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Mechanical design and assembly planning inherently involve geometric constraint satisfaction or scene feasibility (GCS/SF) problems.
Such problems imply the satisfaction of proposed relations placed between undefined geometric entities in a given scenario. If the degrees
of freedom remaining in the scene are compatible with the proposed relations or constraints, a set of entities is produced that populate the
scenario satisfying the relations. Otherwise, a diagnostic of inconsistency of the problem is emitted. This problem appears in various forms
in assembly planning (assembly model generation), process planning, constraint driven design, computer vision, etc. Previous attempts at
solution using separate numerical, symbolic or procedural approaches suffer serious shortcomings in characterizing the solution space, in
dealing simultaneously with geometric (dimensional) and topological (relational) inconsistencies, and in completely covering the possible
physical variations of the problem. This investigation starts by formulating the problem as one of characterizing the solution space of a set
of polynomials. By using theories developed in the area of algebraic geometry, properties of Grobner Bases are used to assess the
consistency and ambiguity of the given problem and the dimension of its solution space. This method allows for the integration of geometric
and topological reasoning. The high computational cost of Grobner Basis construction and the need for a compact and physically
meaningful set of variables lead to the integration of known results on group theory. These results allow the characterization of geometric
constraints in terms of the subgroups of the Special Group of Euclidean displacements in E3, SE(3). Several examples are developed which

were solved with computer algebra systems (MAPLE and Mathematica). They are presented to illustrate the use of the Euclidean group-
based variables, and to demonstrate the theoretical completeness of the algebraic geometry analysis over the domain of constraints

expressible as polynomials.

1. Introduction and theoretical background

Spatial or geometry relations are of primary importance
in computer-aided design, manufacture and process
planning. As a result, spatial reasoning finds application
in diverse areas such as assembly planning, computer
vision, robotics, constraint-driven design and drafting,
feature extraction, and machine tool selection and spe-
cification. We decompose the domain of spatial reason-
ing into two main areas; static and dynamic reasoning.
Static reasoning problems are those concerned with fully
and unambiguously defined entities. Typical problems
include boolean queries testing a particular relation
among entities, and construction queries that create
entities satisfying relations with other given entities in
the world. These problems have well defined (though
not unique) answers. A sound taxonomy of the problems
in flat entity worlds was compiled and developed in
Shamos (1978) and Shamos and Preparata (1985). In this
taxonomy, the problems are divided into convex hulls,
inclusion, intersection, and closest point problems. Non-
flat entities, on the other hand, engender a new broad
(and difficult) set of problems, in which lines and
surfaces are curved, and the computational expense of
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even the simplest operations grows very rapidly when
compared with their counterparts in the domain of flat
entities. In dynamic reasoning, a set of geometric enti-
ties is specified by geometric relations (also called
constraints) in the context of a given world. As the set
of relations varies, the position (and the very existence)
of the entities in the space changes. For example, a
specification might require the creation of a line per-
pendicular to another line. With no other conditions, the
result is an infinite complex of possible answers. In
other cases the relation specified between objects might
be internally inconsistent making their creation or mod-
ification impossible. For example, an inconsistent spe-
cification might request a line being simultaneously
perpendicular to two non-parallel planes, thereby produ-
cing an empty solution space. Producing a configuration
of geometric entities satisfying a set of spatial relations
is called scene feasibility (SF) or geometric constraint
satisfaction (GCS) problem.

1.1. Problem statement

The GCS/SF problem in a flat entity world can be stated
as follows: Let a World W be characterized by a
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coordinate reference frame in E°, and S be a set of
geometric entities S = {e),...,e,} (points, straight
lines, planes). A set of spatial relations among pairs of
entities R = {R;;x} are specified, where R;jx is the kth
relation between entities i and j. The goal is to find the
position of each entity e; in the world W, consistent with
all relations R specified on it, R;w. The world W
contains a fixed scenario with some basic, well defined
entities in which the new set of entities S satisfying R
will eventually be instanced.

If S satisfies the relations in R in the context of the
basic world W, it is said that S is feasible for W and R.
It is written as S = feasible(W, R). This problem can be
translated into one of characterizing the solution space
of a set of polynomial equations F= {f1,f,...,/a};
therefore F is the polynomial form of the problem
(W, R); and is written as F = poly_form(W, R). Since
S is a solution to F, it is written as S = solution(F).

The research addressing the GCS/SF problem has
taken two main directions: (i) the mathematical ap-
proach, which studies the theoretical foundations of
the problem, and (ii) the procedural approach, in which
the process of construction of the scene is simulated by
a constraint management system.

In the procedural approach the fundamental tasks of
the system are to maintain the information about the
rotational and translational degrees of freedom and to
simplify complex systems of constraints (Turner et al.,
1992; Kramer, 1992). An advantage of the procedural
approaches is the practicality of the solution strategy,
which simulates the process of scene construction that a
human would follow in the constraint satisfaction. These
approaches, however, are based on simplifications such
as the topological-only analysis of the structure of the
problem, or the assumption of separability of rotational
and translational degrees of freedom. As discussed later,
one of the most difficult characteristics of the GCS/SF
problem is the joint influence of geometry and topology
on the structure of the solution space. Ignoring this
dependency, for example, leads to well-known incon-
sistencies in applying the Kutzbach—Grubler criterion in
the domain of mobility analysis (Kramer, 1992). Other
limitations of procedural approaches are the need for
algorithms customized for each application (Kramer,
1992) and the incorrect assessment of the remaining
degrees of freedom in cases where no decoupling of
rotational-translational degrees of freedom is possible
(Turner et al., 1992). Owing to the above limitations, it
is the goal of this investigation to explore the theoretical
(algebraic) formalization of the GCS/SF problem. The
algebraic approach, discussed next, does not present
theoretical limitations of domain, number of entities,
or types of constraints. It is expected that future com-
bined efforts (algebraic and procedural) will effectively
address the GCS/SF problem.

For an algebraic formalization, it will be shown that
finding a solution for the GCS/SF problem is equivalent
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to finding a common root to the set of polynomial
equations that express the constraints involved. There-
fore methodologies for finding solutions to sets of
polynomial equations are relevant in this investigation.
A characterization of the solution space, rather than a
particular solution, is required. Important issues in this
characterization are the finiteness of the solution space
(i.e., the existence of discrete configurations in which
the entities satisfy the constraints), the dimension of the
solution complex (i.e., the degrees of freedom of the
entities or the rigid body motions that are allowed under
a specified set of relationships), and the detection of
redundant relations.

A numerical approach to the solution of a polynomial
set of equations for geometric purposes has been in-
vestigated in Celaya and Torras (1990), Rocheleau and
Lee (1987) and Ambler and Popplestone (1975). Numer-
ical solutions, besides their problems with convergence,
only sample the solution space to produce a single
solution. Often in design and planning environments,
the truly interesting information includes the dimension
of the solution space, which is related to the remaining
degrees of freedom, the consistency and/or redundancy
of the constraint set, etc. Therefore, even in the event of
perfect convergence, numerical solutions provide only a
partial answer to the problem.

A full solution to the GCS/SF problem requires the
determination of the algebraic set of the ideal of the
corresponding polynomial set (i.e., the set of common
roots of the polynomials). Algebraic geometry allows
the symbolic characterization of the algebraic set (multi-
plicity of solutions, dimension of solution space, etc). It
is, from the theoretical point of view, a well defined
problem, whose solution can be constructed by several
techniques in algebraic geometry such as the construc-
tion of the Grobner Basis (Buchberger, 1989; Hoffmann,
1989, Mundy et al., 1991) and methods of resultants
(Kapur and Lakshman, 1992). A related subproblem,
automatic geometric theorem proving, can be also
solved by the Characteristic Sets method (Chou, 1987,
1990). This paper will not explore this approach because
it requires the initial generation of a hypothesis. This
would be an inherent disadvantage in the context of the
GCS/SF problem.

In this investigation it will be shown that the advan-
tages of algebraic geometry applied to this problem are:
(i) the complete characterization of the solution, (ii) the
easy analysis of incrementally added constraints, and
(iii) the theoretical robustness of the techniques.The
drawback common to algebraic geometry techniques is
the large computational expense of calculating the basis
for the ideal of a polynomial set (Kapur and Lakshman,
1992). On the understanding that these techniques are
general and independent of the domain being modeled,
it is possible to offset their disadvantages by exploiting
characteristics particular to the modeled domain;
geometry, in this case. The next paragraph elaborates
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on this notion.

While algebraic geometry provides one approach to
this problem, group theory and in particular Euclidean
Groups (Angeles, 1982, 1988; Herve, 1978) has been
used to reason about constraints placed on mechanical
objects. The kinematic constraints can be expressed in
terms of contact between (flat) geometric entities such
as points, lines and planes. By expressing the constraints
in terms of the subgroups of the Special Euclidean
Group of displacements in E3, SE(3) (SE(3) is actually
the semi-direct product R3 x SO(3, R), where RS is the
translational part and SO(3,R), the special orthogonal
group, represents all oriented orthonormal 3-frames), the
simultaneous enforcement of constraints can be ex-
pressed as the intersection of the sets conforming the
corresponding subgroups, and the composition of con-
straints can be characterized as the product of the
corresponding sets using the group operation (Angeles,
1982, 1988; Herve, 1978; Ledermann, 1953). This
method presents the advantage of expressing the pro-
blem in terms of physically meaningful and independent
variables, thereby stressing the geometric origin of the
problem. It is limited, however, in the sense that it does
not deal with geometric inconsistencies, and it considers
single (also called trivial (Angeles, 1988; Herve, 1978))
constraints, owing to the fact that composition of sub-
groups is not a closed operation, i.e., the composition of
two subgroups is not a subgroup in general (Celaya and
Torras, 1990; Thomas and Torras, 1988, 1989).

This investigation (partly introduced by the authors in
Ruiz and Ferreira (1994) and Ruiz et al. (1994)) high-
lights the mapping between properties of polynomial
ideals and their Grobner Bases and the GCS/SF pro-
blem. Although the properties of Grobner Bases have
been studied in the context of general polynomial fields,
their application in the GCS/SF problem has not been
formalized. As a result of this mapping, a constraint
management algorithm is proposed and applied. Next,
we introduce the integration of the algebraic geometry-
based approach with the formalisms provided by a
group-theoretic analysis of the constraint set. By doing
so, the two approaches complement each other to reduce
the effects of their individual disadvantages. The use of
a group-theoretic formulation of the constraints intro-
duces structure and physical meaning into an otherwise

Table 1. Elementary relations and polynomial forms
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unstructured set of equations and, by doing so, has the
potential of making the construction of the Grobner
Basis more efficient, with its results easier to interpret
as degrees of freedom in a given scenario. Viewed the
other way, the Grobner Basis construction can be seen
as a mechanical procedure to replace the reduction
based on group intersection. Further, it simultaneously
evaluates topological and geometrical consistency.

In this paper, Section 2 presents a formal procedure
that states GCS/SF in terms of sets of polynomials.
Section 3 discusses the mapping between GCS/SF and
the properties of Grobner Basis. Section 4 sets group-
theoretical foundations and applies them to the modeling
of GCS/SF. Section 5 introduces the group-based mod-
eling methodology and develops examples comparing
the two methodologies explored. Section 6 discusses the
results of the examples and Section 7 draws the general
conclusions of the investigation and outlines the issues
to be addressed in future research.

2. Methodology with non-canonical variables

The following methodology for expressing the GCS/SF
problem uses as variables the (unknown) elements of the
position matrix of an entity in the space. In this work,
such variables are called non-canonical variables. A
canonical set is discussed later.

As formulated here, the GCS/SF problem considers
contact constraints (Table 1, column 1) between flat
geometrical entities (points, lines, and planes). The
constraints can be expressed as sequences of lower
kinematic pairs (joints that make surface contact be-
tween bodies) that are commonly used in engineering
design. They can also be written as sets of polynomials
in terms of the variables that characterize the entities
(Table 1, column 4).

2.1 Construction of polynomial set

The following conventions will be used. (i) Entity means
geometric entity: point, line or plane. Each entity has an
attached frame. Points are in the origin of their attached
frame. Lines coincide with the X axis of their frame.
Planes coincide with the Y-Z plane of their attached

Relation Entity 1 Entity 2 Vector equation

P-ON-P pn P2 p=p

P—-ON-LN )2 LN = (pz, 1) (P1—p2) x v, =0
P—-ON-PLN P21 PLN = (pz,nz) P1—p2) - m=0

LN—-ON- LN LN:(pl,vl) LN:(pz,Vz) lev2=0;(p1—p2)xvz=0
LN - ON - PLN LN=(p1,V]) PLN = (pz,nz) (pl—p2)~n2 =0;v1-n2=0
PLN - ON - PLN PLN = (pl,nl) PLN = (pz,nz) (p1 —p2)-"2=0;7!1~n2=ﬂ:1
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Fig. 1. Methodology for statement of non-canonical form of
scene feasibility problem.

frame. (ii) F;; is the known, fixed relative position of
feature e¢; inside body (frame) Bj;. (iii) R; represent
relations or constraints (Table 1, column 1) between
entities. (iv) D; represent displacements applied on the
frames of the features Fj;.

Let the disposition of entities be as shown in Fig. 1,
where B; can be assumed stationary with no loss of
generality. The goal is to find a position of B; that
satisfies the relations F;; — R, — Fp (i=1...3 in this
case). For example one might require that point Fy; (be)
ON plane F12 (F]l - 0N—F12).

The procedure for modeling the problem in terms of
sets of polynomials is:

1. Assume a (unknown) displacement

Rot T
o= [ 1]

which will place body B, in the desired final position.

2. Transform each entity to its new position: D.Fj.

3. Use Table 1 to model the proposed relations
using the transformed entities. Notice that the proposed
equations are not a minimal set; some redundant equa-
tions are produced; for example P — ON — LN can be
expressed in two equations instead of three.

4. Each relation (or constraint) produces a set of
polynomials of the form R;(F;,D, B,, Fp) =0, which
involves the corresponding entities Fj;, Fp, the posi-
tions of the bodies D, B,, and the particular form of the

p3 FI2
Rt A

LR

Fig. 2. Simultaneous line-to-line restriction between pairs of
lines.

Ruiz and Ferreira

relation R;:
R\ (F11,D, By, F13) = 0; Ry(Fy1, D, By, Fy3) = 0;
R3(F31,D,B;,F3) =0 (1)

2.2. Double-peg-hole example: non-canonical modeling

Consider a scene in which there are two straight lines
LN, = (P1,v1) and LN, = (P, v;) (See Fig. 2) ex-
pressed parametrically, and assumed to be rigidly linked
to each other by a displacement M. Another set of lines,
with similar conditions, are given by LN3 = (P3,v3;) and
LN4 = (P4, vs). The proposed relations place LN; ON
LN3 and LN, ON LNy, (being LN; and LN, also rigidly
joined).The goal is to find out whether the relations can
be satisfied, what displacement is to be performed on the
rigid body LN,—LN; to achieve the goal, and the
degrees of freedom that are afforded to the body LN-
LN, by the relationship. The physical interpretation of
this GCS/SF problem is a situation in which, for exam-
ple, two pegs in a body have to be simultaneously
inserted into two holes in a wall. The problem can be
stated as follows:

1. Apply a (still unknown) rigid displacement D to
LN, and LN;. D is formed by a rotation Rot and a
translation T:

X1 X12 X13 Ty
Rot= [x31 x2 x3[;T=|T, (2)
X311 X3 X33 T:
The transformed entities are
P, = T+ Rot.Py;v| = Rot.vi; P, = T+ Rot.Py;
V5 = Rot.v,. (3)

2. The specified relations impose the following con-
ditions (expressed in vector terms for simplicity):

(P,l - P3) xv3=0 (Pll € LN3);V’1 X vy = O(V,l “ V3);
(Py— Pa) x v4 =0 (Py € LNa); vy x va = 0(V || va);{(4)
det(Rot) = +1;

The condition det(Rot) = +1 imposes dexterous ortho-
normality to the matrix Rot = [vivyv3]. Orthonormality
implies ||v|| =1, (i = 1..3); v;.vi=0,(i #j). Dexterity
implies v; x v = v3. The corresponding polynomials
are presented and discussed in later sections (Eqn (5)).

The equations arrived at are polynomials, whose
solution determine the matrix D, and therefore the
position of the (frame of) body B;. Following sections
explore the techniques for characterizing the common
solutions for such a polynomial set.
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3. Grobner Basis and the GCS/SF problem

In what follows, an introduction to an algebraic geome-
try technique called Grobner Basis construction will be
attempted. Only those issues relevant to the GCS/SF
problem are discussed. The interested reader is directed
to Buchberger (1989) and Hoffmann (1989) for details.
The following is some relevant terminology.

K[xl,xz,...,x,,]: ring of n-varied polynomials over
the coefficient field K.

e Algebraic closure: the algebraic closure of a field
K, K, is the field of all roots of all polynomials in
Klx1,%3,. .., x,]. If K is R, the set of real numbers, then
K is the set of complex numbers, C.

e Ideal of F: the Ideal of a polynomial set

F={f1,/2./3,- . Ju} is
IK[xl,xz ..... x,,]<F> = {glfl +8&.2+...
+ &nfnlgi € K[x1,%2,...,xn)}.
The notation is usually simplified to: I(F). It is said that
F is a basis for I(F).
® Radical(F): {f]3ks.t.f* € I(F)}.
e Algebraic set V(I): given an Ideal I €

K[x1,%2,...,%,], generated by the set F={f;,f, ...,
Jm}, its algebraic set V(I) is defined by:

Vi) = {x e K'|fix) =0,Vf e I}

therefore, (fi(x) =0V f; € F) — (x € V(I)).

® Zero dimension: an Ideal [ is zero dimensional if
V(1) is finite.

® Ordering: the set of variables {x1,x,,..
totally ordered under the order < if

., Xn} is

Y x,-,V Xjy Xi # Xj—X; < Xj OI Xj < X;j.

® Lexicographic order <;. given two terms
fh=x{"x32...x% and t, = xf‘.xgz .. .xf", then #; <; 1,
iff 3i < n such that o = g for i <j < n and o; < ;.

® Degree:  deg(t) = deg(x{".x3? ... x% =aq
+oax+ ...+,

® Degree order <4 t) <4 t, iff deg(t)) < deg(t;) or
deg(t1) = deg(t2)
and t; <; .

® head(f), ldcf(f): for a given order, and a given ring
K[x1,%2,...,X,), head(f) is the largest (in the sense of
<) term in f. ldcf(f), the leading coefficient of f, is
the coefficient of head(f) in f Therefore f =

ldcf(f).head(f) + tail(f).

® Normal form: given F={fi,f2,....fn}, FC
Klx1,x2,...,x,), and p € K[x1,x2,...,x,], there exists
a decomposition of p: p= NF(F,p)+ 3 - rlag fi)
(with oy, € K[x1,X2,...,x,]) such that NF(F,p) cannot
be further decomposed as > .. n(8;f;) with ;€
Klx1,x3,...,%,]. The term NF(F/,p) is called a normal
form of p with respect to F; it is a residual of the
reduction of p with respect to F. The reduction process

1s denoted as p— ¢ NF(F,p).
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e Grobner Basis: a Grobner Basis GB C
K[x1,x3,. .. ,Xu] is a set of polynomials such that
NF(GB,f) for every f is unique; it does not depend on
the sequence of reduction of f with respect to GB.
Therefore, f—gp p1 and f—p p; imply p; = p, (the
converse is not true). Also, if NF(GB,f) =0 then
f€ IGB). If NF(GB,f) # 0 it implies

that the set-of roots common to F and f is more
restricted than the set of roots to F.

® Reduced Grobner Basis: a Grobner Basis
GB = {g1,...,gn} is a Reduced Grobner Basis if:

1. VfieGB ldef(f}) =1;

2. Vfie GB NF(GB-{f}.f)) =f.

Let F={f1,/2,/3,...,/x} be a polynomial set in
Klx1,x2,...,%,], and I(F) be its ideal. If another set
G = {g1,82,83,---,8n} is basis of I{F) then every root
of F is also root of G, and vice versa.

Given a polynomial f'€ K[x,x,,...,X,], a term ¢ of f
can be eliminated with the help of another polynomial
g € K[x1,x2,...,x,] by multiplying the head(g) by some
term such that on subtracting the result from f, ¢
disappears. For this to happen it is necessary that
g < /. It is said then that f is reduced with respect to
g. It is written as f-%>h, where 4 is the result of the
subtraction. In the process of iterated reductions with
respect to elements of K[x;,x,,...,X,], the position of
the /’s in the ordering < decays. One of two things may
happen: f reduces to 0, or all the remaining g’s are
bigger than the final 4, and therefore f cannot be further
reduced. The last product of the reduction process is a
normal form of f with respect to K|xi,xa,..., %),
NF(K[x1,X2,...,%],f). In the described process, differ-
ent sequences of reduction are possible, and in general
they do not produce the same NF(.,f) result. If a set of
polynomials F is used for the decomposition, NF(F,f)
can be considered as the part of f that cannot be
expressed as a combination of the polynomials f; € F.

Several additional comments are pertinent at this
point: '

e Grobner Basis forces NF(GB,F) to be unique,
thus providing a way to examine whether an arbitrary
polynomial p is contained in I{F)or not. If p € I(F) then
NF(GB, p) = 0. Otherwise, it represents an independent
polynomial.

e In a Reduced Grobner Basis there is no redun-
dancy in the polynomials present, because each poly-
nomial is equal to its normal form with respect to the
remaining ones.

e An algorithm to calculate the Grobner Basis
GB(F) for a polynomial Ideal I{F) is provided by
Buchberger (1989). Several implementations are avail-
able in packages such as Mathematica, Maple, and
Macaulay. The condition for termination of the Buch-
berger algorithm relies on the fact that a total order can
be defined on the terms belonging to K[xj,xz,. .., X,]
(Buchberger, 1989; Hoffmann, 1989). Since a decreas-
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ing sequence (in the sense of <) of terms is finite, a
reduction process of a polynomial p with respect to a set F
is bound to stop. Details of the Buchberger algorithm are
discussed in Buchberger (1989) and Hoffmann (1989).

In the next sections, the theoretical basis developed
here will be used to exploit the properties of Grobner
Basis in the solution of the GCS/SF problem.

3.1. Algebraic geometry and the GCS|SF problem

Given a set of polynomials F (it is assumed that
F = poly_form(W,R) and also S = feasible(W,R)), it
has an associated Ideal I(F). For any polynomial set F,
the Grobner Basis GB(F) is an alternative set, which
generates the same Ideal /(F), but has important proper-
ties in characterizing the solution space and producing
feasible solutions:

1. KGB(F))= IF).

2. Fis solvable in K (the algebraic closure of K) iff
1 € GB(F).

3. Given a lexicographic order x; < x3 <,...,< X,
Vist.1<i<n: GB(F)NK[x1,x3,...,x;] is a (re-
duced) Grobner Basis for the elimination Ideal
Ikixy o, ) (F) N KXy, X2,...,%)]. GB(F) is triangular
set: GB(F) contains polynomials only in x;, some others
only in xi, x5, etc. Solutions for x; are used to find x»;
{x1,x2} are used to find x3, and so on.

4. If G is the Reduced Grobner Basis for an Ideal
I€Klxy,x2,...,%,,] is zero dimensional iff
Y x; € {x1,x2,...,%4}, G contains a polynomial whose
head term is a pure power of x;, i.e. of the form x¢ for
some integer d. This property allows the determination,
by inspection, whether the set of polynomials has
finitely or infinitely many solutions.

5. The Grobner basis G; for a zero-dimensional
Ideal I based on the order <,, can be converted into
another basis G, under another ordering <;. This prop-
erty allows the computation of total degree Grobner
Bases for certain purposes, and, only when it is required,
their transformation into lexicographic Grobner Bases
(computationally more expensive), provided that they
correspond to a zero-dimensional Ideal.

6. VF,f:f€ Radical(F) < (1 € GB(FU{y.f—1}))
This property establishes that f presents the same zeros as
Fiffthesystem FU {y.f — 1}(withy & {x1,x2,...,X,}), is
inconsistent, i.e. it is impossible for f not to be zero
when F is.

Some of the consequences of the properties in the
GCS/SF context follow:

Proposition 1.

S = solution(F) iff S = solution(GB(F)).

As a consequence of Property 1, in the context of the
GCS/SF problem, F = poly_form(W, R) can be analyzed
by calculating GB(F) and solving it by using the proper-
ties discussed below.

Ruiz and Ferreira

Proposition 2.

1 € GB(F) = S = solution(F) = ®.

Property 2 above establishes that 1 € GB(F) is a neces-
sary and sufficient condition for an empty solution space
in K. In contrast, if 1 ¢ GB(F), a solution space exists
in K'. A feasible S requires an additional check to
ensure that § € R”.

Proposition 3.

If I{F) is a zero-dimensional Ideal, then the set F (and
GB(F)) has a finite number of solutions. Therefore
S = feasible(W,R) has a finite number of configura-
tions. The zero-dimensionality of 7 can be assessed by
applying property 4 above.

Proposition 4.

Polynomial f is redundant with respect to F<&
(1 € GB(FU{y.f—1})) for a new variable y.

Property 6 helps to determine whether an additional
constraint is redundant by examining whether the satis-
faction of the new, additional constraint is implied when
the initial set of constraints is satisfied. An alternative
test can be implemented by recalling that a polynomial f
is redundant if its normal form NF(GB(F),f) = NF(F,f)
is equal to zero.

These properties and propositions provide a theore-
tical framework for the solution of the GCS/SF problem.
The realization of these facts into an algorithm will be
discussed in the following sections.

3.2. An algorithmic solution to the GCS|SF problem

This theoretical background can be summarized in the
following macro-algorithm, in which the invariant
clause for the loop is the existence of a set of non-
redundant, consistent and multidimensional set of (con-
straint-generated) polynomials. In the event of the addi-
tion of new constraints to the scene, the algorithm
converts them into polynomial(s), and tests their redun-
dancy (by using Proposition 4), consistency (Proposition
2) and zero-dimensionality (Proposition 3). If the new
constraint is redundant no action is taken; in the other
two cases the invariant becomes false and the loop
breaks. If the ideal has become zero-dimensional, a
triangular Grobner Basis under some stated lexico-
graphic order is extracted (Property 5) and solved
(Property 3). Proposition 1 is the underlying basis of
the algorithm, because it establishes that the GB(F)
faithfully represents F, with the same roots and Ideal
set. In the algorithm presented below, the propositions
or properties relevant to some important instructions are
displayed at the left-hand side:
{Pre: W a fixed scenario }

F={}

GB, = {}

do new relation R;

{Inv: F is consistent, non-redundant,
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multidimensional }
R=RU{R;}
f = poly_form(W,R;)
if (1 € GB,(FU{f})) then
stop (system is inconsistent)
else
if (f € Radical(F)) then
skip (f is redundant)
else
F=Fu{f}
GB, = GrobnerBasis(F, <,)
if (ZeroDimension(GB;)) then

Proposition 2

Proposition 4

Proposition 1
Proposition 3

break loop
else
skip (next relation-constraint)
fi
fi
fi
od
Property 5 GB; = GrobnerBasis(F, <;)
Property 3 S = triangular_solution(GB;)

{Post: R={R;} a set of relations;
S = feasible(W,R)}

The limitations of Grobner Basis, and for that matter any
symbolic algebraic geometry method, in solving this
problem is the explosive computational complexity of
the method, and its still unexplored behavior in dealing
with real arithmetic. If Fis a set in K[x), x2, . . ., X,], with
maximum exponent m, the Grobner Basis can contain
polynomials of degree proportional to 22" (Hoffmann,
1989).

3.3. Double-peg-hole example: Grobner Basis for the
constraint set

This section continues the example introduced pre-
viously (see Fig. 2), to illustrate the execution of the
proposed algorithm.

The basic condition of (dexterous) orthonormality of
the Rot matrix produces the following set of equations:

R1( )= T(x1ylzl ). Rot( 01,01, 91 )

Body 1, Position 1 Body 2

.

R2(=T(x2.y2.22)Rot( 02,4292 )

Fig. 3. Two-body example of canonical variable modeling of the
GCS/SF problem.
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x112 +x1% + x312 = 1= 0;
x12% + x22% + x3,2 — 1 = 0; \
x132 + X232 + X332 -1=0;
X13 X12 + X23 X22 + X33 X32 = 05
X1 X12 + X21 X22 + X31 X32 = 0; } ®

X21 X32 — X31 X22 — X13 = 0,

X31 X12 — X11 X32 — X23 = 0

Xi1X22 — X21 X12 — X33 =0;

The lexicographic order used in this example for the
calculation of the Grobner Basis is:

X11 > X12 > X13 > X231 > X22 > X23 > X31 > X32 > X33
=Tx>=T,>T, (6)

Constraint 1. LN, — ON — LN3: when this constraint is
applied, the conditions

(Py—P3) xv3=0 (P} €LN3);vyxv3=0 (¥ v)(7)

produce an initial polynomial set:
{d+Tz=0,n—Ty=0,x31=0,—x21=0}. (8)

The Grobner Basis corresponding to this condition is
shown below. The parameters of the World configura-
tion (c,d,w,n) appear as constants in the basis.The f
notation is used to stress the fact that f is head() of a
polynomial:

T,+d=0, T,-n=0, xpl+xt-1=0;
=0 xpl+xp’-1=0; —Xp + X X337 — X3 X3 X33 = 0;
xpxn+xnxn =0 Xpxpn+xnxn=0 xp’-x’=0 9)
=0 x3=0 =0

Xu + X23 X3 — X2 %33 = 0.

First, the fact that the GB does not contain a term of the
type k = 0, with k being any constant, suggests that it
cannot be concluded that the constraint is inconsistent
with the pre-existing scene. However, it would be
possible to have a solution with complex numbers that
is not physically realizable. Secondly, proposition 3 and
property 4 rule out a zero-dimensional ideal because T
and x33 are not head() of any polynomial as pure
powers. The original constraint specification would con-
tinue being satisfied under subsequent rotations around
the line LN3 (x33) and translations (7,) along it. Con-
sequently, there exists an infinite number of solution
configurations. Although the translational degree of
freedom fis easily related to T, the relationship of the
rotation to x33 is less intuitive.
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Constraint 2. LN, — ON — LNj,: this second constraint
results in the equations:

(P,—P) xva=0 (P, €LNy); vhxvg=0 (v vs). (10)

The Grobner Basis for the accumulated constraints, once
again, shows neither inconsistency nor zero-dimension-
ality:

T.+d=0; Ty—n=0; x3+1=0;

x3 =0; x31 =0; x23 = 0; (11)
X’ —1=0; xu=0  x3=0

x12=0; xn+x2=0

In this case T is effectively the only degree of freedom
left. Two assembly modes are possible, by setting
X2 = +1.

Constraint 3. P; — ON — Pjs: if this additional constraint
is enforced it would be expected that all the degrees of
freedom become fixed, leaving only a finite number of
configurations (D transformations) satisfying the con-
straints. Indeed, the Grobner Basis has each variable in
the head term of an equation of the basis and would
therefore be zero-dimensional:

T.+d=0 Ty-n=0 T2 -+w-2wT=0

x3+1=0 x3=0; x31=0; (12)
x3=0; cxn+w-T,=0; X1 =0;
x13=0; xp =0 xjc—w+T,=0

Constraint 4. P, — ON — Py4: this further constraining
renders the system inconsistent, unless the new con-
straint is redundant. When P, — ON — P4 is requested,
the Grobner Basis shows a topological inconsistency.
Topological inconsistencies in general vanish the solu-
tion space, except for a special set of values, i.e. for a
very special point on the line L4 (which is not P4) to
receive the point P,. Under the constraint P, — ON — P,
the Grobner Basis is indeed GB = {1}.

The four instances of GB(F), sequentially calculated
as constraints are added, demonstrate that the GCS/SF
problem can be solved using the order T, T,,...,Xx;.
Egns 12 are in triangular form under this ordering; x;,
the highest in the order, appears in only one equation,
whereas T, which is lower, appears in a number of
equations.

The large number of variables (twelve) and equations
(twenty), compounds the high computational complexity
of the Grobner Basis construction. In addition, the non-
canonical variables are difficult to relate to the degrees
of freedom of the solution to the GCS/SF problem. The
following sections discuss a more ‘natural’ set of vari-
ables that addresses these problems.

Ruiz and Ferreira
4. The SE(3) group and the GCS/SF problem

The set of Euclidean displacements in E*, SE(3), is a
(noncommutative) group (Ledermann, 1953, 1973): if
G1,G; and G represent displacements in SE(3) and o
represents the composition operation, the following
properties hold:

e Closure: two displacements G, G, applied in se-
quence produce a new displacement G3 = G o Gs.

e Existence of identity: I is the null displacement in
SE(3): GolI=10G=G.

e Existence of inverse: VG € SE(3)3G~! € SE(3) s.t.
GoG ' =G 'oG =1 The inverse, G~!, restores the
affected entity to the original position.

o Associativity: the effect of displacements is cumu-
lative. The following sequences are identical:
(G1 o G2) (o} G3 = G1 e} (G2 o G3).

SE(3) presents subsets that are groups themselves,
and that express certain common classes of displace-
ments. They are called subgroups. For example, the
subgroup of the rotations about a given axis u in the
space Ru is a subset of SE(3), and a group itself.

Given A, B, subgroups of the Euclidean group SE(3),
A is conjugate of B (A ~ B) iff 3 T € SE(3) such that
A = T 'BT. The relation A ~ B is an equivalence rela-
tion. It is symmetric, reflexive and transitive, and de-
fines equivalence classes called conjugation classes.

The T element above represents a rigid displacement.
Therefore, two displacements A and B are equivalent iff
a change of basis T converts one into the other. An
equivalence class (in this case a conjugation class)
represents the closure of a set of elements under the
relation 4 ~ B. As a consequence, the class can be
represented by an element with desirable properties
called canonical. In our case, a very important property
for a canonical form is that it be minimal in the number
of variables that specify it. This implies that indepen-
dence is a necessary condition for canonical sets of
variables. Conjugation classes have a canonical sub-
group that represents any other subgroup in the class
by applying the transformation for a change of basis. A
list of the conjugation classes for the subgroups of
SE(3) and their canonical representation (Herve,
1978), as well as their degrees of freedom is shown in
Table 2. In this Table, twix(f) means a rotation about
the X axis by 8, XTOY means a rotation by 90° about
the Z axis and trans(x,y,z) indicates a general spatial
translation. The concept of equivalence (conjugation)
allows one to name certain displacements in SE(3) as
‘linear translations’, ‘rotations’, ‘planar slidings’, etc,
therefore relating the subgroups of SE(3) with kinematic
constraints. For example, ‘rotations’ are all transforma-
tions of the form

R,(6) = B.R,.B™! = B.twix(8).B™!
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Table 2. Conjugation classes and their canonical forms
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Dof Symbol Conjugation class Canonical subgroup
1 R, Rotations about axis u {twix(0)}
1 T, Translations along axis u {trans(x,0,0)}
1 H,, Screw movement along axis u, with pitch p {trans(x,0,0).twix(px)}
2 C, Cylindrical movement along axis u {trans(x,0,0).twix(6)}
2 T, Planar translation parallel to plane P . {trans(0,y,z)}
3 G, Planar sliding along plane P {trans(0,y,z).twix(8)}
3 S» Spherical rotation about center ‘o’ {twix (). XTOY .twix(¢).XTOY.twix(8)}
3 T 3D translation {trans(x,y,z)}
3 Y,p Translating screw axis v, pitch p {trans(x,y,z).twix(px)}
4 X, 3D translation followed by rotation about v {trans(x, y, z).twix(6)}

Table 3. Composition and intersection of trivial constraints

Groups Conditions on geomet Intersection Composition
Ty

Cuo, Cur ug || Tw Cuoo Ry

Tp(),Tpl Tw;vo=PoN P T

with B € SE(3). The displacement B represents the
geometric part of a particular constraint, i.e. its dimen-
sional information. The canonical part, R, = twix(6),
contains the topological information, i.e. the number
and type of degrees of freedom. Given two subgroups G,
and G; of SE(3), the composition of the elements of G
and G,, Gjo G,, produces what is called the direct
product of groups G; and G,. The intersection of the
groups, which forms a subgroup of SE(3) also, reflects
the simultaneous application of constraints to the same
geometric entity (Angeles, 1982; Herve, 1978; Thomas,
1991). In a kinematic situation the composition of
constraints can be thought of as a serial arrangement
of joints, while their intersection can be thought as a
parallel one,

Sequences of constraints are expressed as:
RioRyoR3...0R,, with trivial constraints being de-
fined as sequences of length 1. Herve (1978), provides
tables with the results of composition and intersection of
trivial constraints. Two such examples are shown in
Table 3. Notice that the composition of trivial con-
straints in general produces one that is non-trivial
(Cy o Cyu1, for example). This lack of closure of the
subgroups of SE(3) places a fundamental limitation in
the reduction of constraint sets by using sequences of
group compositions and intersections and rewrite proce-
dures based on tables (such as Table 3). The goal of
these procedures, not always attainable, is to reduce the
whole constraint network to a single, trivial constraint
relating two entities. Another limitation of this approach
is its inability to deal with geometric inconsistencies.
For example, the intersection of two cylindrical groups
Cw and C, with up || u;, produces a translational T
degree of freedom (Table 3). The physical situation
corresponds to a rigidly linked pair of parallel pegs,

entering into a pair of holes whose axes are also parallel.
The method would correctly establish that a transla-
tional joint is left (topological result). However, the
distance between the axes has still to be checked (geo-
metric condition).

The canonical form of conjugation classes developed
by Herve (1978) and given in Table 2 will be used to
formulate the GCS/SF problem. The constraint reduction
procedures will be supplemented by the more powerful
algebraic geometric technique of the Grobner Basis. The
following sections expand on this approach.

4.1. Modeling methodology

By definition, a constraint maintains invariant certain
relations between the constrained entities. For example,a
planar sliding, Gp, allows 2 translational and1 rotational
degree of freedom, while still ensuring planar contact
between the two parts (see Table 2). A rotational
constraint, R,, preserves axial and radial relative dis-
tances, allowing 1 angular degree of freedom between
the constrained entities. Consequently, the contact con-
straints considered can be specified as shown in Table 4.
For example, a P — ON — PLN relation confines a point
to be on a plane, therefore configuring a 5-dof con-
straint. It includes 2 dof related to the position of the
point on the plane (7p), and 3 dof, corresponding to the
orientation (S) of the frame attached to the point. These
(matrix) equations allow for the construction of the
polynomial form of the GCS/SF problem. The metho-
dology for this modeling is discussed next.

The GCS/SF problem is stated as a series of con-
straints R; relating F;; with F as shown in Fig. 3
(corresponding to a two-body system). The R;() con-
straints are in general composed of translations 7() and
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rotations Rot(), as dictated by Tables 2 and 4. Body B
contains two features, whose frames are Fj; and F»;.
The corresponding features in body B, are Fi; and F;.
The goal is to find a final position of B; (assuming B,
stationary), such that F); relates to Fj; and F,; relates to
F»; satisfying the invariances dictated by R;() and R;()
respectively.

The final position of B; must be such that feature
frames Fi; and F; differ exactly in the orientation and
position changes allowed by constraint R;(). The same
should be true for F>; and F,; with regard to R;().The
equations expressing the facts above are:

Bi.Fi\.R\() = B,.Fi2; B\.F5).Ry() = By.Fp. (13)

The above procedure can be generalized to the case in
which there are several constraints R;() specified among
bodies. Once the constraint equations are obtained by
this procedure, the construction of the Grobner Basis
and its interpretation are carried out in the manner
described by the constraint management algorithm al-
ready discussed. The goal of the following sections is to
apply the methodology just explained, and to evaluate
its relative advantages with respect to non-canonical
modeling.

5. Examples

A number of examples are presented next, using both
canonical and non-canonical formulations. The first
example continues the double-peg-hole configuration
already modeled with non-canonical variables. Two
more examples (3-body and 4-body) of increasing com-
plexity are used to illustrate the behavior of the model-
ing and solution strategies with respect to the size of the
problem.

5.1. Double-peg—hole example: solution with canonical
variables

The group-theoretical methodology discussed in the
previous section will be applied to the configuration of
Fig. 2, in which the simultaneous enforcement of two
LN — ON — LN constraints is shown. The methodology
mentioned above and the model provided by (13) result
in:

Table 4. Entity relations in the form of kinematic joints

Ruiz and Ferreira

Fi1.Cy (01, x1).F1_21 = F21-Cu2(02> x2)'F2_21

This matrix equation can be expanded in the form

(14)

1 0 0 x 1 0 0 x

0 1 -8 0 1 _ 0 2 —5 0 1

Fll. 0 S1 C1 0 'Fl—z _FZI' 0 52 (&) 0 'FZ_Z
0 0-0 1 0 0 0 |

(15)

where ¢; = cos(6,);s1 = sin(6;). Also, two equations of
the form c? + st — 1 =0 are included. Eqn (14) repre-
sents a set of 12 polynomials and 6 variables (c is a
constant). This equation set has the following (lexico-
graphic) Grobner Basis:

$-1=0; &2=0; 51+1=0; ¢ =0
X] —x3+c¢=0; (16)
which is based on the order: x;> x>

> 81 > ¢2 > s2. The absence of a polynomial whose
head() term contains a pure power of x; indicates that
the ideal is not zero-dimensional and that x, is a free
variable. It is also known from its role in the canonical
formulation that it represents a translational degree of
freedom. Being fewer than non-canonical ones, canoni-
cal variables present advantages in computing effort
during the construction of the Grobner Basis. Table 7
presents some statistics corresponding to the examples
developed.

5.2. Three-body example

This example compares the performance of canonical
and non-canonical formulations with a larger set of
constraints and bodies. Fig. 4 shows the scenario being
modeled (adapted from Thomas and Torras (1989)),with
the imposed constraints appearing in Table 5. Columns 2
and 3 in Table 5 show the parametric expression of the
features Fj;. Column 4 presents the canonical groups
involved in the constraint, with the corresponding de-
grees of freedom. Notice that, although the constraints
imposed between the entities are trivial, the fact that
length-3 chains appear in the formulation makes the

Contact constraint Joint chain Kinematic joints in chain Dof
P-ON-P So Spherical 3
P—ON-LN T,0oS Linear translation, spherical 4
P—-ON-PLN TpoS Planar translation, spherical 5
LN-ON-LN C, Cylindrical 2
LN —-ON - PLN TpoR,0oR, Planar translation, revolute 4
PLN - ON-PLN TpoR, Planar translation, revolute 3
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Fig. 4. Three-body assembly.

direct application of group intersection impossible,
while the algebraic-geometry analysis proposed in this
investigation remains applicable.

5.2.1. Solution for three-body example using non-canonical
Jormulation

Assuming that the (coordinate frame of) body B; coin-
cides with the World Coordinate System, bodies B,, B;
are in (unknown) positions D2 and D3 respectively. The
constraints mentioned above result in the following
equations (D2 and D3 are orthonormal):

va1 X vi3 =0; w1 X (pa1 — p13) = 0;
viz X vi1 =05 vy X (P12 — pnr) = 0;
Vi2 X v23 =05 viz2 X (P12 — p23) = 0;

det(D2) = +1; det(D3) = +1.

amn

This system results in the following Grobner Basis
(D2 = {D2;;} and D3 = {D3;;}), which is calculated
based on the ordering D2;, > D2;; > D2;3 > D24
> D2y > D2y » D233 = D254 > D231 > D235 > D233
= D234 > D3y » D3y »~ D33 > D314 > D33 > D3y,
> D323 > D3y4 > D33y > D33, > D333 > D334

Table 5. Constraint specification for three-body example
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D334 =0; D3y —-1=0; %=0;‘
D33 =0; D3}, —10D3y% =0; D3y =0;
5D33 — 5+ D3 =0; D3y =0 5D314 + D3y =0;
D3;3 =0; D3y, =0; 5D3), — 5+ D3y =0;
D234 —2=0; D2yp®+D233% - 1=0; 02 =0:| (1g)
D2y —5=0; D2+ D232 —1=0; }

—D2p — D23 D933 D233 + D2y D233% = 0,
D2 D2y + D23 D233 = 0; D2y D2y + D23 D233 = 0; D2p” — D2357 = 0
D2, =0; D2;3 =0; D2, =0,
D24y + D233 D23, — D2y D233 = 0. )

The Grobner Basis (shown in (18)) is presented in
triangular form; it shows that variables D24 and D233
are missing in the head() terms of polynomials.
Although this information is not self-evident from the
solution set, these two variables have very definite roles
in the D2 matrix: D24 represents a translational degree
of freedom, whereas D233 represents a rotational degree
of freedom about an unknown axis in the space, deter-
mined by the eigenvalues and eigenvectors of the sub-
matrix Rot; = D2;(i=1...3,j=1...3) (Bottema and
Roth, 1979). The solution implies (as expected) that
body B; is fixed while body B, still has degrees of
freedom left, represented by the variables D24, D233.
Notice that, in this case, non-instantiation of D233
immediately spreads to D235, D253, D255, because these
values control the eigenvalues and eigenvectors of the
matrix Rot,.

5.2.2. Solution for three-body example using canonical
Jormulation
In this case the system of group-based matrix equations
can be stated as
F31.C(x1,61).F3 = F11.Cu3(x3,83).Ca(x2, 62) . F5;
(19)

Constraint Feature Feature Canonical subgroup
Ri:LN-ON-ILN Fy1 = (pa1,va1) Fi3=(p13,v13) Culx1,61)
Ry:LN-ON-LN Fy; = (p3,v23) Fiz = (pi2,12) Cu(x2,62)

R3;: LN—-ON~ LN Fiy = {pu,v1) Fia = (p12,v12) Cu(x3,83)
Table 6. Constraint specification for four-body example

Constraint Feature Feature Canonical subgroup
Ri:LN-ON-LN Fy1 = (pn,va1) Fi3 = (pi3, v13) Cu(x1,61)
R,:LN-ON-LN F3 = (p31,v31) Fia = (p12,v12) Cu(x2,67)
R3:LN-ON-LN Fy = (pn,vn) Fy = (py3,v3) Cu(x3,03)
R4y:LN-ON-LN Fia = (p1a, v14) F3 = (p32,v32) Cu(xa,04)
Rs:LN-ON- LN Fis = (p14,v14) Fi3 = (p33,v33) Cu(xs,05)
Rs:LN—-ON- LN Fia = (p14,v14) Fiy = (pu,vu1) Cu(xs,06)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



292

Using an ordering x;>Xx3>X3>8 >¢ > 8
> €2 > 53 > ¢3 produces a (lexicographic) Grobner Ba-
sis:

sP—1+c2=0; a-c3=0; s+5 =0

aa—1=0; 5 =0; x2 + x3 = 0;{(20)

x1 =0.

The analysis of this basis shows variables x;,c,s; as
completely instanced, indicating that the position of the
body Bj; is fixed. Body B, is free to rotate about and
translate along axis F), because x3 and c3 appear as free
variables. This direct relation between the rotational and
translational degrees of freedom of B, with the variables
x3 and c3 is enabled by the use of canonical formulation,
which also decreases significantly the size of the pro-
blem (see Table 7).

5.3. Four-body example

This example, whose scenario is shown in Fig. 5
(adapted from Thomas and Torras (1989)), introduces
an additional entity to the three-body example just

Fig. 5. Four-body assembly.

Ruiz and Ferreira

discussed (a different body numbering is used). The set
of constraints imposed is presented in Table 6.

5.3.1. Solution for four-body example using non-canonical
Sformulation

For this formulation, body B; is assumed to coincide
with the World Coordinate System, with bodies B,, B3
and B, occupying positions expressed by the unknown,
rigid transformations matrices D2, D3 and D4 respec-
tively.

The statement of the non-canonical formulation of the
problem is carried out as discussed before. In order to
calculate the Grobner Basis for the corresponding poly-
nomial ideal, the ordering of the variables used is
D4y, > D4y = D4;3 >~ D414 = D4, = D4,y = Ddys >
D4y4 > D43 = D43y = D433 = D434 = D3y > D315 >
D313 > D344 > D331 = D3y > D333 > D334 > D331 >
D333 = D333 = D334 > D2y > D215 > D23 = D24 »
D2y = D23y > D2y3 > D24 > D231 = D235 > D233 >~
D234,

The lexicographic Grobner Basis for this particular
ordering is

D234 =0; D233—-1=0; D2y =0;
D2y =0; D2y =0; D2y =0;
Dip-1=0; D2 =0; D2y +12=0;
D23 =0; D2y, =0; D2y, —1=0;
D3y =0; D333 -1=0; D33y =0;
D3y =0; D3u=0 Din=0;
D3p—1=0; D3y =0 D3y =0;
D33 =0; D3, =0 D3y —1=0; @n
Ddy—2=0; Ddp>+Ddy>~1=0; Ddy =0,
Dy —5=0; Ddy’+ D4y’ -1=0;
—=DAy — Déy; Ddyy Ddsy + Ddyy Ddyy® = 0;
DAy D4y + Ddn Ddyy =0;  Ddyy Ddys + Ddyy Ddyy = 0; Ddp — Ddsy? = 0;
Day =0; Daiz=0; Dy =0;

D4y + Ddy3 D43y — Ddyy Dd33 = 0.

The analysis of this basis shows that there are no
polynomials with head() terms containing pure powers
of D433 and D44, indicating that two degrees of free-
dom are left in the scene. As discussed in the three-body
example, the rod B, is free to undergo linear (D4,4) as
well as rotational (D433) movement about its symmetry
axis.

Table 7. Statistics for examples: non-canonical versus canonical variables

Example Variable type Variables Equations GB size Time (seconds)
Double-peg-hole example Non-canonical 12 20 16 1.53
Double-peg-hole example Canonical 6 14 6 0.25

Three-body example Non-canonical 20 30 24 6.08
Three-body example Canonical 9 15 7 0.51
Four-body example Non-canonical 36 54 37 39.01
Four-body example Canonical 18 42 16 2.16
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5.3.2. Solution for four-body example using canonical
Jormulation

The following canonical equations carry the topological
and geometrical information of the example. Notice that,
unlike the previous example, three loops of constraints
have to be simultaneously satisfied.

F11.Rs(x6,05).Fy4 .Fia.Ra(x4,04).Fs; = F31.Ry(x2,00).F;;
Fi1.Rs(xs,96).Fy; -Fia.Rs(xs,05).F53 = Fy.Ry(x1,6,).F {(22)
Fi4.Ry(x4,04).F5) .Fry.Ry(x3,83).Fy; = Fia.Rs(xs,05).F3;

In this case, the variable ordering used is: x; > X3 > x3
> X4 X5 > Xg > Cl =851 >C>5852>C3> 83> C6 > Sg
> €4 >S4 >S5 > cs, which produces the following
lexicographic Grobner Basis:

ss+es?—1=0; sg—cs=0; cq+s55=0;
S6¢ +55=0; cg—cs5=0; 53 =0
a-1=0 52=0  -1=0;23)
51=0;, ¢c—-1=0; x5+x5=0;
X4+ 6+ x6 = 0; x3=0; x2+10=0;
x1 =0.

This triangular Grobner Basis presents polynomials with
every variable as pure power in the head() term, except
for x¢ and cs. x¢ is the translational degree of freedom of
body By, and variable cs represents its rotational degree
of freedom. Therefore the example might have given ss,
S¢ or c¢ as free variable instead of cs, because they are
equivalent with respect to the degree of freedom that
they represent. The computational expenses of this
example are presented in Table 7.

6. Discussion of examples

Although in the examples shown, the size of the Grob-
ner Basis correlates with the size of the original system,
it is expected that in more complex scenes, a large
Grobner Basis will be produced, with exponentially
growing computing resources allocated to the
problem (Hoffmann, 1989; Becker, 1993). Partially
compensating this inherent difficulty of the GCS/SF
problem, the use of canonical variables seems to result
in smaller problem sizes and correspondingly smaller
Grobner Bases.

In situations with a large number of bodies in the
scene, it is not practicable to place the emphasis of
modeling on the parametric expression of the entities
(non-canonical). Instead, a degree-of-freedom (canoni-
cal) modeling would produce a smaller problem size.
This is because the compactness of the canonical repre-
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sentation would become more notorious as the problem
size grows. In contrast, in situations with a small
number of bodies and many interactions between them,
choosing a representation that grows with each con-
straint added (canonical), would present disadvantages.
In such situations the size of a non-canonical set of
variables is small and constant, regardless of the number
of constraints added. Therefore such a formulation of
the problem would be more convenient.

For purposes of automated reasoning, the advantage
of canonical variables is evident, because they directly
represent the degrees of freedom of the entities in-
volved. This characteristic makes them especially at-
tractive in kinematic analysis and design and in assem-
bly planning. In the non-canonical statement the
physical role of the variables is obscured (or shared)
by other variables, therefore making the automated
reasoning more difficult.

Further investigation is needed, to characterize which
systems of constraints are efficiently modeled by each
method.

7. Conclusions

Satisfaction of geometric constraints plays an essential
part in design and assembly planning. For example,
constraint-based design systems must, at a minimum,
be able to handle geometric constraints. Further, if
manufacturing plans are to be automatically updated
with changes in design, the problem becomes very
relevant in areas such as assembly, process and inspec-
tion planning.

In this investigation the problem of reasoning about
geometric constraints was addressed using Grobner
Bases. The Grobner Basis of a polynomial set
F = {p1,p3,...,pa} has several properties for character-
ization of the variety of its polynomial ideal. From the
GCS/SF problem perspective, these properties have en-
abled the identification of remaining spatial degrees of
freedom in a given scenario and the assessment of
redundancy and (in)consistency within a constraint set
F. An algorithmic procedure for exploiting the proper-
ties of Grobner Bases in a design/planning environment
was given and illustrated by several examples. Grobner
Bases provide a framework for the integral treatment of
topological and geometrical consistency in the set of
constraints. Such a framework is not limited to trivial
constraints as with techniques associated with ap-
proaches applying rewriting rules based on exclusively
topological considerations.

A drawback of the direct application of algebraic
geometry techniques is the growth of computational
effort with problem size. This was demonstrated in a
series of examples of increasing complexity. This pro-
blem is addressed in this investigation by the application
of a set of variables derived from the subgroups of the
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special group of Euclidean displacements SE(3). These
so-called canonical variables provide a compact and
physically meaningful representation of the GCS/SF
problem. Therefore they facilitate the automated inter-
pretation and analysis of the solution in terms of the
degrees of freedom of the entities involved.

Future work addresses the preprocessing of the topo-
logical part of the constraint network by applying group-
reduction techniques of Angeles (1988), Herve (1978)
and Thomas (1991), and by using the Grobner basis
method with a reduced set of constraints.

In this investigation the primary focus has been on
the feasibility of a set of contact constraints defined on a
set of entities. For a complete analysis of the GCS/SF
problem, the question of interference has to be ad-
dressed, in which the configuration has to be tested for
invasion of volumes among bodies. This problem is not
a trivial extension of what is reported here, because
interference constraints reduce to sets of inequalities.
Beyond the problem of interference, the problem of
reachability of a kinematically valid, non-invasive pro-
posed world has to be studied. In that problem the path
of the objects to reach the desired configuration without
collisions becomes a relevant subject.
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