
Algebraic Geometry and Group Theory in Geometric Constraint Satisfaction

Osear E. Ruiz S., Placid M. Ferreira
Department oí Meehanical and Industrial Engineering

University oí lllinois at Urbana-Champaign
1206 West Green Sto Urbana, 1L, 61801, USA

Abstract

The determination of a set of geometric entities that sat-
isfy a series of geometric relations (constraints) constitutes
the Geometric Constraint Satisfaction or Scene Feasibility
(GCS/SF) problem. This problem appears in different forms
in Assembly Planning, Constraint Driven Design, Computer
Vision, etc. Its solution is related to the existence of roots
to systems of polynomial equations. Previous attempts us-
ing exclusively numerical (geometry) or symbolic (topol-
ogy) solutions for this problem present shortcomings regard-
ing characterization of solution space, incapability to deal
with geometric and topological inconsistencies, and very
high computational expenses. In this investigation Grob-
ner Bases are used for the characterization of the algebraic
variety of the ideal generated by the set of polynomials.
Properties of Grobner Bases provide a theoretical frame-
work responding to questions about consistency, ambiguity,
and dimension of the solution space. It also allows for the in-
tegration of geometric and topological reasoning. The high
computational cost of Buchberger's algorithm for the Grob-
ner Basis is compensated by the choice of a non redundant
set of variables, determined by the characterization of con-
straints based on the subgroups of the group of Euclidean
displacements SE(3). Examples have shown the advantage
of using group based variables. One of those examples is
discussed.

1 Introduction

Spatial Geometry relations are of primary importance in
Computer Aided Design, Manufaciure and Process Plan-
ning. In particular, Spatial Reasoning applies in diverse ar-
eas such as Assembly Planning, Computer Vision, Robotics,
Constraint Driven Design and Drafting, Feature Extraction,
Machine Tool Selection and Specification, etc. In Spatial
Reasoning, two main areas can be identified; Sta tic and Dy-
namic Reasoning. Sta tic Reasoning problems are those con-
cerned with fully and unambiguously defined entities. Typ-
ical problems include boolean queries testing a particular
relation among entities and construction queries which cre-
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ate entities satisfying relations with other given entities in
the world. These problems have well defined (although not
unique) answers. A taxonomy of the problems in flat entity
worlds was compiled and developed in [19]. In this taxon-
omy, the problems are divided into Convex Hulls, Inclusion
Intersection, and Closest Point problems. In Dynamic Rea:
soning, a set of geometric entities is specified by geometric
relations (also called constraints) in the context of a given
world. As the set of relations varies, the position (and the
very nature) of the entities in the space changes. The spec-
ification may be ambiguous, resulting in an infinite number
of possible answers, or inconsistent, producing an empty so-
lution space.

The GCS/SF problem in a flat entity world can be stated
as follows: Let a World W be a closed, homogeneous subset
of E3, and a set of zero curvature geometric entities S =
{el, ..en} (points, straight lines, planes). A set of spatial
relations between pairs of entities R = {R¡,i,k} are specified,
where R¡,i,k is the kth relation between entities i and j. Thé
goal is to find a position for each entity e¡ in the world W,
R¡, w, consistent with all relations R specified on it. The
world W is a basic, fixed scenario in which the entities S
satisfying R will eventually be instantiated. ,One says that
S is leasible lor W and R , and denotes this fact by S =
feasible(W,R). This problem can be translated into the
solution of a set of polynomial equations F = {ft, 12,...fn}¡
therefore F is the polynomiallorm 01 the problem (W,R)¡
and it is written as F = poly-form(W, R). If S is a solution
lor F , we write it as: S = solution(F).

A numerical approach to the solution of a polynomial
set of equations for geometric purposes has been investi-
gated in [17, 13, 1,6]. Numerical solutions, besides their
problerns with convergence only solve the geometric part
of the problem; i.e. they produce a feasible configuration
if it exists and the algorithm converges. They sample the
solution space at a single point, while the set of questions
to be answered includes the degrees of freedom still avail-
able, the consistency of the set of constraints, the existence
of possible redundancies, etc. Therefore, even in the event
of perfect convergency, numerical solutions provide only a
partial answer to the problem.

The algebraic variety of the ideal generated by a given
polynornial set is the set of cornrnon roots of the polynomi-
als. AIgebraic Geometry allows the characterization of the
algebraic variety (multiplicity of solutions, dimension of so-
lution space, etc). It is, from the theoretical point of view,
a well defined problem, whose solution can be obtained by
several techniques in algebraic geometry such as Grobner
Basis [10, 5, 16] and methods of resultants [n, 14, 15]. A

,
t
I

,
1

1.

,

.
J

224



related subproblem, automatic proof of geometric theorems
can be also solved by the Characteristic Sets method [8, 7].
The practical disadvantage of the algebraic geometry meth-
ods is the large computational expense incurred in symbol-
icalIy calculating the basis for the ideal genera.ted by the
polynomial set [11]. These techniques neglect the underly-
ing geometric meaning of the polynomials íorming the setj
the manipulation oí variables or polynomials is dictated by
algebraic techniques, not by the physical meaning of the
variables.

A symbolic, degree of freedom analysis for the prob-
lem has been devised íor kinematics by using group the-
ory [9, 2, 3]. By expressing the kinematic constraints in
terms oí the subgroups oí the Euclidean Group SE(3),1 the
simultaneous enforcement of constraints can be expressed as
intersection oí the sets coníorming the corresponding sub-
groups, and the composition oí constraints can be character-
ized as the product oí the corresponding sets using the group
operation [12, 9, 2, 3]. This method presents the advantage
oí expressing the problem in terms oí physically meaningful
and independent variables, thereíore stressing the geometric
origin oí the problem. It is limited however, in the sense
that it does not deal with geometric inconsistencies, and
it only considers constraints íormed by single subgroups of
~E(3) (also called trivial), owing to the íact that (group)
_<lultiplication oí subgroups is not a closed operation, i.e.
the multiplication oí two subgroups in general is not a sub-
group [21, 23, 6].

In [20], Sturmíels treats the calculation oí Grobner Ba-
I¡ÍSunder finite group action. Grobner Bases are calculated
íor (the ideal generated by) a set oí polynomials F on a ring
C[X1' ..Xn] in which the variables X¡ can be permutated in
the polynomials without changing F. That means, the set
F is invariant under the action oí a finite group r. Sturm-
íels reports large computational expenses in calculating in-
stances oí Grobner Basis íor Ideals generated by symmetric
sets oí polynomials, and propases an algorithm to calculate
Grobner Bases íor symmetric input data F, which circum-
vents some oí the initial problems. Although the present
article is not explicitly concerned with finite groups, it has
been observed in our work that many scenarios do produce
sets oí relative position matrices which essentialIy permu-
tate the input variables. Thereíore, a continuation oí this
work might inelude the investigation oí influence oí symme-
tries on the performance oí Grobner Basis algorithms, and
the ways to avoid expensive computations.

In this work( [18]), an integration oí methods oí algebraic
geometry with íormalization úom group theory will be un-
dertaken, to exploit the particular strengths oí each area,
and minimize their disadvantages. The use oí group theory
íormalization allows the introduction oí a structure to the
otherwise unstructured set oí equations produced by a set
oí constraints, and eníorces the geometric underpinnings oí
the problem, making the algebraic geometry aspect more
tractable. On the other hand, algebraic geometry responds
to the question oí geometric and topological inconsistencies,
and to more complex constraint structures, removing the
limit oí trivial constraints treated using group theory alone.

15E(3), is the semi-direct product Ji3 050(3, R), whereR3 is the
translational part, 50(3, R) is the special orthogonal group, repre-
senting all right handed orthonormal 3-D frames and o is the group
multiplication operation.

2 Theoretical Background

In this section, the solution oí the GCS¡SF problem is <lis-
cussed. In the first place, assuming that the problem can
be expressed in terms oí polynomial equations, the theo-
retical relevance oí the algebraic geometry methods (Grob-
ner Basis) will be discussed. On the other hand, given the
high computational cost oí Grobner Basis methods, alter-
native methods which produce smaller sets oí variables íor
the problem at hand are needed. The direct connection
between variables and physical degrees of íreedom is a de-
sirable characteristic oí the set oí variables chosen. In the
past group-based variables have been employed in topology-
only analysis [23], in this investigation they will provide a
compact and physically meaningíul set oí variables íor the
GCS¡SF problem.

2.1 AIgebraic Geometry and Grobner Basis

In what íollows, an introduction to an algebraic geome-
try technique called Grobner Basis construction will be at-
tempted. Only those issues relevant to the GCS¡SF problem
are discussed. The interested reader is directed to [10, 5] íor
details. The íollowing is some relevant terminology.

K[ xl,x2,... xn ]: ring oí n-varied polynomials over the
coefficient field K.

Ideal of F :

The Ideal generated by a set oí polynomials F =
{f¡, h. 13, ...fn} is: IK[%I.%2,...%,,]{F)= {gdl + g2h +
... + gnfnlgi E K[X1, X2, ...Xn]}. The notation is usu-
alIy simplified to: I{F). One says that F is a basis íor
I{F}.

Radical{F) : {fl3k s.t. fk E Ideal{F)}

AIgebraic set V{I) : Given an ideal 1 E K[X1, X2, ...Xn],
generated by the set F = {f¡, 12,13,...fm} its alge-
braic set V(I) is defined by:
V(I} = {x E Rnlf(x) = O,Vf E I}j thereíore, (f¡(x) =
OVf¡ E F) -- (x E V(I»

Zero Dimension : An Ideal 1 is zero dimensional if V(I)
is finite.

Ordering : the set oí variables {Xl, X2, ..Xn} is totally or-
dered under the order -< if VX¡, Xj,with Xi ::/; Xj either
X¡ -< Xj or Xj -< Xi.

Lexicographic Order -<1 : Given two terms
t - al 02 o" d t - /h ~ {J"
1 - Xl .X2 '.Xn . an 2 - Xl .X2 .'Xn ,

then tI -<1t2 iff3i $ n such that OIj=/3jíor i -<j :; n
and OI¡< /3¡.

Degree : deg(t) = deg(x~1 .X~2ooX~")= 011 + 012 + ...+ OIn

Degree Order -<d : tI -<d t2 iff deg(t¡) < deg(h) or deg(t¡) =
deg(t2) and tI -<1h

head{f), ldcf(f): For a given order, and a given ring
K[X1, X2,u, Xn], head(f) is the largest (in the sense oí
-<) term in a polynomial f. ldcf(f), the leading coeffi-
cient oí f, is the coefficient oí head(f) in f. Thereíore
f = ldcf(f).head(f) + tail(f).
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Normal Form : Given F = {f¡, h, 13, ...fn} and p where
Fe K[xl, X2, ...Xn] and p E K[Xl, X2, ...Xn], there ex-
ists a decomposition oí p :
p = N F(F,p) + LJiEF(CiJ,.fi) (CiJi E K[xl, X2, ...Xn])
such that N F(F,p) cannot be íurther decomposed as

LJiEF(!3Ji.fi) with !3Ji E K[XI,X2,...Xn]. The term
N F(F,p) is called a normallorm 01 p with respeet to
F. N F( F, p) is a residual oí the reduction oí p with re-
speet to F. The red uction process is denoted as p + F

N F(F,p).

GrobnerBasis : A Grobner Basis GB e K[Xl, X2, ...Xn] is
a set oí polynomials such that N F(GB,I) íor every f
is unique; it does not depend on the sequenee oí reduc-
tion oí f with respect to GB. Thereíore, f +GBPl
and'f +GBP2 imply PI =P2. AIso, ií NF(GB,I) =
O then fE I(GB). If NF(GB,I) i= Oit implies some
oí the common roots oí F are not roots oí f; thereíore
the set oí roots common to F and f is more restricted
than the set oí roots íor F.

Reduced Grobner Basis : A Grobner Basis
G B = {gl, .., gn} is a Reduced Grobner Basis ií:

1. íor all fi E GB IdefUi) = 1
2. íor all fi E GB N F(GB - U;}, fi) = fi

Let F = {f¡, 12,13, ...fn} be a set oí polynomials, F e
K[XI, X2, ,,,Xn], and I(F) be its ideal. If another set G =

, {gl, g2, g3, .., gn} is basis oí 1(F) then, every root oí F is also
root oí G, and conversely.

Given a polynomial f E K[Xl, X2, ...Xn] one may want
to eliminate a term t oí f with the help oí another poly-
nomial 9 E K[XI, X2, ...Xn] by multiplying the head(g) by
some term such that on subtracting the result írom f, t dis-
appears. For this to happen it is necessary that 9 -< f. It
is said then that f is redueed with respect to g. It is writ-
ten as f !!.- h, where h is the result oí the subtraction. In
the process oí iterated reductions with respect to elements
oí K[ Xl, X2, .., Xn], the position oí the h 's in the ordering -<
decays. One oí two things may happen; f reduces to O, or
all the remaining g's are bigger than the final h, and there-
íore h (and 1) cannot be íurther reduced. The last product
oí the reduction process is a normal lorm 01J with respect
to K[XI, X2, ...xn], N F(K[xl, X2, ...Xn], 1). In the described
process, different sequences oí reduction are possible, and
they don't, in general, produce the same N F(., 1) resulto
If a set oí polynomials F is used íor the decomposition,
N F( F, 1) can be considered as the part oí J that cannot be
expressed as a combination oí the polynomials Ji E F.

Several additional comments are pertinent at this point:

. Grobner Basis íorces N F( G B, F) to be unique, thus
providing a way to examine whether an arbitrary
polynomial P is in I(F) or noto If p E I(F) then
N F(GB,p) = O. Otherwise, it represents an indepen-
dent polynomial. Intuitively, Grobner Basis behaves in
a manner analogous to a vector basis in linear spaces;
ií a vector can be expressed as a linear combination oí
the base vectors, it is in the space. Otherwise, a re-
mainder term will represent the the component in the
null space oí the set oí vectors.

. In a property described later (triangularity oí elimi-
nation ideals), Grobner Basis presents a characteristic
similar to triangulation of a matrix A in solving a lin-
ear system A.x = b. A triangular form allows the
incremental determination of the solution point.

. In a Reduced Grobner Basis there is no redundancy
in the polynomials present, since each polynomial is
equal to its normal form with respect to the remaining
ones. The value of this property in the solution of the
system of polynomials is that it reduces to a minimum
the polynomials to be manipulated andjor solved.

. An algorithm to calculate the Grobner Basis GB(F)
for the ideal generated by F, I(F), is provided by
Buchberger in [5]. Several implementations are avail-
able in packages such as Mathematica, Maple, Macaulay
etc. The condition for termination of the Buchberger's '
algorithm relies heavily on the fact that a total order
can be defined on the.terms belonging to K[XI, X2, ...xn].
Since a deereasingsequence (in the sense of -<) of terms
is finite, a reduction process of a polynomial p with re-
spect to a set F is bound to stop [5, 10].

In next sections, the theoretical basis described here will
be used to exploit the properties of Grobner Basis in the
solution of the GCSjSF problem.

2.2 AIgebraic Geometry and the GCSjSF Problem

Given a set of polynomials F (we assume F =
poly_Jorm(W, R) and also S = Jeasible(W, R)), it has an
associated ideal 1(F). For any set of polynomials F, the
Grobner Basis GB(F) is an alternative set, which generates
the same ideal 1(F), but has important properties in char-
acterizing the solution space and producing solution points.

The following are some of the properties of Grobner Ba-
SIS:

1. I(GB(F)= I(F).

2. F is solvable iff 1 (,tGB(F).

3. Given a lexicographic order Xl -< X2 -< ... -< Xn

Vi, s.t.1 ::; i ::; n, we have: GB(F) n K[XI, X2, ...x¡J
is a (reduced) Grobner Basis for the elimination Ideal
IK[xl.x2 Xn] (F) n K[xl, X2,...Xi].
This property establishes that GB(F) is triangular set;
in the sense that GB(F) contains polynomials only in
Xl, some others only in Xl, X2, and so on, making the
numerical solution a process similar to triangular elim-
ination.

4. If G is the reduced Grobner Basis for an Ideal
1 e K[Xl' X2, ...Xn], 1 is Zero Dimensional iff VXi E
{Xl,X2,..Xn}, G contains a polynomial whose head
term is apure power oí Xi, Le of the form xf for some
integer d.

This property allows one to determine, by inspection,
whether the set of polynomials has finitely or infinitely
many solutions.

5. The Grobner basis G1 for a zero dimensional ideal 1
based on the order -<m can be converted into another
basis G2 under another ordering -<1

This property allows one to compute total degree Grob-
ner Bases for certain purposes, and only when it is
required, to transform them into lexieographie Grob-
ner Basis (computationally more expensive), provided
that they correspond to a Zero Dimensional Ideal.

6. VF,J: f E Radical(F) {:}(1 E GB(Fu {y.f -1}))
This property establishes that f presents the same ze-
ros as F iff the system F U {y.f - 1} is inconsistent,
i.e. it is impossible for f not to be zero when F is.
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These properties translate into propositions about the
solvability and characteristics ofthe solution for the GCSjSF
problem. Some of the consequences of the properties follow:

1. Proposition 1
S = solution(F) iff S = solution(GB(F)).
This is a consequence of the fact that F and GB(F)
span the same polynomial ideal (Property 1). In the
contex of the GCSjSF problem, a set of polynomials
representing constraints is indirectly analyzed by cal-
culating the Grobner Basis of its spanned ideal and
solving it by using the properties discussed below.

2. Proposition 2
1 E GB(F) ~ S = solution(F) = ~
Property 2 above establishes that if the field is alge-
braically closed, finding "1" or a constant polynomial
in GB(F) implies the equation "0=1" leading to the
fact that F has no solution in that field. However, the
converse proposition has to be carefully explored; for
our purposes (real solutions), a different property can
be used:
1 E GB(F) -+ F has no solution. On the other hand,
if 1 ti. GB(F), a solution exists, although it might be
complex. Therefore, an additional check to ensure a
real solution is needed.

3. Proposition 3
If 1(F) is a Zero-dimensional ideal, then the set F (and
GB(F)) has a finite number of solutions. Therefore
S = feasible(W, R) has a finite number of configura-
tions. The zero-dimensionality of 1 can be assessed by
applying property 4 above.

4. Proposition 4
Polynomial f is redundant to F {::} (1 E GB(F U
{y.f -1})) for a new variable y.
Property 6 helps to determine whether an additional
constraint is redundant by exarnining if the satisfaction
of the new, additional constraint is unavoidable when
the initial set of constraints is satisfied. An alternative
test can be implemented by recalling that a polynomial
f is redundant if its normal form N F(GB(F), J) =
N F(F, J) is equal to zero.

These properties and propositions provide a theoretical
framework for the solution of the GCS/SF problem. The
realization of these facts into an algorithm will be discussed
in following sections.

An AIgorithmic Solution to the GCS/SF Prob-
lem

This theoretical background can be summarized in the fol-
lowing macro-algorithm, in which the invariant clause for the
loop is the existence of a set of non-redundant, consistent
and multi-dimensional set of (constraint generated) polyno-
mials. In the event of the addition of new constraints to the
scene, the algorithm converts them into polynomial(s), and
tests their redundancy (by using Proposition 4), inconsis-
tency (Proposition 2) and Zero Dimensionality (Proposition
3). If the new constraint is redundant no action is takenj in
the other two cases the invariant becomes false and the loop
breaks. If the ideal has become Zero-dimensional a triangu-
lar Grobner Basis under some stated lexicographic order is
extracted (Property 5) and solved (Property 3). Proposition
1 is the underlying basis of the algorithm, since it establishes
that the GB(F) faithfully represents F, with the same roots

2.3

and ideal seto In the algorithm presented below, the propo-
sitions or properties relevant to some important instructions
are displayed at the left hand side:

Proposition 2

{Pre: W a tixed scenario }
F={}
GB. = {}
do new relation R;
{Inv: F is consistent, non redundant,

Multi-dimensional }
R =R U {R;}
J = poly_Jorm(W, R;)
if (1 E GB,(F u {J})) then

stop ( system is inconsistent )
else

if (J E Radica/(F» then
skip ( J is redundant )

else
F =F u {J}
GB, =GrobnerBa8Ü(F, -<.)
if ( Z eroDimen8ion(GB,) ) then

break loop
else

skip (next relation-constraint)

Proposition 4

Proposition 1
Proposition 3

ti
ti

ti

Property 5
Property 3

od

GB¡ = GrobnerBa8i8(F,-<¡)
5= triangular-8olution(GB¡)

{PostoR = {Ri} a set of relations; S = fea.ible(W, R) }

The limitations of Grobner Basis, and for that matter,
any symbolic algebraic geometry method solving this prob-
lem is the explosive computational complexity of the method,
and its still unexplored behavior in dealing with real arith-
metic. If F is a set in K[Xl, X2..Xn], with maximum exponent
m, the Grobner Basis can contain polynomials of degree pro-
portional to 22m [10].

3 Methodology. Construction of Polynomial Set

Grobner Basis provides a series of properties that can be
used to answer the questions about consistency, ambiguity,
existence of solutions, dimension of the solution space, etc
in the problem of Scene Feasibility. This section shows the
methodologies deveioped to state the problem of scene fea-
sibility in terms of polynomials from two points of viewj
canonical (based on group theory) and non-canonical forms.
The differences between the two methods are the structure
of the set, and the number and meaning of the variables
involved.

The terms used are explained nextj entity means geomet-
ríe entíty: point, line or planeo Each entity hasAn attached
frame. Points are in the origin of their attached frame. Lines
coincide with the X axis of their frame. Planes coincide
with the Y-Z plane of their attached frame. The world W
contains a set of topological (polyhedra and possibly non
manifold objects) and geometrical (lines, planes, points) en-
tities S = {el, e2, ..en}. For the discussion at hand it is
assumed that the entities are part of a body. Fij is the
known, fixed position of entity í with respect to the body
frame j. Rk represent relations or constraints between en-
tities. These relations are shown ÍiI Table 1. Di represent
displacements applied on the frames of the entities Fij. Mk
represent known, fixed relative positions among entities of a
body. Notice that the Mk relative displacements can be ex-
pressed in function of the Fij positions relative to the frame
of body Bj.
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Table 1: Constraint Relations and Polynomial Forms

,"'''--''. F12

~ Rl~"""o"""
F22 '.

~
..' °. .

'k' o" :

~L j:.'\. B2
"" -'..'

" A

.--..---

relation
p::()N:p

P.ON.LN
P.ON.PLN
LN-ON.LN

LN.ON-PLN

PLN.(jN~PLN

vector equation

body B2

Figure 1: Methodology íor Statement oí Non-canonical íorm oí Scene Feasibility

3.1 Methodology with Non Canonical Variables

Let be the disposition of entities as shown in Figure l.
Frames Fil represent the position oí distinguished element
i (i = 1..3 in this case) oí (and with respect to) body Bl.
Similar statements can be made about Fi2 with respect to
body B2. The goal is to find a position oí Bl (assuming
B2 is fixed) which satisfies the relations Fil - Ri - Fi2.For
example one may require that point Fll be ON plane F12.
That means, Fll - ON - F12.

The procedure for modeling the problem includes the íol-
lowing steps: (i) Assume a (unknown) displacement DI =

[

Rot T

]O 1 with Rot apure rotation and T apure trans-
lation, wmch will place body Bl in the desired final posi-
tion. (ü) Transform each entity to its new position; trans-
íormed vectors are v: = Rot.Vi; while transformed points are
P: = Rot.pi + T. (üi) Use Table 1 to model the proposed re-
lations using the transformed entities 2. (iv) Each relation
(or constraint) produces a series oí equations oí the form
Ri(Fil' DI, B2, Fi2) = O, which involves the corresponding
entities Fil, Fi2, the positions oí the bodies BI (DI) and
B2, and the particular íorm oí the relation Ri:

R1(Fll,Dl,B2,F12) = O
R2(F21'DI, B2, F22)= O
R3(F31,DI, B2, F32)= O

(v) Eníorce the condition det(Rot) = +1 wmch imposes dex-
terous orthonormality to the matrix Rot = [VI V2 V3]' Or-

2The proposed equations are not a minimal seto Some redundant
equations are produced; for example P - ON - LN can be expressed
in two equations instead of three.

thonormality implies IIv;!1 = 1,(i = 1..3); lIj .Vi = O,(i "# j).
Dexterity implies VI X V2= 113.

The procedure just described allows uS to use the coordi-
nates and parameters defining geometric entities as variables
for the GCS/SF problem. An alternative method, using the
parameters (called canonical) oí the displacements oí the
entities in the scene is described ahead.

RI-CUl

~"J.& ~~11Í~ 3~~~
~ rn,

B~'" "~Cu2

Figure 2: Three Body Assembly producing Non Trivial Con-
straints

(1)
3.1.1 Example 1. Non Canonical Variable Model-

ing.

This example highlights the differences in modeling and so-
lution oí the GCS/SF problem using canonical and non
canonical variables. In this section we start with the non
canonical modeling. Figure 2 (Adapted from [22]) shows
the scenario being modeled. One may assume body Bl sta-
tionary and its írame coincident with the World Coordinate
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System. The following constraints are imposed on the enti-
ties:

. LineF21 = (P21,V21)is placed onto line F13 = (PI3, V13)

( Constraint R1 )

. Line F12 = (PI2, V12) is placed onto line Fll = (Pll, Vll)
( Constraint R3 )

. Line F12 = (PI2, V12) is placed onto line F23 = (P23,V23)
( Constraint R2 )

Bodies B2, B3 are in (unknown) positions D2 and D3
respectively. The GCS/SF problem can be formulated fol-
lowing the steps above, using the vector equations of Table 1:

1. Expand the position matrices D2 and D3:

D2 = [ R:t2

T2

] [

Rot3
; D3=

1 O ~3 ]

2. Transform the entities to the final position:

P~3 = Rot3'P13 + T3; V~3 = Robv13

P~2 = Rot2'P12 + T2; V~2 = Rot2.V12

(2)

3. Enforce the constraints:

V21 X V~3 = O;V21 X (p21 - P~3) = O

V~2 X vÜ = O; V~2 X (P~2 - Pll) = O

V~2 X V~3 = O; V~2 X (P~2 - P~3) = O

(3)

4. Enforce orthonormality of Rot2 and Rot3.

5. Enforce dexterity of Rot2 and Roi3:

det(Rot2) = +1; det(Roi3) = +1

This procedure produces a series of equations on the terms
D2 = {D2i,i} and D3 = {D3i,i} whose solution space one
wants to characterize. .

3.2 Methodologywith Canonical Variables

In this section an alternative representation of geomet-
ríe constraints is introduced, which is based on mechanical
constraints (joints), and their mathematical formalization,
subgroups of the Euclidean group SE(3). This modeling
was first introduced by Herve in [9], and used by Angeles
in [2, 3] and Torras et al in [21, 22] for topological analysis
of mechanisms and constraints respectively. In this investi-
gation, it will be used to provide a minimal and physically
meaningful set of variables (called canonical by Herve) as an
alternative to the non canonical set already discussed.

3.2.1 Subgroups of the SE(3) Group

SE(3) is the group of Euclidean displacements in 3D. G1, G2
and G3 represent displacements in SE(3) and o represents
the composition of displacements. SE(3) satisfies the group
properties:

. Two displacements G1, G2 applied in sequence pro-
duce a new displacement G3 = G1 o G2.

. 1 is the null displacement in SE(3). Gol = lo G = G

. For each G E SE(3) there is an inverse one G-l which
restores the affected entity to the original position G o
G-l = G-l o G = 1

. The effect of displacements is accumulative. If G's .

are applied in the order G1, G2 and G3, the following
sequences are identical (associativity):
(G1 o G2) o G3 = G1 o (G2 o G3)

S E(3) presents subsets which are groups themselves, and
which express certain common classes of displacements. They
are called subgroups. For example, the subgroup of the ro-
tations about a given axis u in the space, Ru, is a subset of
SE(3), and a group itself.

Given SI, S2 subgroups of SE(3), SI is a conjugate of
S2 ( SI '" S2 ) iff 3T E SE(3) such that SI =T-l S2T. The
displacement T represents the geometric part of a particular
constraint, while the canonical part contains the topological
information; the number and types of degrees of freedom.
The relation A '" B is an equivalence relation. It defines
equivalence classes called conjugacy classes which represent
the closure of a set of elements under the relation SI '" S2.
Therefore the class can be represented by an element called
canonicalelement. A desirable property for a canonical form
is that it be minimal in the number of variables that specify
it. Conjugacy classes have a canonical subgroup which rep-
resents any other subgroup in the class. A list of the conju-
gacy classes for the subgroups of SE(3) and their canonical
representation [9], as well as their degrees of freedom are
shown in Table 2.

The concept of equivalence (conjugacy) allows us to name
certain displacements in SE(3) as "linear translations", "ro-
tations", "planar slidings", etc, therefore making the link
between subgroups of SE(3) and kinematic constraints. For
example, "rotations" are all transformations of the form

Ru(8) = B.Ru.B-l = B.twix(8).B-l

with BE SE(3) (in the discussion that follows twix(8) is a
rotation about the X axis by 8, XTOY means a rotation by
90° about the Z axis and trans(x, y, z) indicates a general
spatial translation). Therefore a rotation by 8 degrees about
the u axis in the space is a conjugate of any other by the
same amount about another axis v in the space, because
one can find a transformation B which transforms u into
v. The displacement B represents the geometric part of a
particular constraint, while the canonical part contains (he
topological information; the number and type of degrees of
freedom. These degrees of freedom become the variables in
the canonicalmodeling ofthe GCS/SF problem, as discussed
in following sections.

A constraint between two entities is a set of relative
displacements between them which, by definition, maintains
invariant certain relations between the constrained entities.
For example, aplanar sliding Gp allows 2 translational a.nd
one rotational degree of freedom, while still ensuring planar
conta.ct between the two parts. A rotational Ru constraint
preserves axial and radial relative distances, allowing one
angular degree of freedom between the constrained entities.

The GCS/SF problem is stated as a series of constraints
R¡ relating Fil with Fi2 as shown in Figure 3, (corresponding
to a two body system). The RiO constraints are in general
composed by translations TO and rotations RotO, as dic-
tated by Tables 3 and 2. Body B1 contains two features,
whose frames are Fll and F21. Corresponding features in
body B2 are F12 and F22. The goal is to find a final posi-
tion of B1 (assuming B2 stationary), such that Fll relates to
F12 and F21 relates to F22 satisfying the invariance dictated
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Table 2: Conjugacy Classes and their Canonical Forms
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Body 2 Body 1, Position 2

Figure 3: Two Body Example oí Canonical Variable Modeling oí the GCS/SF Problem

by R10 and R20 respectively. F{l and F2l denote írames
Fll and F2l in the final configuration. Thc constraints RiO
contain degrees oí íreedom one wants to instantiate so as to
satisíy the required relations while, at the same time, eníorc-
ing the rigidity oí the two bodies. One can establish matrix
equations based on the relations and the rigidity conditions
as íollows:

1. Let BI' be the final position oí body Bl.

2. The initial configuration oí the World can be recorded
by realizing that a relative displacement Dl exists be-
tween íeature Fll oí body BI and íeature Fl2 in body
B2, and D2 from F2l in body BI with respect to íea-
ture F22 in body B2.

Bl.Fll.Dl = B2.Fl2; Bl.F2l.D2 = B2.F22 (4)

3. The íeatures oí the bodies in their final positions are
íorced to comply with the required constraints:

BI'.Fll.RlO = B2.Fl2; BI'.F21.R2O = B2.F22(5)

-- BI'.Fll.R1O.F;;l = BI'.F2l.R2O.F2"'"2l

Notice that the degrees oí íreedom oí RlO and R20
should get instanced in such a way the two movements
Dl.Rl and D2.R20 comply with: (i) preserving the
rigidity oí the BI and (ii) satisíying the desired con-
straint relations with B2.

;;~.,.

4. The final position BI' oí body BI is given by:

BI' = B2.F22.RIO-l.F2"'il (6)

The above procedure can be generalized to the case in
which there are several relations (constraints) RiO speci-
fied between two bodies or several relations among severa!
bodies. Once the constraint equations are obtained by this
procedure, the construction oí the Grobner Basis and its in-
terpretation are carried out in the manner described by the
constraint management algorithm in section 2.3. The appli-
cation oí the above concepts is shown using an example in
later sections.
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1 Ru Rotations about axis u {twix(en
1 Tu Translations alon¡¡; axis u {trans(x,O,O)}
1 Hu,p Screw movement {trans(x, °, O).twix(px)}

along axis u, with pitch p
2 Cu Cylindrical movement {trans(x, °, O).twix(e)}

alon¡¡; axis u
2 Tp Planar translation {trans(O,y, z)}

parallel to plane P
3 Gp planar sliding {trans(O, y, z ).twix(e)}

along plane P
3 So Spherical rotation {twix( t!;).XTOY.twix( tP).XTOY.twix(e)}

about center "o"

3 T 3D translation {trans(x,y, z)}
3 Yv,p Translating Screw {trans(x, y, z ).twix(px)}

axis v, pitch p
4 Xv 3D translation {trans(x, y, z ).twix(e)}

followed by rotation about v



3.2.2 Example 1. Canonical Variable Modeling..

For the Example corresponding to Figure 2 one notice that
the relations LN - ON - LN specified as constraints corre-
spond to a the conjugacy of cylindrical displacements (see
Table 3), and their canonical form can be expressed as Cu =
trans(x, O,0).twix(8), (from Table 2). From the steps de-
scribed above, one can determine that the matrix equations
which express the constraint situation for this example are:

F21.Cu1(Xl,8d.F13-1 =
F11.Cu3(x3, 83).Cu2(X2, 02).F23-1

The matrix equations just presented represent the GCS/SF
problem in polynomial terms using variables derived from
the subgroups of SE(3). In following sections the solution
space for such a set of polynomials will be discussed.

4 Example 1.
Problem

Solution Space for the GCS/SF

In prior sections the two methodologies used to state the
GCS/SF problem in terms oí sets of polynomials were dis-
cussed. In this section a characterization of the solution
space, which determines the set of feasible configurations is
sought. As explained in sections before, algebraic geome-
try and in particular Grobner Basis provides a theoretical
background to obtain such a characterization.

, 4.1 GrobnerBasis with Non Canonical Variables

The following is the (lexicographic) reduced Grobner Basis
for the set of polynomials based on the variables D2ij and
D3ij:

D334 = O

D333 - 1 = O

D332 =O

D331 = O

D3~4 - 10 D324 = O

D323 = O

5 D322 - 5 + D324 = O

D321 =O

5 D314 + D324 = O

D313 = O

D312 =O

5 D31l - 5 + D324 = O

D234 - 2 = O

D2322 + D2332 -1 = O

D231 =O

D224 - 5 = O

D2232 + D2332 -1 = O

-D222 - D223 D232 D233 + D222 D2332 = O

D222 D232 + D223 D233 = O

D222 D223 + D232 D233 = O

D2222 - D2332 =O
D221 = O

D213 = O

D212 = O

(8)

D211 + D223 D232 - D222 D233 = O

which is calculated based in the ordering: D21l ?- D212?-
D213 ?- D214 ?- D221 ?- D222 ?- D223 ?- D224 ?- D231 ?-
D232 ?- D233 ?- D234 ?- D311 ?- D312 ?- D313 ?- D314 ?-
D321 ?- D322 ?- D323 ?- D324 ?- D331 ?- D332 ?- D333 ?-
D334 producing the followingsolution:

(7)
D21l -+ -1

D221 -+ O

D234 -+ 2

D313 -+ O

D322 -+ -1

D332 -+ O

D324 -+ 10

D213 -+ O(9)
D231 -+ O

D312 -+ O

D321 -+ O

D331 -+ O

D334 -+ O

D222 -+ - D233

D212 -+ O

D224 -+ 5

D31l -+ -1

D314 -+ -2

D323 -+ O

D333 -+ 1

D223 -+ -~ D2332

D232 -+ -VI - D2332

The Grobner Basis (shown in Equation 8) is presented in
triangular íorm, and the individual polynomials themselves
have been arranged to have the headO term (under the or-
der presented above and underlined in the equations) in
the leftmost position. By examining the Grobner Basis
one can detect that variables D214 and D233 are missing
in the headO terms of polynomials. These two variables
have very definite role in the D2 matrix (it is easy to see
in this simple example)j D214 represents a translational
degree of freedom, while D233 represents a rotational de-
gree of freedom about an unknown a.xis in the space, deter-
mined by the eigenvalues and eigenvectors of the submatrix
Rot2 = {D2ij},(i = 1..3,j = 1..3) [4]. The solution irn-
plies (as expected) that body B3 is fixed while body B2
still has degrees of freedom left, represented in the variables
D214, D233. Notice that in this case, non-instantiation of
D233 immediately spreads to D232, D223, D222' since these
values control the eigenvalues and eigenvectors of the matrix
Rot2. However this information is not self-evident from the
solution seto

4.2 Grobner Basis with Canonical Variables

Once the equations 7 have been stated, the problem of find-
ing their solution space is faced. In order to find the Grob-
ner Basis of the Ideal generated by polynomials derived from
equations 7, an ordering Xl ?- X2 ?- X3 ?- s81 ?- COl?- S02 ?-
c82 ?- s83 ?- C03is defined, which produces a (lexicographic)
Grobner Basis:

S032 - 1 + C032 = O

C02 - C03 = O

S02 + s83 = O

COl - 1 = O

S81 = O

X2 + X3 = O

!!.=O

In this case, using canonical variables, irnmediately gives
information on the degrees of freedomj for example, be-
cause of its position in the group equations, C03represents
COS(03), and from the Grobner Basis one knows that it is
dependent on C02. Meanwhile, XI, COl,SOl are completely
instantiated, showing that the position of the body B3 is
fixed. Body B2 is free to rotate about and translate along

(10)
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More importantly, the nature of the constraints is changed
by this entity. The system no longer has a single loop of
constraints but, instead, it has a number of different loops.
As before, two methodologies are discussedj Non canonical
vs. Canonical variables. Statistics comparing the execution
times of the two methods are presented in Table 4.

The set of constraints imposed is the following:

Line F21 ON line Fl3 ( Constraint RI )
Line F31 ON line Fl2 ( Constraint R2 )
Line F22 ON line F23 ( Constraint R3 )
Line Fl4 ON line F32 ( Constraint R4 )
Line Fl4 ON line F33 ( Constraint R5 )
Line Fl4 ON line Fll ( Constraint R6 )

Table 3: Entity Relations in forrn of Kinematic Joints

axis F12. This is confirrned by the fact that X2 and sB2
do not pass the test for one-dirnensionality of the Grobner
Basis, which is in agreement with the fact that they are the
variables which represent the remaining degrees of freedom.
In this example again it is seen that the canonical variables
present a convenient way to sirnplify the equations and to
give geometric meaning to the polynomial solution process.
Table 4 shows the comparative statistics between the two
methods.

Example 2. Two Body System. Trivial Con-
straints

This example illustrates the intersection of two trivial con-
straints, corresponding to the conjugacy class of cylindri-
cal C" subgroups. Consider a scene in which there are two
straight lines LNl = (P1,Vl)and LN2 = (P2,V2)(SeeFig-
ure 4) expressed parametrically, and assumed to be rigidly
linked to each other by a displacement M. Another set of
lines, with similar conditions are given by LN3 = (P3,V3)
and LN. = (P., v.). The proposed relations place LNI ON
LN3 and LN2 ON LN., (being LN3, LN. also rigidly joined)
The goal of the problem is to find whether the relations can
be satisfied, what displacement is to be performed on the
rigid body holding LNl and LN2 to achieve the goal, and
the degrees of freedom that are afforded to the body hold-
ing LNl and LN2 by the relationship. In this case, the re-
maining variable is a translational degree of freedom in the
direction of the line axes. This problem was solved both by
canonical and non canonical variables. The computer times
for the solution are shown in Table 4.

4.3
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Figure 4: Simultaneous Line-to-Line Restriction between
Pairs of Lines

Example 3. Four Body System, Non Trivial
Constraints

This example (adapted from [22]) presents a more complex
version of the non-trivial constraint system in Example 1.
An additional body is introduced (a different body number-
ing than the one in Example 1 is used) according to Figure 5.
The effect of this new entity is to increase the number of
constraints, variables and equations one needs to manage.

4.4

Again, we assume body BI is in the origin of the World,
and bodies B2, B3, B4 are in positions D2,D3 and D4 re-
spectively. Therefore D2, D3 and D4 are unknown rigid
transformations matrices.

R2=Cu2

F31

Figure 5: Four Body Assembly. Multi-Body, Non-trivial
Constraint System

5 Conclusions

Grobner Basis of a. set of polynomials F = {pl,p2,..pn}
presents several properties for characterization of the al-
gebraic variety of the ideal generated by F. If F is
the polynornial expression of a GCS/SF problem (F =
poly-form(W, R)), these properties allow to determine the
remaining degrees of freedom in the system, the redundancy
of additional constraints, the (in)consistency of the F set,
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macro joint chain kinematic joints in chain do!

P-ON.P So spherical 3
P-ON.LN TI o S linear translation, spherical 4

P-ON-PLN T2 o S planar translation, spherical 5
LN-ON-LN C. cylindrical 2

LN-ON.PLN GpoR", planar sliding, revolute 4
PLN-ON-PLN Gp Dlanar slidin¡¡: 3



Table 4: Statistics íor Exampl~s. Non Canonical vs Canonical Variables

1 E:cample I Variable Type I variables I equations I GB size I time (secs) I

etc. Grobner Basis presents, however, a high computational
expense, which is lowered by the choice oí a convenient set
oí (canonical) variables dictated by the conjugacy classes oí
the subgroups oí the group SE(3) oí the Euclidean displace-
ments. In many cases canonical variables present a com-
pact representation, with direct physical meaning, thereíore
íacilitating the interpretation oí the results regarding the
inventory oí instantiated vs íree variables. Also, Grobner
basis allows one to deal with geometrical as well as topo-
logical data and inconsistencies, and is not limited to trivial
constraints. Additional and íuture work ( [18]) deals with
the possibility oí pre-processing the topological part oí the
constraint network by applying the method oí Torras and
Thomas [21, 23], and subsequent use oí the Grobner basis
method with a reduced set oí constraints.
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Example 1 Non canonical 20 30 24 6.08
Example 1 Canonical 9 15 7 0.51
Example 2 Non canonical 12 20 16 1.53

Example 2 Canonical 6 14 6 0.25
Example 3 Non canonical 36 54 37 39.01
Example 3 Canonical 18 42 16 2.16


