
Academic Editor: Frank Werner

Received: 2 July 2025

Revised: 14 August 2025

Accepted: 28 August 2025

Published: 31 August 2025

Citation: Puentes-Atencio, A.F.;

Mejia-Parra, D.; Arbelaiz, A.; Cadavid,

C.; Ruiz-Salguero, O. Mixed 1D/2D

Simplicial Approximation of

Volumetric Medial Axis by Direct

Palpation of Shape Diameter Function.

Algorithms 2025, 18, 546. https://

doi.org/10.3390/a18090546

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

Mixed 1D/2D Simplicial Approximation of Volumetric Medial
Axis by Direct Palpation of Shape Diameter Function
Andres F. Puentes-Atencio 1,* , Daniel Mejia-Parra 1, Ander Arbelaiz 1, Carlos Cadavid 2 and Oscar Ruiz-Salguero 1

1 Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Mikeletegi 57,
20009 Donostia-San Sebastián, Spain; dmp2627@gmail.com (D.M.-P.); aarbelaiz@vicomtech.org (A.A.);
oruiz@eafit.edu.co (O.R.-S.)

2 School of Applied Sciences and Engineering, Universidad EAFIT, Cra. 49 No. 7 Sur-50, Medellín 050022,
Colombia; ccadavid@eafit.edu.co

* Correspondence: afpuentes@vicomtech.org

Abstract

In the domain of Shape Encoding, the approximation of the Medial Axis of a solid region
in R3 with Boundary Representation M, is relevant because the Medial Axis is an efficient
encoding for M in Design, Manufacturing, and Shape Learning. Existing Medial Axis
approximations include (a) full Voronoi and (b) and partial Shape Diameter Function (SDF)-
based ones. Methods (a) produce large high-frequency data, which must then be pruned.
Methods (b) reduce computing expenses at the price of not handling some shapes (e.g.,
prismatic), and currently, they only synthesize 1D Medial Axes. To partially overcome
these limitations, this investigation performs a direct synthesis of a 1D and 2D simplex-
based Medial Axis approximation by a combination of stochastic geometric reasoning
and graph operations on the SDF-originated point cloud. Our method covers one- and
two-dimensional Simplicial Complex Medial Axes, thus improving on 1D Medial Axes
approximation methods. Our approach avoids the expensive full computing plus pruning
of Medial Axis based on Voronoi methods. Future work is needed in the synthesis of Medial
Axis approximation for high-frequency neighborhoods of mesh M.

Keywords: 1D/2D medial axis; simplicial complex; direct palpation; shape diameter; point
cloud; manifold learning

1. Introduction
Skeletal representations allow for the synthesis of the underlying geometry and topol-

ogy properties of a 3D object. They have been useful in applications such as shape re-
construction [1–3], segmentation [4], abstraction [5], recognition [6,7], and animation [8],
among others.

The Medial Axis (MA) is a commonly used skeletal representation. The MA of a
3D body B is defined as the set of centers and their respective radii of all the maximally
inscribed balls (medial balls) in B [9]. This MA generally contains intermixed 1D and
2D elements. Therefore, a Piecewise Linear (PL) representation of MA is generally a non-
manifold simplicial complex. A full MA of B normally contains highly fibrous (small
hair-like or sheet-like) structures. Hence, a simplification is usually applied to the Medial
Axis after its computation in order to obtain a less noisy result (which in this manuscript
we call Skeleton).

Notice that each point of the skin ∂B of B is related to the ball centered in a point of the
Medial Axis, with radius r, which is tangent to that point of the skin ∂B. This theoretical

Algorithms 2025, 18, 546 https://doi.org/10.3390/a18090546

https://doi.org/10.3390/a18090546
https://doi.org/10.3390/a18090546
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0007-5182-6004
https://doi.org/10.3390/a18090546
https://www.mdpi.com/article/10.3390/a18090546?type=check_update&version=1


Algorithms 2025, 18, 546 2 of 25

and exhaustive Medial Axis Radius scalar field is approximated by a more economical
version, called the Shape Diameter Function (SDF [10]). Obviously, the Shape Diameter
Function approximates twice the corresponding radius r (SDF ≈ 2r).

The Shape Diameter Function (SDF [10]) is an economical intermediate scalar field,
useful to approximate the Medial Axis for particular classes of solids. SDF is defined
as the “thickness” of the solid at each point on its surface, and it is a scalar function
SDF : M −→ R+. The SDF-based point cloud is the locus of the “midpoints” of the
thickness segment for all points of M (see Section 3.5 for formal definition). Therefore, the
point cloud derived from the SDF scalar field is an approximation of the Medial Axis.

This investigation executes a direct palpation of the SDF-based point cloud. The term
“palpation” is analogous to the actions executed by a blind person, who seeks to apprehend
the nature of a point cloud: the person would directly touch the point cloud neighborhoods,
seeking to identify 1D (PL curve) or 2D (PL surface) regions. This direct palpation executes
the synthesis of the 1D/2D Simplicial Complex, which approximates the Medial Axis of
the solid, and, unlike previous SDF approaches, ours includes the mixture of 1D and 2D
simplicial Medial Axes. Additionally, unlike other approximations of Medial Axis by Voronoi
methods, which require extensive pruning of MA fibrosities, ours computes a Skeleton
directly, without generating fibrosities.

Our method inherits the advantages of SDF of being an economical estimation of
the Medial Axis Radius Scalar Field. However, it also inherits the disadvantage of SDF
of failing to approximate the Medial Axis Radius scalar field in the cases of prismatic
regular solids.

This manuscript is divided as follows: Section 2 reviews the existing literature and
draws the conclusions about the current status. Section 3 explains the applied methodology.
Section 4 displays the results of our implementation, and Section 5 concludes the article
and sketches possible future research directions.

A glossary of terms is provided at the end of the manuscript, before the references, to
help readers clarify terminology as needed.

2. Literature Review
We review some of the most relevant existing 3D shape skeletonization meth-

ods. For more exhaustive information on different methods, we refer the reader to
Tagliasacchi et al. [11].

2.1. Mesh Contraction

The Mesh Contraction method [12] iteratively performs geometry collapses on an input
surface mesh until the shape volume is close to zero. Constrained Laplacian smoothing is
used for the geometry collapses and then the contracted mesh is converted into a curve
Skeleton. Cao et al. [13] extends the Mesh Contraction method by allowing point cloud
inputs and improving on the conversion from the contracted shape to a curve Skeleton.

2.2. Sphere-Meshes

Thiery et al. [14] proposes a different shape approximation structure called Sphere-
Meshes. Given a surface mesh input, their algorithm produces a user-specified number of
connected spheres that minimize a distance function with respect to the input mesh.

2.3. Voxel Thinning

Voxel thinning methods [15,16] use an image model of the input shape and the output
Skeleton. These methods work mainly by removing boundary voxels according to different
criteria until a thin model is obtained. Moreno et al. [17] produces a Graph Skeleton from
the result of the thinning process. In both [17,18], it is shown that when trying to force a



Algorithms 2025, 18, 546 3 of 25

curve Skeleton representation for a general 3D shape, the thinning algorithm produces
more fibrosities.

2.4. Shape Diameter Function-Based Methods

Shapira et al. [10] present a method that uses Moving Least Squares projections on
an SDF-based point cloud to build a Medial Axis approximation. However, the obtained
Skeleton consists only of 1D segments, failing to accurately represent shapes with 2D
structures. We have not found references in addition to [10] for MA using SDF-based point
clouds. This absence has a relation to our decision to work in this direction.

2.5. Voronoi Medial Axis Simplification

The Voronoi Medial Axis simplification methods first extract an initial, large, noisy
Medial Axis using Voronoi diagrams. Later, according to different criteria, pruning or
mesh simplification is iteratively performed. Medial Meshes [19] simplify the initial Medial
Axis by iteratively performing edge contractions until a shape approximation error reaches
a threshold.

In λ-MAT [20], medial balls are discarded so that only those that have a radius of at
least λ are preserved. λ-MAT can lead to an important loss of features at different scale
structures of the input shape.

Scale Axis Transform (SAT) [21] scales the medial balls by some factor s > 1 and
deletes those that end up contained in another ball, i.e., are no longer maximal. Then, it
scales the medial balls back by a factor 1/s. Progressive Medial Axis [22] extends SAT
by performing edge collapses based on ball absorption. SAT computes multiple Voronoi
diagrams, which result in low computational efficiency.

Mean Curvature Skeletons [23] perform iterative Mesh Contraction based on the Mean
Curvature Flow due to its area-reducing properties. However, it requires the input mesh to
be significantly dense.

Q-MAT [24] iteratively performs edge collapses on the initial Voronoi extracted MA
based on the QEM framework [25]. Q-MAT final result depends on the quality of the initial
MA used for simplification. To yield a better quality initial MA, Q-MAT+ [26] uses the SDF
to identify thin parts and increases the sampling density in those thin regions.

Coverage Axis [27] uses the Set Cover Problem to select a minimum number of inner
points whose dilated balls cover a set of sampled points that lie on the object’s surface. Then,
Coverage Axis follows the approach of Q-MAT [24] to obtain a connected MAT, with the
addition of preserving the previously identified inner points. However, Coverage Axis [27]
suffers from a high computational burden for shapes with planar structures. Coverage
Axis++ [28] formulates a different inner point selection algorithm that runs more efficiently.

2.6. Point Cloud Skeletons

Point cloud skeletonization methods allow for inputs lacking manifold information
about the shape’s underlying surface. Least Squares MAT [29] computes a Skeleton using
information of a Signed Distance Function from an oriented point cloud.

The Iterative Medial Axis Transform [30], iteratively identifies a set of maximally
inscribed balls that minimizes a shape disparity function.

Ma et al. [31] compute a set of Medial Axis points from an oriented point cloud
sampled from a surface. For each sampled point p, a ball tangent to p is iteratively shrunk
until it is maximal. The ball has the restriction of having its center located along the line that
passes through p in the direction of the normal of point p. The aforementioned methods,
however, lack topology information in the Medial Axis.



Algorithms 2025, 18, 546 4 of 25

Jalba et al. [32] improve Ma et al. [31] performance and proposes methods to obtain a
surface Skeleton from the computed Medial Axis points by applying Delaunay triangulation
or a Ball Pivoting Algorithm on said points.

Coverage Axis [27] also allows for point cloud inputs, in which case it uses the Power
Diagram following Amenta et. al. [2].

2.7. Learning-Based Medial Axis

Point2MM [33] learns a geometric transformation to predict the medial spheres of
a point cloud. Later, it predicts the connectivity of the medial spheres to form a medial
mesh. Neural Skeleton [34] uses Implicit Neural Representation training on a point cloud
to extract skeletal points. Then, it follows Coverage Axis [27] to retrieve the Skeleton mesh.
These methods suffer mainly from requiring training time and data in order to achieve
satisfactory results.

The present manuscript does not intend to explore Artificial Intelligence learn-
ing methods for Shape Encoding. Our work strictly lies in the domain of Applied
Computational Geometry.

2.8. Conclusions of Literature Review

We present the conclusions of the Literature Review in Table 1, where we men-
tion relevant Medial Axis approximation approaches and some of their main advantages
and disadvantages.

Table 1. Conclusions of the literature review. Our approach is compared against relevant Medial
Axis approximation methods. First column: name of the approach. Second column: references for the
corresponding approach. Third and fourth columns: main advantages and disadvantages of each
corresponding approach, respectively.

Approach Refs. Main Advantages Main Disadvantages

Mesh Contraction [12,13] (1) Can handle noisy input. (2) The
Skeletons produced are pose invariant.

(1) Computationally expensive. (2) Only
produces 1D Skeletons.

Sphere-Meshes [14] (1) Can handle incomplete datasets.
(2) Represents shapes using very
few primitives.

(1) The produced Skeleton can lie out-
side the input mesh. (2) Topology is not
always preserved.

Voxel Thinning [15–18] (1) Direct compatibility with volumetric
data. (2) Can soften the effect of noise
on surfaces.

(1) The Skeleton is constrained to the
fixed Voxel grid. (2) Skeleton centered-
ness can be lost.

Voronoi Medial Axis
Simplification

[20–24,26,27] (1) Can be error-controllable. (2) Have
topological information. (3) Allows for
a high accurate approximation of the in-
put shape.

(1) Highly dependent on the initial Me-
dial Axis quality. (2) Large noise can
yield unstable results.

Point Cloud Skeletons [27,29–31] (1) Can handle both mesh and
point cloud inputs. (2) Can handle
noisy input.

(1) Lacks connectivity information.

Learning-based
Medial Axis

[33–35] (1) Can handle input with missing parts
for trained data.

(1) Poor results for new data.
(2) Requires training time for
satisfactory results.

Direct Palpation on the
SDF-based Point Cloud

Our approach (1) Does not require the full computa-
tion of Voronoi-based Medial Axis with
all fibrillations, which then must be elim-
inated. (2) Delivers mixed 1D/2D Me-
dial Axes, unlike competitor SDF-based
methods ([10]).

(1) The SDF-based point cloud does not
always approximate the Medial Axis. (2)
It is vulnerable in high-frequency neigh-
borhoods of M (creases, pits, joints).



Algorithms 2025, 18, 546 5 of 25

In this paper, we present a method for the computation of the Skeleton of a mesh
M in an economical and faster way than existing approaches. We do not deal with the
reconstruction based on Skeleton or object skin segmentation, which are downstream
applications of the Medial Axes.

3. Methodology
3.1. Scope

We want to reiterate that Medial Axes or Skeletons are essentially filters. Therefore,
according to the characteristics of the filter, some parts of the original solid may be lost. It
is not within the scope of this paper to quantify the effect of the filter on the reconstruction
of the object based on the Skeleton.

It is also important to note that, in our approach, we frequently use local Principal
Component Analysis (PCA) in order to identify Piecewise Linear approximations for curves
and surfaces within a point cloud. We do not try to approximate a curve or a surface with
only one straight edge or only one planar surface. In any case, the initial triangular meshes
must be very dense in high frequency neighborhoods in order to respect the Whittaker–
Nyquist–Shannon theorem [36], regardless of any ulterior computation (e.g., Medial Axis,
Resampling, Finite Element, etc.).

A glossary is presented at the end of this manuscript, before the references, providing
definitions for terms used throughout the text.

3.2. Manifold Learning by Direct Palpation

Our algorithm probes local neighborhoods of the SDF-based point cloud, seeking
locally planar surfaces or locally straight segments. This means our algorithm tests the
local neighborhoods of the SDF-based point cloud for compliance with the definition of a
2-manifold with border or a 1-manifold with border. Such definitions follow [37].

Definition 1 (k-manifold with border. k = 1 for 1-manifolds or curves, k = 2 for 2-manifolds
for surfaces). A set M ⊂ R3 is a k-manifold with Border if for each point p ∈ M there exists a
δ ∈ R+ such that for all radius r with 0 < r < δ , B(p, r) ∩ M is isomorphic to either (1) the disk
Sk or (2) the half-disk Sk/2.

This definition informally means that, locally, the neighborhoods look like (a) flat
surfaces (2-manifolds) of (b) straight line segments (1-manifolds). Therefore, they can be
identified with Principal Component Analysis (PCA).

Our algorithm attempts to identify all point cloud regions that are locally homeo-
morphic to a plane or to a straight segment. This is an instance of Manifold Learning.
This identification is executed through PCA. The regions in which this probe fails (i.e., are
neither planes or lines) are graded as “Gray” and processed differently, as they indicate
high frequency regions/junctions (Section 3.7).

PCA has been extensively used in processing and characterizing point cloud data. For
example, in [38,39] PCA is used for plane fitting on local point cloud regions.



Algorithms 2025, 18, 546 6 of 25

3.3. Simplices and Simplicial Complexes

We use the following definitions of simplices and simplicial complexes [40]:
The simplexes considered in this manuscript are 0-simplex (vertex), 1-simplex (straight

edge), 2-simplex (triangular area), and 3-simplex (solid tetrahedron). The face of a 3-simplex
is a 2-simplex (triangular area). A face of a 2-simplex is a 1-simplex (straight edge). The face
of a 1-simplex is a 0-simplex (vertex). The faces of a k-simplex include all its constitutive
k − 1, k − 2, . . . simplexes. For example, the faces of a tetrahedron are all its triangles, edges,
and vertices.

Definition 2 (Simplicial Complex). A simplicial complex S is a set of simplexes, and their faces,
which satisfy that for all sk, sw ∈ S , either (1) sk ∩ sw = ∅, or (2) sk ∩ sw ∈ S .

3.4. Overview of Direct Palpation Skeleton Identification

The proposed method consists of first identifying subsets of the SDF-based point cloud
that exhibit 1D or 2D nature. Then, build piecewise linear curves C [41] from the 1D point
cloud subsets PC, and surface meshes S from the 2D point cloud subsets PS. This yields a
set of disconnected Skeleton regions.

To obtain a fully connected Skeleton, we use data from unclassified SDF-based point
cloud subsets (neither 1D nor 2D) to help establish connections in the regions where the
Skeleton is missing. The pipeline of our approach is shown in Figure 1.

Figure 1. Synthesis of 1D/2D simplicial complex approximation of Medial Axis via direct palpation
of SRF Point Cloud. Red and blue boxes are expanded in Algorithms 1 and 2, respectively.



Algorithms 2025, 18, 546 7 of 25

Algorithm 1: One-dimensional and 2D MA region building
Input : Shape Radius Function point cloud PSRF, PCA Ball centers ρ, PCA Ball

radii RPCA, eigenvalue ratios for 1D and 2D point subset identification α,
β

Output : 1D and 2D Simplicial Skeleton subsets C and S, unidentifiable Skeleton
point cloud subsets PG.

1 for pi ∈ ρ do
2 P = PointsInBall(PSRF, pi, RPCA);
3 Q = PrincipalComponentAnalysis(P);
4 λ1, λ2, λ3 = Q.LargestEigenvalues;
5 Ensure that λ1 > λ2 > λ3

6 if λ1/λ2 > α then
7 PC.Append(P);
8 else if λ2/λ3 > β then
9 PS.Append(P);

10 else
11 PG.Append(P);
12 end
13 end
14 P∗

C = Cluster(PC);
15 P∗

S = Cluster(PS);
16 for xi ∈ P∗

C do
17 c = PiecewiseLinearApproximation(xi);
18 C.Append(c);
19 end
20 for yi ∈ P∗

S do
21 s = PointCloudTriangulation(yi);
22 S.Append(s);
23 end

Algorithm 2: Identification of Bridges between MA subsets
Input : 1D and 2D Skeleton subsets C and S, Mesh M, Unidentifiable Skeleton

subset PG.
Output : Collection of joining bridges T.

1 P∗
G = Cluster(PG)

2 for xi ∈ P∗
G do

3 b = OptimalBoundingBox(xi);
4 w = b.Dimensions * s;
5 L = CreateJoiningLines(C, S, M, w) ; // Refer to algorithm 3
6 for li ∈ L do
7 p = SampleLine(li);
8 P.Append(p);
9 end

10 t = PointCloudTriangulation(P);
11 T.Append(t);
12 end



Algorithms 2025, 18, 546 8 of 25

Algorithm 3: Line Generation between Skeleton subsets through a Bounding
Box

Input : 1D and 2D Skeleton subsets C and S, Mesh M, Bounding box w.
Output : Collection of joining lines L.

1 G = union(C, S);
2 for gi ∈ G do
3 q = PointsInBox(gi.Points, w)

4 P.append(q)
5 end
6 for pi ∈ P do
7 for pj ∈ P do
8 if NotInSameSubset(pi, pj) then
9 l = join(pi, pj)

10 if NotIntersects(l, M) then
11 L.append(l)
12 end
13 end
14 end
15 end

3.5. Shape Radius Function

The Shape Diameter Function is defined as a scalar function SDF : M → R+ represent-
ing the neighborhood diameter of M at each point p ∈ M [10]. We obtain an SDF-based
point cloud following Shapira et al.’s [10] procedure. Each SDF-based point is generated
as follows:

pi = zi − (SDFi/2)ni (1)

where zi and SDFi are the incenter and the SDF value of the ith triangle, respectively. ni

corresponds to the ith triangle normal. In this manuscript, to compute the SDF, instead of
multi-ray tracing using multiple oscillations of the normal of each triangle [10] we use 1-ray
tracing using an averaged local normal vector, since this helps to speed up the computation
of the SDF while maintaining its accuracy. From now on, we refer to the SDF-based point
cloud as the Shape Radius Function (SRF) point cloud PSRF. An example of the SRF point
cloud is shown in Figure 2.

Figure 2. Shape Radius Function point cloud (red) PSRF. Ant dataset. Mesh M in gray.

3.6. Dimension Identification of Skeleton Subregions

Our approach first identifies points on PSRF that will serve as centers to perform
Principal Component Analysis (PCA). To obtain said centers, PSRF is downsampled by
applying a 3D box grid filter to it.

On each center, a PCA ball is attached, which is an open ball B(p, RPCA) centered in
p with radius RPCA. The PCA Ball radius RPCA is computed as RPCA = εd, where d is the
average edge length of M and ε is a safety factor, required to be input by the user.



Algorithms 2025, 18, 546 9 of 25

The procedure for the construction of the 1D and 2D Skeleton subsets (C and S,
respectively) from PSRF is presented in Algorithm 1.

In the first 13 lines, we iterate over each PCA ball and check what points of PSRF it
encloses. PCA is performed with this enclosed point subset, and its dimension is established
by checking the proportions of the magnitude of the three largest eigenvalues obtained by
PCA. If there is no eigenvalue significantly larger or smaller than the others, the enclosed
point subset is marked as neither 1D or 2D. By the end of the first 13 lines, we obtain
the following PSRF subsets: (1) 1D identified points PC, (2) 2D identified points PS and (3)
unidentified points PG, also called Gray Zones.

The values for the 1st-to-2nd and 2nd-to-3rd eigenvalue ratios α and β are manually
input. The higher these values, the more the enclosed point subset needs to strictly resemble
a curve or a surface. Figure 8 shows an overview of how these parameters are used in the
overall pipeline (more details in Section 3.8).

From lines 14 to 23, we cluster the PC and PS point clouds, in order to later identify
separate curves and surfaces.

One-dimensional clusters P∗
C. For each P∗

C point set cluster, we fit a sequence of linear
segments (PL approximation [41]). Notice that if a set of points resembles a line, PCA will
associate the eigenvector (local line vector) with the largest eigenvalue of the point set
auto-covariance matrix.

Two-dimensional clusters P∗
S . For each P∗

S point set cluster, we apply ball-based
PCA identifications, which render (point, normal) pairs. We use this point and normal
information to perform point cloud triangulation (Point Cloud Library PCL [42]). Notice
that if a set of points resembles a surface, PCA will associate the eigenvector (local surface
normal) with the smallest eigenvalue of the point set auto-covariance matrix.

3.7. Junction of Disconnected Subregions

After obtaining all the sets of definite 1D and 2D Skeleton subsets C and S, we still
need to achieve a fully connected Skeleton, because all C and S are disjointed, as shown in
Figure 3b.

(a) (b)

(c) (d)

Figure 3. Direct palpation of Skeleton regions from subsets of PSRF point cloud with clear 1D or
2D nature. Mesh M in gray. Refer to Figure 1. (a) Stage 1: Synthesis of point cloud sampling the
Skeleton. (b) Stage 2: Building of definite 1D or 2D simplicial regions in point cloud PSRF. (c) Stage
3: Synthesis of connections among 1D/2D simplicial regions through undefined point sub-clouds.
(d) Stage 3 final result.



Algorithms 2025, 18, 546 10 of 25

We use information from the Gray Zones point cloud PG to help establish connections
between Skeleton subsets. In the SRF point cloud, subsets lacking a clear 1D or 2D char-
acter correspond to neighborhoods in the Skeleton where transitions between 1D and 2D
structures appear. These regions are called “gray” in the manuscript. Thus, PG points are
located in the missing Skeleton regions that bridge the various curves C and surfaces S.

Our objective is to create bridges or connections located in these Gray Zones. Bridges
are surface meshes that serve as supports for connecting definite 1D/2D Skeleton subsets.
The bridges do not reach the subsets that they communicate. Instead, a blend surface is later
used to fill the remaining gap between the bridge and the Skeleton subsets, as described in
Section Mesh Stitching.

As shown in Algorithm 2, we first cluster PG, and for every cluster, an optimal
bounding box is computed and scaled. We scale the bounding box to identify what points
from all the Skeleton subsets are inside and thus involved in a joining process (Figure 4a).
The disposition of these identified points will dictate the type of union to be performed.

(a) (b)

(c) (d)

Figure 4. Algorithm steps for junction of disconnected regions. The bridge (green) connects more
than two Skeleton subsets (blue): (a) Unidentified point cloud PG in black. PG Bounding box in red,
scaled by a factor s > 1. Identified points (green) inside bounding box. (b) Lines generated (black)
between candidate points. (c) In red, point cloud generated by sampling the joining lines. (d) Final
bridge mesh that will connect the Skeleton subsets.

Case 1. Boundary-based bridges among MA subsets. In the first case, N Skeleton
subsets are to be connected through their boundaries. Joining lines are established between
all the points enclosed by the bounding box (see Algorithm 3), except between those
belonging to the same subset, as shown in Figure 4b.

After joining the points, the joining lines are sampled, as shown in Figure 4c. We want
to later triangulate these sampled points to form a surface mesh. Thus, points too close to
the line endpoints are discarded to avoid intersections with the Skeleton subsets. Finally,



Algorithms 2025, 18, 546 11 of 25

the resulting sampled point cloud is triangulated (Figure 4d), following the same approach
as the 2D Skeleton subset triangulation in Section 3.6.

If only two Skeleton subsets are to be joined, we still create joining lines and sample
them as in Case 1: Boundary-based bridges among MA subsets. However, we check if the
sampled point cloud resembles a line by doing PCA with said point cloud [41]. If the point
cloud was identified as 1D, we choose the joining line that is closer to the centroid of said
point cloud and thus skip the process of creating a bridge mesh.

Case 2. Interior-based connections among MA subsets. When joining two Skeleton
subsets and not all the candidate points lie on the boundaries, we do not create bridges
and instead produce connections according to two main scenarios: (1) Candidate points
resemble a polyline, and (2) candidate points do not resemble a polyline. The polylines do
not need to be closed; however, we do not handle self-intersecting polylines. A combination
of possible scenarios can be seen in Figure 5. In Section Mesh Stitching, we explain the
algorithm to create the connections for said scenarios.

(a) (b) (c)

Figure 5. Possible scenario encounters when candidate points do not lie on boundaries: (a) Candidate
points (red) resemble a polyline only in a Skeleton subset. The connection (green) resembles a conical
shape. (b) In neither Skeleton subset, candidate points resemble a polyline. The connection is a
straight line. (c) Candidate points in both Skeleton subsets resemble a polyline. The connection
resembles a cylindrical shape.

Mesh Stitching

Once a bridge is created, the next step is to fill the gap between the Skeleton subsets
and the bridges in order to obtain a fully connected Skeleton. We first address the case
where the bridge connects Skeleton subsets by its boundary.

We begin by identifying pairs of vertices between the Skeleton subset and the bridge
that are within a specified proximity threshold (davg). See Section 3.8. Using these matched
vertices, we extract a sequence of connected points that forms a closed path spanning both
the Skeleton subset and the bridge mesh.

This path contains points from both structures. To construct a blending structure in it,
we apply Algorithm 4 as follows:

We first take the sequence of points from the Skeleton subset that lie on the path and
iterate over them. For each pair of consecutive points, we attempt to form a triangle using
those two points and an optimal third point selected from the bridge-side points along the
path (lines 2–6). We then repeat the process symmetrically: iterating over the bridge-side
points and selecting the third point from the Skeleton subset.

In other words, we extract a sequence of points P from the Skeleton subset and a
sequence of points Q from the bridge, and pass these as inputs to Algorithm 4.



Algorithms 2025, 18, 546 12 of 25

Algorithm 4: Blend Creation via Simple Loop Traversing
Input : Point sequences P = {p0, . . . , pm−1} and Q = {q0, . . . , qn−1} with

pk, qk ∈ R3

Output : Blend triangular mesh M
1 for i = 0 to m − 2 do
2 v0 = P.pointAtIndex(i);
3 v1 = P.pointAtIndex(i + 1);
4 p = (v0 + v1)/2; ; // midpoint between v0 and v1

5 v2 = getClosestPoint(p, Q);
6 t = Triangle(v0, v1, v2);
7 if t /∈ M and t is not too skinny then
8 M.AddTriangle(t);
9 end

10 end
11 for j = 0 to n − 2 do
12 v0 = Q.pointAtIndex(j);
13 v1 = Q.pointAtIndex(j + 1);
14 p = (v0 + v1)/2;
15 v2 = getClosestPoint(p, P);
16 t = Triangle(v0, v1, v2);
17 if t /∈ M and t is not too skinny then
18 M.AddTriangle(t);
19 end
20 end

Figure 6 illustrates an example in which the algorithm is applied twice to connect a
bridge with two different Skeleton subsets.

In the first step, the black point cloud is partitioned into P and Q, where P consists
of a sequence of points on the 1D Skeleton subset, and Q consists of the corresponding
point sequence on the bridge. The blending mesh is computed using these inputs. In the
second step, the red point cloud is similarly divided into P and Q, and the algorithm is
applied again.

The resulting blending meshes connect the bridge to the Skeleton subsets, as shown in
Figure 6b.

(a) (b)

Figure 6. Bridge–Skeleton blending on a wing of the Airplane dataset: (a) In black and red: point
sets used for the joining of a bridge (green) with a 1D Skeleton subset (top) and a 2D Skeleton subset
(bottom), respectively. (b) Resulting blend meshes in yellow.



Algorithms 2025, 18, 546 13 of 25

The bottom line of the described Algorithm 4 is the creation of a blend between two
polylines. Therefore, the same algorithm can be applied to join the identified points in
Case 2: Interior based connections among MA subsets, where the candidate points do not
lie on the boundary but do resemble a polyline (Figure 5a,b).

In the case where candidates in neither Skeleton subset resemble a polyline (Figure 5c),
we choose the joining line that is closer to the centroid of the candidate points. An example
of this type of union is presented in Figure 7.

(a) (b)

Figure 7. Junction of 1D and 2D Skeleton disconnected subregions. Cup dataset. Mesh M in gray.
Cup handle section view: (a) Stage 3: Synthesis of connections among 1D/2D simplicial regions
through undefined point sub-clouds. Refer to Figure 1. (b) Stage 3 final result.

3.8. Parameter Tuning

Currently, our approach requires the manual input of the parameters ε, α and β. To
compute the PCA ball radius we opt for making the radius a function of an statistical value
based on the edge lengths of the input shape M, in this case RPCA = εdavg.

Since the parameters α and β dictate the identified dimension of PSRF subsets, they can
be tuned to obtain Medial Axes that are fully 1D or 2D. In our experiments, we found that a
value of ε = 3 allows for a good dimension identification process, along with α = 4, β = 4.

An overview of the parameter tuning process is shown in Figure 8, and it goes as
follows: we first extract an average length value davg from the set of edges EM of the input
mesh. We use this value to compute each PCA ball radius RPCA. We then use α and β to
identify Curves, Surfaces, and a Gray Zone point cloud PG. The point cloud is clustered
by grouping points that are closer than davg to each other. Finally, with the clustered Gray
Zones P∗

G, we carry out the joining process of the Skeleton.

Figure 8. Synthesis for the parameter tuning procedure in our approach for Medial Axis approximation.



Algorithms 2025, 18, 546 14 of 25

3.9. Parameter Influence

The parameter ε directly influences the size of the PCA Balls used to classify lo-
cal neighborhoods of the SRF point cloud. We compute the radii of the PCA Balls as
RPCA = εdavg, where davg is the average edge length of the input mesh. This means that
bigger ε values will generate bigger PCA Balls.

Ideally, the PCA Balls must be large enough to correctly capture the underlying
dimension of each local neighborhood of the SRF Point Cloud PSRF, but not too large that
a single PCA Ball encloses unrelated PSRF regions. In Figure 9, a PSRF that samples (with
noise) a circumference is used to show how the value of ε may change the underlying
dimension of the enclosed point cloud subsets.

The values for ε that we provide in the following paragraphs correspond to results
from our experiments, where davg was, on average, 1% of the length of the diagonal
bounding box of the input mesh.

If ε is too small (e.g., 1 < ε < 2), the enclosed point cloud subsets of the PSRF will
lack a clear tendency towards a curve or a surface. This case is shown in Figure 9a, where
each enclosed point cloud subset resembles a solid sphere, causing eigenvalue ratios of
λ1/λ2 ≈ 1 and λ2/λ3 ≈ 1, i.e., they resemble a solid.

Moderate ε values (e.g., 3 < ε < 6) create PCA Balls that enclose point cloud subsets
with clearer curve or surface tendencies. This case is shown in Figure 9b, where each
enclosed point cloud subset resembles a solid but tubular shape, causing the eigenvalue
ratios λ1/λ2 ≈ 4 and λ2/λ3 ≈ 1, i.e., each point cloud subset potentially samples a curve.
This is the desired behavior in this particular example, given that PSRF originally samples a
1D structure.

Too large ε values (e.g., ε > 7) can create PCA Balls that enclose very large portions of
the PSRF, which could cause loss of detail or misidentification of the underlying Skeleton
structure. In Figure 9c, the resulting enclosed point subset is the entire PSRF, causing the
eigenvalue ratios to be λ1/λ2 ≈ 1 and λ2/λ3 ≈ 12, i.e., the points potentially sample a
surface. This is an undesired behavior, since PSRF originally samples a 1D structure.

(a) (b) (c)

Figure 9. Influence of parameter ε on the eigenvalue ratios of local neighborhoods within the Shape
Radius Function point cloud PSRF (blue points). PSRF samples (with noise) a circumference. In this
figure, λ1 > λ2 > λ3 are the eigenvalues returned by every local Principal Component Analysis
(PCA) on average: (a) Small ε. PCA Balls (red) yield solid-like eigenvalue ratios. (b) Moderate ε. PCA
Balls yield curve-like eigenvalue ratios. (c) Too large ε. PCA Balls yield surface-like eigenvalue ratios.

Let λ1 > λ2 > λ3 be the eigenvalues obtained from applying PCA on a local neighbor-
hood of the SRF point cloud (Algorithm 1 line 4). α is the minimum ratio λ1/λ2 > α that
must be satisfied in order for the enclosed point cloud subset to be classified as belonging to
a curve. β is the minimum ratio λ2/λ3 > β that must be satisfied in order for the enclosed
point cloud subset to be classified as belonging to a surface.



Algorithms 2025, 18, 546 15 of 25

Setting α = 1 means that all local neighborhoods of the SRF point cloud PSRF will pass
the check of curve tendency, since the eigenvalues from each PCA Ball will always hold
that λ1/λ2 ≥ 1.

In the same way, setting β = 1 means that all point subsets of PSRF will pass the
check of surface tendency, since the eigenvalues from each PCA Ball will always hold that
λ2/λ3 ≥ 1.

This means that, if α = β = 1, all the local neighborhoods within the SRF point cloud
will be classified exclusively as 1D or 2D, depending on the order in which the eigenvalue
ratios are checked (see Algorithm 1 lines 4 to 12).

Figure 10 shows how the final dimension of the Skeleton of an input mesh M changes
depending on the values set for α and β. If α ≈ β (e.g., α = β = 3) then the Skeleton will
likely have a mixture of 1D and 2D elements. This behavior can be seen in Figure 10b.

If α ≫ β (e.g., α = 100 and β = 1) then all local neighborhoods of PSRF will likely fail
the curve tendency test and will pass the surface tendency test. This means that all the
local neighborhoods of PSRF can be used only to build 2D structures, leading to pure 2D
Skeletons (Figure 10c).

If β ≫ α (e.g., α = 1 and β = 100) then all local neighborhoods of PSRF will likely fail
the surface tendency test and will pass the curve tendency test. In this setting, all the local
neighborhoods of PSRF will be used to build 1D structures, leading to pure 1D Skeletons
(Figure 10d).

Figure 10d also shows that forcing apparent 2D Skeleton regions to be 1D can lead to
artifacts in the final Skeleton, such as loss of centrality.

(a) (b) (c) (d)

Figure 10. Influence of parameters α and β on the dimension of the computed Skeleton of a triangular
mesh M: (a) The input mesh M. M contains both planar-like and curve-like regions. (b) α = β = 3.
A mixed 1D/2D Skeleton is computed. (c) α = 100, β = 1. A 2D Skeleton is computed. (d) α = 1,
β = 100. A 1D Skeleton in computed.

Scale Invariance

Let P = {p0, p1, . . . , pn}, pi ∈ R3 be an arbitrary 3D point cloud, and let p denote its
centroid. The covariance matrix K can be computed as

K =
1
n

n

∑
i=0

(pi − p)(pi − p)T (2)

If the point cloud is uniformly scaled by a factor s, the new covariance matrix
K′ becomes

K′ =
1
n

n

∑
i=0

(spi − sp)(spi − sp)T = s2
n

∑
i=0

(pi − p)(pi − p)T = s2K (3)



Algorithms 2025, 18, 546 16 of 25

This shows that uniformly scaling the input by a factor s results in the covariance ma-
trix being scaled by a factor of s2. Moreover, if λ is an eigenvalue of K, with corresponding
eigenvector v, then

K′v = (s2K)v = s2(Kv) = s2λv (4)

Thus, if λ is an eigenvalue of the original covariance matrix K, then s2λ is an eigenvalue
of the scaled covariance matrix K′ = s2K. Additionally, the eigenvectors remain unchanged.
In other words, scaling a point cloud by a factor s scales the eigenvalues produced by PCA
by s2, while preserving the eigenvectors.

In our method, the local structure of the SRF point cloud PSRF is classified using
the ratios of the eigenvalues λ1, λ2, λ3 obtained from local PCA. Specifically, a region is
classified as curve-like if λ1/λ2 > α, and as surface-like if λ2/λ3 > β. When the input mesh
is scaled by a factor s, the point cloud PSRF is also scaled accordingly. The new eigenvalue
ratios become:

s2λ1

s2λ2
=

λ1

λ2
,

s2λ2

s2λ3
=

λ2

λ3
(5)

This demonstrates that the eigenvalue ratios are invariant to the scale of the input
data. Consequently, the parameters α and β are independent of the scale of the point
cloud. Similarly, the parameter ε is also scale-invariant, since it appears in the expression
RPCA = εdavg, where davg is the average edge length of the input mesh, and therefore scales
as sdavg.

This scale invariance makes our method robust across datasets with different units or
scale conventions (e.g., meters vs millimeters).

4. Results
In this section, we present the results, timing, and complexity comparisons of our

algorithm with the other two relevant Medial Axis approximation approaches, which have
publicly available code: QMAT [24] and Mean Curvature Skeletons (MCS) [23].

In Figure 11, we show the Skeletons obtained with QMAT, MCS, and our approach
for several datasets. For our method, Green and yellow triangles indicate the bridges and
connections, respectively, previously explained in Section 3.7.

For clarity, abbreviations and terms used in this manuscript appear in a glossary,
which is presented at the end of this manuscript, before the references.

4.1. Experimental Setup

All programs were run on a Windows 10 PC with an Intel Core i5-7500 CPU 3.4 GHz
and 8 GB of RAM. All the reported timings correspond to a value averaged over 5 runs.

For QMAT, the number of vertices that the final Skeleton will have must be specified.
We used a value of 500 vertices, since it generally yields a good enough approximation for
the Medial Axis, as can be seen in their work [24]. For MCS, we used the default parameter
values that their software provided, with an iteration number of 5. For our algorithm, we
used values of ε = 3, α = 4 and β = 4 for all the presented datasets.



Algorithms 2025, 18, 546 17 of 25

Figure 11. Contrast with other Medial Axis approximation strategies. Our method vs. [23,24].
Columns: 1 = Input mesh M, 2 = MCS [23], 3 = QMAT [24], 4 = our method.

4.2. Performance Analysis

The time taken for the Medial Axis approximation algorithms to run is presented in
Table 2 and Figure 12, where it can be seen that QMAT is the approach that took longer
to run, followed by MCS and finally by our approach, which was the fastest in all the
evaluated datasets.



Algorithms 2025, 18, 546 18 of 25

Table 2. Execution Processor time comparison. Our method vs. [23,24]. First column: model name.
Second and 3rd columns: number of vertices and faces of the model, respectively. Fourth column:
QMAT [24]. Displayed times (seconds) in software QMATTM [43]. 5th column: MCS [23]. Displayed
times (seconds) in software STARLABTM [44]. 6th column: Our approach. Processor Usage times
(seconds). Compilable version of QMAT [24] was not found.

Dataset Verts Faces QMAT [24] MCS [23] Ours

Airplane 7739 15474 4.52 0.856 0.183
Ant 5867 11730 3.57 0.769 0.17
Bird 6351 12698 3.76 0.716 0.149
Chair 10500 21008 6.81 1.128 0.202
Cup 7652 15304 4.33 1.004 0.168
Hand 5468 10932 3.26 0.667 0.146

Figure 12. Execution Processor times. Our method vs. QMAT [24] vs. MCS [23]. QMAT [24]:
Displayed times in software QMATTM [43]. MCS [23]: Displayed times in software STARLABTM [44].
Our approach: Processor Usage times. Vertical axis is logarithmic. Compilable version of QMAT [24]
was not found.

Notice that it is unclear if the displayed time of our competitors refers to wall clock
time, Processor Usage time, or another kind of metric.

In addition to the timing table, we present an algorithm time complexity analysis in
Table 3 based on the number of vertices of the input mesh. The complexity was calculated
by using the standard costs of each different task.

Table 3. Time complexities of different Medial Axis approximation methods. Our method
vs. [10,23,24]. n is the number of points in the input model. The complexity was calculated based on
the standard costs of each different task.

Shape Diameter Function Approaches

Approach Shape Diameter
Function Synthesis of PSRF

Dimension
Identification

Medial Axis
Building Overall

Shapira et al. [10] O(n2) O(n) — O(n2) O(n2)
Ours O(n2) O(n) O(n log n) O(n log n) O(n2)

Voronoi Approaches

Approach Preprocessing Voronoi Medial
Axis

Parameter
Initialization

Medial Axis
Simplification Overall

QMAT [24] O(n) O(n2) O(n) O(n log n) O(n2)
MCS [23] O(n3) O(n2) O(n2) O(n3) O(n3)

In Table 3, it is shown that our algorithm maintains the overall time complexity of
Shapira et al. [10] but with the advantage of being able to handle mixed 1D/2D Skeletons,
unlike Shapira’s which only produces 1D Skeletons. Besides, in comparison with QMAT
and MCS, our approach does not increase complexity.



Algorithms 2025, 18, 546 19 of 25

The Shape Diameter Function has a complexity of O(n2), as we cast a ray for each
triangle in the mesh and check for intersections. Notice that this operation can be opti-
mized using data structures like Bounding Volume Hierarchies (BVH) or by leveraging the
GPU, both of which are efficient for ray-triangle queries and can significantly reduce the
complexity. However, to ensure fair comparisons in the complexity analysis, we use the
standard costs for the core steps across all methods.

The SRF point cloud PSRF is computed in O(n) time, since for each triangle of the input
mesh we generate a point (see Section 3.5).

In the dimension identification step of our method, we downsample PSRF to obtain
center points for the PCA balls. This downsampling can be performed using a voxel grid
filter, with linear complexity O(n). For each center, we identify the point subset from
PSRF that are contained in a sphere centered at the current point. These neighborhood
queries are executed using a kd tree, which has a build complexity of O(n log n) and a
per-query complexity of O(log n + k), where k is the number of points returned. Each PCA
computation is O(k). Since k ≪ n, and the number of centers is much less than n, the total
complexity is dominated by the kd tree construction, resulting in an overall complexity of
O(n log n) for the dimension identification step.

In the Medial Axis building step, we cluster point clouds using PCL’s Euclidean
Cluster Extraction [42], with complexity O(n log n). Piecewise linear approximations
involve PCA to estimate directions (for curves) and normals (for surfaces), along with
k-d tree queries, also at O(n log n). Bounding box computation and point-in-box checks
each run in O(n). Assuming the Skeleton includes bridges and connections, the overall
complexity of the building step is O(n log n). Consequently, the total time complexity of
our method (including all steps) is O(n2).

Shapira et al. [10] do not perform a dimension identification step, as their method
assumes that Skeletons are always 1D. Neighborhood queries are performed for all n input
points in order to estimate local 1D structures. Each query may involve comparing against
all other points, leading to a complexity of O(n2). Additional steps, such as grouping and
connecting these local structures, do not introduce higher asymptotic costs. Therefore, the
overall complexity of the method is O(n2).

In QMAT [24], the input mesh must first be sampled to enable the initial computation
of the Medial Axis. Assuming uniform sampling, this step has a linear complexity of O(n).
The computation of the initial Medial Axis involves constructing a Delaunay triangulation,
which can have a complexity of O(n2) in 3D. Before simplifying the Medial Axis, Q-MAT
computes both the optimal contraction target and the collapse cost for each edge, which
is a linear operation O(n). The subsequent simplification of the Medial Axis adopts the
edge collapse strategy introduced by Garland and Heckbert [25], which has a complexity
of O(n log n). The overall time complexity of the QMAT is then O(n2).

In MCS [23], the input mesh is finely remeshed and sampled to obtain high-quality
Voronoi poles. This preprocessing step can take up to O(n3), depending on the desired
quality. Computing the initial Voronoi diagram takes O(n2). Medial Axis simplification
is performed iteratively, with a cost of O(n2) for structure preparation (e.g., Laplacian
computation, weight assignment, remeshing), followed by linear system solving at up to
O(n3). Thus, the overall time complexity of MCS is O(n3).

We present a comparison of the evolution of the execution times with larger input
sizes (Figure 13), between our method and QMAT. The MCS software did not admit
the computation of the Skeleton for meshes with a large amount of triangles (more than
600,000), which is why it is excluded from this analysis.

Figure 13a shows that both methods (Ours and QMAT) exhibit quadratic growth in
execution time as input size increases. However, our method has a smaller constant factor



Algorithms 2025, 18, 546 20 of 25

and demonstrates better practical scalability. The log–log plot in Figure 13b supports this
observation: both methods have slopes near 2, indicating near-quadratic time complexity.
Specifically, our method has a slope of 1.8, compared with QMAT’s 1.9, and our fitted line
lies below QMAT’s, reflecting lower execution times across all input sizes. The fact that
the slopes deviate slightly from 2 may be due to implementation-specific optimizations,
deviations from worst-case behavior, or measurement variability.

(a) (b)

Figure 13. Execution time comparison between our method and QMAT [24] as a function of input size:
(a) Execution time vs Input Size. Both methods exhibit quadratic growth. Our method consistently
achieves lower times. (b) Log–log plot of Execution time vs Input Size. Fitted slopes of 1.8 with
R2 = 0.99 (ours) and 1.9 with R2 = 0.98 (QMAT) indicate near-quadratic time complexity and better
scalability for our method.

4.3. Robustness to Noise

In this section, we evaluate the effect of noise of the input mesh M vertices on our
computed Skeleton. Noise is created by displacing the vertices of M along their normals by
a random value between 0 and ϵmax (Noise Level). Noise Level is measured in percentage
with respect to the length of the diagonal of the bounding box of M. Notice that the Noise
Level is conditioned by the fact that M must preserve its manifoldness.

Figure 14 shows the effect of noise on a Cup dataset. For this analysis, we used ϵ = 4,
α = 6 and β = 4. The Hausdorff distance metric was used to measure the error between
the computed Skeletons and the Skeleton corresponding to the zero noise mesh.

Naturally, as the Noise Level increases, so does the error in the resulting Skeletons. As
the SRF point cloud PSRF becomes more scattered, the quality of local geometric estimates
deteriorates, resulting in approximated structures that are increasingly irregular and less
smooth. This behavior is expected, since it is well known that, in manifold learning,
the density and uniformity of data sampling critically influence the accuracy of local
neighborhood approximations.

At noise levels too high, all the local neighborhoods of PSRF fail the test for curve or
surface tendency, causing our algorithm to classify all local neighborhoods as Gray Zones.
Since no Curve or Surface could be identified, no Skeleton can be built.



Algorithms 2025, 18, 546 21 of 25

Figure 14. Effect of noise of the mesh vertices upon the quality of our Skeletons. Upper limit
(column 5) in the noise level corresponds to mesh becoming non-manifold (by self-intersections).
Percentages are computed with respect to the length of the diagonal in the input dataset bounding
box.

4.4. Limitations

Our method inherits the advantages and disadvantages of the Shape Diameter Func-
tion, which means that we benefit from qualities such as pose invariance and fast computa-
tion [10]. However, for some solids (e.g., symmetric prismatic shapes), the SDF is not able
to generate a sampling of the Medial Axis and thus its computation can not be performed.

Figure 15 illustrates this limitation using a 2D square and rectangle. In both cases, the
SRF point cloud PSRF does not capture parts of the Medial Axis, especially near the corners,
and includes points where the Medial Axis does not exist. In the square, only one point
from PSRF lies on the true Medial Axis. In the rectangle, more points fall along the central
segment, but the diagonal branches near the corners remain unsampled. Several points
still appear in regions unrelated to the Medial Axis.

(a) (b)

Figure 15. Two-dimensional illustration of the limitation of the Shape Diameter Function (SDF)-based
point cloud PSRF in sampling the Medial Axis of prismatic shapes. True Medial Axis is shown in
blue. PSRF is shown in red: (a) Square shape. Only one point from PSRF lies on the Medial Axis. (b)
Rectangle shape. Only the central segment of the Medial Axis is sampled by PSRF.



Algorithms 2025, 18, 546 22 of 25

This behavior is not caused by errors in our method. Instead, it follows directly from
the definition of the PSRF: points projected inward from triangle incenters (or edge mid-
points in 2D) at half the local thickness, given by the Shape Diameter Function (SDF).
The limitation is therefore inherent to the use of SDF-based point clouds, not to the
algorithm itself.

5. Conclusions and Future Work
We present a method to compute a Medial Axis approximation of a triangular mesh

M by doing Direct Palpation on a point cloud derived from the Shape Diameter Function
of M. Unlike existing Voronoi-based methods that rely on the computation of an initial
fibrous Medial Axis and then simplify it, ours do not require performing simplification and
instead build a Skeleton directly. In comparison with the SDF-based method presented by
Shapira et al. [10], ours is capable of producing mixed 1D and 2D Skeletons.

Future work includes a generalization for the problem of joining disconnected Medial
Axes subsets, as our current method only addresses specific scenarios that depend on the
disposition of identified points on the MA subsets (Figure 5). Future work also includes
reducing the amount of manually input parameters for the method so that it is completely
self-tuning.

The geometric cues present in the SRF point cloud also open the door to learning-based
strategies. These might assist in estimating the optimal value for parameters (ϵ, α, β) or
eliminating their need at all. Learning methods could also be explored to assist in deciding
how to join disconnected Skeleton components or in predicting the complete Skeleton
structure from the SRF point cloud.

To better handle high-frequency neighborhoods, our method might benefit from
incorporating local surface descriptors or adaptive sampling to better capture fine details.
However, prismatic shapes and sharp corners remain challenging because the SRF point
cloud does not represent them well for the purpose of Skeleton extraction. This limitation
might be alleviated by combining SRF data with other geometric representations suited to
such cases.

Author Contributions: Conceptualization, D.M.-P., A.A., C.C., and O.R.-S.; methodology, D.M.-P.,
A.A., and O.R.-S.; software, A.F.P.-A.; formal analysis, C.C.; investigation, A.F.P.-A., D.M.-P., and
O.R.-S.; writing—original draft preparation, A.F.P.-A., D.M.-P., A.A., C.C., and O.R.-S.; writing—
review and editing, A.F.P.-A.; supervision, D.M.-P. and A.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: The datasets used in this paper are public and available at the Princeton
Segmentation Benchmark repository at Princeton University, USA (Chen et al. [45]).

Conflicts of Interest: The authors declare no conflicts of interest.

Glossary
The following terms are used in this manuscript:

PL Piecewise linear.
MA Medial Axis. The Medial Axis of a solid region B ⊂ R3 is the set of points (x, y, z)

which are centers of spheres simultaneously touching the boundary of B at 2 or
more points. The MA of B ⊂ R3 is generally made up of multiple surface and curve
neighborhoods connected in non-manifold configurations.

MAT Medial Axis Transform.
Skeleton Approximation of the Medial Axis obtained by ignoring high frequency fibrillations

of the Medial Axis.



Algorithms 2025, 18, 546 23 of 25

PCA Principal Component Analysis.
PCA Ball Open ball B(p, r) centered at p with radius r. Used for local PCA of a subset (enclosed

by B) of a point cloud.
RPCA Radius of the balls used for local PCA.
ε Safety factor for d to compute RPCA, i. e. RPCA = εd.
λ1, λ2, λ3 Principal component eigenvalues obtained from a PCA ball.
α 1st-to-2nd eigenvalue ratio. Used for point subset 1D identification.
β 2nd-to-3rd eigenvalue ratio. Used for point subset 2D identification.
B 3D body. Compact subset of R3 with boundary or border M = ∂B.
M 2-manifold triangular mesh M = (X , T ). Represented as a set of points X :

{x1, x2, . . . , xn} ⊂ R and a set of triangles T = {t1, t2, . . . , tm}.
SDF Shape Diameter Function. Scalar function f : M → R+ representing the “width”

(neighborhood-diameter [10]) of M at each point p ∈ M.
SRF Shape Radius Function. Scalar function corresponding to half the values of the SDF.
PSRF SRF Point Cloud. Obtained by projecting points p ∈ M along their inward normal at

half their SDF value.
Clusters Subsets of point cloud PSRF defined by their euclidean distance proximity.
PC Subsets of PSRF point cloud, identified as 1-dimensional (1D).
PS Subsets of PSRF point cloud, identified as 2-dimensional (2D).
PG Subsets of PSRF point cloud, identified as neither 1D or 2D, also called Gray Zones.
k-simplex A 0-simplex, 1-simplex, 2-simplex, 3-simplex is a vertex, straight segment, triangular

area and solid tetrahedron, respectively.
Face A face of a 2-simplex is a 1-simplex (straight edge). A face of a 1-simplex is a 0-simplex

(vertex). The faces of a k-simplex include all its constitutive k − 1, k − 2, . . . simplexes.
S Simplicial Complex. Set of simplexes, and their faces, which satisfy that for all

sk, sw ∈ S , either (1) sk ∩ sw = ∅, or (2) sk ∩ sw ∈ S .
C PL curves. One-dimensional simplicial subsets of the Skeleton.
S PL surfaces. Two-dimensional simplicial subsets of the Skeleton.
P∗

C, P∗
S , P∗

G Segmented versions of point clouds PC, PS and PG, respectively.
Bridge 2D triangular mesh that quasi communicates 1D and 2D Skeleton subsets. In order to

avoid self-intersections, bridges do not reach the MA subsets that they communicate
with. Instead, a blended surface is used to fill the remaining gap between the bridge
and the MA subsets.

T Set of bridges. Bridges T cover point cloud neighborhoods with neither 1D nor 2D
statistical character.

BL Blend (triangle) neighborhoods which smoothly join bridges T with C and S. PL
surfaces.

CN Connections. One-dimensional/2D simplex sets which join interior and/or border
neighborhoods of 1D/2D Skeleton subsets.

UM Final Result of the implemented algorithm. One-dimensional/2D Simplicial Complex
that approximates the Medial Axis of M. UM = C ∪ S ∪ T ∪ BL ∪ CN.

References
1. Saeed, H.; Skalski, A. Vessel Geometry Estimation for Patients with Peripheral Artery Disease. Sensors 2024, 24, 6441.

https://doi.org/10.3390/s24196441.
2. Amenta, N.; Choi, S.; Kolluri, R.K. The power crust. In Proceedings of the SMA ’01, Ann Arbor, MI, USA, 4–8 June 2001; pp.

249–266. https://doi.org/10.1145/376957.376986.
3. Wu, S.; Huang, H.; Gong, M.; Zwicker, M.; Cohen-Or, D. Deep points consolidation. ACM Trans. Graph. 2015, 34, 1–13.

https://doi.org/10.1145/2816795.2818073.
4. Lin, C.; Liu, L.; Li, C.; Kobbelt, L.; Wang, B.; Xin, S.; Wang, W. SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform.

IEEE Trans. Vis. Comput. Graph. 2022, 28, 2430–2444. https://doi.org/10.1109/TVCG.2020.3032566.
5. Dou, Z.; Xin, S.; Xu, R.; Xu, J.; Zhou, Y.; Chen, S.; Wang, W.; Zhao, X.; Tu, C. Top-Down Shape Abstraction Based on Greedy Pole

Selection. IEEE Trans. Vis. Comput. Graph. 2021, 27, 3982–3993. https://doi.org/10.1109/TVCG.2020.2995495.

https://doi.org/10.3390/s24196441
https://doi.org/10.1145/376957.376986
https://doi.org/10.1145/2816795.2818073
https://doi.org/10.1109/TVCG.2020.3032566
https://doi.org/10.1109/TVCG.2020.2995495


Algorithms 2025, 18, 546 24 of 25

6. Boujou, M.; Iguernaissi, R.; Nicod, L.; Merad, D.; Dubuisson, S. In-Depth Analysis of GAF-Net: Comparative Fusion Approaches
in Video-Based Person Re-Identification. Algorithms 2024, 17, 352. https://doi.org/10.3390/a17080352.

7. Hu, J.; Wang, B.; Qian, L.; Pan, Y.; Guo, X.; Liu, L.; Wang, W. MAT-Net: Medial Axis Transform Network for 3D Object Recognition.
In Proceedings of the IJCAI ’19, Macao, China, 10–16 August 2019; pp. 774–781. https://doi.org/10.24963/ijcai.2019/109.

8. Yang, B.; Yao, J.; Guo, X. DMAT: Deformable Medial Axis Transform for Animated Mesh Approximation. Comput. Graph. Forum
2018, 37, 301–311. https://doi.org/10.1111/cgf.13569.

9. Blum, H. A transformation for extracting new descriptors of shape. In Models for the Perception of Speech and Visual Form;
Wathen-Dunn, W., Ed.; MIT Press: Cambridge, MA, USA, 1967; pp. 362–381.

10. Shapira, L.; Shamir, A.; Cohen-Or, D. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis.
Comput. 2008, 24, 249–259. https://doi.org/10.1007/s00371-007-0197-5.

11. Tagliasacchi, A.; Delame, T.; Spagnuolo, M.; Amenta, N.; Telea, A. 3D Skeletons: A State-of-the-Art Report. Comput. Graph. Forum
2016, 35, 573–597. https://doi.org/10.1111/cgf.12865.

12. Au, O.K.C.; Tai, C.L.; Chu, H.K.; Cohen-Or, D.; Lee, T.Y. Skeleton extraction by mesh contraction. ACM Trans. Graph. 2008,
27, 1–10. https://doi.org/10.1145/1360612.1360643.

13. Cao, J.; Tagliasacchi, A.; Olson, M.; Zhang, H.; Su, Z. Point Cloud Skeletons via Laplacian Based Contraction. In Proceedings of
the SMI ’10, Aix-en-Provence, France, 21–23 June 2010; pp. 187–197. https://doi.org/10.1109/SMI.2010.25.

14. Thiery, J.M.; Guy, E.; Boubekeur, T. Sphere-Meshes: Shape approximation using spherical quadric error metrics. ACM Trans.
Graph. 2013, 32. https://doi.org/10.1145/2508363.2508384.

15. Palágyi, K.; Kuba, A. A Parallel 3D 12-Subiteration Thinning Algorithm. Graph. Model. Image Process. 1999, 61, 199–221.
https://doi.org/10.1006/gmip.1999.0498.

16. Németh, G.; Kardos, P.; Palágyi, K. Topology Preserving 3D Thinning Algorithms Using Four and Eight Subfields. In Proceedings
of the Image Analysis and Recognition, Varzim, Portugal, 21–23 June 2010; pp. 316–325. https://doi.org/10.1007/978-3-642-1377
2-3_32.

17. Moreno-Avendano, S.; Mejia-Parra, D.; Ruiz-Salguero, O. Triangle mesh skeletonization using non-deterministic voxel thinning
and graph spectrum segmentation. MATEC Web Conf. 2021, 336, 02030. https://doi.org/10.1051/matecconf/202133602030.

18. Németh, G.; Kardos, P.; Palágyi, K. Thinning combined with iteration-by-iteration smoothing for 3D binary images. Graph.
Models 2011, 73, 335–345. https://doi.org/10.1016/j.gmod.2011.02.001.

19. Sun, F.; Choi, Y.K.; Yu, Y.; Wang, W. Medial Meshes – A Compact and Accurate Representation of Medial Axis Transform. IEEE
Trans. Vis. Comput. Graph. 2016, 22, 1278–1290. https://doi.org/10.1109/TVCG.2015.2448080.

20. Chazal, F.; Lieutier, A. The ‘λ-medial axis’. Graph. Models 2005, 67, 304–331. https://doi.org/10.1016/j.gmod.2005.01.002.
21. Miklos, B.; Giesen, J.; Pauly, M. Discrete scale axis representations for 3D geometry. In Proceedings of the ACM SIGGRAPH 2010

Papers, Los Angeles, CA, USA, 26–30 July 2010; pp. 1–10. https://doi.org/10.1145/1833349.1778838.
22. Faraj, N.; Thiery, J.M.; Boubekeur, T. Progressive medial axis filtration. In Proceedings of the SIGGRAPH Asia 2013 Technical

Briefs, Hong Kong, China, 19–22 November 2013; pp. 1–4. https://doi.org/10.1145/2542355.2542359.
23. Tagliasacchi, A.; Alhashim, I.; Olson, M.; Zhang, H. Mean Curvature Skeletons. Comput. Graph. Forum 2012, 31, 1735–1744.

https://doi.org/10.1111/j.1467-8659.2012.03178.x.
24. Li, P.; Wang, B.; Sun, F.; Guo, X.; Zhang, C.; Wang, W. Q-MAT: Computing Medial Axis Transform By Quadratic Error

Minimization. ACM Trans. Graph. 2016, 35, 1–16. https://doi.org/10.1145/2753755.
25. Garland, M.; Heckbert, P.S. Surface simplification using quadric error metrics. In Proceedings of the SIGGRAPH ’97, Los Angeles,

CA, USA, 3–8 August 1997; pp. 209–216. https://doi.org/10.1145/258734.258849.
26. Pan, Y.; Wang, B.; Guo, X.; Zeng, H.; Ma, Y.; Wang, W. Q-MAT+: An error-controllable and feature-sensitive simplification

algorithm for medial axis transform. Comput. Aided Geom. Des. 2019, 71, 16–29. https://doi.org/10.1016/j.cagd.2019.04.007.
27. Dou, Z.; Lin, C.; Xu, R.; Yang, L.; Xin, S.; Komura, T.; Wang, W. Coverage Axis: Inner Point Selection for 3D Shape Skeletonization.

Comput. Graph. Forum 2022, 41, 419–432. https://doi.org/10.1111/cgf.14484.
28. Wang, Z.; Dou, Z.; Xu, R.; Lin, C.; Liu, Y.; Long, X.; Xin, S.; Komura, T.; Yuan, X.; Wang, W. Coverage Axis++: Efficient Inner Point

Selection for 3D Shape Skeletonization. Comput. Graph. Forum 2024, 43, e15143. https://doi.org/10.1111/cgf.15143.
29. Rebain, D.; Angles, B.; Valentin, J.; Vining, N.; Peethambaran, J.; Izadi, S.; Tagliasacchi, A. LSMAT Least Squares Medial Axis

Transform. Comput. Graph. Forum 2019, 38, 5–18. https://doi.org/10.1111/cgf.13599.
30. Lee, Y.; Baek, J.; Kim, Y.M.; Park, F.C. IMAT: The Iterative Medial Axis Transform. Comput. Graph. Forum 2021, 40, 162–181.

https://doi.org/10.1111/cgf.14266.
31. Ma, J.; Bae, S.W.; Choi, S. 3D medial axis point approximation using nearest neighbors and the normal field. Vis. Comput. 2012,

28, 7–19. https://doi.org/10.1007/s00371-011-0594-7.
32. Jalba, A.C.; Kustra, J.; Telea, A.C. Surface and Curve Skeletonization of Large 3D Models on the GPU. IEEE Trans. Pattern Anal.

Mach. Intell. 2013, 35, 1495–1508. https://doi.org/10.1109/TPAMI.2012.212.

https://doi.org/10.3390/a17080352
https://doi.org/10.24963/ijcai.2019/109
https://doi.org/10.1111/cgf.13569
https://doi.org/10.1007/s00371-007-0197-5
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1145/1360612.1360643
https://doi.org/10.1109/SMI.2010.25
https://doi.org/10.1145/2508363.2508384
https://doi.org/10.1006/gmip.1999.0498
https://doi.org/10.1007/978-3-642-13772-3_32
https://doi.org/10.1007/978-3-642-13772-3_32
https://doi.org/10.1051/matecconf/202133602030
https://doi.org/10.1016/j.gmod.2011.02.001
https://doi.org/10.1109/TVCG.2015.2448080
https://doi.org/10.1016/j.gmod.2005.01.002
https://doi.org/10.1145/1833349.1778838
https://doi.org/10.1145/2542355.2542359
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1145/2753755
https://doi.org/10.1145/258734.258849
https://doi.org/10.1016/j.cagd.2019.04.007
https://doi.org/10.1111/cgf.14484
https://doi.org/10.1111/cgf.15143
https://doi.org/10.1111/cgf.13599
https://doi.org/10.1111/cgf.14266
https://doi.org/10.1007/s00371-011-0594-7
https://doi.org/10.1109/TPAMI.2012.212


Algorithms 2025, 18, 546 25 of 25

33. Ge, M.; Yao, J.; Yang, B.; Wang, N.; Chen, Z.; Guo, X. Point2MM: Learning medial mesh from point clouds. Comput. Graph. 2023,
115, 511–521. https://doi.org/10.1016/j.cag.2023.07.020.

34. Clémot, M.; Digne, J. Neural skeleton: Implicit neural representation away from the surface. Comput. Graph. 2023, 114, 368–378.
https://doi.org/10.1016/j.cag.2023.06.012.

35. Lin, C.; Li, C.; Liu, Y.; Chen, N.; Choi, Y.K.; Wang, W. Point2Skeleton: Learning Skeletal Representations from Point Clouds. In
Proceedings of the CVPR ’21, Nashville, TN, USA, 20–25 June 2021; pp. 4275–4284. https://doi.org/10.1109/CVPR46437.2021.00
426.

36. Whittaker, E.T. On the Functions which are represented by the Expansions of the Interpolation Theory. Proc. R. Soc. Edinb. 1915,
35, 181–194. https://doi.org/10.1017/S0370164600017806.

37. Spivak, M.D. Calculus On Manifolds: A Modern Approach To Classical Theorems Of Advanced Calculus; Westview Press: Boulder, CO,
USA, 1971. ISBN-13: 978-0-8053-9021-6, ISBN: 0-8053-9021-9.

38. Ge, Y.; Li, Z.; Tang, H.; Chen, Q.; Wen, Z. Efficient rock joint detection from large-scale 3D point clouds using vectorization and
parallel computing approaches. Geosci. Front. 2025, 16, 102085. https://doi.org/10.1016/j.gsf.2025.102085.

39. Chen, Q.; Ge, Y.; Tang, H. Rock discontinuities characterization from large-scale point clouds using a point-based deep learning
method. Eng. Geol. 2024, 337, 107585. https://doi.org/10.1016/j.enggeo.2024.107585.

40. Croom, F.H., Geometric Complexes and Polyhedra. In Basic Concepts of Algebraic Topology; Springer: New York, NY, USA, 1978;
pp. 1–15. https://doi.org/10.1007/978-1-4684-9475-4_1.

41. Ruiz, O.; Vanegas, C.; Cadavid, C. Principal component and Voronoi skeleton alternatives for curve reconstruction from noisy
point sets. J. Eng. Des. 2007, 18, 437–457. https://doi.org/10.1080/09544820701403771.

42. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the ICRA ’11, Shanghai, China, 9–13 May 2011;
pp. 1–4. https://doi.org/10.1109/ICRA.2011.5980567.

43. Li, P.; Wang, B.; Sun, F.; Guo, X.; Zhang, C.; Wang, W. Q-MAT Source Code. 2016. Available online: https://binwangthss.github.
io/qmat/qmat.html (accessed on 23 December 2024).

44. Tagliasacchi, A.; Alhashim, I.; Olson, M.; Zhang, H. Mean Curvature Skeletons Source Code. 2021. Available online: https:
//github.com/taiya/starlab-mcfskel (accessed on 23 December 2024).

45. Chen, X.; Golovinskiy, A.; Funkhouser, T. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 2009, 28, 1–12.
https://doi.org/10.1145/1531326.1531379.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cag.2023.07.020
https://doi.org/10.1016/j.cag.2023.06.012
https://doi.org/10.1109/CVPR46437.2021.00426
https://doi.org/10.1109/CVPR46437.2021.00426
https://doi.org/10.1017/S0370164600017806
https://doi.org/10.1016/j.gsf.2025.102085
https://doi.org/10.1016/j.enggeo.2024.107585
https://doi.org/10.1007/978-1-4684-9475-4_1
https://doi.org/10.1080/09544820701403771
https://doi.org/10.1109/ICRA.2011.5980567
https://binwangthss.github.io/qmat/qmat.html
https://binwangthss.github.io/qmat/qmat.html
https://github.com/taiya/starlab-mcfskel
https://github.com/taiya/starlab-mcfskel
https://doi.org/10.1145/1531326.1531379

	Introduction
	Literature Review
	Mesh Contraction
	Sphere-Meshes
	Voxel Thinning
	Shape Diameter Function-Based Methods
	Voronoi Medial Axis Simplification
	Point Cloud Skeletons
	Learning-Based Medial Axis
	Conclusions of Literature Review

	Methodology
	Scope
	Manifold Learning by Direct Palpation
	Simplices and Simplicial Complexes
	Overview of Direct Palpation Skeleton Identification
	Shape Radius Function
	Dimension Identification of Skeleton Subregions
	Junction of Disconnected Subregions
	Parameter Tuning
	Parameter Influence

	Results
	Experimental Setup
	Performance Analysis
	Robustness to Noise
	Limitations

	Conclusions and Future Work
	References

