
Biomedical Engineering Advances 9 (2025) 100154 

A
2

 

Contents lists available at ScienceDirect

Biomedical Engineering Advances

journal homepage: www.journals.elsevier.com/biomedical-engineering-advances  

Translation of single channel electro encephalic signals into limb motion
A.B.R. Lara a, Oscar E. Ruiz b, L.O. Araujo Junior a, F.P. Bhering a ,∗

a Centro Federal de Educação Tecnológica de Minas Gerais, MG, Brazil
b Universidad EAFIT, Laboratorio de CAD CAM CAE, Medellin, Colombia

A R T I C L E  I N F O

Keywords:
Neuroprothesis
Brain–computer interface
Electroencephalography

 A B S T R A C T

Neural prostheses (NPs) are devices that can translate brainwaves into motion. The non-invasive multi-channel 
headset used in the study of Brain–Computer Interface (BCI) systems for the development of NPs, presents high 
resolution in data collection, but also presents high computing expenses and hardware costs. To overcome 
the barrier of the costs and present an accessible technology for these studies, this manuscript presents the 
implementation of a method that uses a single-channel headset to sample the Electro Encephalo Graph (EEG) 
wave. The headset provides 8 individual brain waves (delta, theta, low alpha, high alpha, low beta, high 
beta, low gamma, mid gamma), operating in their characteristic frequency intervals. A Multi-layer Perceptron 
(MLP) was trained with the Alpha and Beta waves (4 signals), reaching a 73, 9% accuracy rate for detecting 
the movement (open/close) of the subject’s right hand. The conclusion on the subject hand status is fed into 
a kinematic (Denavit Hartenberg) model of the hand, to simulate the opening/ closing of a robotic hand. The 
results confirm the usability of the single-channel headset to extract information from the motor cortex for 
the development of cheaper and more accessible NPs. The advantages of this method are: (a) lower hardware 
expense and (b) lower computing load. The disadvantages of our approach lie in the time needed for the 15 s 
to react to the real-time patient brain signal and to produce the Open/Close command to the Neural Prosthesis. 
Future endeavors include the online usage of the trained NN by the subject. An additional interest domain is 
the usage of intention-of-movement brain waves for forecasting.
1. Introduction

Electroencephalography (EEG) is a method to measure the electrical 
activity of the brain. The division of this electrical activity into specific 
frequencies originates from the so-called brainwaves. Brain waves are 
patterns of neural activity, and are the result of interactions between 
the firing of neurons, these are a very special type of signal, that is, 
the brain is the processing center of the body, where commands are 
produced and stimuli interpreted, all the functionalities of the body 
begin in the brain. By analyzing these signals it is possible to extract 
information such as visual and motor stimuli, as well as information on 
brain diseases.

In detections of clinical cases, such as Alzheimer’s disease, it is 
necessary to use a dense array of EEG, that is, a sensor network with 
many channels (an electrode capturing brainwave activity is called an 
EEG channel), thus doing a better job avoiding the loss of any crucial 
data. Medical cases need higher-resolution EEG systems (larger sensor 
networks) to get the job done. Some other applications developed using 
brainwaves are neurorehabilitation, functional recovery, communica-
tion tools, and prosthetic control for severe disabilities, etc. For each 
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application, it is necessary to analyze a specific frequency range and 
use different methods to extract the desired characteristics of the signal.

Brain–computer Interface is a system that makes a direct commu-
nication between brain and machine, had its first appearance in the 
1970s [1]. BCI systems are developed using EEG or other metrics to 
measure brain activity, or even using a hybrid device that uses the EEG 
signals along with EMG, EOG, or other types of biophysiological signals. 
In addition to the type of signal used to develop a BCI or a hybrid BCI, 
there are kinds of BCI systems that require neurosurgery to be used, the 
so-called invasive and partially invasive BCIs, differentiating itself by 
the place where the electrode, that capture the brain activity, is fixed, 
also there are some that are more convenient options for the users, 
these are BCIs that use headsets with single or multi-channels and dry 
electrodes on the scalp, [2].

A high resolution of recorded data is essential for clinical case 
detection, but it is not a law for all fields of brainwave research. The 
main objective of this article is to propose an inexpensive alternative to 
extract information from the motor cortex, with lower computational 
expenses, in view of the future studies and development of NPs.
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Table 1
Glossary.
 𝑁𝑃 : Neuroprosthesis, a prosthesis used to improve some function impaired by the nervous system disability.  
 𝐸𝐸𝐺 : Electroencephalography (EEG) is an electrophysiological monitoring method that is used to record the electrical activity of the brain.  
 𝑀𝐸𝐺 : Magnetoencephalography, is a technique for mapping the activity of the human brain by detecting the magnetic field produced by 

electric currents that naturally exist in the brain.
 

 𝑀𝐼𝑅 : Magnetic resonance imaging, is an imaging technique that uses strong magnetic fields, radio waves and field gradients to generate 
images of the organs in the body.

 

 𝑓𝑀𝐼𝑅 : Functional magnetic resonance imaging, is a specific technique for the use of magnetic resonance imaging capable of detecting 
variations in blood flow in response to neural activity.

 

 𝐵𝐶𝐼 : Brain-Computer Interface (BCI), it is a hardware and software communications system that permits catch the brain waves.  
 𝐴𝑆𝐼𝐶 : Application-Specific Integrated Circuit (ASIC) is a kind of integrated circuit that is specially built for a specific application or purpose.  
 𝑇𝐺𝐴𝑀 : ThinkGear ASIC Module (TGAM)is the NeuroSky’s primary brainwave sensor, responsible for processing the brain activity.  
 𝑒𝑆𝑒𝑛𝑠𝑒 : An algorithm developed by NeuroSky to measure mental states like, Attention and Meditation levels.  
 𝑁𝑁 : Neural Network (NN) is based on a collection of connected nodes called artificial neurons which loosely model the neurons in a 

biological brain.
 

 𝑊 𝑇 : Wavelet Transform (WT), a mathematical tool for signal analysis and processing.  
 𝐹𝑆𝑉𝑀 : Fuzzy Support Vector Machine (FSVM), a variant of SVM that incorporates fuzzy logic for classification.  
 𝑀𝐿𝑃 : Multilayer Perceptron (MLP), a class of feedforward artificial neural network that consists of multiple layers of nodes, each layer fully 

connected to the next one.
 

 𝐵𝐹𝐺𝑆 : Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a Quasi-Newton method for optimizing neural network training by approximating 
the Hessian matrix.

 

 𝑀𝐴 : Moving Average (MA), a statistical method to smooth data by calculating averages over subsets, highlighting trends.  
 𝐹𝐼𝑅 : Finite Impulse Response (FIR) filter, a digital filter with a finite response to an input signal, commonly used for signal processing.  
The paper is structured as follows. The second section will relate 
techniques and equipment used in the study of brain waves. The next 
section has a system exposition, robot development, a quick brainwave 
discussion, and patient preparation which shows the steps to follow to 
recreate the same datasets that were used in this research, the equip-
ment usage exposes other requirements to replicate the experiment and 
data processing shows the operation of the entire system. Finally, the 
results and discussion section contains the results of the case study, 
focused on the data used, the filtering stage, and the classifier accuracy. 
The last section, the conclusion, presents the contribution and future 
work.

2. Literature review

Some authors have presented state-of-the-art technologies and ap-
plications for EEG-based brain–computer interfaces. [3] describe a 
Noninvasive EEG-Based Intelligent Mobile Robots. It presents the gen-
eral architecture and basic concepts, typical system types, and main 
research efforts on whole system design. In addition, relevant key 
techniques associated with brain–machine interfaces, control strategies, 
and robot intelligence are reviewed to elucidate the research progress 
of the overall system (see Table  1).

[4] explore among the different brain imaging techniques used to 
operate brain–computer interfaces (BCI) and electroencephalography 
(EEG) constitutes the preferred method of choice, due to its relatively 
low cost, ease of use, high temporal resolution, and non-invasiveness. 
In recent years, significant progress in wearable technologies and com-
putational intelligence has greatly improved the performance and ca-
pabilities of EEG-based BCI (eBCI) and propelled their migration out of 
the laboratory and into real-world environments. This rapid translation 
constitutes a paradigm shift in human–machine interaction that will 
deeply transform industries shortly, including healthcare and wellbe-
ing, entertainment, security, education, and marketing. In this contri-
bution, state-of-the-art wearable biosensing is reviewed, focusing on 
developing novel electrode interfaces for long-term and non-invasive 
EEG monitoring. Commercially available EEG platforms are surveyed 
and a comparative analysis is presented based on the benefits and 
limitations they provide for eBCI development. Emerging applications 
in neuroscientific research and future trends related to the widespread 
implementation of eBCIs for medical and nonmedical uses are dis-
cussed.

[5] examines the various components of a BCI system, such as hard-
ware, software, and signal processing algorithms. The paper concludes 
by highlighting some key challenges that still need to be addressed 
2 
before widespread adoption can occur. By presenting an up-to-date 
assessment of the state-of-the-art in BCI technology, providing valu-
able insight into where this field is heading in terms of progress and 
innovation.

Other related techniques are:
EEG-based BCI systems: Some techniques that record brain activity 

are, EEG, MEG, MRI, and fMRI, each one works in a self-way. Among 
these techniques, EEG is widely used due to its relatively low cost, 
high temporal resolution, and convenience for users. Setting up an 
experiment with EEG can be done as easily as placing a headset on, 
while the other metrics need a bigger machine which results in a high 
cost [6]. For quicker, affordable, and accessible insights about brain 
function, with a tight temporal resolution, EEG is the method of choice.

Multi-channels Headset: Current studies of brainwaves are real-
ized using this technology, a very used equipment in this field are 
the headsets from Emotiv™  with fourteen channels [7–10], also there 
are other used headsets with more channels [11–15], the number of 
channels allows record the brain activity with more resolution, the 
high resolution is essential to clinical conditions applications, such as 
discover brain diseases, to get a reliable result, it is necessary use a 
dense array of electrodes. In the use of the multi-channel headset, it is 
necessary at least one step more than using a single-channel headset, 
this step is used to reduce the amount of data recorded by the headset, 
selecting which channels are better to work, its main disadvantage is 
the high cost of the equipment.

Neurosky headset: Neurosky™  is a famous company that develops 
solutions with biophysiologic signals. The greatest part of its fame is 
due to the low costs of its products. Mindwave is a single-channel 
headset developed by Neurosky™  to developers, and researchers, it is a 
cheap tool that allows the capture and analysis the brain activity. Some 
researches were developed using the mind wave headset, in an applica-
tion of mobility [16,17], Neuroprosthesis [18,19] and communication 
tools [20], although these researches were developed using levels of 
attention, meditation and the detect of the blink to create protocols 
and thus produce commands.

Neural Network: In the literature almost all research presents a 
different combination of tools and classifiers to extract the desired 
information from the EEG signal. The use of the FSVM [21], WT [22,
23], Genetic Algorithm [24], Convolutional neural network-based [25], 
and Deep Learning techniques ([26] are common tools used in the 
study of the brainwaves. One of the best classifiers used in those 
researches is Neural Network, it is an excellent tool that presents a 
higher accuracy rate, it is very flexible, has multi-classes and infinite 
architectures [27–29].
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Fig. 1. System overview.
2.1. Conclusions of the literature review and contributions of this work.

There are not many solutions already made in the field of Neu-
roprosthesis (NP), but it is a field that is increasing in the aspect of 
studies and people who work with it. The current studies are focused 
on applications such as the classification of a specific movement, distin-
guishing different movements, and even distinguishing real movements 
from imaginary, all this information is contained in the motor cortex. 
These studies are performed with multi-channel headsets, which a good 
equipment, but have a high cost and computing expenses. To overcome 
this barrier, a single-channel headset by Neurosky™was used to perform 
studies on the motor cortex, aiming to extract the motion information 
and feed it into a robot to simulate the studied phenomenon, presenting 
then an alternative and inexpensive technology to study these signals.

3. Methodology

3.1. System design

In view of the aim of the present study, to use a single channel head-
set to collect information on the brain’s motor system, the open/close 
of the subject’s right hand, as an elementary movement to record the 
data. Using the Midflex headset by Neurosky™, the brain activity is 
sent via Bluetooth to a computer, where the brainwaves pass into a 
processing stage, the result of that stage is used as a command signal 
to produce a movement of the Denavit–Hartenberg (DH) robot. Fig.  1 
shows a synthesized vision of the system. The BCI sends (via bluetooth) 
eight time series (Brainwaves) to a computer which process the data 
and change the robot position.

3.2. Robot kinematics

The DH convention arises to standardize the coordinate frames, 
it is a useful method which attaching reference frames to the joints 
of a robot manipulator. Using the homogeneous transformation ma-
trices this convention allows describe the kinematics of the robot 
manipulators. The matrix DH convention, [30]: 

𝐶 𝑖
𝑖−1 =

⎛

⎜

⎜

⎝
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𝑠𝑖𝑛(𝛩𝑖) 𝑐𝑜𝑠(𝛼𝑖) ∗ 𝑐𝑜𝑠(𝛩𝑖) −𝑠𝑖𝑛(𝛼𝑖) ∗ 𝑐𝑜𝑠(𝛩𝑖)
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𝑇 𝑖
𝑖−1 =

(

𝐶 𝑖
𝑖−1 𝑑𝑖𝑖−1

0 0 0 1

)

(3)

Replacing the matrices (1) (Rotation matrix) and (2) (Translation 
vector) in (3) (Homogeneous displacement matrix), shall result in 
3 
Fig. 2. Links coordinate system and joint parameters for Hand model.

a generic DH Displacement Matrix, this matrix describes all robot’s 
kinematics to rotational and prismatic joints.

The right-hand movement was selected for detailed analysis, along 
with the associated robot kinematics. As illustrated in Fig.  2(a), this 
movement provides a representative case for studying the system’s 
behavior. The hand kinematic model, depicted in Fig.  2(b), was devel-
oped using the DH convention. Reference frames were systematically 
attached to each joint of the finger to establish a consistent and accurate 
representation of its motion.

Note that the hand is composed of fifteen joints. The finger’s joints 
are rotational, that is, the joints only execute a rotational movement, 
so the variable that will be manipulated is an angle, in this case, the 
angle around the 𝑍𝑖 axis. A reference frame was attached at the base 
of the hand, the other frames were attached following the order of the 
index finger until the thumb.

The only finger that will realize a distinguished movement is the 
thumb, the remaining will execute the same movement, distinguishing 
themselves by the last 𝑎𝑖 parameter of each finger that represents 
the real difference of the size among them and by the 𝑑𝑖 parameter 
that set the vertical position of each one. The following parameters 
represent the variables of the joints provided by the hand kinematic 
model (Fig.  2(b)). Analyzing the parameters in Table  2, it is notable that 
the parameters of the thumb are a little different from the remaining, 
which explains why the thumb realizes a different movement from the 
other fingers. Which makes the thumb perform a vertical movement 
while the remaining realize a horizontal movement are the parameter 
𝛼1, which represents a rotation of 90◦ in anticlockwise around 𝑋5 axis, 
and 𝜃4, which in this case, represent a fixed rotation between 𝑂5 and 
𝑂0 around 𝑍0. 

The DH model of the robot was implemented in MATLAB™  using 
the parameters listed in Table  2. The system involves six distinct angles 
to be manipulated: three correspond to the thumb, while the remaining 
are the angles of the other fingers. As previously mentioned, all fingers 
are programmed to execute the same movement.

Inserting predefined initial and final joint angles, and the param-
eters of the links into MATLAB™  code the DH robot is created. Fig. 
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Table 2
Fingers parameters. 𝑎𝑖: size of the model’s link. 𝑑𝑖: vertical distance between 𝑂0 and 𝑂𝑖. 𝛼1: rotation angle around 𝑋5. 𝜃𝑖: rotation angle around 𝑍𝑖.

 Joint 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 
 1 0 𝐷1 𝐴1 0  
 2 𝜃1 0 𝐴2 0  
 3 𝜃2 0 𝐴3 0  
 4 𝜃3 0 𝐴4 0  

(a) Index finger

 

 Joint 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖  
 5 0 𝐷2 𝐴1 0  
 6 𝜃1 0 𝐴2 0  
 7 𝜃2 0 𝐴3 0  
 8 𝜃3 0 𝐴5 0  

(b) Middle finger

 

 Joint 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 
 9 0 −𝐷2 𝐴1 0  
 10 𝜃1 0 𝐴2 0  
 11 𝜃2 0 𝐴3 0  
 12 𝜃3 0 𝐴6 0  

(c) Ring finger

 

 Joint 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖 
 13 0 −𝐷1 𝐴1 0  
 14 𝜃1 0 𝐴2 0  
 15 𝜃2 0 𝐴3 0  
 16 𝜃3 0 𝐴7 0  

(d) Pinky

 

 Joint 𝑖 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖  
 17 𝜃4 𝐷3 𝐴8 𝛼1 
 18 𝜃5 0 𝐴9 0  
 19 𝜃6 0 𝐴10 0  
 20 𝜃7 0 𝐴11 0  

(e) Thumb
Fig. 3. Hand in DH representation.

Table 3
Brainwaves informations.
 Name Frequency Associated brain region  
 and Intentions  
 Delta 1 − 3 𝐻𝑧 Deeper regions such as the thalamus. 
 Theta 4 − 7 𝐻𝑧 Hippocampus, memory.  
 Alpha 8 − 12 𝐻𝑧 Motor cortex, motor intentions.  
 Beta 13 − 30 𝐻𝑧 Motor cortex, motor intentions.  
 Gamma 31 − 50 𝐻𝑧 Local neural circuits in cortex,  
 motor intentions,auditory processing,  
 and speech production.  

3 was generated by making an interpolation in 𝑁 steps between the 
initial and final angles and using a different step to plot each finger.

3.3. Brainwaves

Brainwaves are rhythmic or repetitive patterns of neural activity. 
They are generated within individual neurons or by the interactions 
between them. The synchronized activity of a large number of neurons 
can give rise to macroscopic oscillations, which can be observed in an 
EEG.

EEG activity always reflects the summation of the synchronous 
activity of thousands of neurons that have similar spatial orientation. 
EEG is the superposition of many elementary signals. The elemental 
frequencies of the human EEG waves are shown in Table  3.

The motor systems located at the motor cortex, produce a pattern 
of oscillations which can be recorded in a frequency of Alpha and Beta 
waves (8–30 Hz), this frequency range is called sensorimotor rhythms. 
When the motor system is activated can notice a reduction in Alpha and 
Beta waves, this event is called event-related synchronization/event-
related desynchronization (ERS/ERD) [31,32]. For the phenomenon 
4 
Table 4
Identification of Research Volunteers.
 Sex Age Motor disability Contact with  
 MindFlex (days) 
 Male 22 No 60+  

analyzed in this research, only the frequency of the sensorimotor 
rhythms will be used, because this is the frequency band that carries 
the movement information.

Current studies on sensorimotor rhythms are realized using multi-
channel headsets, which have electrodes located at the motor cortex 
area. This strategy allows a better resolution in the record the cortex 
information, however, as it was said before, the brainwaves are a sum-
mation of millions of neurons firing, this characteristic allows recording 
the information of that specific area in some other, like in the forehead.

3.4. Preparation of patient/subject

The aim of this article is to present and validate a method through 
a human subject, providing all the necessary details to replicate this 
experiment and conduct future studies. The participant involved in this 
research is described in Table  4. 

To ensure the reproducibility of the experiment, specific steps must 
be followed. The data recording process begins with the subject sitting 
down, wearing the headset, and turning it on. Once activated, the 
device starts capturing the subject’s brain activity.

For dataset creation, three motor information were considered: 
(i) elementary movement, (ii) other body movements, and (iii) no 
movement.

Two datasets were generated. Dataset 1, illustrated in Fig.  4(a), 
consists of three recording sessions, each lasting ten minutes. Each 
session is dedicated exclusively to one type of motor information: 
the first session captures other body movements, the second session 
records only elementary movement, and the third session contains data 
exclusively from the no-movement condition. Dataset 2, shown in Fig. 
4(b), consists of two sessions, each lasting two minutes: the first session 
includes a combination of other body movements and no movement, 
while the second session includes only elementary movement.

This structured approach ensures the segmentation and classifica-
tion of motor activities, facilitating further analysis.

3.5. Equipment usage

To capture the brain activity was used the Mindflex headset by 
Neurosky™, demonstrated in Fig.  5. It is a headset with a forehead 
electrode used into Mindflex™, which is a PvP (player versus player) 
game in a physical platform with obstacles, that demand concentration 
and relaxing of the player to produce commands to win the game.

ThinkGear™, is the technology inside every NeuroSky™ product or 
partner product that enables the device to interface with the wearer’s 
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Fig. 4. Motor execution in each session of Dataset 1 and Dataset 2.
Fig. 5. Mindflex headset by Neurosky™.

Table 5
Experimental setup of used equipment.
 Parameters Values  
 Equipment Mindflex headset by Neurosky™ 
 Filter Moving average filter  
 Filter length 16  
 Classifier MLP  
 Training Algorithm ‘trainbfg’  
 Performance Algorithm ‘crossentropy’  
 Software MATLAB™  

brainwaves. It consists of three key components: a forehead sensor that 
detects brainwave activity, contact and reference points located on the 
ear pad to ensure proper signal acquisition, and an onboard chip that 
processes all the collected data.

Mindflex’s platform communicates with the ThinkGear™  via radio 
frequency using the Neurosky’s cryptography and does not allows 
access to the brain activity informations, cause of this, some people 
developed ways to export these informations to an other place. The 
technology used in this equipment was the Bluetooth module, which 
export the data.

Fig.  6 provides an overview of the system’s processing pipeline. 
The ThinkGear ASIC Module (TGAM) process raw EEG data from the 
NeuroSky headset and transmits it via Bluetooth to a computer for fur-
ther processing. The headset provides multiple output signals, including 
Signal Quality, Attention and Meditation levels, and a set of brainwave 
frequency bands: Delta, Theta, Low Alpha, High Alpha, Low Beta, High 
Beta, Low Gamma, and Mid Gamma. A summary of the parameters 
used in the experimental setup, along with their corresponding values, 
is provided in Table  5.

The headset sends through Bluetooth one packet per second at a 
rate of 9600 bps (bits per second). Each packet carries the updated 
information of the brain activity, which is recorded in a .txt document 
by an algorithm developed in C++.
5 
Table 6
Position of robot joints at rest and disturbed state.
 𝜃𝑖 Rest State (𝜃𝑟1 ) Disturb state (𝜃𝑑1 )  
 𝜃1 0◦ 45◦  
 𝜃2 15◦ 120◦  
 𝜃3 15◦ 30◦  
 (a) Table of the angular position of the four
 fingers in each state.

 𝜃𝑖 Rest State (𝜃𝑟2 ) Disturb state (𝜃𝑑2 )  
 𝜃5 −80◦ −75◦  
 𝜃6 45◦ 60◦  
 𝜃7 30◦ 90◦  
 (b) Table of the angular position of the
 thumb in each state.

The software selected to process the data recorded was MATLAB™, 
due to its Neural Network toolbox. The topology of NN used was 
the multi-layer perceptron (MLP). The training algorithm ‘trainbfg’was 
used to allow a better generalization of the NN, that is, it can repli-
cate the right classification for different datasets. As those datasets 
will receive the target information, the perform algorithm used was 
‘crossentropy’.

EEG data has many noises, even if the headset uses filters before 
sending the data, so it is necessary to use an extra filter to remove these 
noises, in this case, the moving average filter was selected to do this 
work because it is a good type of filter to be used in biophysiological 
signals. The length of the filter window is sixteen, this value was 
selected because it is a length that smooths the signal well without loss 
of information.

3.6. Data processing

Once the data has already been collected, they are imported into 
the MATLAB™, where the respective target is added in each sampled 
data and therefore they are grouped in sequence. Now the data follows 
the sequence of the flowchart passing through all stages, as presented in 
Fig.  7. After this first manipulation of the data, they are fed into a noise 
removal stage to reduce the noise and smoothing them to become the 
input of the Neural Network. The MLP was used as a pattern recognition 
NN, which separates the data into classes. The problem is that this 
type of NN cannot predict the position of the hand for each sample of 
brainwaves, it only classifies whether or not there is movement of the 
subject’s right hand. To overcome this problem, the movements of the 
robot were limited (𝑄𝑗 (𝑘) N → 𝜃𝑅, 𝜃𝐷, where 𝜃𝑅 and 𝜃𝐷 are defined in 
Table  6), and a rest and disturbance state of the robot has been created. 
The resting state occurs when there is no movement of the right hand, 
while the disturbed state occurs only when there is a movement of the 
right hand (see Fig.  8). 
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Fig. 6. Overview of the system’s processing pipeline.
Fig. 7. Translation of brain signal to movement.
Fig. 8. Angular position of the finger joints in each state.

The pre-trained NN classifies the data and verifies whether or not 
there is elementary movement in the analyzed data. If there is no 
movement, the predefined rest angles are produced (𝜃𝑅 = [𝜃𝑟1 𝜃𝑟2]), 
whereas if there is any movement, the disturbance predefined angles 
are produced (𝜃𝐷 = [𝜃𝑑1 𝜃𝑑2]). The next stage makes the interpolation 
in 𝑁steps between the current robot joints angles and the angles fed 
to it, this stage makes the binary and aggressive movement become a 
smoothing movement. The sequence of angles is fed to the DH model, 
which executes the command and changes the position of the robot.

4. Results and discussions

4.1. Data collected

The implemented system was developed using five brain activity 
recorded series of the same subject. The headset provides ten different 
signals, Signal Quality, Attention, Meditation, Delta, Theta, Low Alpha, 
High Alpha, Low Beta, High Beta, Low Gamma, and Mid Gamma 
brainwaves, among these signals, only the brainwaves that belong to 
the sensorimotor rhythms (Alpha and Beta brainwaves) were used.

Fig.  9 shows the signals from dataset 1, it is a plot with 1818 
samples, each one spent a second to be recorded, so the entire dataset 
is approximately thirty minutes, which shows that the first dataset is 
composed of the three ten-minute sections grouped in sequence. This 
dataset will be used to train the NN. The second dataset will be used to 
6 
Table 7
𝑁𝑂𝑀 : The number of the samples with others movements of the dataset 2. 𝑁𝑁𝑀 : The 
number of the samples with no movements of the dataset 2. 𝑁𝑂𝑀 +𝑁𝑁𝑀 = 119. 
 Samples with Samples with Samples with 
 elementary movement others movements no movement 
 Dataset 1 606 606 606  
 Dataset 2 119 𝑁𝑂𝑀 𝑁𝑁𝑀  

test and validate the NN, it was composed of two recorded two-minute 
series with 238 samples (see Table  7).

4.2. Noise removal

The EEG signal depicted in Fig.  9 exhibits significant noise, ne-
cessitating the use of a filter to eliminate or reduce high-frequency 
interference and make the signal more suitable for classification. The 
Moving Average (MA) filter was chosen because it is a good type of 
FIR (Finite Impulse Response) filter, that is, its output is always the 
average of 𝑁 samples of the input signal, besides presenting a linear 
phase, which means, the result that all frequency components of the 
input signal are shifted in time by the same constant amount.

The MA filter was used twice with the same window length to 
increase the smoothness and eliminate the noise from brainwave sig-
nals. Fig.  10 illustrates the filtered brainwave signals, the frequency 
bands 𝐹𝑖(𝑘) N → R, 𝑖 = 3..6 (Low Alpha, High Alpha, Low Beta, 
High Beta) correspond to Low Alpha, High Alpha, Low Beta, and High 
Beta. The main disadvantage of this filter is the time delay associated 
with the length of the filter window, as demonstrated in Fig.  11. This 
can be a problem in a real-time data processing if the delay time is 
bigger than the period of a specific event of the signal, which becomes 
impossible to get this characteristic, another problem related to the 
loss of information is using the filter many times in the same signal, 
which causes a super smoothing in the data, which result in loss of 
own characteristics and, consequently, in the loss of information.

The more the filter is used on the same data, the smoother it 
becomes, but it does not greatly influence the time delay. The length of 
the filter window is sixteen samples, and each sample takes one second 
to be recorded, so the delay time for this filtering is fifteen seconds, 
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Fig. 9. Used brainwaves.
Fig. 10. Filtered brainwaves.
ie it is necessary to wait fifteen seconds/samples to get the first data 
smoothed.

4.3. Neural network

The sequential grouping of the dataset led to overfitting in the 
Multilayer Perceptron (MLP) neural network. This issue caused the 
network to fit the previously observed dataset extremely well but fail 
7 
to generalize when predicting new results. To mitigate this problem, 
the dataset was randomly shuffled using a custom sorting function 
developed in MATLAB™. Since the training process is supervised, this 
reorganization does not compromise the learning process.

A Multilayer Perceptron (MLP) neural network consists of three 
layers: input, hidden, and output. The input layer contains neurons 
that receive the input data, the hidden layers contain neurons respon-
sible for learning more complex representations, and the output layer 
contains neurons responsible for generating the network’s output.
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Fig. 11. Delay caused by the Moving Average Filter.
The MLP is one of the most common feed-forward artificial neu-
ral networks [33], inspired by the way the human brain processes 
information. The MLP consists of an input layer, one or more hidden 
layers, and an output layer, with each hidden layer fully connected to 
the subsequent layer. The hidden layers are used to perform nonlinear 
mapping on the input space, and the output layer is used to generate 
the classification results. The output of each neuron in the hidden layer 
is the weighted sum of the input signals, which are multiplied by their 
respective connection weights and then passed through an activation 
function, as defined in Eq.  (4): 

𝑦𝑗 = 𝑓
(

∑

𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖
)

(4)

Where 𝑓 is an activation function, 𝑏𝑖 denotes a bias term, and 𝑤𝑖𝑗
represents the connection weight from the 𝑖-th neuron of the previous 
layer to the 𝑗-th neuron of the current layer.

For the activation function, we use the most commonly applied 
type, the hyperbolic tangent function, which has been widely used in 
previous studies. It is defined in Eq.  (5): 

tanh(𝑥) =
exp(𝑥) − exp(−𝑥)
exp(𝑥) + exp(−𝑥)

(5)

After filtering and reordering, the data were used as inputs for 
the MLP, which was trained using multiple configurations of layers 
and neurons. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-
Newton backpropagation algorithm (’trainbfg’) was employed for train-
ing. This second-order optimization method is more efficient than 
standard gradient descent as it approximates the Hessian matrix to 
accelerate convergence. The BFGS update is defined in Eq.  (6), [34]. 

𝐻𝑡+1 = 𝐻𝑡 +
𝑦𝑡 ⊗ 𝑦𝑡

⟨𝑦𝑡, 𝑠𝑡⟩
−

(𝐻𝑡𝑠𝑡)⊗ (𝐻𝑡𝑠𝑡)
⟨𝑠𝑡,𝐻𝑡, 𝑠𝑡⟩

(6)

A key property of BFGS is that 𝐻𝑡 is always positive definite, 
ensuring no regularization is needed. Additionally, assuming that 𝑓 is 
a strongly convex quadratic function with Hessian 𝐴, BFGS applied to 
𝑓 with a perfect line search and any positive definite initial guess for 
𝐻0 satisfies 𝐻𝑝 = 𝐴, meaning the method recovers the true curvature of 
the function in finite time. In a general setting, under mild assumptions, 
BFGS also achieves the desired quadratic convergence.

The goal of the learning process is to minimize the error rate 
of the network’s output when compared to the ground truth [33]. 
The cross-entropy loss function (’crossentropy’) was used to evaluate 
the network’s performance. This function is particularly suitable for 
classification tasks, as it measures the divergence between the predicted 
probability distribution and the actual class labels, penalizing incorrect 
classifications. The function is defined in Eq.  (7): 
𝑀
∑

𝑐=1
𝑦𝑜,𝑐 log(𝑝𝑜,𝑐 ) (7)

Where 𝑀 is the number of classes (2 for this article, representing the 
presence or absence of the elementary movement), 𝑦 is a binary indica-
tor of whether the prediction that class 𝑐 is the class of observed data 𝑜
8 
Table 8
Some architectures tested in training stage.
 Architecture Number of neurons Accuracy dataset 1 
 in each layer (Training dataset)  
 1 18|12|5 99, 30%  
 2 25|18 99, 50%  
 3 18|5|12 94, 40%  
 4 14|10|6|5 96, 10%  
 5 4|8|12|14 99, 00%  
 6 24|21 99, 70%  

is correct, and finally, 𝑝 is the probability that the aforementioned data 
𝑜 belongs to the class label 𝑐.

To determine the optimal MLP configuration, multiple networks 
with different numbers of hidden layers and neurons per layer were 
trained. The results of this process are summarized in Table  8, which 
presents the performance of various configurations. Among the tested 
architectures, configurations 2 and 6 were selected for further valida-
tion using a second dataset, as they demonstrated superior accuracy and 
better generalization capabilities, minimizing the risk of overfitting. 
The NN classification errors of the selected architectures are repre-
sented by confusion matrices in Table  9. In these matrices, the rows 
correspond to the predicted (output) class, while the columns corre-
spond to the true (target) class. Here, 1 indicates detected movement, 
and 2 indicates other or no movement.

In the field of machine learning, the confusion matrix or error 
matrix is a specific table layout that allows the visualization of the 
performance of an algorithm. The matrix shows the positive instances 
in green cells and the negative instances in the red cells. The matrix 
order is related to how many kinds of targets there are in the dataset, 
that is, the matrix is composed only of the green and red cells, e.g., the 
datasets used in this research have two classes, the first is the class that 
contain the elementary movement, and the other is the class that does 
not contain this information, so there are two targets, then the matrix 
is of order two.

The white and blue cells are related to the performance of the 
algorithm. The percentages in the white cells of the rows represent the 
precision of the NN output, i.e., how many predicted samples in each 
class were correctly and incorrectly sorted, while the percentage in the 
white cells of the columns represents the precision of the target class, 
i.e. how many samples of each class (1,2) were classified correctly and 
incorrectly. The blue cell represents the overall accuracy of the NN.

When comparing the two matrices, it is notable that architecture 
2 has the best result, that is, this architecture can predict new results 
better than the other. An accuracy rate of 73, 9% is an acceptable result 
that confirms the usability of the single-channel headset to make BCI 
solutions.

The system output is shown in Fig.  12. Using a single electrode on 
the forehead, it was possible to extract the motor information even 
though the electrode was not located in the area of the motor cortex, 
this was possible because the brain waves are a sum of the firing of the 
neurons.
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Table 9
NN classification errors of architectures 2 and 6.

 Correct rating  Wrong rating  Partial accuracy  Overall accuracy

Confusion Matrix: Architecture 2

O
ut
pu
t C

la
ss 1 2

1  60  3 95.2%
(25.2%) (1.3%) 4.8%

2  59  116 66.3%
(24.8%) (48.7%) 33.7%
50.4% 97.5% 73.9%
49.6% 2.5% 26.1%

Target Class

Confusion Matrix: Architecture 6

O
ut
pu
t C

la
ss 1 2

1  38  2 95.0%
(16.0%) (0.8%) 5.0%

2  81  117 59.1%
(34.0%) (49.2%) 40.9%
31.9% 98.3% 65.1%
68.1% 1.7% 34.9%

Target Class
Fig. 12. Hand (DH) movement after NN data classification.

4.4. Discussion of limitations

The use of data from a single subject might restrict the generaliz-
ability and robustness of the model. Although the accuracy achieved 
of 80.7% in detecting right-hand movement is promising, the results 
cannot be fully extrapolated to a broader population without further 
validation. Furthermore, the current system’s reaction time of 15 s 
is not suitable for real-time applications, highlighting the need for 
optimization to improve responsiveness.

Future work will address these limitations by expanding experi-
ments to include multiple subjects with diverse demographics and neu-
rological conditions. This will help evaluate the model’s adaptability 
and reliability across different users. Despite these current limitations, 
the source code is publicly available1 to facilitate reproducibility and 
enable further research, encouraging adaptation and building upon this 
work according to specific needs.

5. Conclusion

The goal of extracting information from the motor cortex with a 
single-channel headset and translating it into a robot movement was 
reached. The success in extracting the information shows the possibility 
of detecting the movement-intention. The results obtained do not allow 
produce useful neuroprostheses but show a real path of study and 
development to make cheaper and accessible solutions.

The main disadvantage of the developed system in real time, it is the 
delay time caused by the filtering of the signal. To improve the results 

1 https://github.com/ABLara/BrainWaves.git
9 
and closer this experiment a useful solution, a must be do a study in 
the extraction of the movement intention from the brainwaves with the 
used headset.

The datasets must be increased to get more data to use in the train-
ing and validation stage of the NN to get a better result of the classifier. 
The noise removal stage must use real-time filters, to eliminate or 
reduce the time delay to allow the use in real-time situations. The way 
of receiving the data must change to eliminate the step of recording the 
brainwaves in a .txt file and do direct communication with the MATLAB 
code, allowing simultaneous data processing.

As future work, we also plan to explore techniques to reduce reac-
tion time, such as optimizing the neural network architecture and im-
plementing more efficient signal processing algorithms. By standardiz-
ing the training protocol and testing in varied experimental settings, we 
aim to establish a robust framework for developing cost-effective and 
accessible neural prostheses, paving the way for real-world applications 
of Brain–Computer Interface systems.
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