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Abstract. In the context of Visual Programing for Product Design, the
endowment of the Designer with programing tools to boost productiv-
ity is central. However, Product (and Architectural) Design are usually
taught without programing courses. This manuscript reports the results
of Lattice DesignVisual Programming by a Product Designer with no
previous exposure to programing but provided with the intuitive con-
cepts of Pre-, Post-condition and Invariant logical first-order predicates
for imperative programing. The scenario of application is the population
of 3D domains (i.e. solid models) with lattice individuals of the type
zero-curvature Truss (colloquially called 1.5D and 2.5D) structural ele-
ments. Result show that, although Pre-, Post-condition and Invariant are
devised for imperative programing, they provide a solid and successful
structure for visual programming (e.g. Grasshopper) for Designers with
no mathematical or programming background. Regarding the specific
Additive Manufacturing scope, the manuscript depicts the population of
the target domain with lattice individuals which, in this case, undergo
a rigid transformation before docked in the target domain. The lattice
design presented allows for the grading of the lattice geometry. Future
work addresses the programing of non-rigid transformations (non-affine,
non-conformal, etc.) which dock the lattice individual into the target
solid domain. Regarding the endowment of non-programmer Product
Designer with visual programing and pre-, post- and invariant condi-
tions, the performance results are very positive. However, as with any
work team, experts must be recruited to help with highly specialized top-
ics (e.g. computational mechanics, differential geometry, discrete math-
ematics, etc.).
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Glossary

2-manifold a surface point set locally isomorphic to a flat disk (i.e. without
self-intersections)

1-manifold a curve point set locally isomorphic to a straight wire (i.e. without
self-intersections)

BODY Ω a solid, or subset of R3, which is compact (bounded and containing
its boundary)

∂Ω Boundary Representation (B-Rep or skin ∂Ω) of solid Ω

M the (2-manifold) triangular B-Rep of a solid Ω. Also called a closed
triangular mesh

S(u, w) a 2-manifold parametric surface in R3. That is,
S : [0, 1] × [0, 1] → R3

C(u) a 1-manifold parametric curve in R3. That is, C : [0, 1] → R3

FACE F a connected subset of a parametric Surface (FACE F ⊂ S)

EDGE E a connected subset of a parametric Curve (EDGE E ⊂ C)

VERTEX v an element of the border of an EDGE, or an endpoint of an EDGE
E: ∂E = {v0, vf }

[FACE + thickness] Finite Element Analysis approximation (for the sake of computing
savings) of a 3D thin solid plate as a 2D FACE added with
thickness information, colloquially called 2.5D element

[EDGE + area] Finite Element Analysis approximation (for the sake of computing
savings) of a 3D slender solid rod as a 1D EDGE added with area
information, colloquially called 1.5D element

VoXel Volumetric piXel or 3D rectangular prism whose dimensions
correspond to the resolution of a 3D Scanner (e.g. computer
tomograph, magnetic resonator, ultrasound probe, etc.)

Lattice in Additive Manufacturing, the smallest topological structure that
is repeated (possibly with geometrical gradients) to fill a solid
domain Ω. Scale-wise, size(VoXel) � size(Lattice)

I, O, NIO qualifiers of a lattice with respect to a solid domain Ω (inside,
outside, neither inside nor outside)

pre-condition 1-st order logic predicate describing the status of program
execution before an instruction sequence is executed

post-condition 1-st order logic predicate describing the status of program
execution after an instruction sequence is executed

invariant 1-st order logic predicate describing the status of program execution
before any and each iteration in a (for or while) loop is executed

CBP Contract-based Programming, in which formal logic predicates are
used to specify the input, output, and intermediate checkpoints of a
software piece, with machine-driven checks assessing the compliance
of the code with the specified ontracts

EUP End User Programming

VPL Visual Programming Language
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1 Introduction

Research Target. This manuscript presents a development executed on Visual
programming tools (i.e. GrasshopperTM) which (a) defines lattice individuals
based on the limbs of types 1.5D [EDGE + area] and 2.5D [FACE + thickness]
due to their lower computing consumption, (b) executes the approximation of a
BODY (i.e. 3D region) by an enumeration of the given lattice individuals, tuned
by using the usual thresholds in Exhaustive Enumerations. This development
is executed by a Designer who does not have previous training in programming
but is equipped with intuitive knowledge of the Pre-condition, Invariant and
post-condition formalisms for programming [7].

Although it is not within our target, it is worth to remark the poten-
tial of Declarative, Dataflow or Flow-based Programming environments (e.g.
GrasshopperTM) in parallelization, fault-tollerance and scalability. Ref. [15] is a
soft introduction to these topics.

Programming for Non-programmers. Visual Programming is built as a
tool for practitioners and experts in topics other than from the programming
aspect. This tool which would allow them to build/assemble applications based
on icons of pre-defined pre-compiled functions. Visual programming and in par-
ticular GrasshopperTM is a good starting tool for non-programmers to create
scenario-driven, generative designs. However, it presents limitations in more com-
plex scenarios. One of these scenarios is parametric design, which Grasshopper
underlying kernel (RhinocerosTM) does not support.

Computer-Aided Design and Manufacturing. Lattice-based objects
present advantages in lower material spending and weight and their realiza-
tion by Additive Manufacturing (AM) offers internal cavities which traditional
Removal Manufacturing does not offer. On the other hand, usual 3D solid mod-
eling Boundary Representation (B-Rep) of lattices represents explosive amounts
of data, and the same is valid for 3D Finite Element Analyses (FEA). However,
if a lattice design has slender limbs (e.g. plates or rods), the more economi-
cal representation by Trusses or Frames is possible. In this case, Kinematic or
Position constraints are enforced among the pieces. As a result, the number of
topological, geometrical and finite elements is lowered.

Geometry Scope. The present work addresses lattice limbs whose medial axes
or skeletons have zero curvature. The plates have constant thickness. The rods,
however, may have changing cross section. This manuscript is concerned nei-
ther with supporting structures during the additive manufacture nor with the
computational mechanics of the lattices.

Section 1 reviews the state of art of Topologic and Geometric Modeling for
lattices. Due to the special subject of this manuscript (Visual programming for
Lattice Modeling and Object approximation), Sect. 3 discusses the Methodology
used and simultaneously presents the results of the modeling. Section 4 concludes
the manuscript and indicates aspects for future work.
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2 Literature Review

2.1 Lattice Families and Properties

Refs. [2] and [14] evaluate strategies (solid, intersected, graded, scaled, uniform)
to map Solid Isotropic Material Penalisation (SIMP) material densities for a can-
tilever load case into lattice structures. 3D Solid Finite Element simulations are
carried out with a wall (i.e. Schwarz) lattice model and not with truss or frame
structures. AM degradee patterns are employed according to the support struc-
tures, surface areas, processing times, and other criteria. The softwares used are
Magics (Materialise Magics. Materialise N.V., Leuven, Belgium, 2014.), Autofab
(Autofab Software, Marcam Engineering, 2011), MSC Nastran, Grasshopper -
Rhino for complex designs of lattices (no library names specified). No test is
given to measure the discrepancy, resiliency, processing effort, and in-process
support requirements.

Ref. [2] generates a MATLAB VoXel Representation of a lattice set that
approximates the interior of a 3D body. The lattices have their own internal
design. It presents the union of the body interior lattice structure with a thick
version of the 3D body skin (i.e. B-Rep), discussing the grading of the lattice
individuals. This manuscript produces a double discretization of the 3D Body
lattice representation by VoXels: (i) a VoxXel set builds a lattice and (ii) a
lattice set builds a 3D Body. No Finite Element computation is presented in this
manuscript.

Ref. [8] proposes a Programed Periodic Lattice Editor (PLE), based on a
set of parameters and lattice topologies, to fill a given 3D solid region Ω ⊂ R3.
This user-driven SW addresses honeycomb, octahedral, octet, and other lattice
individual types. A given lattice is modeled as a set of spherical nodes and rods
(i.e. truss representation). It considers limited, “steady” gradients in the 3 axis.
To reduce data size, it establishes that the output of PLE is a Constructive Solid
Geometry (CSG) instruction sequence to build the full lattice domain Ω̃ and not
the B-Rep of it. However, this decision only postpones the expense of Structural
Analysis, which requires large number of finite elements. The PLE supports an
R3 warping library, supporting cylindrical-, curve- and surface-driven gradings
for the lattice geometries. Readers interested in the industrial application of
Grasshooper for 3D printing may want to seek Ref. [6].

IntraLattice [10] is a software running on Grasshopper, whose functionality
is the generation of graded lattice sets filling up a solid region Ω ⊂ R3, with
and without the boundary or skin of Ω, ∂Ω. IntraLattice is able to (a) apply
non-affine deformations upon the domain Ω, along its constitutive lattices to
achieve smooth shapes, (b) generate a triangular B-rep of the lattice-made Ω
domain and (c) post-process the B-Rep for actual Additive Manufacturing.

As application of the [FACE+thickness] and [EDGE+area] abstractions in
the Computational Mechanics of Lattices area, Ref. [18] presents a process
sequence for additive manufacturing of deformed lattices with links of circu-
lar cross sections, and gradient-driven geometry along the structure. Ref. [18]
informs the articulation of a non-linear Cosserat stress-deformation iso-geometric
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solver [19] onto IntraLattice [10] to estimate the mechanical behavior of the Ω̃
lattice set. Refs. [11] and [19] model the lattice set as a frame or truss structure,
with torque being transmitted at the limb junctions. Ref. [11] executes a linear
finite element analysis, while Ref. [19] performs a non-linear one.

2.2 Text vs. Visual Programming. Grasshopper

This section gives the reader a context to appraise the contributions of this
manuscript from the point of view of computer programming education.

Ref. [9] compares 3 systems for Visual Computing applied to CAD (e.g.
Grasshopper, used also in our implementation). The paradigms present in Visual
Computing are node-based and list-based. This Ref. concludes that Node-based
Visual programming (e.g. Houdini) presents theses advantages: (a)- combines
iteration and encapsulation, (b)- supports both forward- and reverse- order
modeling methods, (c)- has implicit iterative process, and, (d)- allows to define
more complex processes. On the other hand, List-based Visual Programming
(e.g. Grasshopper - Rhino, Generative Components CG -Microstation) presents
higher difficulty, specially originated in : (1)- non-available or limited encapsu-
lation, (2)- non-available iteration.

Ref. [3] compares the capacity of architects to program Computer Aided
Architecture Design tools with script vs. visual programming. Both Scripting
(e.g. Visual Basic AutoCAD -VBA) and Visual (e.g. Grasshopper - Rhino) tools
use dialects internal to the host CAD software which are interpreted (as opposed
to compiled). Beginner designers performed better with Visual Programming.
These designers were able to streamline many repetitive and cumbersome tasks
of the CAD user tasks. Both groups encountered problems (larger with Visual
Programming) when devising complex programs in which fundamental concepts
of algorithmic were needed.

Ref. [12] discusses common characteristics of flow-based programming FBP
languages: (a) Input/Output black-box components in graph-like topology, (b)
a manager of the information flow in the graph, (c) Graphic User Interface, (d)
documentation and tutorials, (e) hands-on education. In FBP, the program flow
is dictated by the characteristics of the instantaneous data, and is it not hard-
wired (i.e. written) as a programming code. The clarification is relevant because
this is the type of programming that was used for the present experiment.

Ref. [1] discusses End-user Programming (EUP) in which non-programmer
users create applications for their particular work domains. Visual Program-
ming Languages (VPLs) are one variety of EUPs. VPLs sub-divide into form-,
flow- and rule-based programming. This particular reference addresses Robot
Programming, by using a Flow-based Programming in which: (a) box icons rep-
resent functions or actions, and connectors represent data. (b) no flow control
tokens (while, for, repeat) are available. (c) boxes are SIMO (Single Input
Multi Output) functions, (d) semantics are located in the boxes and not in the
connectors.
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2.3 Pre-condition, Post-condition, Invariant. Contract-Based
Programming

Ref. [13] discusses (a) operational, (b) denotational, and (c) axiomatic semantics.
This reference addresses the semantics of an existing piece of code (code →
semantics), in contrast with the intuitive or automated generation of a code
to satisfy a semantical specification. In our work we informally use axiomatic
semantics. Axiomatic semantics maps the variable states into logical predicates
and the instructions into premises. Premises transform the states as proven by
predicate logics. We work in the direction semantics → code. We do not apply
formal logic predicate calculus, due to the assumption that the practitioner is
neither a programmer nor a mathematician.

Ref. [7] dissects Pre-condition, Post-condition and Invariant of a Loop:

1 Pre: <initial program variables status>
2 WHILE <C: boolean condition for loop execution>
3 Inv: <invariant status of variables during Loop>
4 . . . keep the Invariant True while progress towards termination
5 . . .
6 ENDWHILE
7 Post: <final program variables status>

They are predicates before, after or during a loop execution (Pre-, Post- and
Invariant respectively). These are 1st-order logic predicates (not instructions).
They are True when the program execution hits the corresponding lines (1,3,7).
The Pre-condition (line 1) and Post-condition (line 7) describe the values of the
relevant variables before and after the loop, respectively. The Invariant (line 3)
pictures a typical un-finished state of variables when the loop is executing. One
value of the invariant is that Inv ∧(¬C) = Post. Therefore, the instructions in
the loop (lines 4,5) must work towards (¬C) while keeping Inv being true. This
last consideration dictates the instruction of the loop (lines 4,5).

Pre-, Post-conditions and Invariant are to be sketched, written or added by
either the programmer or a program-by-contract editor. An informal process
allows for the sketching of them and the programmer endeavoring to implement
the sketch. An automated process includes typing the logic predicates and using
an automated code-producer that adheres to them

Ref. [17] discusses the capabilities of ADA-2012 for Contract-baset Program-
ming (CBP). In CPB, software piece specification is conducted by evaluating
logic predicates about the computer status before and after the execution of the
piece. CBP is supported by Pre- and Post-conditions to ensure Input/Output
compliance with specifications. Code Contracts are independent of language and
compiler. However, by applying ADA-2021, it is possible to also assess the com-
pliance of object types and static/dynamic predicates.

Ref. [4] reports Clousot, a tool for Code Contract Checking. Clousot does:
(1) check Pre- and Post-condition, (2) check common runtime errors, (3) infer
Invariants., (4) allow for tuning of checking cost vs. precision, (5) allow domain
refinement (pre-condition), (6) back-propagate conditions to determine software
pieces, (7) infer precondition and postcondition inference from a given software
piece, among other correctness tests and/or syntheses.
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Ref. [16] addresses the absence of programming loops in Grasshopper and
possible (cumbersome) repairs for this deficiency. For the present purposes, the
important point is that, in absence of loop instructions, the application of Pre-
condition, Post-condition and Invariant is apparently impossible. Yet, our project
shows that the non-programmer Product Designer was able to enforce those
logical predicates in Grasshopper and to obtain the correct voxel enumeration
for the 3D region (i.e. solid).

2.4 Conclusions of the Literature Review

The examined literature shows the existence of commercial or quasi-commercial
visual-computing generative software for lattice-based object (a) design and (b)
mechanical simulation.

Regarding (a) above, the goal of this manuscript is to report the perfor-
mance of a non-programmer product designer in programming generative geom-
etry visual programming applications. This non-programmer designer is only
equipped with intuitive notions of pre-conditions, post-conditions and invari-
ants. It is well known that these notions are the mathematical kernel [7] of
imperative programming and automated imperative code generation. Yet, the
test reported in this manuscript pertains to the domain of visual programming
(i.e. Grasshopper) and the capacity of this non-programmer product designer to
compose a Grasshopper program for the approximation of a 3D object by lattice
individuals of diverse topology and geometry.

Regarding (b) above, the current state-of-art is the following: computa-
tional mechanics computations based on B-Reps of lattice structures is simply
intractable, due to the massive size of the geometric or finite element models.
As alternative, it is true that the truss/frame (also called [FACE+thickness] or
[EDGE + area]) simplification of lattice structures indeed lowers the compu-
tational burden of stress - strain predictions for the lattice-based objects. This
geometrical simplification allows the computations to finish (which is a consid-
erable milestone). However, the mechanical soundness of this computation is at
this time open for much clarification and improvement. These computational
mechanics predictions are not, in any case, the goal of this manuscript.

To the best of our knowledge, no previous manuscripts report this special
set of circumstances: (a) no programming experience, (b) use of imperative pro-
gramming Pre-, Post-conditions and Invariant mathematical formulation, and
(c) visual programming. We show that mathematical foundations of imperative
programming are quite effective in helping a non-programmer designer to write
a plug-in even if using visual programming Grasshopper.

The particular domain of application for the above features is the population
of a given domain (or region) Ω ⊂ R3 with lattice individuals of diverse topolo-
gies and graded geometries. For the sake of computational resource savings in
subsequent computational mechanics simulations, the [EDGE + area] (1.5D)
and [FACE + thickness] (2.5D) truss formalism will be used.
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Fig. 1. Slender Shape Modeling. Order O(n) of number of Finite Elements for the
cases: Solid (3D) vs. FACE (2.5D) modeling. Savings by using 2.5D elements when
t → 0. Kinematic (or other) constraints as alternatives to Full B-Reps, while avoiding
non-manifold topology.

3 Methodology

3.1 Modeling of Slender Members

Construction of [EDGE + area] and [FACE + thickness] Limbs in
Lattices. Slender members have a thin dimension (thickness, radius, or other)
which is much smaller than the other member dimensions L. Full 3D B-Rep
models decompose in a Topology Hierarchy such as BODYs, LUPMs, SHELLs,
FACEs, LOOPs, EDGEs, VERTEXes, embedded in Geometries (e.g. Curves
C(u), Surfaces S(u, w)) in R3. The fact that t/L � 1 (Fig. 1(a)) causes the
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Fig. 2. Representation of 3D Conic Cross and Room Corner lattice individuals by using
[EDGE + area] and [FACE + thickness] limbs, respectively.

number of finite elements to be very large (O(1/t3) → ∞ as t → 0, Fig. 1(c)).
When members are slender, their medial axes (a.k.a. skeletons) are 1-dimensional
(set of curves) or 2-dimensional (set of surfaces). This manuscript addresses such
cases. We do not address cases in which the medial axis is a mixture of 1- and
2-dimensional sets.
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Fig. 3. [EDGE + area] (i.e. 1.5D) limb based Lattice Individuals.

[FACE + thickness] or 2.5D Limbs. The case in Fig. 1(b) shows subdivision
in larger (and fewer) 2D tiles equipped with a thickness t. They are colloquially
called 2.5D Finite or [FACE + thickness] Elements. The number of 2.5D ele-
ments is in the order O(1/t2) (red trend, Fig. 1(c)), thus requiring less elements
than full B-Rep 3D models, which are in the order O(1/t3) (both measures when
t → 0).

[EDGE + area] or 1.5D Limbs. Similarly, slender members whose medial
axis is 1-dimensional look like wires (Fig. 1(d)), equipped with a cross section or
area. They are colloquially called 1.5D or [EDGE + area] elements. Examples
of the modeled [EDGE + area] limb-based lattice individuals appear in Fig. 3.

Manifold Enforcement in 1.5D and 2.5D Elements. [FACE + thickness]
or [EDGE + area] finite elements do not admit boolean operations since the
result might be non-manifold (Fig. 1(b)). Since manifold conditions are sine qua
non ones, kinematic constraints Ki are enforced among 1.5D and 2.5D elements
(Figs. 1(d), 1(e)), thus replacing the non-manifold prone boolean operations. In
this manner, the solidarity among structural members in trusses or frames is
ensured, without resorting to define a boolean union of their struts or plates.

Figure 2(a) shows lattice individuals whose medial axis are 1-dimensional,
showing the particular case of a 3D cross built by 6 conic rods. The EDGE is
the medial axis C(u) of the rod. The local rod cross section or area π.r2(u) is
dependent on the parameter u parameterizing the rod medial axis.

Figure 2(b) represents analogous situation, this time applied to lattices built
with thin walls. The medial axis of the Room Corner lattice individual is a 2-
dimensional set. Therefore, the simplification applicable here is the [FACE +
thickness] modeling. The Room Corner lattice individual admits representation
by 12 [FACE + thickness] elements. Each element contains a FACE S(u, w) and
a thickness map t(u, w). Figure 2(c) shows Room-corner lattice individuals. It
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also displays diverse lattice individuals of this type, achieved by varying wall
thickness and their proportion of occupied 3D space.

3.2 Lattice Family Creation via Visual-Programming

The visual code appearing in this manuscript is not polished or optimized. It
appears exactly as the designer produced it, counting with no previous program-
ming experience.

This section will discuss as example the Diamond lattice family. Figure 4
displays a partial view of the Grasshopper circuit for their construction. These
lattice individuals are not full B-Reps, but instead a collection of 8 faces. The
basic strategy is:

Fig. 4. Grasshopper Circuits for Diamond Family Lattice.
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Fig. 5. Rectangular prismatic 3D region filled with Nx × Ny × Nz lattices. Individuals
with Constant Topology and Diverse Geometry.

(1) Create a Cube (B-Rep) which will circunscribe the diamond. (2) Explode
the Cube into FACEs, EDGEs, VERTEXes. (3) Interrogate the FACEs for their
geometric center. (4) Classify the FACE centroids as per z-coordinate, obtaining
3 bins with 1, 1 and 4 vertices ({v5},{v4},{v3,v0,v1,v2}, respectively (Figs. 4(a)
and 4(f)). (5) Choose the bin with 4 FACE centroids ({v0,v1,v2,v3} in Figs. 4(d)
and 4(b). Construct segments from these vertices to the cusp vertex, v5, of the
pyramid (i.e. bin with 1 vertex, whose z coordinate is maximal). (6) Create (by
extrusion, Fig. 4(c)) the triangular FACEs of the upper hemisphere by using
the geometric centers of cube FACEs (e.g. FACE [v0,v1,v5] in Fig. 4(d)). (7)
Reflect the upper pyramid (Figs. 4(c) and 4(d)) with respect to plane z=1/2.H to
obtain the lower pyramid. The finished FACE-based Diamond lattice individual
is displayed in Fig. 4(f).

Pattern Grading. Figure 5 presents a case in which the topology of the lattice
individual is kept along the domain, while their geometry is modified. This effect
may be gradual or drastic (as shown in the figure for the sake of illustration).
In any event, it is clear that the Visual Computing paradigm makes this form of
Generative Design available to the Product Designer.

3.3 3D Region Lattice Occupancy

Figure 6(a) displays the generic workflow for the construction of the Lattice
enumeration that fills a given B 3D domain representing a solid, with boundary
representation M (2-manifold mesh).
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Fig. 6. VERTEX-based Threshold for Lattice Inclusion in a 3D Region bounded by a
manifold mesh M.

The following adjectives are used [5,20] for a given lattice: I=lattice is inside
M , O=lattice is outside M , NIO=lattice is neither inside or outside M .

3.4 Application of Pre-, Post-condition and Invariants in Imperative
and Declarative Programming

It is not possible to directly define an axiomatic semantics, as it is based on states
and instructions, for declarative programming languages. Because of this reason,
we have resorted to a 2-step process to reach a declarative visual program from
Pre-, Post-condition and Invariant: (i) from Pre-, Post-condition and Invariant
to an Imperative Program, and (ii) from an Imperative Program to a Declarative
Visual Program.

It is not intention of this manuscript to discuss grammars, theorem-proving
engines or code-generators that automatically execute translations (i) and (ii)
above. We do not aspire to such an endeavor, and it would defeat the infor-
mal mental processes (i) and (ii) that our non-programmer Product Designer
executes.

From Pre, Post, Inv to Imperative Programming. Algorithm 1 exempli-
fies how the Pre-, Post-condition and Invariant is applied for the population
and approximation of a solid region Omega by using lattice individuals. Pre-,
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Post-condition and Invariants (lines 7, 19 and 9) are not instructions. Instead,
they are comments that describe the status of the code execution at particular
checkpoints. The set C (lines 5, 8, 16 and 17) of already estimated cells measures
how advanced the population of �B is. Growing C to equal the grid G (line 16)
clearly means completion. However, the invariant must be kept (IF decision in
line 10).

As expressed before, Inv∧�(C �= G) ⇒ Post. Effectively, ( �B ≈ (Ω ∩ C)) ∧
(C = G) ⇒ ( �B ≈ (Ω ∩ G)). In this manner, �B approximates the solid Ω
immersed in grid G. Notice that cijk is an empty cell of the grid, while lijk is a
lattice individual (e.g. in Fig. 3) populating the space cijk.

Algorithm 1. Generic Pre- and Post-condition and Invariant for Approximation
of B-Rep Ω.
1: procedure [ �B]=PopulateGrid(Ω,G)
2: � cijk:grid cell, lijk:lattice individual in cell cijk, C:set of cells cijk,
3: � G: axis-aligned grid containing solid Ω, made of cells cijk

4: �B = {}
5: C = {}
6: cijk = first(G)
7: � Pre: solid Ω ⊆ grid G
8: while (C �= G) do
9: � Inv: �B ≈ Ω ∩ C

10: if ( (Ω ∩ cijk) ≈ cijk ) then
11: lijk = RigidTransform(BasicLattice) � e.g. Lattices in Fig. 3
12: else
13: lijk = Φ
14: end if
15: �B = �B ∪ lijk

16: C = C ∪ cijk

17: cijk = successor(cijk, G) )
18: end while
19: � Post: �B ≈ Ω ∩ G
20: end procedure

From Imperative to Declarative Programming. Figure 7 presents the
translation of Algorithm 1 to a generic equivalent of Grasshopper. For the sake
of generality, this section uses generic feature names instead of Grasshopper
names. In declarative visual programming, no FOR or WHILE iterations are avail-
able. Instead, iterators provides access to list elements (in this case, cells cijk

of a grid G). A generic fuzzy lattice - in - solid inclusion diagnose is applied to
each cel cijk. If a certain threshold number of elements FACE, EDGE or VER-
TEX of the lattice individual are inside Ω, the lattice cijk is considered INSIDE.
This decision is implemented with the romboid icon gate that corresponds to
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line 10 of Algorithm1. If the lattice cijk is considered to be Inside Ω, a rigid
transformation is computed and applied to move the basic lattice individual (e.g.
Fig. 3) to the position of lattice cijk, thus producing the lattice individual lijk.
This lattice filling is added to the result set B̃ via a set-ADD operation. It must
be pointed out that in declarative visual programming the overall steady state
of the gate network is contains the result of the computation. The transient
states are by definition unstable. Also, no specific instruction can be used for
checkpoint, as in imperative programming, since individual instructions do not
exist.

Fig. 7. Generic Declarative Equivalent of Algorithm 1

4 Results

The workflow of Fig. 6(a): (1) identifies a rectangular prismatic Bounding Box
enclosing M and orthogonally oriented w.r.t. World axes. (2) builds a 3D regular
lattice grid within the Bounding Box, (3) for each cubic lattice, its FACE, EDGE
and VERTEX sets are extracted (BRep deconstruction), (4) for the particular
topology e.g. VERTEX, the number of VERTEXes inside and outside the mesh
M is identified (Fig. 6(b)), (5) a Threshold value is used (Fig. 6(c)) to decide
whether the NIO lattices are graded as I (e.g. a lattice is considered I if more
than Threshold=5 of its VERTEXes are inside M), (6) once the lattice is graded
as I, a rigid transformation is applied on a generic copy of that particular lattice
individual (e.g. diamond, 3D cross, room corner, etc.) to populate the region
enclosed by mesh M with the lattice individuals graded as I (i.e. inside M).
Results for the Whale dataset of this lattice enumeration process are displayed
in Figs. 8 and 9.
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Fig. 8. Whale data set. Threshold number of Topologies (EDGE or FACE) needed to
declare a lattice as I (Inside)

4.1 Lattice Enumeration

Figure 9 shows diverse lattice populations of the Whale dataset. This particular
figure displays actual FACE sets building the lattice individuales of all cells. No
[FACE + thickness] or [EDGE + area] simplifications are executed.

Figure 10 depicts results of the visual computing circuits applied to approx-
imate the Cat dataset with lattice individuals of the type Asterisk. Figure 10(a)
shows the 2-manifold Triangular Boundary Representation (i.e. mesh M), or
skin, enclosing a solid body B. Figure 10(b) displays the immersion of the B-Rep
M into an orthogonal cubic grid. Figure 10(c) shows an approximation of the Cat
M with [EDGE + area] type limbs (type 3D Asterisk). An over-estimation of
B is achieved if a lattice receives an I (Inside) grade when one of its six VER-
TEXes is Inside mesh M . A more sensible grading of a lattice as I occurs if a
large portion its VERTEXes are inside M .
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Fig. 9. Results of assorted Lattice individuals occupancy of the Whale 3D model.

Fig. 10. Cat data set. Results of visual programming processing: immersion of model
in grid, lattice approximation and inner lattice trusses.

4.2 Material Realization

Figure 11 presents an Additive Manufacturing realization of two individuals of
the family Conical 3D Cross (Fig. 3(c)). In this material incarnation, the section
radius is decreasing along the limb axis curve. In Fig. 3(c), the section radius
grows along the limb axis curve. They obviously belong to the same lattice family.
However, it must be emphasized that the kernel of this manuscript is not the
material realization of the lattice family, but instead the successful application
of Contract-Based Programming (Pre-condition, Post-condition, Invariants) in
Flow-based Programming by a non-programmer Designer and the 1.5D and 2.5D
truss - frame modeling strategies.
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Fig. 11. Additive manufacturing realization of two Conical 3D Cross lattice individuals
of family in Fig. 3(c).

5 Conclusions and Future Work

Visual Programming for a Non-programmer Designer
The experiment of having a non-programmer Product Designer to program a
lattice-based filling of a 3D region using a set of suitable lattice topologies with
varying geometry had these circumstances: (a) no previous programming train-
ing, (b) independent learning (i.e. absence of programming tutors), (c) use of
visual programming tools (i.e. Grasshopper), (d) informal seminars on Pre- and
Post-conditions and Invariants [7].

In spite of Pre- and Post-conditions and Invariants being devised for impera-
tive languages, the Product Designer used Grasshopper, a flow-based program-
ming language, with high proficiency and technically correct results. It must be
noticed however, that it was not intention of the present research to compete
against professional lattice-based design tools.

Therefore, this work shows the power of the Visual programming paradigm
and tools for the particular domain of lattice-based geometric modeling. In
particular, the change of paradigm from iteration-based imperative program-
ming towards flow-based programming (e.g. in Grasshopper) does not impede
the novice visual programmer to enforce code correctness and pre- and post-
condition clauses.

Region Population with Lattice Individuals
Several families of slender-limb lattice individuals have been modeled. They
include(a) rods modeled as [EDGE + area] (a.k.a. 1.5D) elements and (b) plates
modeled as [FACE + thickness] (a.k.a. 2.5D) elements.
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The approximation of domain Ω by lattices is tuned (as usual in enumera-
tions) by considering inclusion thresholds above which a partially included lattice
is declared to be full.

A reduced Additive Manufacture of (two) lattice individuals of the family
Conical 3D Cross is presented to illustrate how they spatially and kinemati-
cally relate to each other. However, it most be noticed that the manufacture
of the approximation to the 3D region Ω via lattices is not the purpose of this
manuscript.

We do not seek to equate informal seminars on pre-, post-conditions and
invariants for a non-programmer Product Designer with the complex, very long
and formal process that formal logic represents for even trained programmers. All
what we can aspire is that an informal treatment, allows the non-programmer
Product Designer to be proficient vis-a-vis development of declarative visual
programs and correction of his/her run results.

Future work is required in the application of non-affine geometric transfor-
mations to the lattice individuals before their docking in the target 3D region.
This extension would permit lattices whose geometry contains straight-to-curve
deformations, dictated by the functionality of the Additive Manufacturing.
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