element Methods, the problem of Boundary and Surface Integral sin-
gularities implied in computing the effects of a loaded node upon itself, is relevant because it

48

introduces discontinuities and estimation errors in the solution. Existing solutions for this prob-
lem are: (a) sub-segmentations of the integration domain, (b) integration over a distorted but
non-singular domain (element) and correction. Limitations of the mentioned solutions are: high
computing expenses (strategies (a)) and increased complexity of the integration domain (strategies
(b)). To partially overcome these limitations, this manuscript implements a method to compute the
boundary and surface integrals for the singular Green functions when the positions of the source
and field elements coincide. The implemented method evaluates the analytic boundary integral
displacing the source node of the singular element. In addition, we compute the analytic surface
integral for the singular cell. Both of this methods are implemented in the field of fluid dynamics.
Our results (in the area of fluid dynamics) correctly predict laminar flow in immersed profiles which
present low deflections in the flow direction. Our implementation presents poor performance when
the boundary normal vectors significantly differ within a boundary neighborhood. Future work is
required in improving the performance when boundary normal vectors significantly differ within a
boundary neighborhood, increasing the order of the elements, and the extension to other scientific
fields.

Glossary

Ω Boundary Element Problem domain. Closed set.
May be semi-infinite or finite.

B Boundary of Ω. This boundary presents singularities
in the evaluation of the boundary integrals. Thus, it
is the focus of our contribution. B ⊂ Ω.

Γ0 External LOOP of B. Γ0 ⊂ B.
Γi Internal LOOP of B. Γi ⊂ B, i = 1, 2, ..., n.
R Interior of Ω. Flow region for which the velocity vec-

tor field is calculated by the BEM integral equation.
R = int(Ω) with int(Ω) = Ω−B.

S S ⊂ R. Region in which the non-linear convective ac-
celeration effects are significant. Singularities occur
in the integration of

∂Gij

∂xk
for this region. Scenario of

our contribution.
xi [m] Spatial Cartesian coordinate ∈ Ω. i = 0, 1.
ui [m] Absolute velocity vector in the i direction. i =

0, 1.
vi [m] Velocity perturbation vector in the i direction.

i = 0, 1.
Vi [m] Free flow velocity vector in the i direction. i =

0, 1.
fi [Nm2] Traction vector in the i direction. i = 0, 1.
~fi [N] Body force vector in the i direction. i = 0, 1.
ρ [kg/m3] Density.
µ [Ns/m2] Dynamic viscosity.
X [m] Field element position vector.

49

ξ [m] Source element position vector.
IaG Analytic integration coefficient of the Green function

in the canonical coordinate system.
oIaG Analytic integration coefficient of the Green function

in the x y cartesian coordinate system.
InG Numerical integration coefficient of the Green func-

tion by Gaussian quadrature.
M Total number of boundary elements.
L Total number of surface elements.
m Boundary element identifier.
l Surface element identifier.
n̂ Normal vector of a boundary element.
r Position vector from source element (ξ) to field ele-

ment (X).
δ Kronecker’s delta.
t Nodal traction vector.
v Nodal velocity perturbation vector.
to Nodal convective traction vector.
σo Convective stress nodal tensor.
G Matrix with coefficients from the Gij boundary inte-

grals.
F Matrix with coefficients from the Fij boundary inte-

grals and the cij values.

D Matrix with coefficients from the
∂Gij

∂xk
surface inte-

grals.
P Total number of functional nodes.

Q
∑M
m=1Am.

Am Number of functional nodes in element m.
Convective
acceleration

Change of speed produced by changes in spatial po-
sition.

I Identity matrix.
Ωr Mesh triangle element.
Ωc Canonical triangle element.

3.1 Introduction

3.1.1 Problem Specification

The field of fluid dynamics have always been of high interest in engineering. The complex phenom-
ena of flow and its behaviour introduces the need of different manners to predict it. The Boundary
Element Method (BEM) is one of many of these solutions to the problem. However, the method
presents singularities in its integrals that must be sorted in order to implement it. This manuscript
proposes the implementation of the displacement of the source node method [22, 23] as a solution
to this problem for a specific case of flow. This is the 2-dimensional Steady Incompressible Viscous
flow.

Input

50

1 BEP : Boundary Element Problem for the 2-dimensional Steady Incompressible Viscous flow.
Contains boundary and surface singularities.

Output

1 B̃EP : Boundary Element Problem approximation with boundary and surface integral singu-
larities solved.

2 A: An algorithm which approximates the solution of the BEP by solving the B̃EP .

Observations on Problem Specification
The next observations must be taken into account. (1) We are not presenting a software that
transforms a problem into an algorithm. (2) The goal is to exhibit the procedure of the problem
specification. (3) We are not mathematically proving the transformation of problems. (4) The algo-
rithm does not solve the BEP under a distance norm between the problems. (5) We do not provide a

proof of A : BEP → B̃EP with a defined error. (6) The proposed solution is an intuitive approach.

This manuscript is organized as follows: Section 3.2 discusses the relevant literature. Section
3.3 presents the proposed method to sort the singularities in the Boundary Integrals. Section
3.4 discusses the results of various simulations. finally, section 3.5 discuses the conclusions and
introduces to future work.

3.2 Literature Review

The current literature for sorting the singularity presented in the boundary element method is di-
vided into two main categories. (1) Sub-segmentations of the integration domain, (2) distortion of
the singular boundary/surface element.

Element sub-segmentation:
The integration domain (singular element) is subdivided into smaller domains around the singular
position. A numerical integration (quadrature scheme) is computed in the resulting non-singular
domains. Depending on the type of singularity, special quadrature schemes may be utilized for
the remaining singular part. In some cases, the singular part is computed in the Cauchy Principle
Value sense.

Singular Element Distortion:
The singular element is distorted (lumped) in order to separate the source node from the the bound-
ary. In consequence, the previous singular kernels can be integrated analytically and then the limit
is computed for shrinking the boundary to its original state.

[24] presents a machine learning-based framework, constructing a prediction model by supervised
machine learning algorithms. The authors intend to construct the mapping relationship between
integral elements and singular integral results. This approach is not of the concern of the authors of
the current article because of the statistical nature of machine learning and the approach presented
by [24].

51

3.2.1 Conclusions of Literature Review

Table 3.2: Different approaches and our contribution

Approach Refs. Advantages Disadvantages
Sub-segmentation
of the singular
boundary/surface
element (numerical
evaluation)

[25–27] (1) Versatility for
the type of element
used.

(1) Computational
cost for the evalu-
ation of each seg-
ment

Distortion of the
singular bound-
ary/surface ele-
ment

[28–33] (1) *Reduced com-
putational effort
because of the eval-
uation of a single
equation.

(1) Increased com-
plexity of the inte-
gration domain.

Displacement of the
source node in the
singular canonical
boundary element
(our approach)

[22,23] (1) Simple compu-
tation of integrals
with pre-calculated
formulae. (2) No
modification of the
integration domain,
resulting in less
complex integrals.

(1) Complex ana-
lytic integration.

3.3 Methodology

The Boundary Element Method formulation presented in this section is strongly based on the
formulation made by [34] for Steady Incompressible Thermoviscous flow. It is our simplification for
the flow characteristics specified in section 3.1. The simplifications are (1) The flow is adiabatic
and isotherm leading to a simplified system of equations, (2) low order elements are used for the
discretization of the boundary and surface (S), (3) the singular integrals (boundary and surface)
are approached in an analytic way (scenario of our contribution).

3.3.1 Domain Layout

The general domain layout for this approach is presented on Fig. 3.1. Complete domain Ω = R∪B.
With B being the boundary and R the interior region. The boundary B is conformed by Γ0 ∪ Γ1,
the exterior and interior boundaries, respectively.

52

Figure 3.1: BEP domain layout. Ω = R ∪B.

3.3.2 Governing Equations

We use the governing equations for Steady Incompressible Thermoviscous Flow presented in [34]
for the implemantation of the BEM in fluid dynamics.

Mass conservation
∂uj
∂xj

= 0, (3.1)

Momentum µ
∂2ui
∂xj∂xj

− ∂p

∂xi
− ρuj

∂ui
∂xj

+ ~fi = 0, (3.2)

Energy k
∂2θ

∂xj∂xj
− ρcεuj

∂θ

∂xj
+ Y + Ψ = 0. (3.3)

For purposes of this work, some assumptions are introduced to the Eqs. (3.1), (3.2) and (3.3).
These assumptions are described below:

1 Constant temperature.
∂θ

∂xi
= 0

2 There aren’t any heat sources nor viscous dissipation is considered.

Y = 0 Ψ = 0

Because of statements 1 and 2, Eq. (3.3) is not considered.

53

3 There aren’t any body forces.
~fi = 0

After applying the assumptions, the resulting governing equations are:

Mass conservation
∂uj
∂xj

= 0 (3.4)

Momentum conservation µ
∂2ui
∂xj∂xj

− ∂p

∂xi
+ fi = 0 (3.5)

Where

fi = −ρuj
∂ui
∂xj

+ ~fi

Not taking into account body forces, ~fi = 0.

3.3.3 Continuous Formulation of the BEM Integral Equation

With all the assumptions presented in section 3.3.2, the Eq. (16a) from [34] is rewritten in Eq.
(3.6) for the continuous integral formulation of the Boundary Element Method to be solved.

cij(ξ)vi(ξ) =

∫
B

[Gij(X − ξ)ti(X)− Fij(X − ξ)vi(X)

−Gij(X − ξ)ρ(Uk(X) + vk(X))nk(X)vi(X)]dB(X)

−
∫
S

[
∂Gij(X − ξ)

∂xk
ρ(Uk(X) + vk(X))vi(X)

]
dS(X).

(3.6)

Green Functions

Eqs. (3.7 - 3.9) present the Green Functions utilized in Eq. (3.6). Singularities occur when Xi = ξi,
making r2 = 0.

Gij =
1

4πµ

(yiyj
r2
− δij ln r

)
. (3.7)

Fij = − 1

2πr

(
2yiyjyknk

r3

)
. (3.8)

∂Gij
∂xk

=
1

4πµr

(
δjkyi
r

+
δikyj
r
− δijyk

r
− 2yiyjyk

r3

)
(3.9)

yi = Xi − ξi. (3.10)

r2 = yiyi. (3.11)

54

3.3.4 Numerical Implementation

Since no analytic solution can be found for the integral BEM equation (Eq. 3.6), a numerical
approximation is sufficient. The numerical solution scheme and the discretization for the BEP is
discussed in this section.

The scheme is represented in the following block diagram. It is the process by which an approx-

imated numerical solution to B̃EP is found.

Simulation
initialization

matrices
calculation for

and

Solve system
of Eqs. (37)

Calculate
for cells (Eq.

(12))

Recalculate
(Eq. (16)).i>num_iter ?

Yes

initialization
for .

initialization for
. See Eqs. (15)

and (16)

Mesh,
boundary () and

: flow () conditions

,Mesh

Boundary conditions ,
for ,

Mesh ,Mesh

for cells

No

-Boundary Solution
-Mesh

- for

-Current
-Updated

Boundary
solution

Figure 3.2: Block diagram for the general process to achieve a numerical solution for B̃EP . f :
Flow conditions variables.

Spatial Discretization

The domain Ω for the BEP has to be discretized since the analytic continuous equation that
represents it cannot be determined. For this, the boundary B and surface S elements are discretized
as follows:

• Boundary Elements: 1-dimensional low order constant elements (see Fig. (3.3)). Each element
is defined by two geometrical nodes and one functional node.

55

• Surface Cells: 2-dimensional low order constant triangular cell elements (see Fig. (3.3)). Each
cell is defined by 3 geometrical nodes and one functional node.

:Geometrical Node

:Functional Node

Figure 3.3: Boundary (left) and surface (right) elements.

Discretized BEM Equation

Taking into account the spatial discretization defined in section 3.3.4, the Eq. (3.6) is reformulated
in Eq. (3.12).

cijvi(ξ) =

M∑
m=1

ti(Xm)

∫
Bm

Gij(r)dB − vi(Xm)

∫
Bm

Fij(r)dB − toi (Xm)

∫
Bm

Gij(r)dB

+

L∑
l=1

σo
ki(Xl)

∫
Sl

∂Gij(r)

∂xk
dS

(3.12)

, with M being the total number of boundary elements and L the total number of surface S
cells. Descriptions for some terms of equation 3.12 can be seen in table 3.3.

56

Table 3.3: Terms description for the Discretized BEM equation. T : Time units, L: Distance units,
M : Mass units.

Term Description Dims.

B =
∑M
m=1Bm Boundary discrete composition -

S =
∑L
l=1 Sl Non-linear convective region dis-

crete composition
-

toi = σokink Non-linear convective traction
vector

M
LT 2

σoki = ρ(Uk + vk)vi Non-linear convective traction
tensor

M
LT 2

vi = ui − Vi Velocity perturbation vector L
T

ti Traction vector M
LT 2

c = 0.5I Diagonal matrix of values 0.5 -

3.3.5 Integral Approaches

The integrals contained in Eq. 3.12 are evaluated to obtain a linear system of equations in terms of
unknown boundary conditions. They are evaluated for the Green functions over each boundary and
surface elements respectively. For this, the current section presents an implementation of the method
proposed by [22, 23] for the evaluation of the singular boundary integrals. In addition, a direct
analytic evaluation is also discussed for the singular surface integrals as part of our contribution in
the BEM solution for Non-linear Steady Incompressible Viscous 2-dimensional flow.

Boundary and Surface Elements Non-singular and Singular Situations

The boundary and surface integrals are solved for all combinations of ~ξ and ~X, both positioned in
boundary and surface elements. The positioning of ~ξ in the boundary elements (Fig. 3.4) corre-
sponds to the integration process needed to compute the missing boundary conditions. In addition,
positioning ~ξ in the surface cells (Fig. 3.5) is performed for integrals needed for recalculation of σo

in each iteration.

57

(a) Non singular situation. ξ and X are not coincident.
~r = X − ξ 6= 0. Numerical integration is applied for
the mesh elements.

(b) Singular situation. ξ and X are coincident. ~r =
X − ξ = 0. Situation for which our contribution is
made. Analytic integration scheme is implement over
a canonical element.

Figure 3.4: Boundary (S) ξ and X elements positions for boundary integrals. Surface (S) is the
relevant non-linear convection zone.

(a) Non singular situation. ξ and X are not coincident.
~r = X − ξ 6= 0. Numerical integration is applied for
the mesh element.

(b) Singular situation. ξ and X are coincident. ~r =
X − ξ = 0. Situation for which our contribution is
made. Direct analytic integration is performed over a
canonical element.

Figure 3.5: Surface (S) ξ and X elements positions for surface integrals. Integral evaluation cases
for the calculation of σo between iterations.

Non-singular Boundary and Surface Integrals

For the non-singular cases X 6= ξ (see Figs. (3.4. a) and (3.5. a)), the integration over the boundary
and surface is computed numerically. For the boundary integrals the evaluation is performed using
a 3-point Gaussian Quadrature. For surface integrals the evaluation is performed using a 1-point
Gaussian Quadrature. These numerical integrals are not treated or explained in detail since they
are not the focus of this article.

58

Singular Boundary Integrals

For the singular boundary integrals (~ξ = ~X), the computation is performed with a modified Green
function as the integrand over a canonical element. The method consists in displacing the source
node ξ a distance D (Fig. 3.6). After displacement, the singular boundary integrals can be evaluated
analytically and the limit taken when D → 0+ (since D is a distance) as per Eqs. (3.13) and (3.14).

IaGij(Xm − ξm) = lim
D→0+

∫
Bm

Gij(Xm − (ξm −D))dB (3.13)

IaFij(Xm − ξm) = lim
D→0+

∫
Bm

Fij(Xm − (ξm −D))dB (3.14)

This method of displacement of the source node is presented by [22, 23] for the elasticity and
fracture fields respectively. Our contribution consists in its implementation applied in the field of
fluid dynamics described in section 1. In addition, a contribution is proposed as the direct analytic
solution of the singular surface integrals (see section 3.3.5).

59

(a) Singular case occurs when x = 0. X and ξ coincide
(bottom).

(b) Displacement of source node (ξ) for the correction
of the singular case. ∀x, ~r 6= 0.

Figure 3.6: Analytic integration over the singular element m (see Fig. 3.4 (b)) ξ = Xm. Canonical
coordinate system. Integrating for U1 ∈ [−l/2 → l/2] in local canonical coordinates. Scenario
(subFig. (a)) of our contribution.

The mathematical procedure for avoiding the singularity (Fig. 3.6 (a)) and the analytic integral
evaluation is now discussed.

The modified variables for the Green functions (Eqs.3.10 and 3.11) are presented in Eqs. (3.15-
3.17). These are then replaced in each Green functions Gij and Fij as shown in Eq. (3.18) for G11.

y1 = X1 − ξ1 = U1 − 0 = U1 (3.15)

y2 = X2 − ξ2 = 0− (−D) = D (3.16)

r =
√
U2

1 +D2 (3.17)

G11(X − ξ,D) =
1

4πµ

(
U2

1

U2
1 +D2

− ln

(√
U2

1 +D2

))
(3.18)

The result of integrating this modified function is shown in Eq. (3.19). In addition, following the
same procedure, the results for the integrands G12, G21 and G22 are as shown in Eqs. (3.20-3.22)

lim
D→0+

1

4πµ

∫ l/2

−l/2

U2
1

U2
1 +D2

− ln

(√
U2

1 +D2

)
dU1 =

l
(
− log

(
l2
)

+ log (4) + 4
)

8µπ
(3.19)

60

lim
D→0+

∫ l/2

−l/2
G12(X − ξ,D)dU1 = 0 (3.20)

lim
D→0+

∫ l/2

−l/2
G21(X − ξ,D)dU1 = 0 (3.21)

lim
D→0+

∫ l/2

−l/2
G22(X − ξ,D)dU1 =

l
(
− log

(
l2
)

+ log (4) + 2
)

8µπ
(3.22)

Furthermore, to solve IaFij(Xm−ξm), one has that the normal vector n̂ of the canonical element
is,

n1 = 0 n2 = 1 (3.23)

Now, taking into account the normal vector, the variables in Eqs. (3.15-3.17) are replaced for
the integrands Fij as seen in Eq. (3.8) for F11. The integration is then performed as expressed in
Eq. (3.14). This is shown in Eqs. (3.25-3.28)

F11(X − ξ,D, n̂) =
1

2π

(
2U2

1D

(U2
1 +D2)2

)
(3.24)

lim
D→0+

2

2π

∫ l/2

0

2U2
1D

(U2
1 +D2)2

dU1 =
1

2
(3.25)

lim
D→0+

2

∫ l/2

0

F22(X − ξ,D, n̂)dU1 =
1

2
(3.26)

lim
D→0+

∫ l/2

−l/2
F12(X − ξ,D, n̂)dU1 = 0 (3.27)

lim
D→0+

∫ l/2

−l/2
F21(X − ξ,D, n̂)dU1 = 0 (3.28)

For the integrals of F12 and F21, the result is nule since this functions are odd with respect to
0.

The results obtained in Eqs. (3.19-3.22) and (3.25-3.28) are transformed (see section 3.3.5) and
stored in matrices IaG

m and IaF
m. These matrices compose the diagonal band of the influence

matrices G and F (see section 3.3.5).

61

Singular Surface Integrals

As expressed in Fig. 3.5, the surface integral evaluation presents a singularity when ξ = X. This
occurs only for the integration need to recalculate σo in each new iteration (see subsection 3.3.7).

Even though, the singularity is present in the Green function
∂Gij

∂xk
, the integral exists and is finite.

Consequently, a direct analytic integration is performed over a canonical element (Fig. 3.8) and
then transformed for the real element.

(a) General surface integration case. Selected cells j l
(X) and il (ξ).

(b) Selected region in subFig. (a).

Figure 3.7: General integration case for region S. Singularity occurs when i = j (triangles il and
j l coincide) and points ξ and X are coincident (~r = 0).

Figure 3.8: Canonical element (axis U1, U2). Domain for the analytic integration of
∂Gij(X−ξ)

∂Uk
.

Scenario of our contribution.

62

Since the function
∂Gij(X−ξ)

∂Uk
has a reflection with respect to the singularity point ξ = X in the

canonical element, the integral of such function exists and has a finite value. The integration is
performed in SymPy [1] with the integrate() method. The results of such integration are given in
the table 3.4. Since

∫
Sm

∂G12

∂xk
dSm =

∫
Sm

∂G21

∂xk
dSm, the result for the integrands ∂G12

∂xk
are the only

ones shown.

Table 3.4: Results for singular surface integrals of
∂Gij

∂Uk
. Results for canonical element (see Fig.

3.8). SymPy [1] used for integral evaluation.

Analytic Integral Equation Result Observations

Ia
∂G11

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G11(X−ξ)

∂U1
dU2dU1 − 0.017265928194611

µπ Results are
transformed
(see Eq. 3.33)
and assembled
in oIa∂G (see
Fig. 3.12).

Ia
∂G12

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G12(X−ξ)

∂U1
dU2dU1

0.017265928194611
µπ

Ia
∂G22

∂U1
=
∫ 1

0

∫ 1−U1

0
∂G22(X−ξ)

∂U1
dU2dU1

0.0481585520039788
µπ

Ia
∂G11

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G11(X−ξ)

∂U2
dU2dU1

0.0481585520039788
µπ

Ia
∂G12

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G12(X−ξ)

∂U2
dU2dU1

0.017265928194611
µπ

Ia
∂G22

∂U2
=
∫ 1

0

∫ 1−U1

0
∂G22(X−ξ)

∂U2
dU2dU1 − 0.017265928194611

µπ

Transformations to the Real Elements for Boundary and Surface Analytic Integrals

The results of the singular integrals, both for boundary and surface elements, are obtained for
canonical elements. Therefore, these results must be mapped from a canonical domain to the real
domain of the boundary element problem. The transformations that perform such mapping are
discussed next for each element type (boundary-surface).

Boundary Elements Transformation

For the boundary analytic integrals, a tensor transformation for the results of Eqs. (3.13) and
(3.14) is performed. This transformation is computed with a transformation matrix N , which is
calculated for each element with its normal vector n̂ (Eq. 3.29.

N =

[
cosα − sinα
sinα cosα

]
=

[
n2 −n1

n1 n2

]
(3.29)

The transformation in Eq. (3.31) represents the tensor IaGij in the x y coordinate system and
is calculated as follows.

oIaGij = NT IaGijN (3.30)
oIaFij = NT IaFijN (3.31)

63

Figure 3.9: Boundary element in canonical and real orientation. Canonical (U1 U2) and real (x y)
coordinate systems.

Surface Elements Transformation

The analytic integration is executed over a canonical triangular element, as shown in Fig 3.8.
The value of the integral for the surface element is transformed from the canonical to the real
domain. This transforamation T : Ωc → Ωr is affine. Therefor, the Jacobian is constant for each
element.

Figure 3.10: Transformation from canonical element (right) to mesh element (left).

Since the Jacobian is constant for each element, the determinant is the same at each point, an
can be calculated as the ratio of the areas.

|J | = Ar
Ac

(3.32)

Eq. (3.33) presents an example on how the transformation of the integral is applied. The
determinant of the Jacobian provides the relation between the differentials from each domain.

oIa
∂Gij
∂xk

= |J |Ia
∂Gij
∂Uk

(3.33)

64

Influence Matrices Assembly

Influence matrices G,F,D are assembled in such a manner so that the system of equations can be
written in matrix form. The matrices are represented as block matrices for ease of understanding.
Each row i contains all results of integrals for ξi w.r.t each Xj , j = 1, 2, ...,M .
Influence matrices are needed in two processes. For each process, they are assembled with different
coefficients. For calculation of boundary conditions, the coefficients correspond to the results of
integrals with ξ placed in B and X in B (G,F) or in S (D). For recalculation of σo in S, the
coefficients correspond to the results of integrals with ξ placed in S and X in B (G,F) or in S
(D). The coefficients in the diagonal could be the results of singular integrals but not necessarily
for cases in which ξ and X are placed in different topological entities (B and S).

The composition of the influence matrix G is shown in Fig. 3.11. The positions in the diagonal
(i = j) correspond to the transformed results of the singular integrals (Eq. 3.31) of the Green func-
tions Gij(X − ξ) . Additionally, the non-diagonal (i 6= j) correspond to the non-singular integrals
(See section 3.3.5).

Figure 3.11: Matrix G composition. Block matrix representation. Results from boundary integra-
tion of G(X − ξ). ξ and X placed in B.

The composition of the influence matrix F is identical to matrix G (see figure 3.11), except
with the results from the integrals of Fij(ξ −Xm, n̂) and the contribution of the diagonal c matrix
(see table 3.3). For influence matrices G and F, the sub-matrices oIaG

m and oIaF
m are of size 2×2.

The assembly of the influence matrix D is similar to both of G and F. The only difference relies
in the assembly of the sub-matrices oIa∂G shown in Fig. 3.12 (b).

65

(a) Influence matrix D

(b) Sub-matrix oIa∂G composition for cell m

Figure 3.12: Matrix D composition. Block matrix representation. Results from surface integration

of ∂G(X−ξ)
∂x . ξ and X placed in S.

3.3.6 System of Equations

The B̃EP is written as a linear system of equations so that the unknown boundary conditions
can be found. Consequently, the evaluation of the Eq. (3.12) for all elements in the boundary
(ξi, i = 1, 2, ...,M), produces this system. It is written in matrix form as follows.

Gt− Fv −Gto + Dσo = 0 (3.34)

Figure 3.13: System of equations (Eq. 3.34). Known Boundary Conditions (green). Unknown
Boundary Conditions (red). M: Total number of boundary B elements. L: Total number of surface
S cells.

66

Eq. 3.34 can be reorganized and rewritten in terms of a vector of unknowns x and a vector of
known boundary conditions y,

g(x) = Ax−Dσo + Gto −By = 0 (3.35)

, for which matrix A(G,F, t,v) corresponds to unknown boundary conditions. Matrix B(G,F, t,v)
corresponds to known boundary conditions.

3.3.7 Iterative Process

An iterative process is necessary due to the assumption that fi is known for the linearization of Eq.
(3.5). This linearization allows to formulate the BEM integral equation and converge the unknown
boundary values, iterating over σoki.

The iterative process initializes σoki. Then, at each iteration i, the boundary values are calcu-
lated and σoki is updated with these new results. The iterative process is terminated once there
is convergence observed in the solution. This happens when the fluctuations between states of
iteration i and i− 1 are insignificant.

1 To converge the boundary values due to the assumption of the term fi in Eq. (3.5) performed
by [34], an iterative cycle over this term must be executed.

2 The term σoki in Eq. (3.12) is the one to be iterated over.

3.4 Results

3.4.1 Numerical Examples

The numerical examples discussed next are solved using the boundary element method formulated
previously. This examples are used to test the approximation with low order elements and analytic
solutions of the singular integrals. The results are obtained with an implementation in python and
compared with results obtained with ANSYS.

Domain Discretization
Discretization of the boundary B and the region S, for each example, is exhibited next. Elements
used for discretization of the boundary and surface are discussed in section 3.3.4.

67

− 0.50 − 0.25 0.00 0.25 0.50 0.75 1.00 1.25

− 0.6

− 0.4

− 0.2

0.0

0.2

0.4

0.6

y
[m

]

AoA

Angle of Attack (AoA) indication

1.50

x [m]

Figure 3.14: Indication of the angle of attack for the airfoils.

For the examples in Figs. 3.15- 3.19, the domains (Ω’s) are semi-infinite. External boundary Γ0

to Ω does not exist. For these, only a region around S is evaluated in order to observe the flow’s
behaviour around the submerged object.

For the example in Fig. 3.20, Ω is finite with B = Γ0. A submerged object Γ1 does not exist.
The objective is to observe the bending of the flow’s direction because of the 90o angle elbow.

68

Figure 3.15: Mesh of airfoil at 0◦ angle of attack.

Figure 3.16: Mesh of airfoil at 3◦ angle of attack.

69

− 4 − 2 0 2 4
x[m]

− 2

− 1

0

1

2
y

[m
]

Mesh Geom etric Ent it ies

Figure 3.17: Mesh of 0.5m radius circle. 2000 boundary elements. 7866 cell elements.

Figure 3.18: Mesh of 0.2m side square. 2001 boundary elements. 4445 cell elements.

70

− 3 − 2 − 1 0 1 2 3
x[m]

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

y
[m

]

Mesh Geom etric Ent it ies

Figure 3.19: Mesh of ellipse. 2000 boundary elements. 11976 cell elements.

Figure 3.20: Elbow flow mesh. 448 boundary elements. 7732 cell elements.

Flow Conditions/Fluid Properties.
The flow conditions and fluid properties used for the simulation of the numerical examples are
presented in Table 3.5.

71

Table 3.5: Flow conditions. Fluid properties. V1: free flow velocity in x direction. V2: free flow
velocity in y direction.

T [Co] ρ[kgm3] µ[m
2

s] ν[kgms] Re V1[ms] V2[ms]

15 1.225 1.81e-5 1.48e-5 2 V1(Re, ν, c) 0

The free flow velocity V1(Re, ν, c) is different for each example. It depends on the characteristic
length c of each domain.

Boundary conditions.
The boundary conditions are assigned solely to the boundaries Γi. For every example’s Γi, a No-slip
condition is defined as a Dirichlet boundary condition ui(Γ) = 0. Consequently, the traction t(Γ)
is unknown.

3.4.2 Integral Coefficients Results for Green Functions Gij(X − ξ) and
Fij(X − ξ).

The integral coefficients for Green Functions Gij(X−ξ) and Fij(X−ξ) for the example of the airfoil
at 0◦ Angle of Attack are presented. These results are given in order to observe the behaviour of
the numeric and analytic integrals along the boundary.

Integral coefficients shown correspond to the numerical evaluation (3 point Gauss quadrature)
for X 6= ξ and the analytic scheme evaluation for X = ξ in the boundary. Even though C1 discon-
tinuities can be seen at strong geometric changes (n̂m · n̂m+1 << 1), it is not our intention to solve
this discontinuities but to take them into account in the behaviour of the solutions.

For Figs. (3.22) and (3.23), integral values at extremes X = 0 and X = 1000 which do not
correspond to an analytic value, are a product of numerical evaluation. No special attention should
be focused on these values.

Figure 3.21: Selected neighbourhoods normals for Figs. 3.22 and 3.23.

72

0

20

40

60

80

100

120

140

160

Fine Airfoil Mesh G11 integrals

0 100 200 300 400 500 600 700 800 900 1000
XElement

Elem ent ξ 1

Elem ent ξ 300

Elem ent ξ 500

A

B B

G
11

 v
al

ue

A A

(a) G11(X − ξ)

(b) G12(X − ξ)

(c) G22(X − ξ)

Figure 3.22: Analytic and numerical results for the integrals of Green function G. Airfoil at 0◦ angle
of attack (mesh in fig 3.15). A: Result of analytic integration for singular case in the boundary. B:
C0 Discontinuity produced by neighbourhood with strong normal changes.

73

10− 6

10− 5

10− 4

10− 3

10− 2

10− 1

100

F1
1

va
lu

es

Fine Airfoil Mesh F11 integrals

XElement

Elem ent ξ 1

Elem ent ξ 300

Elem ent ξ 500

A

B
0 100 200 300 400 500 600 700 800 900 1000

A A B
B

(a) F11(X − ξ, n̂)

(b) F22(X − ξ, n̂)

Figure 3.23: Analytic and numerical results for the integrals of Green function F. Airfoil at 0◦ angle
of attack (mesh in fig 3.15). A: Result of analytic integration for singular case in the boundary. B:
C0 Discontinuity produced by neighbourhood with strong normal changes.

3.5 Conclusions and Future Work

This manuscript presents the simplification and evaluation of a fluid dynamics problem using the
Boundary Element Method. The solution of the boundary element integrals is performed via the
source node displacement method presented by [22,23]. To the best of the authors knowledge, this
singularity sorting method has not been implemented for the evaluation of this integrals in the
specific fluid dynamics problem. In addition, low order elements are used for the discretization
and numerical solution of the boundary element problem. This allows for a simpler and more
understandable approach. Our implementation and algorithm predicts the flow characteristics to
be expected around a submerged object and through changes in directions. Difficulties can be found
in the precision of the velocity vectors. This may occur due to a not sufficient surface discretization,
great variations in the normal vectors of boundary neighborhoods and low number of elements used.
Future work is required in improving the performance when boundary normal vectors significantly

74

differ within a boundary neighborhood, increasing the order of the elements, and the extension of
the implemented methods for sorting the singularity to other scientific fields.

75

4
Conclusions

This work presents a compilation of manuscripts in applications of Computational Mechanics in
which Computational Geometry and Numerical Simulation have a central role. Likewise, tools
from mathematics, data structures, algorithms and programming fundamentals are essential for the
developed approaches.

This compendium shows a novel method for rapid segmentation of 3D meshes with statistically
poor triangulation. The results show a successful fitting of three different primitives (sphere, cylin-
der, cone) together with their support set, with a maximal error of ≈ 0.1 %. Therefore, it also
shows that the precision is sufficient for the proposed industrial application. The proposed approach
presents real-time execution for cases with continuity C-0. In contrast, C-1 or higher continuity
introduces higher execution times.

This document also contributes to the area of numerical simulations for fluid dynamics. The
method sorts the singularity in the boundary integral by applying a displacement to the source node.
The results were compared with the commercial software ANSYS finding that the implementation
predicts flow characteristics to be expected around a submerged object.

Finally, the different contributions presented here can be further extended. Therefore, future
research can be focused on: (1) automatically detecting the type of primitive to fit given the input
triangle and its neighborhood for our tool of analytic form fitting. (2) Increasing the order of the
boundary elements, improving the performance when boundary normal vectors signicantly differ
within a neighborhood.

76

5

78

Bibliography

[1] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Sco-
patz. Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103, January 2017.

[2] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy Boubekeur. A Survey of Simple Ge-
ometric Primitives Detection Methods for Captured 3D Data. Computer Graphics Forum,
38(1):167–196, 2019.

[3] Laurent Busé, André Galligo, and Jiajun Zhang. Extraction of cylinders and cones from
minimal point sets. Graphical Models, 86:1–12, 2016.

[4] Oscar Ruiz, Santiago Arroyave, and Diego Acosta. Fitting of Analytic Surfaces to Noisy Point
Clouds. American Journal of Computational Mathematics, 03(01):18–26, 2013.

[5] Rostislav Hulik, Michal Spanel, Pavel Smrz, and Zdenek Materna. Continuous plane detection
in point-cloud data based on 3D Hough Transform. Journal of Visual Communication and
Image Representation, 25(1):86–97, 2014.

[6] Tahir Rabbani and Frank Van Den Heuvel. Efficient Hough Transform for Automatic Detection
of Cylinders in Point Clouds. ISPRS Workshop on Laser Scanning, 3:60–65, 2005.

[7] Marco Attene and Giuseppe Patanè. Hierarchical structure recovery of point-sampled surfaces.
Computer Graphics Forum, 29(6):1905–1920, 2010.

[8] Dong Ming Yan, Wenping Wang, Yang Liu, and Zhouwang Yang. Variational mesh segmenta-
tion via quadric surface fitting. CAD Computer Aided Design, 44(11):1072–1082, 2012.

[9] Tianjia Shao, Weiwei Xu, Kun Zhou, Jingdong Wang, Dongping Li, and Baining Guo. An
interactive approach to semantic modeling of indoor scenes with an RGBD Camera. ACM
Transactions on Graphics, 31(6):1–12, 2012.

[10] Natasha Gelfand and Leonidas J. Guibas. Shape segmentation using local slippage analysis.
ACM International Conference Proceeding Series, 71:214–223, 2004.

[11] Timur Bagautdinov, François Fleuret, and Pascal Fua. Probability occupancy maps for oc-
cluded depth images. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 07-12-June:2829–2837, 2015.

79

[12] Jin Liu. An adaptive process of reverse engineering from point clouds to CAD models. Inter-
national Journal of Computer Integrated Manufacturing, 33(9):840–858, 2020.

[13] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei Sharf, Daniel Cohen-Or, and Niloy J.
Mitra. Globfit: Consistently fitting primitives by discovering global relations. ACM Transac-
tions on Graphics, 30(4), 2011.

[14] Oliver J. Woodford, Minh Tri Pham, Atsuto Maki, Frank Perbet, and Björn Stenger. Demist-
ing the hough transform for 3D shape recognition and registration. International Journal of
Computer Vision, 106(3):332–341, 2014.

[15] Jie Chen and Baoquan Chen. Architectural modeling from sparsely scanned range data. In-
ternational Journal of Computer Vision, 78(2-3):223–236, 2008.

[16] Florent Lafarge and Clément Mallet. Creating large-scale city models from 3D-point clouds:
A robust approach with hybrid representation. International Journal of Computer Vision,
99(1):69–85, 2012.

[17] Roseline Bénière, Gérard Subsol, Gilles Gesquière, François Le Breton, and William Puech.
Recovering primitives in 3D CAD meshes. Three-Dimensional Imaging, Interaction, and Mea-
surement, 7864(January 2011):78640R, 2011.

[18] Truc Le and Ye Duan. A primitive-based 3D segmentation algorithm for mechanical CAD
models. Computer Aided Geometric Design, 52-53:231–246, 2017.

[19] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM SIGGRAPH 2006 Papers,
SIGGRAPH ’06, 1(212):579–588, 2006.

[20] Daniel Mejia-parra, Juan Lalinde-pulido, Jairo R. Sánchez, Oscar Ruiz-salguero, Jorge Posada,
C A M Cae, and Universidad Eafit. Perfect Spatial Hashing for Point-cloud-to-mesh Registra-
tion. Conferencia Española de Informática Gráfica (CEIG’19), pages 1–9, 2019.

[21] M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, Rockville, Maryland,
USA, 1988. ISBN-13: 978-0881751086.

[22] C Balakrishna, LJ Gray, and JH Kane. Efficient analytical integration of symmetric galerkin
boundary integrals over curved elements; elasticity formulation. Computer methods in applied
mechanics and engineering, 117(1-2):157–179, 1994.

[23] LJ Gray, Luiz F Martha, and AR Ingraffea. Hypersingular integrals in boundary element
fracture analysis. International journal for numerical methods in engineering, 29(6):1135–1158,
1990.

[24] Li Yuan, Mao Wentao, Wang Gangsheng, Liu Jing, and Wang Shixun. A general-purpose
machine learning framework for predicting singular integrals in boundary element method.
Engineering Analysis with Boundary Elements, 117:41–56, 2020.

[25] Xiao-Wei Gao, Jin-Bo Zhang, Bao-Jing Zheng, and Ch Zhang. Element-subdivision method for
evaluation of singular integrals over narrow strip boundary elements of super thin and slender
structures. Engineering Analysis with Boundary Elements, 66:145–154, 2016.

80

[26] JC Lachat and JO Watson. Effective numerical treatment of boundary integral equations: a
formulation for three-dimensional elastostatics. International Journal for Numerical Methods
in Engineering, 10(5):991–1005, 1976.

[27] Guizhong Xie, Yudong Zhong, Fenglin Zhou, Wenliao Du, Hao Li, and Dehai Zhang. Singularity
cancellation method for time-domain boundary element formulation of elastodynamics: A
direct approach. Applied Mathematical Modelling, 80:647–667, 2020.

[28] Abdel-Magid Abdel-Latif Abdalla. Solution of viscous flow problems by using the boundary
element method. 1992.

[29] RGR Camacho and JR Barbosa. The boundary element method applied to incompressible
viscous fluid flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering,
27(4):456–462, 2005.

[30] Xiao-Wei Gao. An effective method for numerical evaluation of general 2d and 3d high order
singular boundary integrals. Computer methods in applied mechanics and engineering, 199(45-
48):2856–2864, 2010.

[31] YJ Liu. On the simple-solution method and non-singular nature of the bie/bem-a review and
some new results. Engineering analysis with boundary elements, 24(10):789–795, 2000.

[32] JJ Pérez-Gavilán. Introducción a los elementos de frontera. México, Consejo Nacional de
Ciencia y Tecnologıa, 2006.

[33] JCF Telles. A self-adaptive co-ordinate transformation for efficient numerical evaluation of gen-
eral boundary element integrals. International journal for numerical methods in engineering,
24(5):959–973, 1987.

[34] Prasanta Kumar Banerjee and Luigi Morino. Boundary Element Methods in Nonlinear Fluid
Dynamics: Developments in boundary element methods-6. CRC Press, 1990.

81

	Introduction
	Summary of Manuscripts
	List of Co-authors of this Compendium
	Projects
	Distinctions
	Academic Impact
	How to Read this Document

	Analytic Form Fitting
	Introduction
	Research Target
	Context

	Literature Review
	Stochastic Methods
	 Mapping to Parameter Space
	 Mesh Segmentation Fitting Methods
	Conclusions of Literature Review

	Methodology
	Preprocessing
	Spatial Hashing
	 Boundary Representation Construction

	Primitive Fitting from Triangle Set
	Cylinder Fitting
	Cone Fitting
	Sphere Fitting
	Conclusions of Fitting Section

	 Extraction of Subset S Based on Dihedral Angle
	 Extraction of Subset S Based on Fitting Quality
	Fitting-Based Extraction of Cylinders and Cones
	Fitting-Based Extraction of Spheres

	Results
	Cylinder Fitting
	Cone Fitting
	Sphere Fitting
	Comparison with Competitor Approaches
	Complexity
	Reduction in Computing Time by Using Hashing

	Conclusions and Future Work

	BEM Singularities for Fluid Dynamics
	Introduction
	Problem Specification

	Literature Review
	Conclusions of Literature Review

	Methodology
	Domain Layout
	Governing Equations
	Continuous Formulation of the BEM Integral Equation
	Green Functions

	Numerical Implementation
	Spatial Discretization
	Discretized BEM Equation

	Integral Approaches
	Boundary and Surface Elements Non-singular and Singular Situations
	Non-singular Boundary and Surface Integrals
	Singular Boundary Integrals
	Singular Surface Integrals
	Transformations to the Real Elements for Boundary and Surface Analytic Integrals
	Influence Matrices Assembly

	System of Equations
	Iterative Process

	Results
	Numerical Examples
	Integral Coefficients Results for Green Functions Gij(X-) and Fij(X-).

	Conclusions and Future Work

	Conclusions
	Bibliography

