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A B S T R A C T

The automatic shape description of solids is a problem of interest in manufacturing en-
gineering, amongst other related areas. This description can be either geometrical or
topological in nature and can be applied to either surfaces or solids (embedded mani-
folds). Topological descriptions are specially interesting for the problem of shape com-
parison and retrieval, where one wants to know if a given shape resembles some other
known shape. Some popular topological descriptions use Morse theory to study the
topology of manifolds and encode their shape characteristics. A Morse function f is
defined on the manifold and the manifold’s shape is indirectly studied by studying the
behaviour of the critical points of f . This family of methods is well defined for surfaces
but doesn’t consider the case of solids. In this paper we address the topological de-
scription of solids using Morse theory. Our methodology considers three cases: solids
without internal boundaries, solids with internal boundaries and thin-walled solids. We
present an algorithm to identify topological changes on these solids using the principle
of shape decomposition by Morse handles. The presented algorithm deals with Morse
functions that produce parallel planar level sets. Future endeavours should consider
other candidate functions.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Many tasks in computational-aided engineering require the2

shape description of solid pieces (or geometries in general) in3

a condensed and efficient way. Tasks such as surface matching4

[1], feature detection [2], collision detection [3] or fabrication5

planning [4] use condensed shape descriptions to perform cal-6

culations efficiently. These descriptors use mainly two sources7

of information: geometry and topology. Geometrical descrip-8

tors focus on splitting the pieces into regions that share some9

common geometrical trait such as curvature [5, 6] or geodesic10

∗Corresponding author
e-mail: jcpareja@vicomtech.org (Juan Pareja-Corcho)

distance from a given point [7]. 11

Other approaches describe the model by considering its topo- 12

logical features [8, 9]. Amongst these methods, the Reeb graph 13

is the prime example [9, 10]. It studies the topological evolution 14

of a collection of level sets defined by a real-valued function on 15

the manifold. The Reeb graph descriptor is suitable to describe 16

surface-based pieces [11, 12] but ill suited to describe solids 17

in a general sense. Other family of methods combine both ge- 18

ometrical and topological description [13] by using semantic 19

information to describe subsets of the piece that have a special 20

significance in the interpretation of the model (e.g. the decom- 21

position of the human body into head, torso, legs, arms). These, 22

however, are methods specifically tailored to certain shapes and 23

are not suitable for general models. 24

http://www.sciencedirect.com
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(a) 0-handle (b) 1-handle (c) 2-handle (d) Critical points on the standing torus.

Fig. 1: Local shape of function f according to the Morse handle classification.

This paper is based on a previous work [14] that addressed1

the shape decomposition of solids with inner voids. The pre-2

sented algorithm used Morse handle identification in a level set3

sequence to encode the shape of such solids. In this work we4

extend this approach by considering new cases of topological5

transitions that might appear in the level set sequence and their6

treatment in the algorithm. Additionally, new datasets, includ-7

ing thin-walled solids, are presented to showcase the applica-8

tion of our methodology.9

2. Morse theory on 2-manifolds10

Let’s consider first the case of surfaces (i.e. 2-manifolds).11

Let M be a smooth manifold and f : M → R be a smooth12

function defined on M. We have the following definitions:13

Level sets: The level set of f on M at a value a ∈ R is14

{p ∈ M : f (p) = a}. We denote the level set of f at value15

a as Π f ,a. Connected parts of a level set are called level set16

components.17

Critical points and values: A critical point of the function18

f is a point p where dF(p) = 0. A real c is called a critical19

value of f if the pre-image f −1(c) contains a critical point of f .20

Additionally, a critical point is said to be non-degenerate if it’s21

Hessian is non-degenerate.22

Morse functions: Function f is said to be a Morse function23

if it satisfies the following conditions [15]:24

1. all critical points of f are non-degenerate.25

∀p ∈ M : ∇M f (p) = 0→ det (HM f (p)) , 0 (1)26

2. for all pairs (p, q) of different critical points of f , f (p) ,27

f (q).28

Morse lemma: Assume p to be a non-degenerate critical29

point of f . There is a local coordinate system {X1, . . . , Xn} on a30

neighborhood Np of p, such that on Np [15]:31

f (X1, . . . , Xn) = −X2
1 − . . . − X2

k + X2
k+1 + . . . + X2

n (2)32

Value k is known as the index of f at p. In the case of sur-33

faces the critical points of a Morse function can be classified as34

a minimum (k = 0), a saddle (k = 1) or a maximum (k = 2),35

as shown in Figure 1. A three-dimensional manifold has four36

types of non-degenerate critical points: minimum (k = 0), 1- 37

saddle (k = 1), 2-saddle (k = 2) and maximum (k = 3). If 38

the manifold is closed then the number of non-degenerate criti- 39

cal points is always finite [16] and, as a corollary of the Morse 40

lemma, they are isolated. These facts allow us to encode the 41

shape of any manifold by tracking the appearance of these crit- 42

ical points and their handle classifications. Up to this point, 43

however, critical points are individually considered. To intro- 44

duce an order and link them together we introduce the concept 45

of handle decomposition. 46

2.1. Handle decomposition of 2-manifolds 47

In simple terms, any compact manifold can be expressed as 48

an ordered sum of submanifolds called handles [17]. Let M be 49

a smooth manifold and f : M → R be a Morse function defined 50

on M. We define the following: 51

Lower level sets: The lower level set Mt of f in M at value t 52

is the set Mt = {x ∈ M : f (x) ≤ t}. 53

Theorem 1: For two reals a, b with a < b if f has no critical 54

values in the interval [a, b], then the manifolds Ma and Mb are 55

diffeomorphic. 56

The previous theorem implies that the topology of Mt does 57

not change as parameter t passes through regular (non-critical) 58

values of f . 59

Theorem 2: Let p be a critical point of f and f (p) = t be its 60

critical value. Let ϵ be a number small enough so that f does 61

not have critical values in [t − ϵ, t + ϵ]. The manifold Mt+ϵ can 62

be obtained by gluing a handle (a contractible smooth manifold) 63

to the manifold Mt−ϵ . 64

Theorem 2 implies that the topology of Mt changes as t 65

passes through a critical value of f . This change is incorpo- 66

rated into Mt by adding a new submanifold according to the 67

nature of the critical point encountered. See [17] for an exten- 68

sive elaboration on Thereoms 1 and 2 and handle decomposi- 69

tion in general. Since a Morse function defined on a compact 70

manifold has only finitely many critical points, the topology of 71

Mt changes a finite number of times and its shape can be de- 72

scribed by describing the sequence of handles glued together as 73

parameter t increases: 74

Handle decomposition: A handle decomposition of a com- 75

pact manifold M is a finite sequence of manifolds W0, ...,Wl 76

such that: 77
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Fig. 2: Handle decomposition of the standing torus.

1. W0 = ∅,1

2. Wl is diffeomorphic to M,2

3. Wi is obtained from Wi−1 by attaching a handle.3

The shape of the handle necessary to obtain Wi = Mt+ϵ from4

Wi−1 = Mt−ϵ depends on the index of the critical point in the in-5

terval [t − ϵ, t + ϵ]. Therefore, to describe the shape of a surface6

we only need to consider a sequence of 0-handles, 1-handles7

and 2-handles. See Figure 2 for an example. As we will de-8

tail later, the case for solids is not as simple. The reason for9

this is that, in the case of solids embedded in R3, changes in10

topology arise from both changes in the number of connected11

components in a level set and changes in the topology of the12

level set itself (i.e. changes in the genus of isosurfaces). Most13

algorithms that describe the shapes of 2-manifold by their han-14

dle sequence exploit a data structure known as the Reeb graph.15

2.2. Reeb graphs16

(a) Critical points. (b) Reeb Graph R( f ).

Fig. 3: Critical points and Reeb Graph R( f ) of the standing torus.

Reeb graph [18]: Two points p, q ∈ M are equivalent if17

they belong to the same connected component of f −1(c) with18

c = f (p) = f (q). The Reeb Graph of f , R ( f ) = X∼, is the19

quotient space defined by this equivalence relation.20

A node in the Reeb graph represents a critical point of f on21

M and the degree of the node is related to the index of the crit-22

ical point it represents. Minimums and maximums (k = 0, 2)23

are shown in the Reeb graph as nodes of degree 1 and saddles24

(k = 1) are shown as nodes of degree 3. The arcs of the graph 25

correspond to regions of M in which the topology of M does not 26

change. See Figure 3 for an example of the Reeb graph of the 27

standing torus. Intuitively, the nodes of the Reeb graph are built 28

by contracting critical level sets to a single point and connecting 29

those points according to the number of connected components 30

in subsequent level sets. Various algorithms exist for the auto- 31

mated extraction of Reeb graphs [19]. Some of these algorithms 32

for the case of surfaces can be found in [20, 21, 22, 23, 24, 25]. 33

The most efficient algorithms complexity-wise can be found in 34

[26, 27]. Reeb graphs are popular tools to decompose a surface 35

into its handle constituents [10]. Some theoretical works exists 36

on generalizations of Reeb graphs for multivariate continuous 37

functions [28]. 38

3. Using Morse Theory on Solids 39

Even though the Morse shape description is well defined for 40

the case of surfaces, very little attention has been put into ap- 41

plying it in general solids. The main difference is that solids 42

in general can be described by more than one surface bound- 43

ary components (i.e. solids with internal voids). As we will 44

show later, even in the case of solids with only one boundary 45

component, the genus of the boundary surface might introduce 46

ambiguities in the interpretation of the critical points from a 47

level set representation. 48

Easiest solids to deal with, at least in principle, are those with 49

only one boundary component. This is because these solids 50

can be defined as the volume enclosed by a single surface and 51

the topological structure of the surface boundary will reflect the 52

topology of the solid itself. In simple terms, one could encode 53

the shape of single-boundary solids by studying the shape of 54

its boundary component using 0-, 1- and 2-handle critical point 55

classification without ambiguities. As an example of this, con- 56

sider the case shown in Figure 4a. 57

Let M be a solid (3-manifold with boundary) embedded in R3
58

with a single boundary component and fM : M → R a Morse 59

function defined on M. Consider only functions f that do not 60

possess critical points in the interior of the solid. Let function 61

f |∂M be the restriction of f to the boundary of M. In this case, 62

for every non-critical value t the level sets Π f ,t and Π f |∂M ,t are 63
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(a) Solid piece M. (b) Level sets by f . (c) Level sets by f |∂M .

(d) Solid piece M with void. (e) Level sets by f . (f) Level sets by f |∂M .

Fig. 4: Example with a solid piece with and without inner void. Level sets
produced by height function f and its restriction to the border f |∂M .

closely related. The level set components of Π f |∂M ,t consist of1

closed curves on the boundary ∂M. These curves on ∂M bound2

regions of M that match with the level set components of Π f ,t.3

This means that the number of level set components in Π f ,t and4

Πg,t is the same (Figures 4b and 4c) and therefore the topology5

of M can be studied by studying the topology of its boundary6

∂M. This is exploited to produce shape descriptions of single-7

boundary solids by considering the topology of its boundary8

surface [29, 30, 31, 16].9

Now consider the case of solids with multiple boundary com-10

ponents (Figure 4d). In this case the boundary ∂M of M is11

composed by two distinct surfaces: an interior boundary and an12

exterior boundary. The level set components of Π f |∂M ,t (curves13

on the boundaries) do not bound a level set component ofΠ f ,t in14

a one-to-one correspondence. Notice that both components of15

Π f |∂M ,t bound the same component of Π f ,t, one from the inside16

and the other from the outside. This means that the unequivo-17

cal one to one relationship between the solid level sets and the18

boundary level sets is lost and therefore additional information19

is required to study these phenomena. Count, for example, the20

number of connected components in the highlighted level sets21

in Figures 4e and 4f. In some level set values, the solid slic-22

ing has a lower component count than its surface counterpart.23

Notice, however, that the nature of the Morse handle classifica-24

tion is not violated: topological events on the boundary compo-25

nents are still well described by the Morse theory but the gen-26

eral shape interpretation requires to distinguish between events27

in the internal and external borders.28

This distinction is important to encode the shape of solids29

with internal voids. Some works in the extraction of Reeb30

graphs using level set/contouring approaches for solid decom-31

position exist, see for example the works in [20], [2] and [9].32

These works, however, do not consider the internal void situ- 33

ation. The oldest approach by Shinagawa and Kunii [20] con- 34

nects contours between consecutive level sets using a distance 35

criteria but do not consider the topological structure of each 36

level set (e.g. its genus). In our approach we substitute the 37

distance criteria by a 2-dimensional similarity criteria for en- 38

hanced stability. The work by Takahashi et al. [2] performs a 39

tetrahedralization of a volumetric region and extracts the critical 40

points of a field function defined on the region represented by its 41

discrete samples (level sets/isosurfaces). This differs from our 42

method that we do not consider functions over volumetric re- 43

gions but only functions defined on a 2d manifold embedded in 44

3d space. A recent work by Strodthoff and Juttler [9] presents 45

a methodology to extract Reeb graphs for solids with straight 46

tunnels. Notice that these tunneled-solids are not strictly solids 47

with internal voids yet present similar challenges for their de- 48

composition. This tunneled-solids are similar to the special 1- 49

handle transition we discuss in Section 3.2. 50

The encoding of topological changes related to the genus of 51

the level sets requires, as we show, some additional informa- 52

tion to that provided by the Reeb graph. One could consider 53

the solid’s boundaries separately and compute a Reeb graph for 54

each boundary using the previously cited algorithms. How- 55

ever, reconstructing a single Reeb graph (or any similar en- 56

coding) from these two separated and unrelated sets of criti- 57

cal points is a non-trivial task or could not be possible at all 58

(e.g. the Reeb graph definition does not allow such level set 59

genus-related changes). Some works other introduce the con- 60

cept of augmented or extended Reeb graphs (e.g. [32]). Most 61

of these, however, augment or extend the Reeb graph with infor- 62

mation not related to the pure shape description but to other as- 63

pects such as textures and local geometric measurements. One 64

important work by Strodthoff and Juttler [33] introduces lay- 65

ered Reeb graphs, which are discrete representations of Reeb 66

spaces [28]. These structures can encode the kind of topologi- 67

cal changes that we address but require a double slicing (given 68

that one deals now with two functions instead of one) that our 69

proposed methodology does not require. 70

3.1. Augmented handle set 71

To describe the shape of solids with multiple internal bound- 72

aries we propose an augmented collection of handles that de- 73

scribe the shape of a general solid M. This is equivalent to 74

finding the sequence of manifolds W0, ...,Wk such that 75

1. W0 = ∅, 76

2. Wk is homeomorphic to M, 77

3. Wi is obtained from Wi−1 by attaching a solid handle, 78

4. Each solid handle attached incarnates a critical point of f 79

in ∂M. 80

Notice that the problem statement requires that the critical 81

values of f are unique (i.e. only one topological change is al- 82

lowed between consecutive level sets). This means that for any 83

two critical points p, q of f then f (p) , f (q). Therefore, it is 84

always possible to order the critical points of f in ascending or- 85

der f (p0) < ... < f (pk). The proposed set of solid handles is 86

depicted in Figure 5, as well as the effect of each piece in the 87

level set collection of the solid. 88
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The solid handles presented in Figures 5a, 5b, 5c and 5d cor-1

respond to topological events of the external boundary. The2

solid handles presented in Figures 5e, 5f, 5g and 5h describe3

topological events on the internal boundaries. All solid handles4

are volume versions of the local shape of function f on either5

internal or external boundary surfaces. Before considering the6

automatic identification of the proposed solid handles we de-7

tail a type of transition not considered in our previous work8

[14] and that could introduce ambiguity in the identification of9

which solid handle to use to model a topological change.10

3.2. A special case of the 1-handle11

Some problems may arise when the solid has tunnels with12

axis not parallel to the slicing plane [9]. This is specially crit-13

ical in the consideration of solids where the external boundary14

surface have a genus greater than zero. We present one of such15

solids in Figure 6a and its level set representation in Figure 6b.16

In the level set collection a topological event takes place be-17

tween slices Π2 and Π3. If we consider this event using the18

component count effect defined by the solid handle set in Fig-19

ure 5 we identify the event as modeled by a internal 0-handle,20

but we see in the solid this is not the case, as the internal 0-21

handle indicates the appearance of an strictly internal border22

whereas the presented solid has no internal border. This ambi-23

guity is undesirable for the shape description pipeline.24

Taking a closer look on the event described (Figure 7), we25

see that the mechanism that produces contour B from contour26

A is of the type 1-handle (contour A glues to itself). To cor-27

rectly classify this event as a 1-handle event and not as an in-28

ternal 0-handle (using only its level set effect) two geometrical29

observations can be used:30

1. For this special kind of 1-handle events the contours after31

separation are very close to each other, therefore a min-32

imum distance criteria could be useful to separate them33

from internal 0-handles events, which can happen every-34

where inside a contour.35

2. Shape similarity between the external contour before and36

after the event should be considerably lower than in the37

case of internal 0-handle events which barely modify the38

shape of external contours.39

These observations are used to enhance the algorithm pre-40

sented in our previous work [14]. We describe these enhance-41

ments in the following section.42

4. The identification algorithm43

In this section we present the algorithm to identify the solid44

handles necessary to describe the shape of general solids. Fig-45

ure 8 shows a summary of the proposed algorithm. In the fol-46

lowing subsections we detail each step and provide the pseu-47

docode necessary to complete each task.48

4.1. Contour orientation and inclusion49

The slicing function f extracts spatial curves (contours) from50

all boundaries of the solid. For the sake of efficiency, as the51

slicing proceeds we record the information about the origin of52

each contour (whether it comes from an internal or an external 53

surface). This is straightforward (by storing the normal vector 54

with respect to the surface) if the Boundary Representation is 55

well defined. In the fashion of [34], the orientation of each con- 56

tour is defined by the projection of the surface normal vector to 57

the slicing plane. Consider the slicing plane intersects a triangle 58

t ∈ M, then: 59

n⃗xy(t) = Pro jxy(n⃗(t)) (3) 60

A connected component of a level set f −1(c) can be: (i) a 61

closed 1-manifold (closed curve), (ii) a 0-manifold (point) or 62

(iii) a 2-manifold region (the triangle itself when it coincides 63

with the slicing plane). In the degenerate cases (ii and iii) 64

no orientation can be produced and these components can be 65

safely ignored as they will appear in a non-degenerate case in 66

following level sets. Every contour must have coherent normal 67

behaviour if the mesh is well defined (i.e. all projected nor- 68

mal vectors must point outwards or inwards with respect to the 69

polygon defined by the closed curve of the contour). The con- 70

tour forest Fi for a level set Πi should be constructed from an 71

algorithm like Algorithm 1. This contour forest contains the in- 72

formation about the inclusion relationships between contours. 73

Algorithm 1 Build contour forest Fi for every level set Πi

Πext ← external(C ∈ Πi)
Πint ← internal(C ∈ Πi)
Fi ← new Forest
for all contour Ck ∈ Πext do

Fi ← addParent(Ck)
end for
for all contour Ck ∈ Πint do

for all contour C j ∈ Πext do
included← testInclusion(Ck,C j)
if included then

Fi ← addChild(Ck)
break

end if
end for

end for

Algorithm 1 creates the contour forest of a level set assum- 74

ing external contours as parent nodes (since no external con- 75

tour can contain other external contour) and internal contours as 76

child nodes. The inclusion test between two polygons (defined 77

by their contours) is a very well studied problem and numerous 78

solutions exist [35]. Every forest constructed this way will have 79

depth no larger than 1. This is because no internal contour can 80

contain other contour as we are not considering the case of an- 81

nidated solid bodies. Figure 9 shows an example of the contour 82

forest of a level set with several contours. 83

4.2. Calculation of mapping groups 84

Mapping groups allow us to relate one level set to the next 85

one by identifying contours as natural evolutions of previous 86

contours.This amounts to: given a contour Ck ∈ Πi, find a 87

contour C j ∈ Πi+1 that most resembles a feasible geometrical 88
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(a) External 0-handle (b) External 1-handle (separation) (c) External 1-handle (union) (d) External 2-handle

(e) Internal 0-handle (f) Internal 1-handle (separation) (g) Internal 1-handle (union) (h) Internal 2-handle

Fig. 5: Augmented handle set and their effect on the level sets component population. The hollow handles volumes are sliced for visualization purposes.

(a) Sliced version of the solid. (b) Level set collection.

Fig. 6: Example of single-boundary solid with genus > 0. Sliced version is
presented for visualization purposes.

Fig. 7: Special 1-handle event detail.

and topological evolution of Ck. Algorithm 2 describes our ap-1

proach. We use the information from the contour forests from2

the previous step to avoid unnecessary tests between contours3

and use a similarity criteria to match two contours. Figure 104

shows an example of a contour mapping. Notice that:5

1. External contours in Πi need only be tested against exter-6

nal contours in Πi+1. No external to internal match can7

exist.8

2. Let C1 ∈ Πi be an external contour containing an internal9

contour C2 ∈ Πi. Let Ca ∈ Πi+1 be the matching contour10

of C1 in Πi+1. Internal contour C2 ∈ Πi can only produce11

matchings with contours that are contained by Ca. This12

Fig. 8: Summary of the proposed algorithm.

reduces the number of matching operations needed. 13

Algorithm 2 builds the contour mappings between consecu- 14

tive level sets. First, all external contours of level set Πi are 15

tested against external contours of level set Πi+1 and mappings 16

are produced according to a 2-dimensional geometrical simi- 17

larity criteria. If a contour in Πi can’t find a match in Πi+1 a 18

contour to void mapping is produced. Every time a contour in 19

Πi+1 is added to a map it is marked as already mapped. After all 20

combinations are tested, any contour in Πi+1 left unmarked is 21

added to a void to contour mapping. For every internal contour 22

in Πi, we seek the parent external contour in Πi and find its cor- 23

respondent external contour in Πi+1. Then the internal contour 24

in Πi is tested against the children of the correspondent external 25

contour in Πi+1. 26
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Algorithm 2 Calculation of mappings between Πi and Πi+1

Πext,i ← external(C ∈ Πi)
Πint,i ← internal(C ∈ Πi)
Πext,i+1 ← external(C ∈ Πi+1)
Πint,i+1 ← internal(C ∈ Πi+1)
for all contour C j ∈ Πext,i do ▷ External matchings

match← False
for all contour Ck ∈ Πext,i+1 do

match← testSimilarity(Ck,C j)
if match then

newMap(C j,Ck)
markAsMatched(Ck)

end if
end for
if not match then

newMap(C j, ∅)
end if

end for
if any Ck ∈ Πext,i+1 not matched then

newMap(∅,Ck)
end if
for all contour C j ∈ Πint,i do ▷ Internal matchings

Cprnt ← getParentContour(C j)
Cm ← getMatchInMap(Cprnt)
Πm,i+1 ← getChildrenContours(Cm)
match← False
for all Ck ∈ Πm,i+1 do

match← testSimilarity(Ck,C j)
if match then

newMap(C j,Ck)
markAsMatched(Ck)

end if
end for
if not match then

newMap(C j, ∅)
end if

end for
if any Ck ∈ Πext,i+1 not matched then

newMap(∅,Ck)
end if

(a)

(b)

Fig. 9: Contour forest Fi for level setΠi. (a) Example level setΠi. (b) Resulting
contour forest Fi.

The core of the mapping algorithm is the shape similarity 1

test. The goal of this test is to calculate the degree of geometric 2

resemblance between two contours. This is done by consid- 3

ering the orthogonal projection of the contours to a common 4

plane and calculating a similarity index (Figure 11). Consider 5

contours C j ∈ Πi and Ck ∈ Πi+1. Their respective orthogonal 6

projections to a common parallel plane are denoted as C j⊥ and 7

Ck⊥. The similarity index is calculated as: 8

similarity(C j,Ck) = min

Area
(
C j⊥ ∩Ck⊥

)
Area(C j⊥)

,
Area

(
C j⊥ ∩Ck⊥

)
Area(Ck⊥)

(4) 9

Two contours in consecutive level sets are matched if: a) they 10

are both external or both internal and b) their similarity index 11

is more than a threshold value. In Equation 4 two quantities 12

are calculated: the portion of C j inside Ck and the portion of 13

Ck inside C j. The similarity index is defined as the smallest 14

of those two quantities. Some authors define the similarity in- 15

dex as the largest of the two quantities [36] but this results in a 16

less strict test and false positives can be wrongly matched. The 17

intersection approach has proven to be stable and robust [37]. 18

The canonical approach to establish connectivity between con- 19

tours of subsequent level sets is the distance criteria [20]. This 20

approach establishes a weighted distance function between con- 21

tours in different level sets and searches for the maximum value 22

of the function for each contour. The similarity approach ad- 23

vantages the distance criteria because the it is independent of 24

the distance between the level sets d(Πi,Πi+1). This indepen- 25

dence is important to preserve the robustness of the matching 26

when changing the slicing density. The slicing density should 27

not, however, be reduced much. A very low density slicing 28

could make the contour shape change too much between con- 29

secutive level sets making the similarity criteria unfeasible for 30

the establishment of geometric continuity. 31

There is no formula to calculate the correct sampling density, 32

however one should have in mind two principles when sam- 33

pling the objective solid: (a) a greater number of samples will 34

increase the execution time of the algorithm (see Section 5); 35

(b) the sampling must be dense enough to make sure that no 36
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(a)

(b)

Fig. 10: Example of contour mapping. (a) Level set sequence (Πi,Πi+1). (b)
Maps produced between the forests.

Fig. 11: Projection of contours to calculate the similarity index.

topological changes are missed, this means that between two1

consecutive slices at most one topological change is allowed;2

(c) even when the slicing is topologically correct in the sense of3

(b), it must be dense enough so that the shape of two consecu-4

tive slices does not change too much.5

In this case, the selected function is the height function6

f (x, y, z) = z. This choice results in perfectly planar and paral-7

lel level sets. Other choices for the Morse functions might pro-8

duce non-planar level sets, see for example the use of Laplace-9

Beltrami eigenmaps [38], heat diffusion maps [39] or geodesic10

maps [16] to produce Reeb graphs and volumetric skeletoniza-11

tions. Since our methodology relies on the orthogonal projec-12

tion of the contours to a parallel plane, the proposed algorithm13

will fail to correctly grasp the geometry of non-planar level sets.14

A common drawback of the choice of the height function is that15

the resulting encoding is pose-dependent, unlike those resulting16

from the use of heat diffusion or eigenvector maps. We believe,17

however, that the choice of the height function is a reasonable18

compromise between simplicity, computational efficiency and19

widespread applications (e.g. additive manufacturing).20

4.2.1. Event classification 21

The calculated maps reveal the existence of topological 22

changes. If all contours in level set Πi found one (and only one) 23

match in level set Πi+1 we say there is no topological change 24

between these level sets. Otherwise, three options appear: 25

1. A contour to void map is present. 26

2. A void to contour map is present. 27

3. A contour in Πi or Πi+1 is present in more than one map. 28

Contour to void maps mean that a contour in level setΠi can’t 29

find a match in the next level set. This the case when the sur- 30

face the contour represents disappears as depicted by Figures 5d 31

and 5h. This event is modeled by the internal and external 2- 32

handles and to distinguish between internal and external events 33

one only needs to consider if the disappearing contour comes 34

from an external or internal boundary. Void to contour maps 35

mean that a contour in level set Πi+1 was not matched to a pre- 36

ceding contour in level set Πi+1. This is the case for the birth 37

of new surfaces (either external or internal). These are mod- 38

eled by the 0-handles depicted in Figures 5a and 5e. Multiple 39

matchings between contours in consecutive level sets mean the 40

surfaces splitted into various branches. These are modeled by 41

the 1-handle transitions depicted in Figures 5b, 5c, 5f and 5g. 42

The special case of 1-handle transitions explained in Sec- 43

tion 3.2 requires special consideration. This event cannot be 44

distinguished from the internal 0-handle event (or 2-handle de- 45

pending on the direction of the slice sweep) purely on terms of 46

the mapping contours. Therefore we need to include the geo- 47

metrical criteria explained in Section 3.2: 48

1. The minimum distance between contours is calculated and 49

a minimum distance threshold ϵmin defined. All internal 50

0- and 2-handles events whose minimum distance to their 51

parent external contours is less than this threshold are con- 52

sidered candidates to be identified as special 1-handles. 53

2. For these candidate events an additional check is made to 54

discard false positives: the similarity index between their 55

parent external contour is evaluated and compared to a 56

threshold that should of course be larger than the match- 57

ing threshold defined in the matching algorithm. Internal 58

0- and 2-handle events usually take place with very little 59

effect on the parent external contour. This is not the case 60

for special 1-handle transitions. 61

These geometrical criteria are, of course, imperfect ones. 62

False negatives might still take place when the tunnel in the 63

external boundary is very small compared to the size of the ex- 64

ternal parent contour, but as we show in the Experiments sec- 65

tion these criteria work well for thin-walled solids. Without the 66

distinction between the internal 0- and 2-handles and the spe- 67

cial 1-handle event, the correct description of the shape of these 68

solids would be impossible, specially when the slicing plane is 69

not strictly orthogonal to the tunnel axis. 70

5. Time complexity 71

Our approach can be divided in four different processes: (a) 72

slicing, (b) forest build, (c) contour matching, (d) surface re- 73

trieval. We will only consider the time complexity of the forest 74
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(a) Solid cat dataset (b) Level set representation
(c) Critical points identifica-
tion

(d) Solid cow dataset (e) Level set representation (f) Critical points identification

Fig. 12: Single-boundary solid examples. We show the solid model, its level set representation and the identified critical points of the manifold.

build algorithm and the contour matching algorithm as the other1

two processes are standard and well studied and their theoreti-2

cal time complexity has been widely reported.3

Consider Algorithm 1 with K being the number of level sets4

in the model, N being the maximum number of internal con-5

tours in a single level set and M the maximum number of ex-6

ternal contours in a single level set. The worst-case complexity7

of Algorithm 1 is O (K ∗ N ∗ M). In Algorithm 2, we have a8

worst-case complexity of O(K(M2+N2)). Therefore, the overall9

worst-case complexity of the algorithm in terms of the number10

of contours and level sets is:11

O(K(NM + M2 + N2)) (5)12

We believe it is more meaningful to consider complexity with13

respect to the number of contours and the density of the slicing14

than with respect to the size of the mesh given that the slicing15

reduces the mesh (whatever its size) to a number of contours16

that represent the topological changes of the solid and therefore17

its handle decomposition. Additionally, this consideration al-18

lows us to assess the algorithm’s performance for applications19

in which the contour population does not come from a mesh20

(e.g. CT scans).21

6. Experiments22

In this section we present the application of our methodology23

to additional datasets with respect to our previous work [14].24

In these examples we present three types of solids: i) single- 25

boundary solid, ii) thin-walled solid and iii) multi-boundary 26

solid. 27

The single-boundary example is shown to show the capabil- 28

ities of our method to produce a correct critical point identifi- 29

cation in the case of surface models. This case is depicted in 30

Figure 12. Figure 12d shows the solid model used. Figure 12e 31

shows the level set representation obtained by slicing the exter- 32

nal boundary of the solid model. As explained before, for the 33

case of single-boundary solids describing the critical points of 34

the function f on the boundary surface is equivalent to describ- 35

ing the shape of the solid itself. Figure 12f shows the identified 36

critical points on the example dataset. 37

The thin-walled solid example is used to showcase the iden- 38

tification of the special 1-handle event. The model is tilted with 39

respect to the horizontal plane to force the appearance of such 40

events. The model used is depicted in Figure 13a and its slic- 41

ing is depicted in Figure 13b. Figure 13c shows the identified 42

critical points. Thin-walled solids are ubiquitous in industrial 43

applications (e.g. exhaust systems in automotive industry) and 44

the correct description of their shape is crucial in areas like Ad- 45

ditive Manufacturing [40]. Our approach correctly identifies 46

key shape features such as the appearance of the sheet flaps and 47

the opening of the internal channel of the piece. The identifi- 48

cation of these areas is an important element to feed automated 49

manufacturing planning algorithms. 50

The third example considers a complex multi-boundary solid 51

(i.e. solid with internal voids). This kind of solid is found in 52

applications such as mold design and manufacturing and their 53
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(a) Thin-walled model (b) Level set representation (c) Critical points identification

Fig. 13: Thin-walled solid example. We show the solid model, its level set representation and the identified critical points of the manifold.

(a) Multi-boundary solid
model

(b) Level set representation
(external boundary)

(c) Level set representation
(internal boundary)

(d) Critical points identifica-
tion

Fig. 14: Multi-boundary solid example. We show the solid model, the level set representation of its boundary components and the identified critical points of the
manifold.

automated shape description is of interest in the area of additive1

manufacturing of mold components [41]. Figure 14a shows the2

model used. The model consists of an external rounded cone3

and an internal star-shaped void. Figures 14b and 14c show the4

level set representations of the external and internal boundary5

surfaces respectively. Figure 14d shows the identified critical6

points on the solid. Our approach correctly identifies the bifur-7

cation, start and ending points of the boundary surfaces. Notice8

that, in this case, most of the identified critical points are on the9

internal boundary component.10

7. Conclusions11

The automatic shape description of solid pieces is a prob-12

lem of interest for many areas of computer-aided engineering,13

specially in manufacturing planning. Existing approaches to14

describe the shapes of pieces are driven by geometrical and/or15

topological criteria. Most topological approaches study the16

topological evolution of a collection of level sets defined by17

a real-valued function on the manifold. With this function one18

can describe the shape of a given manifold by keeping track of19

the topological changes that take place in the level set represen-20

tation. The prime example of these methods is the Reeb graph.21

However popular, the Reeb graph is ill-suited for the shape de-22

scription of general solids. In this paper we present a methodol-23

ogy to identify the critical points (and therefore describing the24

shape) of general solids. The presented methodology is based25

on a previous work [14] but enhanced with some additional con- 26

siderations on special 1-handle events, their algorithmical im- 27

plementation and examples of application on thin-walled solids. 28

The results show that our methodology can produce valid shape 29

descriptions for solids both with and without inner voids and 30

thin-walled solids. The presented experiments where selected 31

to showcase applications of industrial relevance, as the auto- 32

mated shape description of thin-walled solids and mold-like 33

pieces are key in the Additive Manufacturing planning of these 34

elements. Our approach, however, as all approaches guided by 35

Morse theory, is sensitive to the choice of the function f that de- 36

fines the critical points in the manifold. Future research should 37

include: (i) the evaluation of our method’s viability and perfor- 38

mance with Morse functions other than the height function such 39

as the eigenvalues of the manifold, (ii) analysis of performance 40

with bigger and more complex data and (iii) robustness to noise 41

analysis. 42
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