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Abstract: In the context of computer-aided apparel-fitting simulation, the problem of generating
(a) simulation-inexpensive and (b) tailor-measurement-driven digital mannequins is central. Three-
dimensional scanning of human bodies produces high-fidelity datasets. However, this technique does
not satisfy conditions (a) and (b) above. In addition, it requires extensive data cleaning and processing.
Existing approaches to this problem broadly fall into these mainstreams: (i) biased scaling, interpola-
tion, or morphing of template models; or (ii) bottom-up construction of anatomy (bone medial axis,
kinematic joints, muscles, skin, and other layers). Both alternatives imply extensive scanning, appli-
cation of heuristics, tuning, and storage, among other tasks. Both alternatives produce non-convex
datasets that have to be processed further for cloth–body interaction simulation, as physics engines
require some type of data convexity for realistic simulations. This manuscript presents a modeling
methodology that partially overcomes these limitations by (1) coarsely approximating a template
female body with sets of convex volumes (ellipsoids and cushions), (2) building a set of Reference
Mannequins for a particular set of extreme and average tailor measurements, and (3) creating sets of
functions that synthesize new individuals of digital mannequins as reunions of convex volumes that
satisfy specified tailor measurements. These mannequins present a reasonable and realistic demeanor.
At the same time, they are shown to be economical at the stage of simulation of garment fitting.
Future work is encouraged to define kinematic chains for straightforward pose definition, modeling
male bodies, and exploring the behavior of the synthesis functions with more parameters.

Keywords: measurement-driven digital mannequins; human body modeling; parametric modeling;
tailor measurements; convex-volume-based modeling

1. Introduction
1.1. Context

Parametric modeling of the human body (in the relevant literature [1,2]) is the process
by which 3D digital representations of diverse body shapes and sizes can be synthesized
from input measurements and example models. An advantage of parametric human body
modeling is the possibility of economically and flexibly avoiding scanning or manual
digital sculpting to obtain 3D models of different phenotypes [1]. Parametric modeling of
humans is applied in virtual tailoring, garment fitting simulation, human motion modeling,
avatar creation, character design, etc.

Digital mannequin realization and virtual garment trial directly implement physics
and mathematical theories and tools (statistics, differential geometry and equations, signal
processing, kinematics, multi-particle systems, thin-plate energy, strain modeling, etc.).
Time optimization in these fields touches topics such as scalar and vector fields, hash
functions, lattice geometry, topology, etc. Garment fitting [3,4] and mannequin modeling [1]
rely heavily on computational geometry and topology tools.
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Usual parametric modeling produces mappings between body surface point clouds
and anthropometric (i.e., tailor) measurements. A goal is to produce new point clouds that
obey extended sets of tailor measurements. Prescribing the position of massive amounts
of points by using analytical forms or constraints easily produces unnatural, illegal, self-
intersecting, or non-manifold meshes or point clouds. Additional tuning and processing
are then required. In point-cloud-based modeling, execution time and storage expenses are
very large.

1.2. Research Strategy and Scope

This manuscript applies to digital model synthesis, the well-known practice in the
artistic drawing and sketching domain of approximating a human or animal body by
a set of ellipsoids. This set of ellipsoidal primitives effectively captures the pose and
demeanor of the (static) female model. It does not concern itself with the details. A
bijective mapping tailor measurements vs. ellipsoid set is computed. This mapping
allows the synthesis of a female mannequin that satisfies a set of tailor measurements.
It also allows extraction of the tailor measurements of a given mannequin. We then
use a derivative convex primitive, called cushion (the convex hull of two ellipsoids), to
complement the approximation of the female human body. We do not seek to arrive at
a mesh representation of the body. Therefore, our approach does not incur the expenses
of mesh cleaning, repairing, convex decomposition, etc. The approximation of the female
mannequin by using a set of convex primitives is accepted by some physics engines (e.g., [5])
to simulate garment–body interaction. Notice that we do not, in this manuscript, model
garment–body interaction.

Our manuscript does not attempt the automated synthesis of digital mannequins from
images, videos, or point clouds (neither static nor dynamic) through feature extractions and
scalings, among other procedures. Our manuscript does not address mannequin kinetics or
motion, nor recognition/classification of subject actions or activities. For readers interested
in these topics, references [6,7] may provide useful insight. The interest of our effort is to
use a convex primitive approximation of a digital mannequin and tailor measurements
in order to create other digital individuals with diverse sizes. Our manuscript executes
interpolation among sizes of ellipsoid-based mannequins by finding and using bijections
between sets of tailor measurements and ellipsoid-based mannequins. Our manuscript
addresses static (as opposed to motion) scenarios.

Our industrial sponsor has female mannequins and garments as its priority. This fact
explains why this publication does not address male digital mannequins. Future efforts
will do so.

The problem that this manuscript addresses is formulated as:
Given

1. Me: A set of measurements Me = [He, Sh, Br, Wa, Hi] that describe the shape of a
female body. With He: Height, Sh: Shoulder width, Br: Breast perimeter, Wa: Waist
perimeter, and Hi: Hip perimeter.

Goal

1. B: 3D mannequin approximation of a female body that satisfies a particular set of
tailor measurements Me. B is a set of convex volumes.

1.3. Manuscript Structure

This manuscript is structured as follows: Section 2 reviews the existing literature,
drawing conclusions to justify the manuscript. Section 3 explains the methodology followed
to model and synthesize the mannequins. Section 4 presents the results of our method and
a particular application to demonstrate its usefulness. Section 5 concludes the manuscript
and discusses relevant future endeavors.
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2. Literature Review

The current literature for parametric modeling can be divided into two main categories:
(i) non-convex example-based modeling through scalings and morphings, and (ii) bottom-
up construction of anatomy-based models (bone medial axis, joints, muscles, and skin).
This section seeks to give a taxonomy and summary of the current methods found in the
literature, as well as to expand on the different approaches found for both categories.

2.1. Non-Convex Example-Based Modeling

The most common approach found in the literature for the parametric modeling
of human bodies is non-convex example-based modeling. For this general approach,
researchers mainly extract features (e.g., cross sections, anatomical landmarks, and patches)
from 3D-scanned point-clouds, digital template models, or images. Afterwards, they
determine the relation between measurements and features in order to either deform a
template model or interpolate multiple examples.

In general, these approaches present the following limitations: (1) The synthesized
model is a non-convex mesh or point-cloud. (2) The resulting model needs further process-
ing to be used for simulations concerning collision detection. (3) They requires the use of
expensive algorithms for feature extraction, deformation, ensuring surface continuity, and
surface-fitting. (4) Re-computation/deformation of non-convex surfaces is needed in order
to define new poses. (5) This method is dependent on hardware and/or a large database
of examples. A summary of the different approaches found for this particular category is
presented next, where each particular reference is discussed in further detail.

2.1.1. Deformation of a Single Template/Example Model

References [8–16] extract features from a single digital template model or 3D scan and
apply deformation functions in order to synthesize variations that satisfy input measurements.

• Reference [8] imposes symmetric constraints to the ‘SCAPE’ parametric model. These
symmetric constraints are defined as symmetry-related matrices and are applied
during pose and shape deformation to provide a resulting symmetric model.

• Reference [9] proposes a tensor decomposition technique to model human bodies
based on data (shape and pose) of multiple subjects. They use such data to train a
deformation method that considers pose and shape parameters in conjunction rather
than independently. This method is applied to a template model.

• Reference [10] proposes the segmentation of a template model (point-cloud) into
regular intervals. These intervals are subsets of point-clouds to which shape control
lines (SCL) are fitted. The SCLs are then modified by applying centroid-based and
ratio-based scalings to produce variations of the template.

• Reference [11] extracts contour (features) from a scanned model. These contours are
measured and translated vertically according to the template model’s height and the
input height. The shape of the scanned model is then modified by applying linear
anthropometric rules to produce an adaptive mannequin.

• Reference [12] extracts shape and measurement information from a template model.
The authors identify key parameters that define the scaling for the global deformation
(responsible for general shape) and feature factors for local deformation (of specific
parts of the body). Nonlinear interpolation is used to deform the overall shape and
critical parts of the template model based on the key parameters.

• Reference [13] extracts cross sections from a scanned dataset of a physical mannequin.
The initial locations of the cross sections are obtained using statistical anthropometric
data. These cross sections are deformed by resizing and relocating according to input
anthropometric data (measurements) that describes the desired geometry.

• Reference [14] extracts cross sections and characteristic points (features) from a template
model. Then, characteristic sizes are calculated (heights and circumferences) based
on the features. Nineteen main control points are established and used to perform
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a three-dimensional lengthwise axial deformation. Radial deformation is used to
perform girth-wise or area deformations.

• Reference [15] obtains parameter-to-geometry correlations by using radial-basis interpo-
lation over a number of 3D scanned models. These correlations allow for the creation of
deformation functions. A template model is then deformed through skeletal deformation,
and geometric and energy-based processes are used to calculate vertex displacement.

• Reference [16] performs a manual segmentation of a template model and applies
spline and radial-basis deformation functions and continuity filters to change the
shape and size of the template model.

2.1.2. Synthesis through Multiple Example Models

References [2,17–25] extract features from sets of 3D scans of different individuals
and correlate their variations in size and shape to each of their measurements. With such
correlation, new individuals can be produced based on input measurements.

• Reference [2] proposes the creation of a database from scanned models. Correlations
between the meshes (feature points and curves) and semantic parameters are created
and computed as a linear system of equations. The system of equations has its complex-
ity reduced through PCA. New models are produced by modifying input models or
finding and modifying similar models (from databases) to satisfy input measurements.

• References [17,18] preprocess 250 (125 females and 125 males) scanned models from
the SizeKorea database. The models are categorized, and the correlations between body
shape variation and body sizes are extracted through statistical analysis (PCA). With
such correlations, new models are obtained through shape parameter optimization
techniques and radial-basis function (RBF) deformation of a template surface.

• Reference [19] obtains a set of thousands of scans, for which they extract and correct
landmarks. Then, PCA is performed to extract the parameters that define shape
variation, which are stored in a database. Moreover, a system in which users can
have access to individual 3D scanned data and personalized body-shape modeling
is presented.

• Reference [20] presents a unified model that describes pose, shape, and muscular
deformation. A set of 550 full-body scans of 114 subjects is obtained, registered, and
encoded. Rotation-invariant encoding allows for the creation of semantic regression
functions (PCA-based technique). The regression functions are used to generate
arbitrary models.

• Reference [21] constructs a database of 160 (80 male and 80 female) body scans.
PCA is then performed to parameterize the data and characterize the tendency of
shape variation and modeling parameters, and their correlation with anthropometric
parameters. Through such correlations and a non-linear error-optimization-based
shape modeling method, an arbitrary model can be obtained from user-specified
measurements.

• Reference [22] extracts feature points from a set of scanned models. The feature points
are used to create feature curves, which are then parameterized. Using a numerical
optimization-based scheme, a new model can be synthesized by interpolating certain
examples from the database. These examples are selected through an optimization
algorithm.

• Reference [23] proposes a learning-based method to define the relationship between
feature curves (wireframes) and anthropometric measurements. Such a relationship is
built using a deep neural network (DNN) based on a test dataset and used to build
new wireframes. New meshes can be created by interpolating the new wireframes
into patches.

• Reference [24] proposes a modeling scheme called SMPL, which uses 2100 female mod-
els from the CAESAR project database to train a set of parameters. Such parameters
are used in linear blending functions (i.e., shape, skinning, and pose) and a regressor
to reconstruct a new mesh from the vertex of a template mesh.
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• Reference [25] proposes the extraction of measurements from 1024 bodies using VR
controllers (i.e., HTC Vive). These measurements are then related to the SIMPL [24]
model shape parameters. With such relations, the author train four regressors that
allow the creation of new meshes from body measurements obtained with the VR
controllers.

2.1.3. Feature Extraction from Photographs

References [26–32] use photographs to extract silhouettes (features) and feature points
that are used as references to deform and fit a template model, or to reconstruct a new
model from the extracted features.

• Reference [26] captures orthogonal pictures of a person and extracts silhouettes. Fea-
ture points are obtained from the silhouettes and used to define a linear affine mapping
of the correlation between the template model and the silhouettes. This mapping is
then used to define and apply shape deformation to the 3D template model.

• Reference [27] manually defines feature points on three orthogonal pictures of a person.
From the feature points, a silhouette is extracted and a skeleton is automatically fitted
by applying affine transformations and Barycentric interpolation. A template model’s
skin (surface) is then deformed through piecewise affine transformations and 2D-to-3D
mapping with the skeleton and silhouette information.

• Reference [28] applies a segmentation method on two orthogonal photographs of a
subject to extract contours (silhouettes). The silhouettes are correlated to silhouettes
of a template model, and feature points are extracted using morphology rules and
template-based feature extraction algorithms. The authors use the model and silhou-
ette photographs to perform view-dependent deformation of the template model.

• Reference [29] presents a modeling scheme in which the authors deform a template
model to best fit the user’s shape. The first step consists of fitting the template to a
user-generated point-cloud via 3D scans and feature-point extraction. The second uses
low-resolution 2D images to estimate the shape and pose of the human body, assisted
by boundary constraints.

• Reference [30] presents a method for rebuilding 3D models based on a set of seven
template models and orthographic images of a subject. The method consists of ex-
tracting contours from the images and scaling contours from the template models
according to the extracted contours.

• Reference [31] estimates the 3D shape and pose of a subject from a single image. This
process consists of regressing the 3D positions of the vertices of a SMPL-template mesh
via graph convolutional networks, avoiding the use of anthropometric parameters.

• Reference [32] propose the reconstruction of 3D meshes from a single image. A graph
convolutional network (GCN) is used to directly predict the 3D locations of mesh
vertices from the input image. Anthropometric parameters are integrated into the
GCN to improve the reconstruction accuracy.

2.2. Anatomy-Based Modeling

A particular family of approaches found in the literature consists of bottom-up manual
modeling of individuals. These approaches focus on the influence of the pose over muscle
deformation and its influence on the shape of the model (skin). They propose building
a kinematic skeleton to which muscles and tissues are modeled and attached. Then, the
shape of the muscles and tissues is parameterized as a function of the state of the kinematic
joints. Finally, a surface-fitting procedure is performed to reproduce skin over the deformed
muscles. These approaches present the following principal disadvantages: (1) A non-convex
model is produced; (2) High computation expenses due to deformation algorithms and
surface fitting with each change of state in the kinematic joints; (3) Modeling of multiple
internal elements to reproduce external surfaces; (4) No possibility to synthesize different
phenotypes from input measurements.



Appl. Sci. 2022, 12, 9742 6 of 27

Reference [33] utilizes isotonic contraction and tension parameters to formulate muscle
deformation. No skin approximation is presented. Reference [34] presents a scheme to
approximate muscles as deformed cylinders that are parameterized to change size and
shape with changes in joints. Skin is presented as an elastic surface that is deformed with
changes in size and shape of the underlying components (tissue and muscle).

2.3. Conclusions of Literature Review

The main conclusions of the literature review are presented in this section with a
summary exhibited in Table 1. This table exhibits a comparison between the advan-
tages/disadvantages of previous schemes and of the approach presented in this manuscript.
Such a comparison seeks to support the contributions made by the proposed approach.

Table 1. Comparison of previous approaches found in the literature plus our contribution.

Approach Refs. Advantages Disadvantages

Non-Convex
Example-Based
Synthesis Approach

[2,8–16,18–32,35,36]

(1) Models with intricate details can be
reproduced. (2) Continuity of mesh
surface is achieved. (3) Anatomic
fidelity of the model.

(1) A non-convex model is produced.
(2) Needs further processing steps to
generate a ready-to-simulate model.
(3) Expensive algorithms for
deformation and surface-fitting. (4) Pose
limitation or need to recompute/deform
surfaces for pose changes. (5)
Dependent on hardware and/or a large
database of examples.

Non-Convex Anatomy
Based Approach: Bone,
Muscle, Tissue
Construction

[33,34]
(1) Anatomic fidelity of the model.
(2) High kinematic fidelity can be
achieved.

(1) A non-convex model is produced.
(2) High computation expenses.
(3) Construction of unnecessary internal
elements to reproduce external surfaces.
(4) Phenotype limitation.

Synthesis Based on
Convex Volumes Our approach

(1) Low computational costs. (2) No
intermediate steps for the preparation
of the model for physics simulation.
(3) Simple and straightforward
parameterization with minimal tuning.
(4) Reduced storage of data. (5) No
need of re-computations of surfaces to
change poses.

(1) Low model resolution, leaving out
intricate details of the body. (2) Model
surface does not have C1 surface
continuity.

In the current literature, the human body is modeled as non-convex meshes, with
exceptions found in some components of the models produced by anatomy-based methods.
These non-convex meshes are computationally expensive to process for pose variation
and collision detection simulations (e.g., garment-fitting), among other implementations.
In addition, example-based approaches present particular disadvantages in (1) requiring
expensive hardware, (2) storage of large amounts of data, (3) usage of smoothing and
surface-fitting algorithms, and (4) expensive extraction of features and identification of
feature–parameter relations. It is also noted that anatomy-based approaches do not pa-
rameterize the general shape and size of the model. In contrast, they requires manual
intervention for modeling a particular phenotype.

To overcome these limitations, this manuscript proposes a parametric modeling
scheme based on convex volumes. The scheme synthesizes sets of convex volumes (man-
nequins) from sets of tailor measurements and a small set of manually created Reference
Mannequins (RM). Furthermore, the synthesized models satisfy the input measurements.
This approach presents the following contributions: (a) avoids the need for hardware
and the storage of large amounts of data, (b) enables pose variation through kinematic
chains without re-computing surfaces, (c) simple and straightforward parameterization
with minimal tuning, and (d) the synthesized mannequins are ready-to-simulate and do
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not need further processing. In conclusion, to the best of our knowledge, no other approach
based on convex volumes is found in the literature. Hence, our approach proves novel.

3. Materials and Methods

The proposed methodology consists of approximating a 3D model with convex vol-
umes (ellipsoids and cushions), which we call a 3D mannequin. This mannequin is parame-
terized (synthesized as a function of tailor measurements) in order to obtain measurement-
driven 3D mannequins. Such mannequins satisfy the desired measurements with a min-
imum margin of error. The main steps performed to produce the measurement-driven
mannequins are as follows (see also Figure 1):

1. A reference 3D model is manually approximated/traced with ellipsoids to produce a
Base Mannequin (BM). Furthermore, an ellipsoid-to-cushion post-process is presented
to improve the convex volume approximation after it has been parameterized. See
Section 3.2.

2. The BM (set of ellipsoids) is then used to instance a set of Reference Mannequins
(RM). Each one of these Reference Mannequins (RMi) satisfies a particular set of five
tailor measurements. See Section 3.3.

3. Based on the known data of RM (geometry and measurements), a set of functions F(Me)
is created. This set of functions synthesizes the geometry of a measurement-driven
mannequin that in return satisfies the given measurements in Me. See Section 3.6.

4. Finally, the measurement-driven mannequin can be synthesized by computing F(Me).

Problem Specification
These steps are explained in more detail in the following subsections (see Sections 3.2,

3.3 and 3.6). The problem of finding the parameterization for the 3D mannequins can be
specified per the following given and goal:
Given:

1. A: A set of points in Rq. Each component j of a point x (x ∈ A), with j = 1, 2, . . ., q,
represents a measurement of the human body in Me (e.g., height, shoulder width,
etc.). The following conditions must be considered:

(a) xj > 0, ∀ j = 1, 2, . . ., q.
(b) L: A set of q ordered pairs corresponding to the lower and upper limits of the

components j of x. L : {l | l1,2 > 0, l1 < l2 }
2. H: A set of sets of ellipsoids in R3. Each set of ellipsoids B, with B ∈ H, approximates

the shape and size of a human body described by a point x ∈ A.

(a) Each B has the same number m of ellipsoids and the same topology.
(b) Each B satisfies the measurements of a specific point x ∈ A.
(c) Each ellipsoid of B is defined by a homogeneous SO(3) coordinate system S

and a triad D describing the dimensions of its semi-axes.

Goal:

1. mT : Function mT : H −→ A; mT obtains the tailor measurements Me of any model
B ∈ H.

2. F: A set of functions F : A −→ H, F = m−1
T . More specifically, F : x −→ B, such that

mT applied to B = F(x) produces the measurements in x. F is a set of functions that,
given a set of measurements x, synthesizes a model (geometry) B that satisfies x.

From Figure 1 it must be taken into consideration that Steps 1 through 3 are performed
only once so as to produce F. The set of functions F is then computed each time a new
mannequin is synthesized from defined measurements Me. It is also worth noting that the
subject approximated by convex volumes in this manuscript is the female body. The same
process could be applied to approximate the male body.
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1. Convex volume
approximation

2. Instantiation of
reference

mannequins based
on TRM.

3. Synthesization of
set of functions

Reference 3D model

Base-mannequin BM

Reference mannequins

Set of functions

4. Apply to 

that satisfies 

Figure 1. Flow diagram of the convex-volume-based measurement-driven approximation. Input:
Reference 3D model. Output: Measurement-driven mannequin B. Steps 1 and 2 pre-processing. Steps
3 and 4 are processing.

3.1. Rationale for the Mathematical Model

In order to obtain a parametric mannequin, a set of pre-processing and processing
steps are carried out. The procedural enumerations and descriptions of these steps are
addressed in Sections 3.2–3.4 for pre-processing and Sections 3.5 and 3.6 for processing.
The current subsection intends to highlight the main mathematical and scientific reasoning
that provide support for such steps.

Geometrical and Topological Pre-Processing
Pre-processing seeks to facilitate the bijective mapping ellipsoid set ↔ tailor mea-

surements by reducing (a) mathematical complexity and (b) numerical unstability. Pre-
processing (1) manually constructs an ellipsoid set (BM) that approximates a mesh-based
model, (2) reduces the degrees of freedom of the ellipsoid set, and (3) lowers the noise level
within the ellipsoid set. Pre-processing consists of:

1. Selection of ellipsoids due to their low geometrical complexity, low data-storage, and
the benefits of convex volumes present in physics engines;

2. Manual approximation of the 3D reference model by fitting a set of ellipsoids;
3. Symmetrical location of ellipsoids with respect to the sagittal plane;
4. Construction of a set of Reference Mannequins through rigid transformations of the

set of ellipsoids;
5. Compliance of Reference Mannequins to sets of tailor measurements;
6. Data processing is performed over the set of Reference Mannequins in order to

achieve:

(a) Enforcement of symmetry with respect to the sagittal plane;
(b) Enforcement of right-handedness in the ellipsoid coordinate systems;
(c) Congruence of the coordinate system (definition of World Coordinate System);
(d) Re-labeling of SO(3) coordinate systems (i.e., ellipsoid axes) to ensure minimal

variation of the interpolation functions in set F.
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By definition, our approach seeks large-scale (ellipsoid approximation) geometrical
information of the mannequin. This scope filters out small details and noise. In this
particular manuscript, such filtering was manually executed by fitting the ellipsoid set to
the Base Mannequin. For this process to be executed in a semi-automated or automated
manner, we suggest these topics: (a) alpha shape fitting [37] and (b) signal denoising [38].

Processing; Bijective Mapping; Tailor Measurements↔ Ellipsoid Sets
Many possible sets of ellipsoids could satisfy the measurements of a particular x ∈ A,

generating infinite m−1
Ti

. Therefore, a particular F ⊂ m−1
T has been selected, such that each

B = F(x) satisfies the measurements of an arbitrary x. F is then considered as the set
of parametric functions that synthesizes a particular mannequin B given a desired set of
measurements x and a set of known tuples of RM (set of Reference Mannequins) containing
geometry and measurements.

In addition to the previous precision made about the mapping from x −→ B, a set of
reasonings is presented for the processing steps (interpolation method). These reasonings
seek to avoid instability (erroneous sizing and unnatural demeanor) of the synthesized
mannequins (see Section 3.6).

1. Selection of a multivariate weighted average (interpolation) method for the definition
of F;

2. Selection of inverse distance weighting (IDW) as the interpolation method due to its
minimal tuning and boundary condition characteristics;

3. Limitation of the dimension of the measurement space to reduce the complexity of
the interpolation scheme;

4. Segmentation of the interpolation functions dictated by mannequin neighborhoods;
5. Synthesis of neighborhoods by a subset of functions fi ∈ F given a subset of measure-

ments (e.g., shoulder width and height);
6. Definition of neighborhoods based on a measurement dependency rationale.

3.2. Creation of the Convex Volume Approximation

The basis for all measurement-driven mannequins is composition by a number of
ellipsoids that are selectively placed, scaled, and oriented over a reference 3D model. This
basis is called the Base Mannequin (BM) and coarsely approximates the shape of a female
body given by a reference 3D model. Each other mannequin in this manuscript preserves
the same topology of BM, but differs in geometry (i.e., dimensions, position, and orientation
of ellipsoids). It should be noted that BM is conformed both by topological and geometrical
information, with the latter being the complement of the former and defined as follows:

1. Topology: Set of ellipsoids and rules that define the composition of the 3D mannequin;

(a) The mannequin is conformed by a collection of convex volumes (ellipsoids),
without boolean union among them;

(b) The collection has a finite number of ellipsoids;
(c) Each ellipsoid (singleton or pairs) approximates a particular part or area of

the body;
(d) Pairs of ellipsoids correspond to parts of the body with reflection (symmetry)

along the sagittal plane (i.e., left and right);
(e) Singleton ellipsoids are symmetric with respect to the sagittal plane.

2. Geometry: Set of geometric properties S (position and orientation) and D (dimensions)
that define each ellipsoid.

Approximation of the 3D Model with Ellipsoids
The process of creating the Base Mannequin starts by defining planar data points (see

Figure 2) over the 3D model (see Table 2 for characteristics of the model). These data points
serve as guidelines for the creation of ellipsoids and as future references on which some
tailor measurements are performed (see Section 3.5).
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Figure 2. Reference 3D model to be approximated by convex volumes. Planar data (red lines).

Table 2. Characteristics of the input data of the reference 3D model.

Name Origin Number of
Faces

Number of
Vertex Borders Manifold

Reference 3D
Model [39] 4984 4986 0 True

Following the definition of the planar data,a specific region of the body (mainly a
principal muscle or area) is selected and traced by creating (placing, orienting, and scaling)
one or two ellipsoids as needed (see Figure 3b). The intention is to fill up as much space
as possible while making sure the ellipsoid(s) is (are) inscribed in the reference 3D model
surface (see Figure 3). If two ellipsoids are used to approximate a part of the body (see
Figure 3b), both will serve as the basis of a cushion in a post-processing step.

(a) (b)

Figure 3. Approximation of the left thigh and hip with ellipsoids, front and lateral views. Red dotted
line: surface boundary to approximate. (a) Approximation with one ellipsoid. (b) Improvement of
the approximation with a second ellipsoid.

The process exhibited in Figure 3 is replicated for other parts of the body, excluding
the right arm, breast, and leg (see Figure 4a). The missing parts on the right hemisphere
are obtained by mirroring the analogous ellipsoids of the left hemisphere through the
sagittal plane (see Figure 4). This preserves proportions and body symmetry. The mirroring
process is performed in such way that the SO(3) RHCCS property of each ellipsoid is
maintained. It should be noted that symmetry is only obtained in this step of the research.
Once kinematics are introduced to the model in future research, symmetry is lost. Take into
consideration also that for this step, the shape alone is considered and the measurements
of the Base Mannequin are irrelevant.
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(a) (b)

Figure 4. Approximation of the reference 3D model with ellipsoids with resulting Base Mannequin
(BM) and ellipsoid mannequin and no cushions computed. (a) Half of the body approximated. (b)
The full body approximated and mirroring executed.

Creation of Cushions
As stated previously, some parts of the 3D model are approximated by pairs of

ellipsoids (see Figure 5). Hence, some regions of the BM, and thus the 3D mannequins,
may present gaps or voids between the ellipsoids. Therefore, the pairs of ellipsoids are
converted to cushions following an ellipsoid-to-cushion map (see Figure 5) in order to
obtain a more organic mannequin.

Figure 5. Map used to convert ellipsoids into cushions, topology map and ellipsoid model. Pairs of
ellipsoids with same color form a cushion.

It is worth noting that the instancing of Reference Mannequins (Section 3.3) and
the parameterization scheme (Section 4.1) is performed over mannequins composed only
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of ellipsoids. The ellipsoids are the basis of convex volume approximation due to their
simplicity. The cushion-based mannequins are a result of post-processing applied to the
ellipsoid-based mannequins to partially improve surface continuity and reduce the number
of elements. The resulting cushion-based mannequins are intended to be used in different
applications (see Section 4.3 for an example).

It must be highlighted from Figure 5 that pairs of ellipsoids from the same half-space
of the sagittal plane and with the same prefix number form a cushion (e.g., 1.a Frontal
Muscles and 1.b Face Muscles). Take into account also that the names given to ellipsoids
and cushions serve only as a naming convention. There is no absolute anatomical fidelity
and our approach does not hold any similarity to the anatomy-based approach mentioned
in Section 2. The naming convention follows a simple rule: each cushion and ellipsoid is
named after the main part of the body that it approximates.

Cushion CE1E2 is formally defined as a data type with the following characteristics:

1. {E1, E2}: Point-clouds of ellipsoids in R3;
2. So: SO(3) coordinate system of cushion CE1E2 , coincides with SE1 , the coordinate

system of ellipsoid E1;
3. CE1E2 is defined as CE1E2 = ConvexHull(E1 ∪ E2).

A graphical example of a cushion between two ellipsoids E1 and E2 is presented in
Figure 6, and a model approximated with cushions can be seen in Figure 7.

(a) (b)

Figure 6. Example of cushion CE1E2 , arbitrarily oriented and positioned ellipsoids (E1 and E2) in
space with convex hull operation between E1 and E2. (a) Ellipsoids E1 and E2. (b) Cushion CE1E2

between ellipsoids E1 and E2.

(a) (b)

Figure 7. Mannequin approximated with cushions and ellipsoids. Ellipsoid mannequin (a) for
comparison. Cushions computed according to Figure 5. Small chubby mannequin (see Section 3.3) as
(a) Ellipsoid-based Mannequin and (b) Cushion-based Mannequin.

3.3. Construction of Reference Mannequins Based on the Base Mannequin

In order to obtain parameterization, a set RM of five Reference Mannequins with
known geometry and measurements is created. Each one of the mannequins in RM are
instances of the BM that preserve topology but differ in geometry. The geometry and
measurements of each mannequin in RM are the parameters of the set of functions F (see
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Equation (1)) that synthesizes the measurement-driven (parameterized) mannequins. Each
RMi satisfies a different set of five tailor measurements x ∈ A presented in Table 3. The
measurements that define each of the models are intended to provide both extreme and
average reference geometries and measurements for the interpolation process.

Table 3. Tailor measurements Me in cm for the Reference Mannequins RM, Mei ∈ RM.

Measurement/Model Small Slim Tall Slim Small Chubby Tall Chubby Average

Height (He) 148 171 148 171 159
Shoulder Width (Sh) 31 30 45 53 43
Breast Perimeter (Br) 85 84 147 153 117
Waist Perimeter (Wa) 63 63 142 142 104

Hip Perimeter (Hi) 83 84 152 150 117

Creation of the Reference Mannequin Geometries
The process for creating the geometry of each Reference Mannequin RMi ∈ RM

consists of instancing BM and modifying its geometry. The position, orientation, and
size (principal semi-axes dimensions) of each ellipsoid in RMi is modified such thatthe
measurements in Table 3. The step-by-step process performed for every mannequin is
presented next (see also Figure 8), and the mannequins resulting from this process can be
seen in Figure 9.

1. The Base Mannequin (see Figure 4b) is scaled in the vertical direction to comply with
the specific height He ∈ xi (see Table 3).

2. Each ellipsoid is then manually modified (scaled, rotated, and translated) to obtain a
mannequin that visually approximates the tailor measurements xi ∈ A.

3. Function mT(hi) is applied to obtain the current measurements (xt) of the mannequin.
See Section 3.5.

4. If some cross section does not satisfy the desired measurement xi, the ellipsoids that
influence it are manually modified (scaled, translated, and rotated) again.

5. Steps 3 and 4 are repeated until the the measurements in Table 3 are satisfied.

1. Scale along
longitudinal axis

2. Scale, Translate,
Rotate each ellipsoid

in 

TRM, 

3. Apply

4.1 All measurements in
satisfy ? 

No

Add to the set of
reference models 

Yes

4.2 Scale, Translate,
Rotate specific
ellipsoids in 

Figure 8. Flow diagram for the construction of RM based on BM. Process for a single RMi ∈ RM.
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Figure 9. Set RM of Reference Mannequins as ellipsoid mannequins (no cushions) of extreme and
average models. From left to right: Small Chubby, Small Slim, Average, Tall Slim, and Tall Chubby.

3.4. Cleaning of Reference Mannequin Geometries

Since the Reference Mannequins RM constructed in Section 3.3 are manually built, the
reference coordinate system on which each model is created may be different. In addition,
the models may not be symmetric with respect to sagittal plane, and the orientations (local
coordinate system) of corresponding ellipsoids may posses high morphing. Consider
“corresponding ellipsoids” as the ellipsoids that are the same topological entity (e.g., 13.a
Rectus Abdominalis) and belong to different mannequins from RM. All of the mentioned
factors, if not corrected, will lead to an erroneous creation of F and, as a consequence, to
the incorrect synthesis of mannequins. Hence, the geometric data of all mannequins in RM
are sequentially processed and corrected to ensure consistency in the set. The process for
correcting the geometric data is as follow:

1. A common SO(3) coordinate system (WCS) is defined;
2. The position of each model is corrected according to WCS to ensure common placement;
3. The orientations of the sets of corresponding ellipsoids are corrected to ensure mini-

mum variation between analogous axes;
4. The ellipsoids in the right hemisphere are omitted and replaced by reflections (with re-

spect to the sagittal plane) of the ellipsoids in the left hemisphere to obtain symmetry;
5. Central ellipsoids are corrected in order to posses symmetry with respect to themselves

along the sagittal plane.

Correction of Mannequins Position
A registration process is performed to define a common placement for the Reference

Mannequins. This process consists of defining a set of landmarks and a common coordinate
system (WCS), and placing the Reference Mannequins in the same position with respect
to the WCS. These landmarks are based on anatomical planes(see Figure 10) that are
widely used in medical fields. Such anatomical planes represent an infinite set of planes
perpendicular to the axis in which they are defined:

1. Coronal plane: Perpendicular to the ground. Separates front from back.
2. Transverse plane: Parallel to the ground. Separates head from feet.
3. Sagittal plane: Perpendicular to the ground. Separates left from right.

Now that the directions of the axes
−→
X ,
−→
Y ,
−→
Z of WCS are given by the normals of the

coronal, sagittal, and transverse planes, respectively, the origin (position) of WCS is defined.
Such an origin is defined for each Reference Mannequin as follows [40] (see Figure 11):

1. In the
−→
Z direction, the origin is set in the lowest coordinate of the feet;

2. In the
−→
X direction, the origin is set in the centroid of the shoulder ellipsoids (10.a

Trapezius) from the lateral view;
3. In the

−→
Y direction, the origin is set in the middle point between shoulders (viewed

from the front).
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Coronal
plane

Sagital
plane

Transverse
plane

Figure 10. Anatomical planes defined for the Reference Mannequins.

(a)

X Y

Z

(b)

Figure 11. World Coordinate System definition, registration process, and definition of pivot point
(origin) of WCS. (a) Orthogonal views. (b) Isometric view.

Processing of Ellipsoid Orientation
Now that a common global coordinate system is defined for all mannequins, sets

of corresponding ellipsoids should also have a similar coordinate system orientation.
Knowing that corresponding ellipsoids differ in geometry (dimensions, position, and
orientation), the goal is to obtain smooth morphing or minimal variation (see Figure 12)
rather than equal orientation. Take, for instance, the example in Figure 12a; it shows that
analogous axes (e.g., X1’s) of corresponding ellipsoids may posses large variation in their
orientations. Averaging orientations (applying F) with such morphing (variation) will lead
to erroneous results.

In order to make up for the large variation between analogous axes, two processes are
performed. Such processes intend to minimize said variation by maximizing the projection
between analogous axes by: (1) relabeling the orientation axes (e.g., making u = v and
v = u), and (2) inverting the directions of the newly labeled axes when needed. For the
correction of each set of corresponding ellipsoids, one ellipsoid is selected as the reference,
and the processes are executed over all the other four corresponding ellipsoids in the set.
Note that the dimensions D associated with each axis are considered and also re-labeled
accordingly. The orientation axes of each ellipsoid are obtained by performing principal
component analysis (PCA) of the point-cloud. The resulting eigenvalues have a ± sign,
which does not allow the definition of a concrete tendency of direction for the eigenvectors



Appl. Sci. 2022, 12, 9742 16 of 27

(orientation axes). Hence, when re-labeling is performed, the resulting axes may posses
the maximum projections but with inverted direction (See Figure 12b).

Incorrect
Status

Reference
Status

(a)

Relabeled
Axes

Reference
Status

(b)

Inverted
axes

Reference
Status

(c)

Figure 12. Minimization of the variation between orientations of corresponding ellipsoids with
re-labeling and direction inversion. Yellow ellipsoids, 13.a Rectus Abdominalis from Tall Chubby
(reference [uc, vc, wc]) and Tall Slim (modified orientation [u, v, w]). (a) Incorrect status for axes
u, v, w. (b) Re-labeled axes u, v, w in (a). Correct labeling, incorrect direction for axes u, v, w. (c)
Direction inversion of axes u, v, w in (b). Correct status for axes u, v, w.

Symmetry Correction
For the symmetry correction, both the central and lateral ellipsoids (ellipsoids with

right or left distinction) are considered but approached differently. For instance, the central
ellipsoids present asymmetry with respect to themselves through the sagittal plane. In
comparison, lateral ellipsoids posses asymmetry in terms of the analogous ellipsoid in the
right hemisphere of the sagittal plane possessing a deviation in the orientation, position,
and/or dimensions. As a consequence, the following steps are performed in order to fix
the asymmetry of the models:

1. For lateral ellipsoids, the right ellipsoids are omitted, and the analogous left ellipsoids
are mirrored with respect to the sagittal plane.

2. Due to the mirroring effect, the resulting coordinate systems are left-handed. Hence,
the Z-axes have their direction inverted to preserve the SO(3) property. See Figure 13.

3. For central ellipsoids, the X-axes are defined orthogonal to the sagittal plane.

4. The Y-axes are projected to the sagittal plane, and the Z-axes are computed as
−→
Z =

−→
X ×−→Y . See Figure 14.

(a) (b)

Figure 13. Correction of lateral ellipsoid symmetry of ellipsoids from Tall Chubby with only legs
displayed for the example. (a) Asymmetric model. (b) Symmetric model.

Note that for Figures 12–14 some parts of the ellipsoids are rendered in front of
others despite really being occluded. Consider this as simply a rendering order issue with
transparent objects in the rendering engine.
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(a) (b)

Figure 14. Correction of central ellipsoid symmetry of ellipsoids from Tall Chubby. (a) Asymmetric
model. (b) Symmetric model.

3.5. Extraction of Tailor Measurements from Models

It is necessary to ensure that all mannequins satisfy the specific set of measurements for
which they are created. Thus, a function mT(B) is defined to simulate tailor measuring over
a particular mannequin B; mT(B) is used to extract tailor measurements when instancing
the Reference Mannequins (see Figure 8), as well as to calculate the relative error of the
real measurements xt vs. the input measurements of the measurement-driven models
synthesized with F; mT(B) is defined as the following set of steps:

1. Cross sections are obtained at specific heights (see Figure 15a) of mannequin B.
2. A 2D (R2) convex hull is computed for cross sections corresponding to Br, Wa, and

Hi (see Figure 15b).
3. The length of the perimeter of each convex hull in R2 is calculated.
4. Shoulder width Sh is calculated as the distance between the two outermost points in

the Y direction.

The result of applying mT(B) is a set of measurements xt that represent the real
measurements of B. Please note that Steps 1–3 are performed for Br, Wa, and Hi. For the
shoulder width Sh, only Steps 1 and 4 are executed.

(a) (b)

Figure 15. Tailor measuring of ellipsoid mannequins with heights at which mT() is applied and
example of cross sections obtained and measured with mT() of breast and hips of Small Slim ellipsoid
model. (a) Heights at which 2D convex hulls are computed. (b) Examples of 2D convex hulls.

It must be clarified that for the purpose of this article, the heights at which the main
parts of the body (e.g., belly and breast) are located (see Figure 15a) are not considered as a
degree of freedom or a variable. These heights are fixed proportions of He. It is known that
for each human being, these proportional heights ( a

b He) might be different. The purpose of
this simplification is to reduce the number of degrees of freedom of the model.
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3.6. Synthesis of Mannequins from Tailor Measurements

Now that a set of Reference Mannequins has been manually (see Section 3.3) created
and made consistent (see Section 3.4), the synthesis of a 3D mannequin B f (set of con-
vex volumes) from input tailor measurements Me f can be achieved. Such synthesis is
accomplished by computing a set of functions F(Me f ). The synthesized mannequin (B f )
is called a measurement-driven mannequin, and the construction of F corresponds to the
parameterization of the convex volume approximation of the mannequins. The synthesized
mannequins are displayed in gray in order to differentiate them from RM and BM.

Parameterization Scheme—Creation of the Set F.
The parameterization scheme consists of building the set of functions F(Me) that

synthesizes the geometry (position, orientation, and dimensions of each ellipsoid) of
model B f from input tailor measurements Me f , such that B f satisfies Me f . Each function
fi ∈ F(Me) synthesizes a geometrical property (S or D) of a particular ellipsoid Ei of
B f . As a consequence, there are 2k functions in F, with k the number of ellipsoids in BM.
Take into account that each fi ∈ F(Me) is an interpolating function (weighted average)
with the known tuples (geometry and measurements) of RM as parameters and the input
measurements (Me f ) as the variable.

Note that each ellipsoid Ei ∈ B f is synthesized by interpolating only the geometrical
information (S and D) of its corresponding ellipsoids in RM (see Section 3.4 for a definition
of corresponding ellipsoids). To understand the definition of the interpolation method,
take into consideration the following definitions:

1. RM: set of n Reference Mannequins as a set of tuples RM = {(Me1, B1), (Me2, B2), . . .,
(Men, Bn)}.

2. Mej: point in R5 containing the measurements of the jth Reference Mannequin Bj,
Mej = [Hej, Shj, Brj, Waj, Hij].

3. Bj: Set of ellipsoids Bj = {E1, E2, . . ., Ek}. Bj ∈ RM, with

(a) k: the number of ellipsoids defined in the BM;
(b) Ei = [Di, Si] : ethe llipsoid defined by dimension and coordinate system

(position and orientation), respectively.

4. Me f = [He, Sh, Br, Wa, Hi] : measurements of target model B f describing the shape
of the desired female body.

5. B f : Target model as a set of ellipsoids B f = F(Me f , h).

Measurement Dependency.
Considering that each ellipsoid approximates a particular part of the body, it is rational

to think that not every ellipsoid in B f will influence every single measurement in Me f
and vice versa. Thereby, each ellipsoid should not be synthesized as f (Me f ) but as a
function of a subset of measurements me f ⊂ Me f that influences it. In other words,
each neighborhood of the model (associated subset of ellipsoids) has a unique subset of
interpolating functions given by the measurements that influence the specific neighborhood
(see Figure 16). For example, the measurement Sh has no influence on ellipsoids E from the
waist neighborhood (e.g., 11.a_Abdominals). As a consequence, Sh is not an input nor a
parameter for the interpolation function f of the waist ellipsoids, but Wa and He are. The
construction of specific interpolating functions that depend on subsets of measurements
(me) rather than full sets (Me) is called the segmented interpolation scheme.

Interpolation Method
As stated previously, the set of functions F consists of interpolating functions ( f ). The

functions f perform a weighted average of the known geometric data of RM to produce the
geometry of a new mannequin B f . The weights are calculated as a function of the distance
between points in space representing the measurements Mej of each mannequin in RM
and the input measurements Me f .
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Neighbourhood Body Code Measurements Neighbourhood Body Code Measurements
1.a_FrontalMuscles 14.a.right_Breast
1.b_FaceMuscles 14.a.left_Breast

Abdominals 11.a_Abdominals He, Br, Wa 15.b_Sternum
Oblique 11.b_Oblique He, Wa 14.b.right_Breast

10.b.right_PectoralisMajor 14.b.left_Breast
10.b.left_PectoralisMajor 15.a_Sternum
12.right_Gluteus 3.b.left_Deltoid
7.a.left_Abductors 3.b.right_Deltoid
7.a.right_Abductors 2_Sternocleidomastoid
7.b.right_Quadriceps 10.a.right_Trapezius
12.left_Gluteus 10.a.left_Trapezius
7.b.left_Quadriceps 6.left_Hand
9.b.left_Foot 4.a.left_Biceps
9.a.left_Foot 4.b.left_Triceps
8.a.left_TibialisAnterior 5.b.left_ExtensorDigitorum
8.b.left_Soleus 5.a.left_Extensors
9.b.right_Foot 6.right_Hand
9.a.right_Foot 4.a.right_Biceps
8.a.right_TibialisAnterior 4.b.right_Triceps
8.b.right_Soleus 5.b.right_ExtensorDigitorum
13.a_RectusAbdominals 5.a.right_Extensors

Lower body He, Hi He, Sh

He, Br

Upper limbs

Chest

Head He, Sh, Br, Wa, Hi

Back He, Sh, Br 

(a)

f(He,Br) f(He,Sh,Br,Wa,Hi)

f(He,Hi)

(b)

Figure 16. Body subsets of ellipsoids for segmented interpolation scheme. Each subset is inter-
polated with different subsets of the input measurements Me. (a) Measurement dependency for
body neighborhoods (subsets of ellipsoids). (b) Example of subsets of ellipsoids influenced by
different measurements.

In order to build each fi ∈ F, radial basis functions and inverse distance weighting
(IDW) were tested. The resulting nature of the synthesized mannequins using the former
method was unstable due to the need for tuning inherent parameters. The latter rendered
the best results with a polynomial degree of 2 (p). Consequently, the IDW method that
defines each fi ∈ F is expressed in Equation (1). Equation (1) is presented for a particular
ellipsoid Ei and a particular geometrical property (e.g., D or S), following the segmented in-
terpolation scheme. The same process is repeated for other ellipsoids and each geometrical
property. Furthermore, consider the following inputs and output for Equation (1).

Inputs (variables):

1. me f : point in Rl that describes the l measurements of Me f that influence Ei ∈ B f ,
with B f the synthesized model; me f ⊂ Me f .

Inputs (parameters):

1. mej : point in Rl that describes the l measurements of Mej that influence Ei ∈ Bj, with
Bj ∈ RM; mej ⊂ Mej.

2. Qj : known geometric property (i.e., Dj or Sj) of Ei ∈ Bj with Bj ∈ RM
3. dj = ||mej −me f || : euclidean distance between me f and mej.
4. p : degree of the interpolation polynomial; p = 2.

Output:

1. Q f : interpolated property (i.e., Dk or Sk) of Ei ∈ B f ; Q f = f (mej, me f , Qj) with
j = 1, 2, . . ., 5.

Q f = f (me) =
∑n

j=1(
Qj

dp
j
)

∑n
j=1(

1
dp

j
)

(1)

Example of Neighborhood Synthesis
An example of the synthesis of the lower body neighborhood (subset of ellipsoids) is

presented in Figure 17. This example exhibits the changes of geometric properties (shape)
as a function of the dependent measurements (see Figure 16a) by following the segmented
interpolation scheme.

The synthesized neighborhood is only dependent on measurements He and Hi given
that none of the other tailor measurements in Me influence its geometry. Furthermore, note
that from Figure 17, the geometry of the synthesized neighborhoods (transparent) partially
resembles that of the closest Reference Mannequins (RMi). The mentioned proximity
corresponds to the distance in the bidimensional space defined by He and Hi between
the points that represents the measurements of the particular synthesized model and of
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each RMi. Take into account that the average mannequin in RM is omitted only in this
particular example for the sake of simplicity.

Hip (Hi)

RM1
RM2

RM4RM3

Height (He)

148 150 152 154 156 158 160 162 164 166 168 171

83

101

117

133

150

Figure 17. Example of synthesized lower body neighborhoods using segmented interpolation scheme.
Synthesized mannequins are transparent. Reference Mannequins (RM) are marked with RMi. RM1:
Small Chubby. RM2: Tall Chubby. RM3: Small Slim. RM4: Tall Slim.

4. Results
4.1. Measurement-Driven Models Generated via Interpolation

We synthesize a set of 243 measurement-driven mannequins from different sets of in-
put measurements (Me f ). The sets of input measurements are generated by assigning three
different values to each of the five tailor measurements that conform Me f and obtaining
all possible combinations (35 = 243). These values correspond to the three intermediate
quarters of the ranges of measurements defined by L.

The synthesis is performed via the segmented interpolation scheme presented in
Section 3.6. Each synthesized mannequin is then measured with mT (see Section 3.5) in
order to extract the resulting tailor measurements xt that produce its resulting geometry.

Table 4 presents the relative error ε = | xt−Me f
Me f

| × 100 between the resulting (xt) and
input (Me f ) measurements. This error is intended to display the accuracy with which the
measurement-driven mannequins satisfy their input measurements. Figure 18 presents a
sample of 10 randomly selected mannequins (see Table 5) from the 243 measurement-driven
mannequins in order to visualize variations of synthesized models.

Table 4. Relative error between input and real measurements in set of synthesized mannequins.
Measurements performed with mT .

Height
(He)

Shoulder
Width (Sh)

Breast
Perimeter

(Br)

Waist
Perimeter

(Wa)

Hip
Perimeter

(Hi)

Average Error (%) 0.2 2.6 2.4 0.8 0.9
Maximum Error (%) 0.4 6.6 7.0 1.5 2.2
Minimum Error (%) 0.0 0.1 0.0 0.0 0.1
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Table 5. Tailor measurements of mannequins shown in Figures 18 and 19. Measurements in cm.

Mannequin Height (He) Shoulder
Width (Sh)

Breast
Perimeter

(Br)

Waist
Perimeter

(Wa)

Hip
Perimeter

(Hi)

(1) 153.75 35.75 101.25 102.5 134.75
(2) 153.75 35.75 118.5 102.5 117.5
(3) 153.75 41.5 135.75 102.5 117.5
(4) 153.75 47.25 118.5 122.25 134.75
(5) 159.5 41.5 118.5 82.75 117.5
(6) 159.5 47.25 101.25 82.75 117.5
(7) 165.25 35.75 101.25 82.75 117.5
(8) 165.25 41.5 101.25 122.25 117.5
(9) 165.25 41.5 118.5 102.5 134.75
(10) 165.25 47.25 135.75 122.25 117.5

Front
view

Lateral
view

Auxiliary
view

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Figure 18. Examples of synthesized ellipsoid-based mannequins using segmented interpolation
approach.

Front
view

Lateral
view

Auxiliary
view

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Figure 19. Cushion-based mannequins. These mannequins correspond to the same mannequins in
Figure 18 with ellipsoids converted to cushions.
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4.2. Quantitative Comparison: Cushion-Based Mannequin vs. Mesh-Based Model

We extracted the tailor measurements from a mesh-based primogenial model (see
Table 2). These measurements served as the input and goal for the synthesis of an ellipsoid-
or cushion-based mannequin. Tailor measurements were extracted from both and are
compared in Table 6. A visual comparison can be seen in Figure 20.

Table 6. Relative error between Mesh-based Model and Cushion-based Mannequin measurements
(cm). Measurements performed with mT .

Height
(He)

Shoulder
Width (Sh)

Breast
Perimeter

(Br)

Waist
Perimeter

(Wa)

Hip
Perimeter

(Hi)

Mesh-based Model 170 42.8 99.8 72.5 99.7
Cushion-based

Mannequin 170.4 43.3 104.2 67.2 97.2

Error (%) 0.2 1.2 4.4 7.3 2.5

(a) (b)

Figure 20. Visual comparison of Mesh-based Model vs. Cushion-based Mannequin syn-
thesized using the measurements from the Mesh-based Model. (a) Mesh-based Model.
(b) Cushion-based Mannequin.

4.3. Interaction Simulation between Convex Volume Model and Garment

We performed two soft-body (garment) vs. rigid-body (measurement-driven man-
nequin) interaction simulations using a physics engine (Ammo.js [5]). These simulations
were executed in real-time and are intended to exhibit the usefulness of the convex-volume-
based measurement-driven mannequins in garment-fitting simulation. The two simulations
can be seen in Figures 21 and 22, in which it is visible that the garments fit the shape of
the mannequins.

Since the mannequins are already sets of convex volumes, no convex decomposition is
required for collision detection, avoiding additional processing steps. Specific details of
the configuration of the physics engine, the soft-body, and the rigid-body are not provided
since they are not relevant to the focal point of this manuscript. This manuscript’s purpose
is to present the modeling scheme for the measurement-driven mannequins, not to design
garments nor to specify their interaction with the mannequins. Further research will focus
on applications using the mannequins, such as garment-fitting simulation and its details.
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(a) (b)

Figure 21. Interaction simulation of Slim Tall model and garment using cushion model and showing
rigid-body vs. soft-body interaction. Visualization: Constructed by us in Three.js [41]. Simulation:
Constructed by us in Ammo.js [5]. (a) Solid-color garment. (b) Wireframe garment.

(a) (b)

Figure 22. Interaction simulation of Chubby Small model and scaled garment using cushion model
and showing rigid-body vs. soft-body interaction. Visualization: Constructed by us in Three.js [41].
Simulation: Constructed by us in Ammo.js [5]. (a) Scaled garment. (b) Wireframe scaled garment.

5. Conclusions and Future Work

This manuscript presents a parametric modeling scheme for digital mannequins that
represents the female human body as a set of convex volumes. Such a scheme allows
synthesis of mannequins that satisfy the specified (input) tailor measurements with an
average deviation of 1.5%, as presented in Table 4. The aforementioned hold a reasonable
and realistic demeanor. The scheme also allows a wide variety of phenotypes across
different ethnic groups to be approximated without any athletic idealization (see Figure 18).

The proposed modeling scheme contrasts with those found in the literature due to
our mannequins being created with convex volumes as opposed to non-convex meshes
(see Section 2). This results in our method holding the following advantages: (1) reduced
computational costs and data storage; (2) reduced tuning for parameterization due to
the small number of parameters used; (3) since the ellipsoids have attached coordinate
systems (as robotic limbs), our formulation opens opportunities for straightforward motion
modeling; and (4) no need for recomputing surface (skin) for pose definition. In addition,
the mannequins are shown to be economical for garment-fitting simulation. This is due to
the fact that the processing steps needed for preparing non-convex models for garment-
fitting simulation (collision detection) [42–48] are avoided by already having a set of
convex volumes.

Notice that our approach produces a gross approximation of pose and demeanor of the
digital mannequin by using a set of convex primitives (whose boolean union is obviously
non-convex). On the other hand, the existing literature uses detailed triangular meshes to
express the mannequin. This difference in intention (coarse vs. detailed shapes) prevents a
fair numerical comparison between our method and existing methods.
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Future work is encouraged to define motion modeling (pose definition). Moreover,
it is encouraged to extend the convex volume modeling scheme to model male human
bodies and to expand the set of measurements (e.g., including crotch length) that define
parameterization. It is important to keep in mind that this manuscript already achieves
a wide variety of mannequins with a reduced number of parameters. Adding more
measurement parameters will allow for the creation of more-intricate mannequins but will
require more tuning.

Our convex (ellipsoid or cushion) volume approximation of a 3D female humanoid
avoids explicit computation of the humanoid skin. When the humanoid changes pose,
the convex components can be repositioned via their attached SO(3) coordinate frame. If
needed, the skin of the humanoid may be computed via alpha-shape approaches for the
current humanoid instead of modifying a hypothetical skin of the previous humanoid.
Figure 23 displays a hint for skin computation (using Blender™) for our convexly decom-
posed humanoid. We point out that this initiative is not the aim of the present manuscript,
rather for future ones.

Figure 23. Smooth representations of the Cushion-based Mannequins. These representations are not
the aim of the present manuscript, rather for future ones.
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Abbreviations
The following abbreviations are used in this manuscript:

Term Description
Me A set of tailor measurements Me = [He, Sh, Br, Wa, Hi] that describes the coarse

shape and size of a female body.
He Height.
Sh Shoulder width.
Br Breast perimeter.
Wa Waist perimeter.
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Hi Hip perimeter.
C Cushion; 2-manifold mesh surface in R3. Computed as the convex hull of two

ellipsoids (which can be the same) positioned and oriented arbitrarily in space.
SO(3) Special Orthogonal Group.
RHCCS SO(3) Right-Handed Canonical Coordinate System.
S 4× 4 homogeneous matrix. SO(3) Right-Handed Canonical Coordinate System

(RHCCS) defines the position and orientation of an ellipsoid in R3.
D Point in R3. Di > 0, i = 1, 2, 3. Defines the measurements of the semi-axes of an

ellipsoid in R3.
A A set of points in Rn. Different sets of tailor measurements.
x An element from A containing a set of particular tailor measurements x ∈ A. An

instance of Me. x = [He, Sh, Br, Wa, Hi]
L A set of n-ordered pairs that define the upper and lower limits of the components

of point x ∈ A.
B A set of ellipsoids in R3 that approximates the shape and size of a female human

body. B satisfies a particular set of tailor measurements x ∈ A. Each ellipsoid in B
is described by a particular S and D (geometry). B is conformed of topology and
geometry data. Synthesized mannequins B are displayed in gray color.

H A set of different values of B that approximate the shape and size of different
female human bodies. Each Bi ∈ H is described by the measurements of a specific
point xi ∈ A.

RM List of n tuples representing the Reference Mannequins. RM = [(B1, Me1),
(B2, Me2), . . ., (Bn, Men)]. RM ⊂ H, with Bi an ellipsoidal model (geometry data)
that satisfies the measurements in Mei, with i = 1, 2, . . ., n. Each Mei is defined by
a combination of the values of L.

mT Set of functions mT : H −→ A. Set of heuristics to obtain the tailor measurements
of a digital model B.

F(Me) Set of synthesis functions F : A −→ H. A particular m−1
T . Set of functions that

produce a digital mannequin B that satisfies a set of measurements Me based on
known data points RM. Weighted average of the form of Equation (1).

3D mannequin 3D digital model that approximates the female human body as a set of convex
volumes (ellipsoids and cushions).

3D model 3D non-convex mesh that represents the female human body.
BM Base Mannequin. A 3D mannequin instance. Template mannequin used to con-

struct RM.
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