
Mobile-based Urban Bike Route Planner using Urban
Regulation-constrained Delaunay Graph

Juan Gutierrez-Urrego

Jorge Correa

Placid Ferreira

jcgutierru@eafit.edu.co

jorge.correa@cohesivemanufacturing.com

ceo@cohesivemanufacturing.com

Cohesive Manufacturing

Champaign, Illinois, USA

Saul Rivera-Betancur

saul.rivera@metropol.gov.co

Area Metropolitana

Valle de Aburra, Colombia

Oscar Ruiz-Salguero

oruiz@eafit.edu.co

U. EAFIT

Colombia

ABSTRACT
In the domain of bike route planning for urban environments, the

solutions provided by large corporations (e.g. Google Maps, Waze-

Google) are not tailored for this particular vehicle or do not reflect

path cost structures that human interactions and agglomerations

produce. Bikepath expenses different from the usual Euclidean or

City-Block distance functions but relevant in a city relate to safety

(in terms of accidents or criminality), slopes, path roughness, time-

dependent (i.e. rush hour) costs, etc. To partially overcome these dis-

advantages, this manuscript presents the implementation of a bike

route planning algorithm in a urban environment, which efficiently

solves the problem of presenting the biker with a low cost route.

At the same time, our application allows flexibility in the degree

of usage of dedicated bike routes built by the city. This flexibility

obeys to city regulations, which may prescribe more or less priority

in the usage of dedicated bikepaths. Our algorithm integrates bike

dispensers, bike routes, variety of costs (additional to travel length)

and finds the suggested routes in a constrained Delaunay graph.

The execution of the algorithm is enhanced by using the fact that

large part of the travel might be pre-computed if the biker must pick

up and return the city-provided bikes in specific dispenser points.

Future work is needed in (a) adding more flexible heuristics as the

city may decide to prioritize diverse environmental, economic, or

transportation goals, (b) transcending canonical metrics, e.g. by

considering non-symmetrical costs (𝑑 (𝑝, 𝑞) ≠ 𝑑 (𝑞, 𝑝)).

CCS CONCEPTS
• Theory of computation→ Design and analysis of algorithms;
• Software and its engineering → Software creation and man-
agement; • Information systems → Web applications; Data
management systems.

KEYWORDS
Delaunay Triangulation, Graph Constraints, Urban Route Planning,

Sustainable Transportation, Small City

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

Web3D ’23, October 09–11, 2023, San Sebastian, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0324-9/23/10. . . $15.00

https://doi.org/10.1145/3611314.3615921

ACM Reference Format:
Juan Gutierrez-Urrego, Jorge Correa, Placid Ferreira, Saul Rivera-Betancur,

and Oscar Ruiz-Salguero. 2023. Mobile-based Urban Bike Route Planner

using Urban Regulation-constrained Delaunay Graph. In The 28th Inter-
national ACM Conference on 3D Web Technology (Web3D ’23), October 09–
11, 2023, San Sebastian, Spain. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3611314.3615921

GLOSSARY
Ω Connected urban territory (Ω ⊂ R2) with 2-manifold

topology. 𝑝 ∈ Ω has the form 𝑝 = (longitude,
latitude).

𝜕Ω Border of Ω whose components Γ𝑖 have 1-manifold topol-

ogy. 𝜕Ω = {Γ0, Γ1, ..., Γ𝑛} with Γ0 being the outermost

border of Ω and Γ𝑖 (𝑖 ≥ 1) being the inner borders (e.g.

pond shores).

𝐶𝑖 (𝑢) Piecewise Linear continuous curves, representing

bikepaths, with its sampled points in Ω. Bikepaths 𝐶𝑖
may be self-intersecting if it contains overpasses above

itself. Bikepaths 𝐶𝑖 and 𝐶𝑖 may share vertices.

𝐺𝐶 Graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) =
⋃

𝑖 𝐶𝑖 (𝑢). The non-directed

graph 𝐺𝐶 contains all the vertices and edges of all

bikepaths 𝐶𝑖 (𝑢). Edge (𝑣𝑖 , 𝑣 𝑗) = (𝑣 𝑗 , 𝑣𝑖) ∈ 𝐸𝐶 if 𝑣𝑖 and 𝑣 𝑗
are consecutive point samples of a bikepath curve 𝐶𝑖 (𝑢).

𝐷 𝐷 = {𝑣𝑑1, 𝑣𝑑2, ...} is the set of bike dispensers. Computing

of edge connections from𝐷 to𝐺𝐶 is required as bikepaths

do not necessarily reach bike dispensers.

𝐺𝐵 Graph 𝐺𝐵 = (𝑉𝐵, 𝐸𝐵) with 𝑉𝐵 being vertices either (a) in

𝑉𝐶 or (b) bike dispensers. 𝐸𝐵 are non-directed Edges on

𝑉𝐵 whose flexible cost function is discussed.𝐺𝐵 = 𝐺𝐶∪𝐷 .

𝐺 Fully connected urban bike route Graph𝐺 = (𝑉𝐵, 𝐸) with
edges 𝐸 being either (a) Edges of𝐶𝑖 bikepaths, (b) bridges

from bike dispensers 𝐷 to bikepaths 𝐶𝑖 , or, (c) Delaunay-

related Edges which integrate all metropolitan bikepaths.

This is the graph on which user-requested bike rides are

computed.

𝐻 Convex Hull of the set of sites 𝑉𝐵 (bike dispensers 𝐷 and

bikepath vertices set 𝑉𝐶).

𝑛𝐶 number of vertices of the bikepathways {𝐶1,𝐶2, ...,𝐶𝑛}.𝑠
𝑛𝐷 number of bike dispensers (𝑛𝐷 = |𝐷 |).
𝑛𝐵 number of vertices of the bikepathways plus bike dis-

penser graphs. 𝑛𝐵 = 𝑛𝐶 + 𝑛𝐷 − |𝐷 ∩𝑉𝐶 |.
𝑃 (𝑛𝐷 × 𝑛𝐷) matrix of optimal path vertex sequences.

https://orcid.org/0000-0001-5300-3641
https://doi.org/10.1145/3611314.3615921
https://doi.org/10.1145/3611314.3615921
https://doi.org/10.1145/3611314.3615921
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611314.3615921&domain=pdf&date_stamp=2023-10-09

Web3D ’23, October 09–11, 2023, San Sebastian, Spain Gutierrez-Urrego et al.

PL Piecewise Linear. In this manuscript, the bikepaths𝐶𝑖 are

PL (straight - segment) curves in R2.
𝑅 Rides matrix. Strictly triangular matrix that contains the

computed bike rides, Google Maps® walking paths, and

their respective distance cost.

𝐷𝑇 (𝑉) Delaunay Triangulation of a set of vertices𝑉 , in this case

scattered in R2.
2-

manifold

a surface point set locally isomorphic to a flat disk (i.e.

without self-intersections).

1-

manifold

a curve point set locally isomorphic to a straight wire (i.e.

without self-intersections).

1 INTRODUCTION
Bike ride optimization is obviously central in sustainable urban

transportation. Current bike route planners are based on graph

structures equipped with Euclidean or City-block metrics. Bike

rides demand lesser specifications from the physical path than car

routes do. Therefore, bike trajectory graphs may be considerably

larger than their car counterparts. Thus, the reduction of a search

space is an important requirement for any bike route planner.

A graph 𝐺 = (𝑉 , 𝐸) is a set of vertices 𝑉 = {𝑣1, 𝑣2, ..} commu-

nicated by a set of edges 𝐸 = {(𝑣𝑖 , 𝑣 𝑗), (𝑣𝑚, 𝑣𝑘), ...} with a cost

𝑓 : 𝐸 → R. The topology of 𝐺 is concentrated in its connectivity

𝐸. In spatially embedded graphs, the geometry of 𝐺 may refer to

(a) the coordinates of the site where a vertex 𝑣𝑖 resides, or (b) in

a rarely used manner, the costs of the edges 𝑒𝑘 = (𝑣𝑘 , 𝑣𝑤) ∈ 𝐸, or

other property such as size, cost, attenuation, pattern, etc., that

grades the edges 𝑒 ∈ 𝐸.

An oblique manner to modify the topology of 𝐺 by tuning its

geometry is to set an expense to transit an edge as high as needed

to make that edge 𝑒 unusable (𝑓 (𝑒) → ∞). In this manner, the edge

becomes un-affordable and thus nearly non-existent. However, we

prefer to directly create the topology of the bike ride graphs by

applying city regulation heuristics.

In this manuscript, the application of heuristics has diverse pur-

poses (one of them being graph topology definition). We refer in

the text to the heuristics that follow.

1.1 Urban Heuristics
Refer to the bias introduced into our geometric algorithms by urban

regulations. In this manuscript, for example, we consider a regula-

tion that prioritizes the usage of bike-dedicated paths. This heuristic

impacts on the solution of conflicts between bike-dedicated paths

and Delaunay trajectories (edges). There could be other factors such

as path quality, path risks, rush hour congestion, air pollution, etc.

However, we do not consider all these factors at this time.

1.2 Geometric Heuristics
Refer to the usual programming decisions that make a solution

affordable and useful in most of the cases, but which has no theo-

retical guarantee of correction or optimality.

Consistent with these considerations, we report here the Mo-

bile implementation of the EnCicla® path planner for urban bike

rides, with (a) flexible path cost definition, (b) flexible prioritiza-

tion of (bike-dedicated vs. car-shared) bikepaths, (c) low computing

resource demand.

EnCicla®App has been deployed in the metropolitan area called

Valle de Aburra (Colombia). This metropolitan area encompasses

the following cities: Medellin, Envigado, Sabaneta, Itagui, Estrella,

Caldas, Bello, Girardota, Copacabana and Barbosa, with a popu-

lation approaching 4 million people, including 130000 registered

customers of bike dispensers. The resulting non-directed graph

represents 190 km of bikepats, 110 bike dispenser sites, 7000 bike

system vertices and 9000 edges.

In this manuscript, Section 2 reviews the existing literature and

draws conclusions for the implementation. Section 3 describes the

methodology applied. Section 4 discusses some results of the soft-

ware operation. Section 5 concludes the manuscript and mentions

possible lines of future work.

2 LITERATURE REVIEW
2.1 Commercial Systems
2.1.1 [Ferster et al. 2020]. The article explores the use of Open-
StreetMap (OSM) data for inventorying bicycling infrastructure

in Canadian cities. While OSM data is valuable, there may be dis-

crepancies compared to municipal open data. On-street bicycle

lanes show higher concordance, while cycle tracks and local street

bikepaths have lower concordance due to their newness or rarity

in some cities.

2.1.2 [Ariyanto et al. 2022]. The GoWes website-based cycling nav-

igation in Batu city offers personalized route choices and accurate

suggestions. Yet, there are areas for enhancement. These encom-

pass lacking a mobile app, no user authentication, and reliance

on data accuracy. Moreover, real-time traffic updates and multi-

mode integration are absent. Addressing these could enrich the

user experience and offer a more holistic cycling navigation.

2.2 Edge Types and Weighted Routing
2.2.1 [Nadi and Delavar 2011]. This study presents a generic model

for personalized, multi-criteria route planning. It integrates dif-

ferent decision strategies, considering user preferences through

pairwise comparison and quantifier-guided ordered weighted aver-

aging (OWA) aggregation operators. The model generates multiple

alternative routes with different decision strategies, allowing users

to select the most suitable one based on real-world situations. Im-

plemented in a web-based Geographic Information System (GIS) in

Isfahan, Iran, the model was validated in a tourist routing scenario,

demonstrating its effectiveness in practical situations.

2.2.2 [Saplıoğlu and Aydın 2018]. This study examines the positive

and negative factors affecting safety and route choice in the inte-

gration of cycling with public transport, specifically focusing on

Isparta City, Turkey. The study utilizes a questionnaire survey to

identify key parameters, such as Accident Prone Areas (APA), Bus

Lanes (BL), and Road Side Car Parks. Geographic Information Sys-

tems (GIS) and accident reports are used to determine safer routes,

while the Analytic Hierarchy Process (AHP) method is applied to

analyze survey data and identify effective parameters. The results

emphasize the significance of Accident Prone Areas, Bus Lanes,

and Road Side Car Parks in integrating cycling with the public

transport system and determining safer routes. The combined use

Urban Biking Routes Web3D ’23, October 09–11, 2023, San Sebastian, Spain

of the questionnaire survey, GIS, and AHP proves valuable in this

context.

2.3 Mobile Implementation
2.3.1 [Ibrahim and Mohsen 2014]. This paper presents an Android

app enabling users to modify and assess locations on an online map.

Besides standard navigation functions like route display, distance,

and drive time calculation, it integrates Google Maps APIs, Google

Direction APIs, PHP, JSON, and MySQL for efficient solutions. The

app adopts a client/server model: the Android device as client, and

PHP/MySQL as server.

2.3.2 [Fröhlich et al. 2016]. The article emphasizes precise traffic

data for upcoming cities and presents BikeNow, a system suggesting

cyclists adapt their speed for optimal traffic light passage. BikeNow

employs Dresden’s VAMOS traffic data, predicting light changes

and advising speed adjustments for green lights. The article covers

BikeNow’s architecture, green time prediction, and user interface;

implementation, including VAMOS integration; and cyclist-centric

study findings. It concludes by highlighting outcomes and propos-

ing future directions.

2.3.3 [Hu and Dai 2013]. The architecture and implementation

of the online mapping application described in the paper serve as

a valuable reference for developing a similar solution. The use of

Google Maps API V3, Google Geocoding, Microsoft SQL Server

Express database, and Spry Framework for Ajax provides an effi-

cient and user-friendly platform for delivering digital cartographic

information. The application’s features, such as map types, search

functions, filtering options, and real-time database updates, demon-

strate the potential for creating a robust and interactive mapping

solution. Overall, the described implementation serves as a useful

guide for developing an effective and feature-rich mapping applica-

tion.

2.4 Constrained Graph
2.4.1 [Chew 1987]. The constrained Delaunay triangulation (CDT)

is a triangulation of a set of vertices in the plane that includes

specified non-crossing edges and closely approximates the Delau-

nay triangulation. This paper demonstrates that the CDT can be

constructed in optimal O(n log n) time using a divide-and-conquer

technique. This time complexity matches that of building an un-

constrained Delaunay triangulation and an arbitrary constrained

triangulation. CDTs exhibit properties that make them useful for ap-

plications such as the finite-element method, motion planning with

polygonal obstacles, and constrained Euclidean minimum spanning

trees.

2.4.2 [Shewchuk 1996]. The library Triangle® generates meshes

(i.e. planar graphs) from a set 𝑉 of vertices in R2. One emphasis

of Triangle®is the generation of Constrained Delaunay Triangula-

tions. Triangle® is able to force the Triangulation Graph to respect

a set of constraint edges that have priority over Delaunay edges. The
border of a (constrained) Delaunay Triangulation equals the border

of the Convex Hull of the set of vertices (𝜕𝐷𝑇 (𝑉) = 𝜕𝐻 (𝑉)). If𝑉 is

considered to be the set of vertices of the urban bikepath system,

𝐷𝑇 (𝑉) is a fully connected graph covering 𝑉 . Therefore, 𝐷𝑇 (𝑉) is
a prescription for full connection among the bike system sites (i.e.

bike dispensers and bikepaths). If the constrained edges input to

Triangle®are the ones of the bikepaths 𝐶𝑖 , then Triangle®would

provide a fully bikepath-connected graph, while at the same time

respecting the bikepaths prescribed by the city authorities. Un-

fortunately, due to copyright and legal circumstances, we cannot

use Triangle®. However, we have devised heuristics to achieve full

connectivity among the bikepath system nodes𝑉 while at the same

time respecting the edges of bikepaths𝐶𝑖 , without using Triangle®.

Such heuristics are discussed in the Methodology section.

2.5 Delaunay Triangulation in path planning
2.5.1 [Yan et al. 2008]. The paper proposes a path planning algo-

rithm that uses a constrained Delaunay triangulation (CDT) to find

an optimal path from a start point to an end point in an obstacle-

filled environment. The algorithm first constructs a CDT of the

environment, then constructs a dual graph on the CDT, and finally

uses searching algorithms to find a path from the start point to the

end point. The algorithm is simple and effective, and it is a good

choice for applications where real-time performance is important.

2.5.2 [Hahmann et al. 2018]. The paper compares the performance

of six algorithms for routing through polygon-defined open spaces.

One of them, Delaunay, constructs a triangulation of the open space,

which can be used to find paths by following its edges. Results

demonstrate Delaunay’s efficiency in route computation time.

2.5.3 [Sakthivel et al. 2022]. The article highlights varied uses of au-
tonomous drones and UAVs (Unmanned Aerial Vehicles) in civil ap-

plications like agriculture, environmental protection, public safety,

and traffic management. It discusses challenges and opportunities

for incorporating these systems into smart city frameworks, stress-

ing efficiency and cost-effectiveness. The study concentrates on

enhancing UAV route planning, presenting an algorithmic solution

employing Delaunay triangulation to reduce collision risks. Experi-

mental outcomes underscore the effectiveness of the Lin-Kernighan

technique within this Delaunay-based method, providing insights

for real-world UAV deployment in intricate urban settings.

2.6 Conclusions of the Literature Review
The literature review has revealed important findings regarding

bike route planning and implementation. Commercial systems, such

as OpenStreetMap (OSM), offer valuable data for assessing bicycling

infrastructure, although discrepancies may arise when compared to

municipal open data. For relatively small cities like Medellin, these

discrepancies are expected to be greater. Therefore, to ensure more

accurate and reliable solutions, it is crucial to have control over

the municipal data and prioritize its usage in the development of

the bike route planner. By relying on authoritative and up-to-date

municipal data, we can enhance the effectiveness and precision

of the EnCicla®system in Medellin. Personalized route planning

techniques, incorporating edge types and weighted routing, allow

for multi-criteria decision-making and the generation of alternative

routes based on user preferences and real-world considerations.

Integrating cycling with public transport systems necessitates care-

ful analysis of safety and route selection factors, such as Accident

Prone Areas, Bus Lanes, and Road Side Car Parks. Web implemen-

tation utilizing technologies like Google Maps APIs has shown

Web3D ’23, October 09–11, 2023, San Sebastian, Spain Gutierrez-Urrego et al.

promise in providing efficient and user-friendly navigation solu-

tions. Additionally, constrained graph methods, like the constrained

Delaunay triangulation (CDT) and alternative heuristics, enable the

generation of planar graphs with specific edge constraints. These

insights, along with prioritizing municipal data control, will inform

the development of an effective bike route planner using the En-

Cicla®system in Medellin. Moreover, the application of Delaunay

triangulation as a natural option for path planning is relevant.While

it is predominantly employed in open space routing, its consistency

and utility manifests in our context, which involves connecting

non-connected subgraphs.

3 METHODOLOGY
Fig. 1 presents the main workflow of our implementation, as fol-

lows: (1) the piecewise linear (PL) bikepaths 𝐶𝑖 click-sampled by a

human are corrected to remove defects (Fig. 3). The result is a set of

bikepaths without topological errors, that are promoted to a graph

𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) structure. (2) The bike dispenser sites 𝐷 are added

to the𝐺𝐶 graph. The bridge edges which add those bike dispensers

represent minimal distances 𝑑 () to neighboring bikepaths 𝐶𝑖 (Fig.

4(a)). The new vertex set is 𝐺𝐵 = 𝐺𝐶 ∪ 𝐷 . (3) The disconnected set

of bikepaths 𝐶𝑖 in 𝐺𝐵 is connected via a Delaunay Triangulation

(DT) of vertices 𝑉𝐵 . The concept of distance 𝑑 () for this DT may

be Euclidean, City Block, or other, relevant for the particular city

at hand. (4) Non-realistic (e.g. convex hull or very long) edges of

𝐷𝑇 (𝑉𝐵) must be removed, as they represent impossible, risky or in-

convenient bike routes for that particular municipality. (5) The fully

connected graph𝐺 is used to compute minimal cost trajectories be-

tween pairs on vertices. The present client metropolitan authority

requests computing of minimal cost routes among bike dispenser

nodes (𝐷) only, thus allowing a full pre-processing of the answer to

user interrogations. (6) The matrix 𝑃 containing the minimal-cost

paths from dispenser 𝑣0 to 𝑣 𝑓 is accessed in constant-cost manner,

returning the sequence [𝑣0, 𝑣1, ..., 𝑣 𝑓] of vertices.

3.1 Available Data
(1) The point sample to digitize the PL bikepaths 𝐶𝑖 (𝑢) is ex-

ecuted by a human user via mouse clicks in a quite rough

manner.

(2) 𝐶𝑖 (𝑢) are PL curves in R2.𝐶𝑖 (𝑢) = (longitude,latitude).
(3) The distance function 𝑑 (𝑝, 𝑞) between two domain locations

𝑝, 𝑞 ∈ Ω, is a metric (non-negative real-valued, symmetric,

triangular inequality-compliant). The present manuscript

reports using City-Block distance asmetric. There is the obvi-
ous alternative of Euclidean distance, besides other societal-,

regulation-, environmental- and urbanistic-based metrics.

(4) The point samples 𝐶𝑖 (𝑢) have Nyqvist-Shannon [Nyquist

1928; Shannon 1948, 1949] quality in all neighborhoods, as

by definition the human user visually ensures that the point

sample preserves the required bikepath features. However,

the sampling interval is not constant. In low curvature re-

gions, the User applies a long sampling interval, and vice

versa.

(5) Curves𝐶𝑖 (𝑢) are graphs themselves in which (a) most curve-

internal vertices have degree 2, (b) most terminal vertices

Figure 1: Main Workflow of Computing for Minimal Bike
Trajectories.

have degree 1, and, (c) a small number of internal vertices

have degree larger than 2 (i.e. where a T or X junction occurs).
(6) The set of all bikepaths (Fig. 2) 𝐶𝑖 (𝑢) forms the graph 𝐺𝐶 =

(𝑉𝐶 , 𝐸𝐶). Therefore, 𝐸𝑖 = (𝑣𝑘 , 𝑣 𝑗) is an edge of 𝐸𝐶 if 𝑣𝑘 =

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 (𝑣 𝑗) or 𝑣𝑘 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 (𝑣 𝑗) in a bikepath 𝐶𝑖 (𝑢).
(7) Some bikepath curves𝐶𝑖 (𝑢) may look self-intersecting inR2,

while in R3 they represent fully legal overpass trajectories

(e.g.𝐶𝑤 in Fig. 3(a)). In such cases, it is important that the ap-

parent cross of𝐶𝑤 against itself generate no explicit vertex in

the crossing. In this manner, the apparent non-manifoldness

in R2 is not translated into the graph topology.

3.2 Graph Construction
(1) VertexDisplacement /Merging /Deletion. Fig. 3(a) shows

that in the raw input data, bikepaths 𝐶𝑖 , 𝐶 𝑗 and 𝐶𝑘 are

topologically independent, while they may geometrically

touch or intersect. If the city regulation prescribe that these

bikepaths be integrated, a common vertex must be created

in 𝐶𝑖 / 𝐶 𝑗 and in 𝐶𝑖 / 𝐶𝑘 . This is the solution depicted in

Fig 3(b). The converse situation might appear, forcing to

separate bikepaths which, due to sampling noise, mistakenly

share vertices .

These Figures also show bikepath 𝐶𝑤 , which is apparently

mistaken as it self-intersects in R2. However, it is completely

correct in R3. All what is needed in this case is to ensure

that 𝐶𝑤 does not form a loop by re-visiting a vertex (i.e. as

illustrated). Therefore, no correction is needed.

(2) Addition of Bike Dispenser Sites to 𝐺𝐶 . Enlargement of

the bikepath graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) to include the bike dis-

penser sites𝐷 entails the obvious step of enlarging the vertex

Urban Biking Routes Web3D ’23, October 09–11, 2023, San Sebastian, Spain

(a) Borough 1. Bikepaths𝐶𝑖 / Graph𝐺𝐶

(i.e. without bike dispensers).

(b) Borough 2. Bikepaths𝐶𝑖 / Graph𝐺𝐶

(i.e. without bike dispensers).

(c) Added Bike Dispenser vertices. (d) Graph 𝐺𝐵 (i.e. with bike dispensers

and connecting edges).

Figure 2: Bikepaths 𝐶𝑖 , bikepath Graph𝐺𝐵 , bike dispensers
𝐷 and bikepath Graph with bike dispensers 𝐺𝐵 .

(a) Blue bikepaths𝐶𝑖 ,𝐶 𝑗 : topologically
disconnected due to sampling errors. Red
bikepath𝐶𝑤 : Apparent self-intersection
in R2 .

(b) Blue bikepaths𝐶𝑖 ,𝐶 𝑗 : topologically
connected after vertex addition / merge /

displacement. Red bikepath𝐶𝑤 : No ac-
tual self-intersection in R3 . No correction

needed.

Figure 3: Bikepath Crossings and self-crossings. Vertex Cor-
rection.

set: 𝑉𝐵 = 𝑉𝐶 ∪ 𝐷 . However, the generation of bridge edges

from the bike dispensers to the bikepaths is the actual graph

enlargement. Alternatives to add the bike dispenser sites 𝐷

to the basic bikepah graph𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) include: (i) Explicit
computing of shortest vertex-to-curve paths which connect

each bike dispenser 𝑣𝐷𝑖 to several bikepaths 𝐶𝑖 (Fig. 4(a)),

(ii) a parsimonious strategy of differing the computing of

dispenser-bikepaths bridges to a later stage which connects

all available graph vertices via a Delaunay Triangulation.

Our implementation executes option (i) above.

(a) DT Bridges Dispenser / Bikepath. (b) Treatment of DT Bridges

(c) Complete priority for bikepaths

𝐶𝑖 .

(d) Partial priority for bikepaths𝐶𝑖 .

Figure 4: Possible Scenarios of Bridges. (a) Among bike dis-
pensers 𝑣𝐷𝑖 and bikepaths 𝐶𝑤 . (b) Provided by Delaunay Tri-
angulation. (c),(d) Full and partial priority for bikepaths 𝐶𝑖 .

1: procedure [𝐺𝐵]=DispenserInsertion(D,𝐺𝐶) ⊲ Add Bike

Dispensers

2: ⊲ 𝐺𝐶= Piecewise Linear sampled bike Pathways, 𝐷= Bike

dispenser sites

3: for each 𝑣𝑏 bike dispenser in 𝐷 do
4: Bridges = ShortestBrigdes(𝑣𝑏 , 𝐺𝐶)

5: for each 𝑏 bridge in Bridges do
6: if (|b| ≤ BridgeThreshold) AND (interior(b) ∩
𝐺𝐶 = Φ) then

7: 𝐺𝐶 = 𝐺𝐶 + 𝑒𝑑𝑔𝑒 (𝑏)
8: end if
9: end for
10: end for
11: 𝐺𝐵 = 𝐺𝐶 ⊲ 𝐺𝐵= Pathway graph with bike dispensers

12: end procedure

3.3 Constrained Delaunay Graph
In reference to Fig. 5:

(1) The bikepaths 𝐶𝑖 are mostly disjoint from each other.

(2) Connection among bikepaths𝐶𝑖 is required, in order to make

accesible all Ω urban area.

(3) A Delaunay triangulation on the vertices of 𝐺 = (𝑉𝐵) is a
natural choice for full connectivity among the bikepaths 𝐶𝑖 .

(4) In a basic Delaunay Triangulation, the edges of the bikepaths

𝐶𝑖 are not taken into consideration. Delaunay produces its

own edge set.

(5) To enforce the bikepaths 𝐶𝑖 , Constrained Delaunay Graph is

achieved by preferring an edge of 𝐶𝑖 whenever it collides

with a Delaunay edge. The resulting graph 𝐺 is not a trian-
gulation anymore.

Web3D ’23, October 09–11, 2023, San Sebastian, Spain Gutierrez-Urrego et al.

(a) Constrained Delaunay Graph of

Bikepath Vertices.

(b) Pruned Constrained Delaunay Graph

of Bikepath Vertices.

Figure 5: Constrained Delaunay Graph of the Bikepath Ver-
tices. Basic and Pruned versions.

(6) Delaunay outermost edges form a convex hull 𝐻 for vertices

𝑉𝐵 . These edges circumvallate 𝐺 and form the border of 𝐻 ,

𝜕𝐻 .

(7) Edges 𝑒 ∈ 𝜕𝐻 are not realistic. For example, they may join

neighboring urban-surrounding cusps, as a hypothetical tele-
feric cable would. Therefore, these edges 𝑒 ∈ 𝜕𝐻 are deleted.

1: procedure [𝐺]=FullGraphConnection(𝐺𝐵)⊲ Fully Connects

Bike route Graph

2: ⊲ 𝐺𝐵 = (𝑉𝐵, 𝐸𝐵)= Set of disjoint Pathway graphs (incl. bike

dispensers)

3: 𝑇𝐷= DelaunayTriangulation(𝑉𝐵 , LocalHeuristics)

4: for each 𝑒 Delaunay Edge in 𝑇𝐷 do
5: if (𝑒 is irreal) then
6: 𝑇𝐷 = 𝑇𝐷 − {𝑒}
7: else
8: 𝑒 = Prune(e, LocalHeuristics)

9: end if
10: end for
11: 𝑇𝐷 = 𝑇𝐷 + 𝐸𝐵 ⊲ Make Pathways 𝐸𝐵 compulsory

12: 𝐺 = 𝑇𝐷 ⊲ 𝐺= Fully Connected Bike route Graph

13: end procedure

3.4 Graph Costs Assignment
(1) Delaunay Triangulation is produced on vertices 𝑉𝐵 (bike

route plus dispenser vertices), using variate metrics 𝑑 ().
(2) A Metric 𝑑 () : Ω → R must satisfy:

(a) 𝑑 (𝑣𝑖 , 𝑣 𝑗) ≥ 0 for all 𝑣𝑖 , 𝑣 𝑗
(b) 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 0 ↔ 𝑣𝑖 ≡ 𝑣 𝑗
(c) 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 𝑑 (𝑣 𝑗 , 𝑣𝑖) for all vertices 𝑣𝑖 , 𝑣 𝑗
(d) 𝑑 (𝑣𝑖 , 𝑣 𝑗) ≤ 𝑑 (𝑣𝑖 , 𝑣𝑘) + 𝑑 (𝑣𝑘 , 𝑣 𝑗) for all vertices 𝑣𝑖 , 𝑣 𝑗

(3) Urban Metrics 𝑑 () include: (a) Euclidean, (b) Street-block,
(c) Safety-biased, (d) Path Quality-biased. However, other

metrics are usable.

(4) Observe that cost functions such as "slope difficulty" are not

commutative and therefore they are not currently used as

graph cost metrics.

(5) Notice that when the graph is directed, the cost 𝑑 (𝑣𝑖 , 𝑣 𝑗)
differs from 𝑑 (𝑣 𝑗 , 𝑣𝑖). This case happens, for example, in

heavy slope terrain. Our implementation also accepts this

type of cost structure

3.5 Heuristics
3.5.1 UrbanHeuristics. The following are examples of UrbanHeuris-

tics used in our implementation:

(1) Usage Priorities. Bikepaths vs. Car-bike Shared roads.
The addition of the bike dispensers 𝐷 to the basic bikepaths

𝐺𝐶 implies the possible rejection or fragmentation of dispenser-

bikepath bridges which intersect other bridges or bikepaths.

For example, if the city authorities want to prioritize usage of

bikepaths over car-bike shared roads, then priority is given

to reach a bikepath as soon as possible even if an additional

route car-bike shared roads would result in a more economic

overall trajectory.

(2) Pruning ofDelaunayTriangulationEdges. Fig. 5(a) shows
the basic Delaunay Triangulation 𝐷𝑇 (𝑉𝐵) = 𝐷𝑇 (𝑉𝐶 ∪ 𝐷).
This figure also illustrates that usage of long Delaunay edges

defeats the intention of using bikepaths. Also, those De-

launay edges may be unrealistic. For example, the border

edges (𝜕𝐷𝑇 (𝑉𝐵)) are a circumvallation of the urban area Ω.
However, in most cities, the existence of such a road is an

urbanistic utopia, or is risky due to terrain, criminality, or

other conditions. Therefore, such Delaunay edges must be

deleted.

3.5.2 Geometric Heuristics. The following are the main Geometric

Heuristics used in our implementation:

(1) Full Connectivity of the 𝐺 Graph vs. Prunning of De-
launay Triangulation of 𝑉𝐵 . The Delaunay Triangulation

𝐷𝑇 = 𝐷𝑇 (𝑉𝐵) ensures full connectivity of the graph 𝐺

(bikepaths plus bike dispensers). However, is pruned to elim-

inate bike routes in the city domain Ω which may be overly

long or simply un-realistic (e.g. a path joining two mountain

tops). The pruning of DT lowers its connectivity and might

defeat the full connectivity goal for 𝐺=pruning(DT). How-
ever, this disconnection has not appeared in the trajectories

delivered to the public.

(2) 2D Delaunay Triangulation of𝑉𝐵 applied on bikepaths
/ roads with overpasses 3D. As illustrated in bikepath

𝐶𝑤 of Fig. 3, the 2D projection of this 3D bikepath does

not deform the graph 𝐺 as long as the self intersection of

the 2D projection of 𝐶𝑤 is not added as a vertex to 𝐶𝑤 .

However, when 𝐷𝑇 (𝑉𝐵) is computed, an edge of 𝐷𝑇 (𝑉𝐵)
may exist, which joins a vertex at ground level with another

vertex at overpass level, being therefore an unreal bridge. Our

algorithm does not, at this time, prevent this result. However,

this malfunction has not occurred up to the present time.

(3) Delaunay Edges as Shortcuts of Bikepaths 𝐶𝑖 . A Delau-

nay Triangulation edge may join two vertices of the same

bikepath 𝐶𝑖 . In this case, such a DT edge is ignored, as it

Urban Biking Routes Web3D ’23, October 09–11, 2023, San Sebastian, Spain

subverts the priorities of the municipalities for the citizens

to use bikepaths 𝐶𝑖 whenever available.

(4) Priority of Bikepaths 𝐶𝑖 over Delaunay Edges. When-

ever a Bikepath 𝐶𝑖 cuts a Delaunay edge, the Delauney edge

is either (i) eliminated (Fig. 4(c)) or (ii) sub-divided by the

bikepath, as per municipality priorities (Fig. 4(d)). If the ur-

ban regulations prescribe as absolute priority the usage of

the bikepaths 𝐶𝑖 , option (i) is chosen. Otherwise, a portion

of the Delaunay edge may be kept as a manner to access the

bikepaths 𝐶𝑖 with several options. The results presented in

this manuscript correspond to absolute priority of bikepaths

𝐶𝑖 over Delaunay edges (i.e. option (i) above).

3.6 Pre-Processing
(1) Data Pre-processing: Cleaning of 𝐶𝑖 (𝑢) bikepaths. Initial ver-

tices are sampled by a human user via a Graphic User Interface,

thus presenting digitization errors. These errors manifest them-

selves, for example, when two vertices (of different curves)

should reside in the same R2 point and yet they are slightly off

from each other. This defect, in turn, would obviously derail

the connectivity tests among bikepaths 𝐶𝑖 .

(2) Data Pre-processing: Two bikepaths 𝐶𝑖 and 𝐶 𝑗 may cross each

other with or without actual intersection. If 𝐶𝑖 crosses over 𝐶 𝑗

(e.g. via a bridge), these bikepaths do not intersect. From a graph

viewpoint, 𝐶𝑖 and 𝐶 𝑗 are independent. If 𝐶𝑖 does intersect 𝐶 𝑗 ,

it is compulsory to create a vertex, common to 𝐶𝑖 and 𝐶 𝑗 . It

would be incorrect to allow this intersection to remain implicit,

via intersection of the interiors of edges: e.g., 𝑖𝑛𝑡 (𝑎𝑏) ∩ 𝑖𝑛𝑡 (𝑐𝑑).
(3) Interrogation Pre-processing: In the present effort, the client

metropolitan authority has demanded to offer the public the

planning of routes among bike dispenser nodes in 𝐷 (𝑂 (|𝐷 |) ≈
100). The client does not require, at his time, computing the

optimal path among any pair of vertices of the set𝑉𝐵 (𝑂 (|𝑉𝐵 |) ≈
7000). This specification offers the opportunity to pre-compute

and store the optimal path from dispenser 𝑣𝐷𝑖 to dispenser

𝑣𝐷 𝑗 for all combinations of the origin and destination bike

dispensers.

3.7 Mobile Implementation
The solution bike rides from dispenser 𝐷𝑖 to dispenser 𝐷 𝑗 is stored

in matrix 𝑅. Each 𝑅(𝑖, 𝑗) contains (a) the solution bike ride, (b) its

cost, (c) the corresponding walk and (d) the walk cost. If the edge

cost corresponds to a metric, then an edge expense 𝑒𝑖 𝑗 equals 𝑒 𝑗𝑖 .

It follows that 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 𝑑 (𝑣 𝑗 , 𝑣𝑖) and we may assume that 𝑅 is

symmetric. Therefore, only half of 𝑅 must be stored. The diagonal

of 𝑅 is also not needed since it would register bike rides from a

dispenser to itself. As a result, 𝑅 represents
𝑛𝐷 (𝑛𝐷−1)

2
cells. The

coordinate sequences for the solution bike ride and for the walk

are compressed and stored by Google Maps®[Google nd]. In this

particular scenario, the matrix 𝑅 (compressed bike ride, walk path

and their costs) is very large. Thus, it is impractical to store it in

the client device. As a consequence, this matrix is stored in the

EnCicla®database (i.e., server of the municipal authority).”

The mobile app for the EnCicla® public bike system (Fig. 7) fol-

lows a client-server architecture (Fig. 6). The client component is

responsible for handling user requests, interacting with the Google

Figure 6: Data flow in a client-server app architecture: Cal-
culating, storing, and requesting the matrix of optimal solu-
tions.

Maps™ service when necessary, and displaying the requested so-

lution ride. On the other hand, the server component handles

client-app requests, including user data, dispenser availability, and,

most importantly, retrieval of the optimal solution bike rides from

the solution matrix stored in the database. It is important to notice

that the the optimal solution bike rides is computed once, in a

time previous to user interaction. The resulting solution matrix is

uploaded to the database, which the server accesses when the app

requests it.

In this web-based setup, a significant method resembling a digi-

tal twin emerges. Using a Gaussian bell curve alongside historical

records data, we can estimate bike availability in dispensers. This

approach effectively mirrors real-world processes by digitally rep-

resenting system dynamics. It predicts bike availability based on

historical trends, synchronizing data insights with practical out-

comes.

It is important tomention that the app is actuallyWeb-compatible,

but the commercial client did not required it to be web deployed.

3.7.1 Color and style of Solution Bike Rides in Mobile App:

(1) Dark blue: Bikepaths excluding cars.

(2) Light blue: Car & Bike shared paths. Road paths with priority

given to bikes.

(3) Yellow: Delaunay edges or Bridges between Dispenser and

Bikepaths 𝐶𝑖 .

(4) Black (dotted line): Real-time Google Maps™ path connect-

ing an arbitrary point to the nearest dispenser (Fig. 7(b)).

4 RESULTS
4.1 Resulting Graph
Figure 8 depicts a portion of the resulting fully connected, non-

directed, and weighted Graph𝐺 , along with its corresponding edge

types, as follows:

(1) Bikepath edge: Edges of𝐶𝑖 which are exclusively designated

for bikes.

(2) Car & Bike shared edge: These edges are shared with cars

but give priority to bikes.

(3) Connecting edges: Connect bike dispensers to the bikepaths

𝐶𝑖 .

Web3D ’23, October 09–11, 2023, San Sebastian, Spain Gutierrez-Urrego et al.

(a) Let 𝑣orig and 𝑣dest be two points such

that 𝑣orig, 𝑣dest ∈ Ω and 𝑣orig, 𝑣dest ∈ 𝐷 .

(b) Let 𝑣orig and 𝑣dest be two points such

that 𝑣orig, 𝑣dest ∈ Ω and 𝑣orig, 𝑣dest ∉ 𝐷 .

Figure 7: Implementation of solution rides in mobile app.
Route between origin 𝑣orig and destination 𝑣dest vertices.

Figure 8: Fully connected urban bike route Graph 𝐺 . Edge
types.

(4) Delaunay edge: Connect Bikepaths 𝐶𝑘 and 𝐶𝑤 or connect

Dispensers to Bikepaths 𝐶𝑖 .

Fig. 7 displays Delaunay edges as straight segments. However,

they have City-block pattern.

4.2 Efficiency Ratio
The Efficiency Ratio 𝐸𝑅 (relevant values in Table 1) for our applica-

tion divides the cost 𝑑 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗) of the solution bike ride (between

dispensers) over the cost 𝑑𝑤 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗) of the corresponding walk
(computed by Google Maps™).

ER =
𝑑 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗)
𝑑𝑤 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗)

(1)

We do not have the resource capacity to obtain the licenses of

commercial software and to populate those data bases with the

proprietary data. We do not have the legal permission of the client

to store its data in other systems. In addition, the composition of

the bike rides is completely different in each one of the commercial

systems, thus leading to non-comparability of scenarios.

However, we were able to contrast the quality of the computed

bike rides against their pedestrian walk counterparts. It turns out

that the triangulation-derived bike rides tend to be almost identical

Table 1: Bike Ride Efficiency Indicator 1: Comparison of Bike-
to-Walking Distance Ratio for the Metropolitan Area Ω.

Bike Ride

Efficiency

Indicator

ValueObservations

Mean value 1.19 ER= 1.19 indicates that, on average, the solu-

tion bike Ride provides a favorable alterna-

tive compared to walking routes.

Standard

Deviation

0.17 The Efficiency Ratio values exhibit a rela-

tively low standard deviation of 0.17, sug-

gesting a relatively narrow range of variabil-

ity around the mean value.

Minimum

value

0.31 Cases where 𝑑 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗) < 𝑑𝑤 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗), in-
dicating instances where the bike rides sig-

nificantly reduce the distance between dis-

penser nodes compared to walking routes.

Maximum

value

3.65 Cases where 𝑑 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗) > 𝑑𝑤 (𝑣𝐷𝑖 , 𝑣𝐷 𝑗), in-
dicating instances where the bike rides are

considerably longer in distance between dis-

penser nodes compared to walking routes.

to the ones naturally walked by a pedestrian in terms of distance

cost (Table 1). That is, the mean value of the Bike Ride Efficiency

Indicator is 1.19 (very near the ideal value 1.0).

Note: Our reported implementation is the result of the require-

ments placed by the Metropolitan authority. One of the sine qua non
conditions was that property of the GIS data would remain with

the municipality instead of being owned by foreign IT companies.

4.3 Complexity Analysis
Consider 𝑛𝐶=total number of vertices of the bikepaths, 𝑛𝐷=number

of bike dispensers. Table 2 presents the time complexities of the

diverse tasks entailed by EnCicla®. This Table displays the expenses

in 𝑂 () notation, for the different processes involved in both (a) the

graph construction and (b) the interrogation of minimal-cost bike

trajectories. Notice that an additional improvement is possible, since

our need of minimal paths only involves dispenser nodes 𝑣𝐷 ∈ 𝐷

and not all graph nodes 𝑣𝑖 ∈ 𝑉𝐵 . Therefore, the standard Dijsktra

used is somehow over-dimensioned for the present needs.

4.4 Expenses of Web Services
The manuscript presents a detailed cost analysis of integrating the

Google Maps™ API into a routing algorithm solution. The focus

of this analysis is to assess the financial implications associated

with the API usage. By examining the cost structure and patterns

of API calls, valuable insights are gained regarding the expenses

involved in implementing the routing algorithm. This examination

allows for a thorough evaluation of the economic considerations

and feasibility of incorporating the Google Maps™ API into the

solution. Additionally, it is important to note that theremay be other

associated costs when using the app (see Table 4). These findings

contribute to a broader understanding of the financial aspects and

practicality of utilizing external APIs in routing algorithms.

Urban Biking Routes Web3D ’23, October 09–11, 2023, San Sebastian, Spain

Table 2: Time Complexity Analysis. Bike dispenser set is 𝐷
with 𝑛𝐷 = |𝐷 |. Bikepaths sampling point set is 𝑉𝐶 with 𝑛𝐶 =

|𝑉𝐶 |. Full vertex set is𝑉𝐵 = 𝐷 ∪𝑉𝐶 . Notice that: 𝑛𝐵 ≩ 𝑛𝐶 ≫ 𝑛𝐷 .
Therefore 𝑛𝐶 ≈ 𝑛𝐵 .

Process Complexity Observations

Bikepaths

Correction:

Point and

Intersections

Correction

𝑂 (𝑛2
𝐶
) Correction of bikepath vertex

sites and explicit generation of

path-path intersections

Dispenser Addi-

tion:

𝑂 (𝑛𝐶 .𝑛𝐷) Computing of dispenser /

bikepath bridges

Delaunay Tri-

angulation

𝑂 (𝑛𝐵 .𝑙𝑜𝑔(𝑛𝐵)) DT of 𝑛𝐵 vertices in R2

Purge of irreal

Delaunay edges

𝑂 (𝑛2
𝐵
) According to actual terrain con-

ditions, city policies, etc.

Shortest Paths

among all Bike

Dispensers 𝐷

𝑂 (𝑛2
𝐵
.𝑛𝐷) Repeated invocation of Dijkstra

[Dijkstra 1959] algorithm. In-

house implementation.

TOTAL 𝑂 (𝑛3
𝐵
) Assuming that 𝑛𝐵 ≫ 𝑛𝐷

(bikepath sampling vertex set

much larger than dispenser set.)

Table 3: Cost Analysis of Google Maps™API service to com-
pute solution. Cost per Directions Advanced API call: 0.01
USD [Google 2023]

.

Usage Number

of

API

calls

Cost

(USD)

Observations

Strictly

triangular

distance

matrix

5995 $59.95 This matrix serves analytical pur-

poses, as it facilitates the generation

of the Bike-to-Walking Distance Ra-

tio (Table 1) and stores the walking

path to be utilized within the app.

Delaunay

edges cost

assignment

1693 $16.93 These API calls are utilized to assign

costs to Delaunay edges in section

3.4

5 CONCLUSIONS
This manuscript has presented the mobile-based implementation of

the bike urban route planner EnCicla®. This planner constructs a

fully connected bike route graph taking as input a set of bikepaths

𝐶𝑖 , digitized in Piecewise Linear manner. These bikepaths are in

general disconnected from each other. Therefore, a constrained

Delaunay Triangulation strategy has been used to connect the

bikepaths𝐶𝑖 with each other. In addition, a set 𝐷 of bike dispensers

has been integrated to form the full urban bike accessibility graph

𝐺 . The Topology and Geometry of graph 𝐺 obeys both urban reg-

ulation and geometric heuristics. Thus, the graph 𝐺 reflects the

policies of the municipality regarding bike-based sustainable trans-

portation. The current demands from the metropolitan authorities

include the planning of bikepaths among bike dispensers. Thus, the

Table 4: Cost Analysis of Google Maps™ [Google 2023] API
Usage by Human Users. Expenses are presented in US cents.
Approximated total cost per application usage: 12.4¢

API

name

API

cost

App

Calls

Total

cost

Notes/Comments

Dynamic

maps

0.7¢ 5 3.5¢ Standard cost for displaying a map,

incurred whenever a user accesses

the map interface within the appli-

cation.

Directions

Ad-

vanced

1¢ 4 4¢ Provides a walking route between

two points when the user’s start

and/or end locations don’t match a

dispenser node (𝐷), requiring guid-

ance to the nearest one. (Fig. 7(b))3.4

Auto-

complete

1.7¢ 2 3.4¢ Generates a list of suggested place

predictions from a provided input

string. Applied when a user intends

to enter the origin or destination for

their ride.

Geocoding 0.5¢ 3 1.5¢ Returns data from a location on

map. Used to get data from user

manual origin/destination selec-

tion.

planned bikepaths start and finish in bike dispensers 𝑑𝑖 ∈ 𝐷 . The

routes include sub-trajectories in (a) bike-devoted, (b) signalized

car-and-bike and (c) standard automotive roads/lanes.

The bike rides have minimal graph traversal cost. However, the

cost goes beyond Euclidean or City-block, to include any expense

function (e.g. pollution, safety, security, terrain difficulty) that the

city authority may wish to impose.

The EnCicla®bike rides planner currently covers a metropolitan

area with 10 cities/boroughs and a population of 4 million people.

The number of bike dispenser customers (i.e. public bike borrowers)

approaches 130.000. However, the number of actual bikers using

the planner (i.e. using own or public bikes) is much larger.

6 FUTUREWORK
At the present time, the demands of the client cities imply that the

formulation of an optimal bike rides can be pre-computed. This

situation would change in the following scenarios:

(1) Demand for overall point-to-point instead of dispenser-to-dispenser
bike rides. This demand would obviously make the processing

times dramatically larger as the number of vertices would grow

to roughly 𝑛𝐼=number of street intersections in the metropoli-

tan area Ω.
(2) Demand for time-dependent edge costs. This scenario relates to

rush-hour vehicle congestion and contamination edge expenses,

which depend on the actual time of the route.

(3) Demand for non-symmetrical edge costs (𝑑 (𝑝,𝑤) ≠ 𝑑 (𝑞, 𝑝)).
This scenario occurs, for example, in a slope, where one of

the route directions has significantly different cost in either

direction. The scenario would make the graph 𝑉 a directed one,

Web3D ’23, October 09–11, 2023, San Sebastian, Spain Gutierrez-Urrego et al.

increasing the storage and computing resources needed to plan

the trajectories.

Exploring these potential enhancements and their application in

scenarios like digital twin concepts could offer valuable ways for

extending the capabilities and impact of the EnCicla®bike rides

planner.

ACKNOWLEDGMENTS
This researchwas conductedwith the resources fromCohesiveMan-

ufacturing, theMetropolitan Area of Valle de Aburra, Colombia, and

under the scientific supervision of the Laboratory of CADCAMCAE

at EAFIT University.

• Laboratory of CAD CAM CAE website: http://www1.eafit.edu.

co/cadcamcae

• CohesiveManufacturingwebsite: https://www.cohesivemanufacturing.

com

• Metropolitan Area of Valle de Aburra website: https://www.

metropol.gov.co

REFERENCES
Rudy Ariyanto, Erfan Rohadi, and Annisa Puspa Kirana. 2022. Implementing A Star

for Bicycle Route Finding System using OSM and GraphHopper: Case Study: Batu,

Indonesia. In 2022 International Conference on Electrical and Information Technology
(IEIT). IEEE, New York, NY, USA, 307–312. https://doi.org/10.1109/IEIT56384.2022.

9967899

L Paul Chew. 1987. Constrained Delaunay triangulations. In Proceedings of the third
annual symposium on Computational geometry - SCG '87. ACM New York, NY, USA,

Waterloo Ontario Canada, 215–222. https://doi.org/10.1145/41958.41981

EdsgerWDijkstra. 1959. A note on two problems in connexionwith graphs. Numerische
mathematik 1, 1 (1959), 269–271.

Colin Ferster, Jaimy Fischer, Kevin Manaugh, Trisalyn Nelson, and Meghan Winters.

2020. Using OpenStreetMap to inventory bicycle infrastructure: A comparison

with open data from cities. International journal of sustainable transportation 14, 1

(2020), 64–73.

Sven Fröhlich, Thomas Springer, Stephan Dinter, Sebastian Pape, Alexander Schill, and

Jürgen Krimmling. 2016. BikeNow: A Pervasive Application for Crowdsourcing

Bicycle Traffic Data. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct (Heidelberg, Germany) (UbiComp
’16). Association for Computing Machinery, New York, NY, USA, 1408–1417. https:

//doi.org/10.1145/2968219.2968419

Google. 2023. Directions API Billing Cost for Advanced Searches. https://developers.

google.com/maps/billing-and-pricing/pricing

Google. n.d.. Encoded Polyline Algorithm Format. https://developers.google.com/

maps/documentation/utilities/polylinealgorithm

Stefan Hahmann, Jakob Miksch, Bernd Resch, Johannes Lauer, and Alexander Zipf.

2018. Routing through open spaces – A performance comparison of algorithms.

Geo-spatial Information Science 21, 3 (2018), 247–256. https://doi.org/10.1080/

10095020.2017.1399675 arXiv:https://doi.org/10.1080/10095020.2017.1399675

Shunfu Hu and Ting Dai. 2013. Online map application development using Google

Maps API, SQL database, and ASP .NET. International Journal of Information and
Communication Technology Research 3, 3 (2013), 1–10.

Omar A Ibrahim and Khalid J Mohsen. 2014. Design and implementation an online

location based services using Google maps for android mobile. International Journal
of Computer Networks and Communications Security (CNCS) 2, 3 (2014), 113–118.

Saeed Nadi and Mahmood Reza Delavar. 2011. Multi-criteria, personalized route plan-

ning using quantifier-guided ordered weighted averaging operators. International
Journal of Applied Earth Observation and Geoinformation 13, 3 (2011), 322–335.

H. Nyquist. 1928. Certain Topics in Telegraph Transmission Theory. Transactions of
AIEE 47 (1928), 617–644.

M. Sakthivel, Shashi Kant Gupta, Dimitrios A. Karras, Alex Khang, Chandra Ku-

mar Dixit, and Bhadrappa Haralayya. 2022. Solving Vehicle Routing Problem for

Intelligent Systems using Delaunay Triangulation. In 2022 International Conference
on Knowledge Engineering and Communication Systems (ICKES). IEEE, Udaipur,
India, 1–5. https://doi.org/10.1109/ICKECS56523.2022.10060807

M Saplıoğlu andMMAydın. 2018. Choosing safe and suitable bicycle routes to integrate

cycling and public transport systems. Journal of Transport & Health 10 (2018), 236–

252.

C.E. Shannon. 1948. A Mathematical Theory of Communication. Bell System Technical
Journal 27, 379-423 (1948), 623–656.

C.E. Shannon. 1949. Communication in the Presence of Noise. Proceedings of the IRE
37, 1 (1949), 10–21. https://doi.org/10.1109/JRPROC.1949.232969

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator

and Delaunay triangulator. In Applied Computational Geometry Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 203–222.

Hongyang Yan, Huifang Wang, Yangzhou Chen, and Guiping Dai. 2008. Path planning

based on Constrained Delaunay Triangulation. In 2008 7th World Congress on
Intelligent Control and Automation. IEEE, Chongqing, China, 5168–5173. https:

//doi.org/10.1109/WCICA.2008.4593771

http://www1.eafit.edu.co/cadcamcae
http://www1.eafit.edu.co/cadcamcae
https://www.cohesivemanufacturing.com
https://www.cohesivemanufacturing.com
https://www.metropol.gov.co
https://www.metropol.gov.co
https://doi.org/10.1109/IEIT56384.2022.9967899
https://doi.org/10.1109/IEIT56384.2022.9967899
https://doi.org/10.1145/41958.41981
https://doi.org/10.1145/2968219.2968419
https://doi.org/10.1145/2968219.2968419
https://developers.google.com/maps/billing-and-pricing/pricing
https://developers.google.com/maps/billing-and-pricing/pricing
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://doi.org/10.1080/10095020.2017.1399675
https://doi.org/10.1080/10095020.2017.1399675
https://arxiv.org/abs/https://doi.org/10.1080/10095020.2017.1399675
https://doi.org/10.1109/ICKECS56523.2022.10060807
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/WCICA.2008.4593771
https://doi.org/10.1109/WCICA.2008.4593771

	Abstract
	1 Introduction
	1.1 Urban Heuristics
	1.2 Geometric Heuristics

	2 Literature Review
	2.1 Commercial Systems
	2.2 Edge Types and Weighted Routing
	2.3 Mobile Implementation
	2.4 Constrained Graph
	2.5 Delaunay Triangulation in path planning
	2.6 Conclusions of the Literature Review

	3 Methodology
	3.1 Available Data
	3.2 Graph Construction
	3.3 Constrained Delaunay Graph
	3.4 Graph Costs Assignment
	3.5 Heuristics
	3.6 Pre-Processing
	3.7 Mobile Implementation

	4 Results
	4.1 Resulting Graph
	4.2 Efficiency Ratio
	4.3 Complexity Analysis
	4.4 Expenses of Web Services

	5 Conclusions
	6 Future Work
	Acknowledgments
	References

