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Introduction

Computational modeling is the use of algorithms and data structures to transform a

physical or theoretical problem into a problem solvable by acomputer. The branch

of Computer Science that supports engineers in tasks like analysis, simulation, de-

sign, manufacture, planning, diagnosis and repair is the Computer Aided Engineering

(CAE). Some of the problems found in CAE, like the ones described in this thesis, re-

quire extensive use of Geometric Modeling. Geometric Modeling is the branch of Ap-

plied Mathematics and Computational Geometry that studiesmethods and algorithms

for the mathematical description of shapes.

Several engineering problems depend on too complicated equations to be solved

analytically. One of the methods developed for solving partial differential, (and other

kind of), equations is the Finite Element Method (FEM). FEM decomposes a problem

into simpler sub-domains and feeds it to a solver, which gives a solution.

Modeling a problem by means of the FEM broadly consists of:

1. Modeling the geometry.

2. Meshing (Discretization).

3. Specification of material property.

4. Specification of boundary, initial and loading conditions.

At the CAD/CAM/CAE laboratory EAFIT and at the CITG UPV two different

projects were carried on. One aimed to produce a mesher of a parametric surface

that could be used for FEM. The second one tried to model, using commercial FEM

packages, the stages that the ceramic tile undergoes duringits production. The results

of both projects are presented in the manner of papers with the following titles:

1. Gabriel-constrained Parametric Surface Triangulation.

2. Simulation of the handling in green of ceramic tiles with deep back relief.

The topic of the first paper is the triangulation of a parametric surfaceS : R2 −→
R3, of the classC2 with border. The boundary ofS is the collection of loopsLi em-

bedded inS. The triangulation algorithm generates a mesh that is also a2-manifold
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but of the classC0 with border. The algorithm receives as an input a boundary repre-

sentation model (b-rep): one of the most common ways in whichCAD systems model

the geometry and topology of solids.

The chapter presents:

1. A literature review of algorithms that triangulate surfaces. Most of these algo-

rithms don’t have any guarantee or special method to handle the border properly.

2. An introduction to the Gabriel Complex. Also, an introduction to the curvature

of smooth parametric surfaces.

3. Four algorithms that take care of each stage of the triangulation of a (b-rep).

4. The complexities of each of the algorithms.

5. Results, conclusions and future work.

The topic of the second paper is the use of the FEM for the evaluation of the han-

dling in green of a ceramic tile. The ceramic tile evaluated has deep back relief. Tiles

with back relief can have different mechanical behavior than their counterparts. A ce-

ramic tile is said to be in green state after pressure forming. It has a high content of

water and it’s in its weakest state; because of this, the tilein this stage does not undergo

many processes. An evaluation of the strength for the different processes that the tile

undergoes during this stage can be done with help of the FEM. To be able to do this

with a parametric approach, a computer software that received a set of parameters to

generate the model of tile with back relief was created. It applied the necessary bound-

ary conditions and the rest of the steps needed to use FEM so the model would be ready

to be solved. It also generated a set of commands that were fedto ANSYSR©, which

performed a set of boolean operations that gave as result thegeometric model of the

tile required.

The chapter presents:

1. A description of the steps taken by a user in ANSYSR© to model a problem by

means of the FEM and how we improved that workflow for the specific prob-

lem of modeling the production stages that a ceramic tile with deep back relief

undergoes.

2. An introduction to theories needed to model the problem bymeans of the FEM.

3. An evaluation of the strength of tiles lightened by a method simpler than the back

relief: reducing their thickness.

4. An evaluation of the strength of tiles with a model of back relief but with different

parameters.

2



5. A method to evaluate the appropriateness of a back relief for any given test.

6. Conclusions and future work.

3
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Chapter 1

Gabriel-constrained Parametric

Surface Triangulation
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Context

The CAD/CAM/CAE Laboratory at EAFIT University, under my coordination, started

in 2007 the project:Stochastical Computational Geometry in CAD CAM CAE. As part

of this project, some probably correct sampling and reconstruction algorithms have

been proposed and developed by me, the Professors and the assistants at the lab. One

of such projects involved Ricardo Serrano who implemented an algorithm that triangu-

lates b-reps.

The algorithms developed used knowledge in the fields of Theoretical and Com-

putational Geometry, Computer Assisted Design, GeometricModeling, Graph Theory

and Software Development in the C++ language. This researchhas great application

in the field of Computer Aided Engineering, specifically the FEM, and in the field of

Computer Aided Manufacturing.

The theoretical contributions of the project appear on the paper:

1. Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, and Guillermo

Peris-Fajarnes. Gabriel-constrained parametric surfacetriangulation. Proceed-

ings of World Academy of Science, Engineering, and Technolgy, 34:578 585,

2008.

2. Oscar E. Ruiz, John Congote, Carlos Cadavid, Juan G. Lalinde, Guillermo Peris-

Fajarńes, Beatriz Defez, Ricardo Serrano. Gabriel-constrained,parameter-independent,

curvature-sensitive parametric surface triangulations.Advanced Technologies,

ISBN 978-953-7619-X-X.

As coauthor of the publications we give the permissions for this material to appear

in this document. We are ready to provide any additional information on the subject,

as needed.

Prof. Dr. Eng. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University
Medelĺın, Colombia
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Abstract

The Boundary Representation of a 3D manifold contains FACES(connected subsets of

a parametric surfaceS : R2 −→ R3). In many science and engineering applications

it is cumbersome and algebraically difficult to deal with thepolynomial set and con-

straints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear

(PL) approximation of the FACE is needed, which is usually represented in terms of

triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires pro-

ducing quality triangles which are: (i) independent of the arguments ofS, (ii) sensitive

to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv)

topologically compatible with the triangles of the neighboring FACEs. In the existing

literature there are no guarantees for the point (iii). Thisarticle contributes to the topic

of triangulations conforming to the boundaries of the FACE by applying the concept of

parameter-independent Gabriel complex, which improves the correctness of the trian-

gulation regarding aspects (iii) and (iv). In addition, thearticle applies the geometric

concept of tangent ball to a surface at a point to address points (i) and (ii). Additional

research is needed in algorithms that (i) take advantage of the concepts presented in the

heuristic algorithm proposed and (ii) can be proved correct.
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Glossary

S: Parametric Surface.S : R2 → R3. is an (infinite)

2-manifold without border.

F ,H: Faces. Connected subsets of a parametric surface

(F,H ⊂ S).

S−1(F ): Pre-image ofF in parametric spaceU − V .

TF : Triangulation of faceF in Euclidean space.

TUV : A triangulation in parametric spaceU − V .

T = S(TUV ): Triangulation inR3 as a mapping, viaS, of the trian-

gulationTUV in U − V parametric space.

∂X: Boundary of the setX.

Li: A loop (Li ⊆ ∂F ), is a 1-manifold without border.

It is a connected subset of the boundary ofF .

Ej An edge (Ej ⊆ Li), is a 1-manifold with border.

t: A triangle of the triangulationT .

p, q: Points in Euclidean space.p, q ∈ R3.

u, v, w: Real parameters of a curveC(w) or a surfaceS(u, v).

cl(A): Closure of the setA. cl(A) = A ∪ ∂A.

int(A): Interior of the setA. int(A) = A − ∂A.

BG(p, q, r): Gabriel Ball inR3. Spherical point set whose center is

contained in the planepqr, passing through the points

p, q, r ∈ R3.

BG(p, q): Gabriel Ball inR3. Spherical point set whose center

is contained in the edgepq, passing through the points

p, q ∈ R3.

e: Edge of a triangle.

1.1 Introduction

Boundary Representations, B-Reps, are the computer formalization of the boundary

of a body (M = ∂BODY ). Shortly, M is a collection of SHELLs, which in turn

are collections of FACEs. For convenience, we will assume that the SHELLs are 2-

manifolds without border inR3. Each SHELL is decomposed into FACEs, which must

have boundary. It is customary in geometric modeling to makea FACEF a connected

proper subset ofoneparametric surfaceS(u, v) ⊂ R3. In this article we consider the

b-reps as closed 2-manifolds with continuityC2 inside each face andC0 among them.

The border ofF is ∂F , which is the collection of LOOPsLi embedded inS. The

LOOPLi can be thought of as a 1-manifold without border, withC∞ continuity except

in a finite number of points, where it isC0-continuous. In such locationsLi is split

8



into EDGEsEj , each one being aC∞ 1-manifold with border. The problem of surface

triangulation takes place in one of such FACEsF . A PL approximationTF of faceF is

required which: (a) is formed by triangles, (b) departs fromF in less than a distanceǫ,

(c) has triangles as equilateral as possible, (d) has as few triangles as possible, and, (e)

each edgeej of the triangle set has exactly two incident triangles. Property (e) is a con-

sequence of the fact that a B-Rep is a 2-manifold without boundary. The triangulation

T is also a 2-manifold (of theC0 class) without boundary. Condition (e) also holds

for edgesej whose extremes lie on any loopLi. This means, this edgeei receives a

triangle from the triangulationTF (faceF ) and another from the triangulationTH (face

H).

An important aspect to control in triangulating a faceF is that having a triangu-

lation TUV correctly coveringS−1(F ) in parametric spaceU − V is not a guarantee

for the triangulationT = S(TUV ) in R3 to be correct. Several problems may arise: (i)

Fig. 1.1 illustrates that a completely internal triangle[a, b, c] in parametric spaceU−V

may not be mapped byS to an internal triangle[S(a), S(b), S(c)] in R3. (ii) roughly

equilateral trianglest in U − V space may map to extremely deformed trianglesS(t)

in R3 because of sharp warping caused byS, (iii) neighboring trianglesti, tj , tk, .... in

U − V space mapped viaS() may form a fish scale effect inR3 because of the same

warping inS.

Figure 1.1: Triangleabc is internal in parameter space. TriangleS(a)S(b)S(c) is
external to the surfaceS(r, θ) = (r cos(θ), r sin(θ), 0)

1.2 Related Work

1.2.1 Fundamental definitions

As discussed in [1] a smooth 2-manifold with boundary (face)F is a sub-manifold

of a smooth 2-manifoldS without boundary. If the neighborhood of a pointp ∈ F

is homeomorphic to a 2 dimensional euclidean space, then we say that thep is in the

interior ofF (int(F )). If the neighborhood of a pointp in F is homeomorphic to a half

euclidean space then we say that the point is in the boundary of F (∂F ). The exterior

of the submanifoldF is composed by the pointsp ∈ S and not in the closure ofF

9



(p /∈ cl(F )). It includes all the points neither in the interior nor the boundary ofF but

still in S. The boundary is a closed set and the interior and exterior are open sets. In

Fig. 1.4 the interior, boundary and exterior are shown (A − B denotes the difference

between setsA andB).

Figure 1.2: Pre-imageF−1 = S−1(F ) of the faceF by the parametric surfaceS.

Fig. 1.2 displays the general situation in which a faceF is carried by a para-

metric surfaceS in R3. F is a connected subset ofS, with the boundary ofF ,

∂F = {L0, ..., Ln} being the set of loopsLi which limit F on S. If the function

S(u, v) is 1-1 (which can be guaranteed by a convenient decomposition of the overall

B-Rep) then there exists a pre-image ofF in parametric spaceU×V , that we callF−1.

Such a region can be calculated asF−1 = S−1(F ). To do so, a point sample of∂F

formed by pointspi ∈ R3 is tracked back to their pre-images(ui, vi) ∈ (U ×V ) there-

fore rendering a connected regionF−1 ⊂ (U × V ), most likely with holes, bounded

by a set of planar Jordan curves∂F−1 = {Γ0, ...,Γn}.

Figure 1.3: Delaunay tetrahedron for pointsa, b, c, d ∈ R3, Gabriel 2-simplex for
a, b, c ∈ R3, Gabriel 1-simplex fora, b ∈ R3, Gabriel 1-simplex fora, b ∈ R2.
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Fig. 1.3 displays a short collection of Delaunay and Gabrielcomplexes. A Delau-

nay tetrahedron in a set of points in 3D is a tetrahedron (3-simplex) formed by four

points whose circumscribed sphere contains no other point of the set. Given vertices

vivjvk in the point set, they form a Gabriel triangle (2-simplex) ifthe smallest sphere

through them contains no other point of the set. The trianglevivjvk is embedded in

the equatorial plane of such a sphere. A Gabriel edgevivj (1-simplex) is one with

vi andvj in the point set, such that the sphere centered in(vi + vj)/2 with radius

r = d(vi, vj)/2 contains no point of the sample other thanvi andvj . Such a sphere is

the smallest one containingvi andvj . Each Gabriel 1-simplex makes part of at least

one Gabriel 2-simplex, and each Gabriel 2-simplex makes part of at least one Delaunay

tetrahedra.

The present article applies the Gabriel variant (1- and 2- simplices) to Delaunay

connectivity to calculate a triangulation for a point sample VF (sensitive to curvature

and independent of the parameterization) on the faceF , carried by a parametric surface

S. Section 2 reviews theoretical and algorithmic knowledge related to triangulations

and surface curvatures. Section 3 discusses the algorithmsdevised and implemented

to triangulate Boundary Representations. Section 4 presents five complex Boundary

Representations with manufacturing and organic surfaces and high genii triangulated

by the implemented algorithm. Section 5 concludes this article and sketches directions

for future work.

1.2.2 Curvature Measurement in Parametric Surfaces

A parametric surface is a functionS : R2 → R3, which we assume to be twice deriv-

able in every point. The derivatives are named in the following manner ([10], [20],):

Su =
∂S

∂u
; Sv =

∂S

∂v
; Suu =

∂2S

∂u2
; Svv =

∂2S

∂v2
; (1.2.1)

Suv = Svu =
∂2S

∂u∂v
; n =

Su × Sv

|Su × Sv|

with n being the unit vector normal to the surfaceS atS(u, v).

The Gaussian and Mean curvatures are given by:

K =
LN − MM

EG − FF
;H =

LG − 2MF + NE

2(EG − FF )
; (1.2.2)

where the coefficientsE, F , G, L, M , N are:

E = Su • Su; F = Su • Sv = Sv • Su; (1.2.3)

G = Sv • Sv; L = Suu • n;

M = Suv • n; N = Svv • n;
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Minimal, Maximal, Gaussian, Mean Curvatures from the Weingarten Application

The Weingarten Application ([10]),W is an alternative way to calculate the Gaussian

and Mean curvatures.

W =

[

a11 a12

a21 a22

]

(1.2.4)

with a11, a12, a21, a22 being:

a11 =
MF − LG

EG − F 2
; a12 =

NF − MG

EG − F 2
; (1.2.5)

a21 =
LF − ME

EG − F 2
; a22 =

MF − NE

EG − F 2

The following facts allow to calculate the curvature measures forS from the Wein-

garten Application: (i) The eigenvaluesk1 y k2 of W are calledPrincipal Curvatures ,

with k1 being themaximalcurvature andk2 being theminimalcurvature (assume that

|k1| ≥ |k2|). (ii) K = det(W ) is theGaussian Curvature, with K = k1 ∗ k2. (iii)

2H = trace(W ) is twice theMean Curvature, with H = k1+k2

2 . (iv) The maximal

and minimal curvatures are:k1 = H +
√

H2 − K andk2 = H −
√

H2 − K.

W ∗ v = k ∗ v is the eigenpair equation for theW matrix. The solutions for such

an equation are the eigenpairs(k1, v1) and(k2, v2). Therefore,W ∗ v1 = k1 ∗ v1 and

W ∗ v2 = k2 ∗ v2. The directions of principal curvaturein U × V spacearev1 and

v2 (v1 = (w11, w12) andv2 = (w21, w22)). The directions of maximal and minimal

curvatures inR3 areu1 = w11 ∗ Su + w12 ∗ Sv andu2 = w21 ∗ Su + w22 ∗ Sv,

respectively.

1.2.3 Previous Work

[12] implements an algorithm which starts with an already valid triangulation on a

trimmed surfaceS(u, v) and originates a new triangular mesh. It proposes a surface

triangulation with a Delaunay method given 3 points inR3 which determine a sphere

whose equatorial plane is defined by the 3 given points. The algorithm creates a point

set which may be more dense as needed by a particular criterion (e.g. curvature). This

algorithm uses expensive operations (e.g. surface-line intersection). The boundary of

the triangulated trimmed and meshed face is expressed and calculated in handled in

parametric space. Since the algorithm in [12] starts with a given triangulation and

modifies it, if such triangulation is not correct, or it does not respect the boundary of

the trimmed surface, the triangulations following keep such characteristic. According

to [16], the restricted Delaunay triangulation of general topological spaces is defined.

The restricted Delaunay triangulation in the case of trimmed surface inR3 is the dual

of the Voronoi diagram intersected with the surface. Therefore, a triangle is created in

each intersection of 3 voronoi cells with the surface. A contribution of the paper is to

show that Chew’s algorithm is a restricted Delaunay triangulation.
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In the problem of the triangulation of manifolds with boundary the theoretical

guaranties that serve for surface reconstruction do not apply. For exampleǫ-samples

([4],[3]) which use the smallest distance of a sample point to the medial axis of the

solid (i.e. theǫ). Since a trimmed surface may be close or far from the medial axis,

such criteria do not apply for surface triangulations.

In [7], The ball pivoting algorithm, (BPA), is presented. Itcomputes a triangle

mesh interpolating a given point cloud: 3 points form a triangle if a ball of radius

smaller thanρ (a user specified radius) touches them without containing any other

point. This triangle is a Gabriel 2-simplex inR3. The algorithm makes a region of

triangles grow by adding a triangle to one of the boundary edges of the triangle mesh.

The reconstruction algorithm needs a very uniform sample.

In [19] the intrinsic Delaunay triangulation of a Riemannian manifold is shown to

be well defined in terms of geodesics. A smooth surface embedded inR3 can define

a Riemannian manifold. The Riemannian manifolds have the property that if all the

calculations and definitions are done in a small subset of themanifold, (as they can be

done with a good sampling condition), the Delaunay triangulation and the Voronoi di-

agram are defined exactly as with the euclidean metric and aredual. Although defining

triangulations with geodesics is theoretically sound, it has a prohibitively high com-

plexity because it implies the solution of simultaneous algebraic systems.

In [2] the Gabriel complex is defined forRn. For a set of points inR3 the Gabriel

complex is composed of triangles whose smallest defined circumsphere is free of points

in the set. The advantage with respect to [12] is that it does not need information about

the surface. The Umbrella filter algorithm described produces topologically correct

triangulations. Our article takes advantage of such a definition, along with a curvature

- sensitive point sample.

[5] gives lower bounds for densities of well distributed points in surfaces, based on

Delaunay triangulations. [11] presents an algorithm to sample and triangulate a surface,

but it uses computer expensive and not common operations. In[8] the concept of

looseǫ-sample is developed but the operations which implement it are computationally

expensive.

[9] presents the Lipschitz-samples, analogous toǫ-samples, but applied to piece-

wise smooth (Lipschitz) surfaces. Such a distance permits to sample a Lipschitz sur-

face and to define a mesh on it. However, [9] does not present actual examples of the

performance of the algorithm (as we do here). We do also address the sampling of

edges which bound two incoming smooth surfaces by using the most larger of the two

involved curvatures.

In [13], the greedy Delaunay - based surface reconstructionalgorithm from a point

sample is presented. The algorithm uses the fact that the Gabriel graph is a subset

of the Delaunay triangulation (DT). From a starting triangle, it grows matching each

of the edges in the boundary with a triangle in the DT that has the minimum radius.
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As disadvantages, we may note that the algorithm: (i) requires the usual distance for

Delaunay triangulations, (ii) needs a very uniform sampling in the loops and (ii) does

not provide guarantee in the reconstruction.

[1] is focused in the notion of envelope that is the covering of a 3-manifold created

with spheres ofλ size and centered in the points of the surface. From the envelope

a surface with boundaries can be reconstructed, but this approach does not conserve

the original points sampled in the boundary, and parametersare needed. In practice

the envelope approach does not seem to produce topologically correct results. We

dispose of information about the surface and boundaries anduse another approach to

the problem.

In [14] an advancing front method to triangulate parametricsurfaces is presented.

The method triangulates a B-Rep by discretizing edges and surfaces. The number of

triangles generated can be adapted to any density function in the surface. The correct-

ness of the solution depends on the density function provided for the edges and for the

surface. In [6] a parameterization-independent algorithmis proposed to triangulate a

surface. In the algorithm, a circle in the normal plane of a point p in the surfaceS,

Tp (S, p), is chosen. A polygon ofn sides, (withn ≥ 4), and defined by vertices

{p1, p2, ..., pn}, is inscribed in the circle. Rays from the vertices and perpendicular

to Tp (S, p), intersect the surface and generate new vertices for the triangulation. The

algorithm has the advantage that the connectivity of the triangles is present through

the algorithm. In the other side, the paper handles the boundary in the parameter do-

main and reports a non-uniform sample near to this. The paperreports problems are

in regions of high curvature. Also in [21], the algorithm described in this paper is im-

plemented and problems are reported near the boundaries. The generalization of their

algorithm to closed surfaces needs a sewing procedure that creates additional borders.

In [23], an algorithm that triangulates parametric surfaces is presented. The algorithm

uses an advancing front method. The loops aren’t taken into account. This algorithm

generates two fronts of triangles that advance one towards the other. The two fronts

are in opposite sides of the parameter space. The main drawback in this algorithm is

that: only a squared parameter space is considered. No holesor complex features are

reported in the paper. In [22] an algorithm to triangulate b-reps is presented. In the

algorithm all the triangulation occurs in parametric spaceand is mapped toR3. In [21]

two sampling methods and a triangulation algorithm are proposed. In the algorithm the

boundaries are isosampled, i.e not sensitive to the curvature or any other parameter. In

the triangulation algorithm, a parametric information is needed, so it can fix problems,

and the boundaries are not handled well in all the situations.
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Figure 1.4: Interior, boundary and exterior of a submanifold F with respect to a mani-
fold S.

Figure 1.5: Gabriel 1- and 2-simplices on faceF

1.3 Methodology

The implemented algorithm to triangulate a faceF mounted onto a parametric surface

S (Fig. 1.4) has the following layout, whose details will be discussed later: (1) Calcu-

late the pre-imageF−1 of the faceF through the functionS (Fig. 1.2). (2) Initialize

the vertex setVT with a curvature-sensitive sample of the loopsL0, ..., Ln of the face

boundary∂F . (3) Introduce points in the sampled loopsL0, ..., Ln; such that, all the

segments in∂F are Gabriel 1-simplex. (4) Sprinkle the faceF with verticesvi achiev-

ing a vertex density proportional to the local curvature ofF , Kmax, inserting those

vertices in setVT . Segments in∂F remain Gabriel 1-simplex during this stage. (5)

Calculate a Gabriel connectivityT for the vertex setVT .
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1.3.1 Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive sampleof an EdgeE. Unlike

previous approaches ([22]) such a sample is not an iso-distance one. Instead, the sam-

pling interval at pointp on the underlying curveC is sensitive to the largest of the

maximal curvatures ofS1 andS2 in such a pointp (line 6). Notice that the curva-

ture of the curveC at p needs not to be considered in addition to the surface curva-

tures because it will be always less than or equal to the surface maximal curvatures

(Kmax(S1, p),Kmax(S2, p)).

Algorithm 1 Sample of the EdgeE between FacesF1 andF2

S1(u, v), S2(u, v): Underlying surfaces for FacesF1 andF2.
C(λ): Underlying Curve forE.
Λ0,Λf : Parameters of the extremes ofE in curveC.
VE = {p1, p2, ..., pn}: Output. Sequence of point sample ofE.
Kmax(S, p)): Maximal curvature of SurfaceS at pointp.
Nsides: Number of sides of a regular polygon.

1: VE = {}
2: λ = Λ0

3: while λ ≤ Λf do
4: p = C(λ)
5: VE = VE ∪ {p}
6: k = max(Kmax(S1, p),Kmax(S2, p))
7: r = 1/k
8: δ = polygon determined arc(r,Nsides)
9: ∆λ = dist to param(δ)

10: λ = λ + ∆λ
11: end while

Figure 1.6: Locally planar curve and local curvature. Approximation by regular poly-
gon ofN sides.

Fig. 1.6 displays the geometrical idea behind lines 7 and 8 ofthe algorithm: the

radius of curvaturer is the inverse of the curvaturek. A circle tangent to a curve with

such a curvature may be approximated by a regular polygon ofNsides sides. The arc

δ determined by such a polygon is considered as a good euclidean sampling distance

for the curveC atp (line 8). Such an euclidean distance must be transformed to alocal
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parameter distanceδλ atC(λ) (line 9).

1.3.2 Loop Resampling. Ensuring that each edge of each loop is a

Gabriel 1-simplex

Algorithm 2 creates new vertices in the loops sampled by algorithm 1, in such a way

that each segment in the new sample is a Gabriel 1-simplex. Between lines 4 and

16, each loopVLi is traversed as a circular linked list. Each segmentvcurrvnext is

tested to be a Gabriel 1-simplex in line 7. If it is not a Gabriel 1-simplex, a new

point, returned by functionpoint middle of arc (lines 8 and 9), is inserted to the

circular linked list aftervcurr and previous tovnext (lines 10 and 11). LetCz (λ)

be a curve parameterized by arc length. Letpx andpy be two points inCz (λ). Let

Λx and Λy be the parameters ofpx and py respectively withΛx < Λy. Function

point middle of arc (Cz (λ) , px, py) performs the following procedure:

1. Finds the arc lengthδ betweenpx andpy in curveCz (λ).

2. Returns a pointpnew = C
(

Λx + δ
2

)

.

If any segmentvcurrvnext is not Gabriel 1-simplex, the variablefinished is set

to false (line 12). In line 21 the variablefinished is testedtrue, to ensure that this

procedure is repeated until all segments are Gabriel 1-simplex.

Fig. 1.7 shows the behavior of algorithm 2. In Fig. 1.7(a), point vx ∈ VLi is

insideBG (vcurr, vnext) and segmentvcurrvnext is not Gabriel 1-simplex. Aftervnew

is inserted toVLi, the new segments are(vcurr, vnew) and(vnew, vnext). As shown in

Fig. 1.7(b),BG (vcurr, vnew) andBG (vnew, vnext) are empty of other points inV∂F ;

and segments(vcurr, vnew) and(vnew, vnext) are Gabriel 1-simplex.

Sometimes, B-rep models are not well stitched ([24]), and that creates extremely

narrow faces. Every time the loop between lines 1 and 21 is executed, at least 2 seg-

ments become shorter. In line 18, functionis any segment too short (V∂F ) evalu-

ates this case and returns failure when an edge is too short (i.e the loop is being repeated

too many times). This adds robustness to algorithm 2. Otherwise, if two lines of a b-

rep are geometrically equal, but have not been merged in the model, algorithm 2 would

never stop.

1.3.3 Face Sampling. Vertex Sprinkle on FaceF

Algorithm 3 constructs the vertex setVF of the triangulation sought for faceF .

The initialization ofVF (line 1) is done with the vertices sampled on the boundary

loops ofF , ∂F = {L0, ..., Ln}, as per algorithm 1. Such vertices correctly sample

∂F . However, the interiorint(F ) needs to be sampled. To do so, trial vertices are

generated inside the pre-imageF−1 in U × V space (line 4) and their image viaS is
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Algorithm 2 Insert vertices in the sampled loops until all the segments are Gabriel
1-simplex.

V∂F = {VL1, VL2, VLn}: is the set of vertices that sample the boundary of the faceF .
VLi = {VE1, VE2, ..., VEm}: is a circular linked list that contains all the points sampled
in the loop with algorithm 1 andVEj is the ordered sample of edgeEj .
V∂F = {VL1, VL2, VLn}. Output. The set of vertices that sample the boundary of face
F .

1: repeat
2: finished = true
3: for all VLi ∈ V∂F do
4: vcurr = head (VLi)
5: vnext = next (VLi, vcurr)
6: repeat
7: if ∃vx ∈ (VLi − {vcurr, vnext}),

such that: vx ∈ BG (vcurr, vnext) then
8: Cj (λ) is the curve, of an edgeEj , that contains{vcurr, vnext}.
9: vnew =

point middle of arc (Cj (λ) , vcurr, vnext).
10: next of (VLi, vcurr) = vnew

11: next of (VLi, vnew) = vnext

12: finished = false
13: end if
14: vcurr = vnext

15: vnext = next (VLi, vnext)
16: until vcurr ≡ head (VLi)
17: end for
18: if is any segment too short (V∂F ) then
19: return FAILURE
20: end if
21: until finished ≡ true
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Algorithm 3 Sprinkle triangulation vertices on FaceF

F : Input. Face to triangulate.
F−1: pre-image of FaceF in spaceU × V
S(u, v): Underlying surface for FaceF .
∂F = {L0, ..., Ln}: Loops Bounding the FaceF .
Nf : Number of tolerated failures.
VF : Output. Vertex set sampled on FaceF .

1: VF = sampling of boundary∂F
2: fails = 0
3: while fails ≤ Nf do
4: generate parameter pair(u, v) ∈ F−1

5: k = Kmax(S(u, v))
6: r = 1/k
7: p = S(u, v)
8: R = polygon side(r,Nsides)
9: if ∄q ∈ VF such thatq ∈ B(p,R) then

10: if ∃vivj , a segment of the boundary,
such that: p ∈ BG(vi, vj) then

11: fail = fail + 1
12: else
13: VF = VF ∪ {p}
14: fail = 0
15: end if
16: else
17: fail = fail + 1
18: end if
19: end while
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Figure 1.7: The two basic steps of algorithm 2.

calculated (line 7). Such a trial vertexp is rejected if (a) it is too close to other vertices

already accepted inVF (line 11) or (b) if it is contained in the smallest ball definedby

a pair of vertices consecutive on a loopLj . The closeness criteria is dictated by the

maximal curvatureKmax(S(u, v)) at p = S(u, v) (line 5). In case (a) each already

accepted vertex inVf is tested for inclusion inside a ballB(p,R) centered atp with

radiusR = polygon side(r,Nsides) (line 9). In case (b) each segmentvivj in the

sample of the border is tested as a Gabriel segment (1-simplex) with respect to the

candidatep. If every segment of the border is Gabriel with respect top, we assume

thatp is not too close to the border (line 10). A segment is said to besampled in the

boundary, if its two end vertices are consecutive in a loopLj ∈ ∂F . If tests (a) and

(b) are passed,p is accepted inVF (line 13). Fig. 1.6 depicts that the value forR is

computed as the cord of theNsides-regular polygon inscribed in the circle with radius

1/k. Functionpolygon side(r,Nsides) equals to2r sin(π/Nsides). Fig. 1.5 displays

the two tests mentioned in items (a) and (b) above.
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Figure 1.8: Goal Point Population on faceF

Figure 1.9: Curvature-sensitive Sprinkle AirbrushF

1.3.4 Face Triangulation. Gabriel Connectivity on Vertex Set VT .

Algorithm 4 builds the connectivity inside the vertex setVF . The algorithm seeks

to complete edges(v0, v1) already known to belong to the triangulationT (line 6) with

an additional vertexvnew to build a Gabriel Triangle(v0, v1, vnew) (line 9).

Any internal Gabriel triangle is the first formed triangle (lines 1,4). It is also a seed

to initialize theQueue of edges potentially able to span Gabriel triangles.

If the edge extracted from theQueue is part of the boundary, it is not expanded

any more (line 7). All the edges which are part of the boundarywill be found because

they are Gabriel 1-simplex and make part of a Gabriel 2-simplex. If a Gabriel triangle

(v0, v1, vnew) can be built, it is added to the triangulationT (line 10). If a Gabriel

triangle can be built using only an existing edge(v0, v1) and a new vertexvnew, the

general situation is that the new edges(v0, vnew) and(vnew, v1) should be queued to

be eventually expanded (line 20). However, this is not always the case, since such a

triangle may use 1 or 2additional edges already in the queue. In the first case, the

triangle is filling a corner (lines 13-18). In the second case, the triangle is filling a

triangular hole (lines 11,12). In such special cases additional edges (1 or 2 besides the

expanded one) should be taken away from the queue.
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Algorithm 4 Triangle Connectivity in the setVF

VF : Input. Vertex set sampled on FaceF .
Queue: List of triangle edges to expand.
∂F = {L0, ..., Ln}: Loops Bounding the FaceF .
T : Output. Triangulation.

1: seed = triangle in interior(F )
2: {(v0, v1), (v1, v2), (v2, v0)} = edges of triang(seed)
3: Queue = {(v0, v1), (v1, v2), (v2, v0)}
4: T = { seed}
5: while (Queue 6= Φ) do
6: edge to expand = extract(Queue)
7: if edge to expand is not part of the sample of the boundarythen
8: (v0, v1) = vertices(edge to expand)
9: vnew = vert for Gabriel 2 Simplex(VF , v0, v1)

10: T = T ∪ {(v0, v1, vnew)}
11: if ((v0, vnew) ∈ Queue) ∧ ((vnew, v1) ∈ Queue) then
12: Queue = Queue − {(v0, vnew), (vnew, v1)}
13: else if((v0, vnew) ∈ Queue) then
14: Queue = Queue − {(v0, vnew)}
15: Queue = Queue ∪ {(v1, vnew)}
16: else if((vnew, v1) ∈ Queue) then
17: Queue = Queue − {(vnew, v1)}
18: Queue = Queue ∪ {(vnew, v0)}
19: else
20: Queue = Queue ∪ {(v1, vnew), (vnew, v0)}
21: end if
22: end if
23: end while
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1.4 Complexities of the algorithms

Time and space complexities of all the algorithms were found. They are all output

sensitive; that is, their complexities depends on the size of the output given by them.

The first 3 algorithms depend on the number of nodes generatedby them. The last

algorithm depends on the number of nodes in the input and in the number of triangles

generated.

1.4.1 Edge Sampling

The time and space complexities of algorithm 1, have been found in the following

manner.

1. Time complexity. The operations with the curve and the operations to find the

curvatures are dependent upon the parameterization and notin the number of

points generated. Because of this, the time complexities ofall the operations

within the loop, (lines 3 to 11), can be assumed asO (1). The loop is repeated

NEj times.NEj is the number of points generated to sample the edgeEj . The

time complexity of algorithm 1 isO (NEj).

2. Space complexity. As the algorithm only stores the pointsgenerated, the space

complexity isO (NEj).

1.4.2 Loop Resampling

The time and space complexities of algorithm 2, have been found in the following

manner:

1. Time complexity. LetN∂F be the number of vertices inV∂F , at the end of

algorithm 2. For algorithm 2 the following facts hold:

(a) N∂F changes. In the worst case it grows as an arithmetic progression with

difference 1. That is why in this paper the calculations are simplified by

considering, at any step,N∂F as the number of vertices inV∂F .

(b) The number of segments inV∂F is the same as the number of points.

(c) Each time a segmentvcurrvnext is tested to be Gabriel 1-simplex, (line 7),

algorithm 2 tests all the points inV∂F . This takes timeO (N∂F ).

(d) The number of segments tested will beO (N∂F ), no matter the number of

points added to the sample in the previous step.

(e) The worst case scenario occurs when only one point is added at the time.

This is because of fact (d). In that case, the loop from lines 1to 21 is

repeatedN∂F times.
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(f) The worst case scenario occurs when only 3 vertices have been generated

by algorithm 1. This is the worst case because it means that all but 3 of the

points inV∂F are generated by algorithm 2. The number of times that the

loop between lines 1 to 21 is repeated isO (N∂F ).

Combining facts (c), (d) and (e) the worst case time complexity of the algorithm

2 isO
(

N3
∂F

)

.

2. Space complexity. OnlyV∂F is stored by the algorithm. The space complexity

of algorithm 2 isO (N∂F ).

1.4.3 Face Sampling

The time and space complexities of algorithm 3, have been found in the following

manner:

1. Time complexity. The algorithm terminates if variablefails > Nf ; so for each

new point, the algorithm tries at mostNf times. The number of times that the

loop between lines 3 and 19 isO (Nf × N), beingNF the number of points

generated in the interior of the face. In the loop, for a new generated pointp two

tests are performed:

(a) In line 9, everyq ∈ VF is tested for inclusion inB (p,R). R is as described

in line 8. This operation can be performed inO (NF + N∂F ).

(b) In line 10,p is tested for inclusion in everyBG (vi, vj), wherevivj are two

consecutive points in the sample of the boundary ofF . This operation can

be performed inO (N∂F ).

The worst complexity is that of test (a).

Combining test (a) with the number of times the loop between lines 3 and 9 is re-

peated, we have that the complexity of the algorithm is:O (Nf × NF (NF + N∂F )).

2. Space complexity. The algorithm only stores the points that are accepted. The

space complexity of the sampling algorithm isO (NF ).

1.4.4 Face Triangulation

The time and space complexities of the algorithm 4, have beenfound in the following

manner.

1. Time complexity. For algorithm 4, the following facts hold:
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(a) Each time that the loop (lines 5 to 23) is repeated, this algorithm checks a

different edge that belongs to the triangulation. The number of edges that

belong to the triangulation is a linear function of the number of triangles (i.e

each new triangle adds a maximum of 3 edges). The number of triangles

generated will be denoted as:NT .

(b) The operationvert for Gabriel 2 Simplex(line 9), is the one that has the

highest complexity within the loop (lines 5 to 23). The rest of the opera-

tions haveO (1) complexity.

(c) For thevert for Gabriel 2 Simplex(line 9) operation, first a candidate ver-

tex (r) is chosen. This vertex can complete a Gabriel simplex giventhe

edgev0v1. All the points inVF , except forv0 ,v1 andr are tested for in-

clusion inBG (v0, v1, r). Using a naive approach, the time complexity of

this operation would beO
(

N2
)

, whereN is the number of vertices inVF .

Combining facts (a), (b) and (c), the complexity of algorithm 4 isO
(

NT × N2
)

.

2. Space complexity. The algorithm stores a set of edges inQueue. As a topo-

logical constrain,Queue can only contain the same edge twice. The number of

edges stored is, in the worst case, a linear function of the number of triangles

stored. The space complexity isO (NT ).

1.5 Results

Several Boundary Representations B-Reps were used to test the implemented algo-

rithm, proposed in this article. Such B-reps have genera 3 orsuperior, and present

facesF whose underlying surfacesS are parametric ones of the NURBS or Spline

types. AnNf = 1000 maximal number of failed trials was used to stop the sprinkleof

vertices onF (generation of the setVF ). The number of sides for the approximating

polygon wasNsides = 30. Figs. 1.10, 1.11 and 1.13 show complex B-Reps. Other

examples of B-reps triangulated include a model of a pre-columbian fish in Fig. 1.14,

a support of an axle in Fig. 1.15, and a stub axle in Fig. 1.16.

The attention of the reader is called to the fact that the connectivity construction is a

process completely independent of the vertex generation process. Since the vertex gen-

eration algorithm (Sprinkle) is the most critical one, the execution time was recorded

for such an aspect.

For the modelsPumpandHands, Figs. 1.12(a) and 1.12(b) show execution times,

corresponding to the vertex generation process. Fig. 1.12(c) shows the comparison of

vertex generation times for such runs.
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Figure 1.10: Pump carter [17]. Colormap according to quality of triangles.

Figure 1.11: 2 hands with 3 genus, scanned and reconstructedusing RainDrop Geo-
magic. Colormap according to the size of the triangles
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(c) Comparison between the hands
(NURBS) and the Pump Carter. Hands time
in solid line, Pump time in dotted line

Figure 1.12: Times spent sampling the faces and their comparison.
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Figure 1.13: Other view of the 2 hands with 3 genus. Colormap according to the quality
of the triangles.
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Figure 1.14: Artificial replica of a pre-columbian gold fish [15]. Colormap according
to size of the triangles

1.6 Conclusions and future work

The proposed algorithm for generating triangulation vertex sets and for calculating the

connectivity among them proved to function correctly, evenfor very extreme geome-

tries and topologies. Several aspects of the algorithm mustbe addressed: the continuity

of triangle sizes at the Face Edges, the possibility of undertaking re-meshing of already

existing triangulations and its related endeavor, namely the level of detail, necessary

for Finite Element Analysis applications. Additional research is needed in algorithms

that (i) take advantage of the concepts presented in the heuristic algorithm proposed

here, but (ii) can be proved correct.
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Figure 1.15: Support of an axle. Colormap according to size of the triangles

Figure 1.16: Stub axle [18]. Colormap according to the quality of the triangles
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Chapter 2

Simulation of the handling in

green of ceramic tiles with deep

back relief
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Context

The CAD CAM CAE Laboratory at EAFIT University has kept throughout the years

cooperation agreements with research universities and institutions in Europe including:

Max-Planck-Institut fur InformatikatUniversitt des Saarlandes, Saarbrcken, Germany,

Fraunhofer Inst.Graphische Datenverarbeitung, Darmstadt, Germany, the University

of Vigo, Vigo, Spain and theUniversidad Polit́ecnica de Valencia, Valencia, Spain.

As a part of such agreements, students hold visiting research assistant positions at the

hosting institution for periods ranging from 6 to 12 months.

Ricardo Serrano has been invited by Prof. Guillermo Peris Fajarnes, director of

theCentro de Investigación en Tecnoloǵıas Gŕaficasat theUniversidad Polit́ecnica de

Valencia, Valencia, Spain to join his group as visiting research assistant. During his

internship, (October 2008-April 2009), Ricardo participated in the development of a

software for the evaluation of the ceramic tiles manufacturing process.

The software developed used knowledge in the fields of Computational Geome-

try, Geometric Modeling, Computer Assisted Design, Computer Assisted Engineer-

ing, Finite Element Analysis, Mechanics of Materials and Software Development in

the TCL/TK language and in ANSYSR© Parametric Design Language (APDL). This

research has application in the fields of Computer Aided Engineering and Ceramics

Manufacturing. The research is very important for the Ceramics Manufacturing field

because it helps to evaluate the possible designs so they notonly comply with the reg-

ulations and quality standards but also withstand the different handling processes.

The work is yet unpublished.
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Universidad Polit́ecnica de Valencia
Valencia, Spain

Dra. Ing. Beatriz Defez Garcı́a
bdefez@degi.upv.es
Assistant ProfessorCentro de Investigación en Tecnoloǵıas Gŕaficas
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Software Developed

When modeling a problem by means of the FEM, the engineer uses some general steps:

1. To model the geometry.

2. To specify boundary and initial conditions.

3. To specify the material property.

4. To mesh the geometry.

The UML (Unified Modeling Language) Activity Diagram, of themodeling a prob-

lem by means of the FEM, can be seen in figure 2.1. All the steps have to be done

carefully by the user.

MODEL THE GEOMETRY

USING A CAD SYSTEM AND

IMPORT IT TO ANSYS

MODEL THE GEOMETRY

USING BOOLEAN

OPERATIONS IN ANSYS

[SOLID MODEL

LOADS]
[FEM LOADS]

CREATE THE ENTITIES

TO APPLY THE

LOADS IN THE MODEL

APPLY THE LOADS TO THE

ENTITIES CREATED OR THE

EXISTING IN THE GEOMETRY

MESH THE MODEL

[SOLID MODEL

LOADS]
[FEM LOADS]

DEFINE THE MATERIAL
PROPERTIES

DEFINE THE TYPES OF THE
ELEMENTS

APPLY THE LOADS TO EITHER

THE NODES OR THE ELEMENTS

Figure 2.1: UML Activity Diagram to create an FEM model in ANSYS R©.

In this project a software that automates the, sometimes arduous, process of mod-

eling the ceramic tiles manufacturing process by means of the FEM is presented.
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ANSYS R© provides a command interface to the user called APDLR©. Of these, the

preprocessor commands are the used to model the problem and obtain the solution.

Everything that can be done in the GUI can be translated to a set of APDL R© com-

mands. Since ANSYSR© 5.5, TCL/TK, a scripting language designed for embedded

systems, is included in the application. It was used by ANSYSR© developers to create

a more pleasant GUI for the user. TCL/TK can send commands written with APDLR©

syntax to ANSYSR© which interprets and executes them. An application that allows the

user to create a working FEM model in ANSYSR©, using only high level parameters,

was created using TCL.

The application allows the easy and fast variation of parameters in the geometry of

the ceramic tile and production stages. The UML Activity Diagram to create the model

with the application can be seen in figure 2.2. The user only performs a few high level

steps.

GENERATE THE APDL 

COMMANDS THAT DESCRIBE

THE BOOLEAN OPERATIONS

THAT CREATE THE TILE

SPECIFIED

INTRODUCE THE

PARAMETERS THAT DEFINE

THE DIFFERENT KINDS OF

GEOMETRIES OF CERAMIC

TILES

GENERATE INTERNALLY

THE MODEL (PROBABLY A BREP)

SPECIFIED BY THE BOOLEAN

OPERATIONS

SPECIFY THE STAGE OF THE

TILE AND THE TEST PERFORMED

GENERATE THE COMMANDS TO

CREATE ENTITIES AND APPLY

THE SOLID MODEL LOADS

TO THEM.

SPECIFY THE PARAMETERS

FOR THE TEST

GENERATE THE COMMANDS

NEEDED TO SPECIFY THE

ELEMENTS AND MATERIAL

PROPERTIES AND MESH

THE TILE

MODIFY THE GEOMETRY AND

TOPOLOGY TO CONTAIN THE

ENTITIES NEEDED TO SPECIFY

THE LOADS

ASSOCIATE THE LOADS WITH

THE CORRESPONDING ENTITIES

MESH THE GEOMETRY AND

ASSOCIATE THE MATERIAL

PROPERTIES AND TYPES OF

ELEMENTS WITH THE ELEMENTS

CREATED

ISSUE THE SOLUTION 

COMMANDS AND ANALYZE

THE RESULTS

USER 

(GRAPHICAL 

INTERFACE)

TCL INTERFACE

WITH ANSYS

ANSYS

Figure 2.2: UML Activity Diagram for the software developedusing TCL/TK.
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Abstract

To keep its competitiveness, the Spanish ceramic industry,one of the biggest of the

world, needs to reduce costs and assure quality in its products. One way to do this is

to design and produce tiles with less raw material in their support. This could be done

with help of the deep back relief. The design of the tiles not only needs to comply with

the regulations and quality standards. It also needs to withstand the different handling

processes. One of the most important stages in the development of ceramic tiles is the

pressure forming and subsequent handling in green. After the tile is pressure formed,

it’s said to be in green state and it’s in its weakest form. Computational simulations

based on the finite element method, (FEM), could offer important information and save

costs and development time when evaluating if the tiles can undergo the handling in

green process. This paper presents the steps taken to evaluate the appropriateness of a

back relief for the green handling. (i) It shows an introduction of the theories needed

to apply the finite element method to some models of ceramic tiles in green state. (ii) It

proposes a method to evaluate the appropriateness of a back relief. With this method, a

tile with back relief is compared with tiles lightened by reducing their thickness. (iii) It

makes a parametric study of the squares back relief, which was the best behaved when

comparing it to the thin tiles. (iv) Generalizes the method proposed and formulates it

in terms of simple calculations. The main conclusion of the paper is that the design

of the back relief could have an impact the strength of the tiles during the handling in

green process. It concludes, also, that a good design of backrelief can compare well

with a thinner tile with the same raw material.
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Glossary

E: Young’s or elastic modulus.

v: Poisson’s ratio

ρ: Bulk density of the tile

g: The gravitation of the system. The sign convention

of the gravitational acceleration denotes as positive

the direction of the reaction force.

α The angular acceleration.

2.1 Introduction

To keep its competitiveness, the Spanish ceramic industry,(the second most important

of the world), needs to reduce costs and assure the quality ofits products. As shown

in [7] and [8], one of the possibilities that could help to reduce costs is the back relief

of the ceramic tile. Back reliefs have always existed. They were present in the past to

help to the ventilation during the piling phase before baking. They later fell in disuse,

because of the introduction of continuous kilns and single-baking. Recently, it has been

seen as a very promising approach to reduce the costs of raw material, manufacturing

and handling. A non-constant thickness in the back relief ofthe tile could also help

to increase the adherence of the tile to the concrete. Of great importance also, is the

production of specifically designed tiles that allow wires or other kind of structures to

be perfectly camouflaged in the decoration.

One of the stages of the ceramic tile manufacturing process is the pressure forming

and the handling in green state. After the pressure forming,the tile is in its weakest

state and can be easily broken. It has been shown that this stage accounts loses of

around 200 millione in Europe alone ([2]). The mechanical and thermal properties of

ceramic tiles are dependent on the design of the back relief ([6, 7, 8]). In green state

the tile is weaker and those differences can be more important. For that reason, the

strength of any proposed design need to be evaluated not onlyin its final properties.

It also needs to be evaluated within the manufacturing stages. The traditional form

of doing this is making the tiles to undergo the different processes, but producing and

evaluating the designs in real life can be really expensive.

The Finite Element Method is a numerical method that seeks anapproximated so-

lution of the distribution of field variables in a problem domain ([14]). It is often used

when a solution is difficult to obtain analytically. The complex geometries found in

several designs of the ceramic tiles’ deep back relief, makethis method the most use-

ful.

In this paper are presented:

1. A description of: (i) the problem, (ii) the theories and steps needed to model
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the problem by means of the FEM and (iii) the actual considerations taken when

modeling the problem by means of the FEM.

2. A method to evaluate the appropriateness of a tile with back relief, compared

with a tile lightened by making it less thick. The results andanalysis of these

comparisons are carried out for some standard back reliefs of tiles.

3. The results and analysis of the behavior of parametric variations for some a stan-

dard kind of back relief.

4. Conclusions and future work.

2.2 Modeling the problem by means of the FEM

2.2.1 Modeling the geometry

A ceramic tile with deep back relief has the following geometric characteristics. (i)

It’s a box with 1 dimension significantly smaller than the other 2, which are usually

equal. (ii) The thickness is non-constant and produces regular shapes. In the paper, the

reference tile has dimensions0.33m × 0.33m × 0.008m. The tile can be observed in

Fig. 2.3.

33cm

33cm

8mm
X

Y

Z

Figure 2.3: Reference tile with its dimensions.

The kinds of back reliefs modeled were 3:

1. The squares back relief is shown in Fig. 2.4. The set of squares tile the back of

the support, except on the separation between them. They areextruded to form

the prisms subtracted from the tile.

2. The hexagons back relief is shown in Fig. 2.5. The set of hexagons tile the back

of the support, except on the separation between them. They are extruded to

form the prisms subtracted from the tile.
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3. The diamonds back relief is shown in Fig. 2.6. The set of squares, are rotated

45◦ in relation to the axes. They are extruded to form prisms and are added to

the back of the tile. In this back relief a border is present.

These are some of the shapes that are found the most in the industry ([6]).

1

X

Y
Z

                                                                                

APR 10 2009
20:42:28

PLOT NO.   1

VOLUMES

TYPE NUM

Figure 2.4: Back relief of squared prisms subtracted from the back.

The parameters used to define each back relief were: (i) the tile dimensions, (ii) the

separation of the first polygon from the border, the separation of each polygon from

each other, the number of polygons per row and the depth of theprisms.

2.2.2 Applying the boundary, initial and loading conditions

In ANSYS R©, two kinds of loads can be applied: (i) Solid model loads and (ii) FEM

loads. The solid model loads are applied to the entities. Theentities can be: (i) vol-

umes, (ii) areas, (iii) lines and (iv) keypoints. When the mesh is modified the solid

model loads remain intact. That does not occur for FEM loads that are applied either

to: (i) the nodes or (ii) the elements. Solid model loads havealso an advantage: they

can describe the geometry of the loads more correctly.

For this project solid model loads were used. The main reasonwas that the places,

where forces needed to be applied or displacements needed tobe prescribed, did not

exist as separate entities and any selection of nodes did notcorrectly describe this

places. Boolean operations of subtraction and overlappingwere used to create the

exact areas where the loads were to be applied independentlyof the model of back

relief represented ([13]).

The boundary conditions, to be applied to each model of ceramic tile, were 2:
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Figure 2.5: Back relief of hexagonal prisms subtracted fromthe back.
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Figure 2.6: Back relief of diamond prisms added to the back.
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1. The tile supported in a band and loaded by its own weight. Anartistic drawing

of the test can be seen in Fig. 2.7(a). The parameters of this test are:

(a) The separation of each band from the border of the tile: 0.075m.

(b) The width of each of the bands: 0.02m

(c) The gravity (g): 9.81m/s2

2. The tile in a rotational machine, and loaded by its own weight and the effect of

the rotational acceleration. An artistic drawing of the test can be seen in Fig.

2.7(b). The parameters of the test are:

(a) The separation from the center of the machine to the border of the tile: 1m.

(b) The separation from the border closest to the center, to the first cylinder:

0.075m.

(c) The separation between the cylinders: 0.1m.

(d) The angular acceleration (α): 1 rad/s2.

(e) The gravity (g): 9.81m/s2.

They will be called test T1 and T2 in the rest of the paper.

2.2.3 Specifying the material property

Ceramic materials are anisotropic; that is, tensile stresses can produce different elastic

deformations in different directions. Because most of the materials are poly crystalline

with random orientations of their grains, the variation of the Young modulus, (E),

produces a uniform pattern of stresses. Because of this, thematerial can be threated

as isotropic and the mean elastic modulus is appropriate ([15], [10]). This fact is very

useful for FEM simulations of structural problems; becauseto define the material, only

the mean Young’s modulus and mean Poisson’s ratio, (v), need to be provided.

Young’s modulus and Poisson’s ratio has been established for a very reduced num-

ber of green ceramic materials. One of the difficulties that arise with these materials, is

that they are compact and brittle powders, (they don’t have or they almost don’t have

plastic deformation); because of this, the traditional tensile specimen does not work

to evaluate their behavior. As seen in [17], the main challenge consists in avoiding

the premature failure related with unaligned attachments or the contact effects of the

attachments. In this paper a description of the challenges and solutions to measure

the mechanical properties of as pressed compacts is presented. The Weibull statistics

and their application to these compacts are also explained in the paper. In [2] several

techniques to analyze compact powders, (formed by pressureand in green state), are

analyzed. It is shown that, unlike the three and four point flexural tests, the strength of
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33cm

33cm

8mm

2cm

7.5cm 7.5cm

X
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Z

g = 9.81 m/s
2

(a) Test T1. Tile supported in a band

33cm

33cm

8mm

X

Y

Z

1m

7.5cm

10cm

g = 9.81m/s
2

ang accel=1rad/s
2

(b) Test T2. Tile in the rotational machine.

Figure 2.7: Different processes that the tiles undergo during their handling in green.
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the compacts with binder in the diametral compression test is not explained entirely by

Weibull statistics.

In [3], the relationship between the porosity of green porcelain tiles and the porosity

of sintered porcelain tiles is shown to be very strong. The porosity is also shown to be

correlated with the strength of the finished bodies.

Many green ceramics contain water and organic binders, which can make them

viscoelastic. This is shown in [18]. Other authors have characterized green ceramics

with binders. In the paper [12] a study of the mechanical properties in green state,

of compact alumina with different binders and at different pressures, is presented. It

shows Young’s modulus, the Poisson coefficient and the flexural strength. It is reported

in the paper that the strength of the green ceramic bodies, created by pressure forming,

is increased with the compaction pressure. This could be dueto the cohesion of the

granules. The effect of the binder is analyzed also in [4]. Inthis, only the tensile

strength is found. In [5], a specimen of raw material, containing a great amount of

alumina, traces of kaolin and other compounds, is studied. The mechanical properties

of the green material with an organic binder were evaluated.The main conclusions are

that the available, to that date, theoretical models did notdescribe correctly the elastic

behavior of dry pressed bodies with binder. It is concluded,also, that the effect of the

binder disappears after sintering. Other study of the effect of the binder can be seen in

[19].

For dry pressed compacts without organic binders the same isnot true. In [1] it

is shown that these materials exhibit more elastic behavior. In the paper, green com-

pacts of stoneware compositions that are used in ceramic tiles are evaluated for their

mechanical properties. Different granule sizes were evaluated. Young’s modulus and

mechanical strength compacts made with a common slurry, used in stoneware, were

found. In this paper we just evaluated green compacts that show elastic behavior.

The values for this work were obtained, by different authors, from compositions of

stoneware floor tiles with no organic binder:

Table 2.1: Properties of the materials for the study

Young’s modulus (E): 3.32GPa ([1])
Poisson’s ratio (v): 0.3 ([2])
Bulk density (ρ): 2110 Kg/m3 ([16])

2.2.4 Meshing

The element used for this test was the SOLID187 of ANSYSR©([11]). The SOLID187

is a tetrahedral element with ten nodes and 3 degrees of freedom in each node: dis-

placements in the X, Y and Z directions of the element.
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ANSYS R© SmartSizeR© mesher was used to generate an acceptable mesh. SmartSizeR©’s

algorithm meshes, in this order, (i) lines, (ii) areas and (iii) volumes. This algorithm

creates a very uniform mesh with very good shapes of the triangles and acceptable for

solving most problems. The size level used was the finest one.

2.3 Methodology

With a few experiences, it could be said that the strength, (in the tests), of the reference

tile should be higher than the strength of a tile with the samedimensions and deep

back relief. The simplest way to reduce the raw material in the support is reducing the

thickness of the tile. The strength of the tiles that are created with this simple method

can be correctly compared. For a tile with back relief and a given volume, the strength

of the tile can, also, be compared with the strength of a thin tile with the same mass.

A back relief can prove that is the best both in raw material savings and strength in

the given tests. Evaluating that model of back relief, with variations of its parameters,

could allow the finding of a back relief that provides great savings in raw material and,

at the same time, has a great strength. Following the reasoning above, the experiments

are divided in two parts:

1. Compare the strength of the tiles, when there variation ofthe thickness of the

reference tile, with the back reliefs described in section 2.2. With this method,

the squares back relief was found to have the best behavior.

2. Variate the parameters that describe the tiles with squares back relief and com-

pare their results in terms of volume and strength.

In the present work, Weibull statistics are not considered ([9]), which is the most

common way to evaluate the strength of the brittle and porousmaterials. The evalua-

tions, instead, are focused on the maximum first principal stresses (MFPS). The lower

the maximum first principal stresses, the stronger the tile.

2.3.1 Variation of the thickness of the tile with no back relief vs

tiles with back relief

The following simulations were performed. First, a set of tiles, thinner than the refer-

ence tile but with the same width and height, were modeled. A summary is shown in

Table 2.2. Tests T1 and T2, as described in section 2.2, were applied and simulated.

Second, the set of tiles with back relief, with their parameters shown in Table 2.3, was

modeled and also made undergo tests T1 and T2.

Figs. 2.8 and 2.9 show respectively the results for test T1 and test T2. The results

obtained show that, for both tests, the MFPS of each tile increases when the tile is
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Table 2.2: Tiles with different thickness and without back relief, and their parameters

Model Thickness (10
−3m) Volume (10

−4
m

3)
Reference tile 8 8.71
Thin tile #1 7 7.62
Thin tile #2 6 6.53
Thin tile #3 5 5.44
Thin tile #4 4 4.35
Thin tile #5 3 3.26

Table 2.3: Models of tiles with back relief and their parameters

Model: Hexagons Squares Diamonds
Separation from
border (10

−2m):
1 1 1

Separation between
shapes (10

−2m):
1 1 1

Number of shapes
per row:

10 10 10

Volume (10
−4

m
3): 6.95 6.77 5.54

lighter (i.e it is less strong). As the forces acting over thetiles are mainly related to

their mass, this is not completely obvious. The curves show that the MPFS of each tile

is inversely proportional to the volume of the tiles lightened by making them less thick.

Given a design of deep back relief, there exists a tile with the same weight but made

reducing the thickness of the reference tile. This will be called equivalent thin tile of a

tile with back relief. For test T1, the values obtained for the tiles with standard squares

and hexagons back reliefs lay under the curve. This means that their equivalent tiles

are less strong.

A summary for the results of this test is:

1. For test T1 the squares back relief lies under the curve. The hexagons back relief

also lies under the curve but is closer to it.

2. For test T1 the diamonds back relief lies over the curve andfar from it.

3. For test T2 all the back reliefs lie over the curve. The diamonds back relief is

far. Instead the hexagons and squares back relief are very close to the curve. The

squares back relief is closer than the hexagons back relief.

Figs. 2.10 and 2.11 show, respectively, the thickest and thethinnest tiles evaluated

under test T1. It is shown that the stresses of the thickest tile are not as spread as those

of the thinnest tile. The thinner the model, the more spread the maximum stresses are.

Figs. 2.12 and 2.13 show a very particular pattern of stresses in the back of the tile,
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Figure 2.8: MFPS for the test T1. The curve represents the tiles with less thickness and
the solitary points the standard back reliefs.
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Figure 2.9: MFPS for the test T2. The curve represents the tiles with less thickness and
the solitary points the standard back reliefs.
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where this pattern seemed to flow horizontally. Fig. 2.14 shows the visible face of the

diamonds back relief under test T2. The highest FMPS were located over the cylinder

farthest from the border.

1

MN

MX

X

Y

Z

                                                                                
-4968

-226.725
4515

9257
13998

18740
23482

28223
32965

37707

APR 10 2009
11:24:16

PLOT NO.   1
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TIME=1
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DMX =.494E-05
SMN =-4968
SMX =37707

Figure 2.10: The thickest tile under test T1. The stresses are concentrated in the oposite
side of the bands.

2.3.2 Parametric variations of the squares back relief

As shown in subsection 2.3.1, the back relief that had the best behavior was the squares

back relief. In this subsection, that back relief will be changed in each one of its

parameters to have a better understanding on how to obtain the most appropriate tile.

The following parameters were changed:

1. The depth of the prisms. The variations in the depth of the prisms and the result-

ing volume of each variation, are shown in table 2.4.

2. The separation between squares. The variations in separation between squares

and the resulting volume of each variation, are shown in table 2.5.

3. The number of squares per row, that in this case as the tile is a square, is the same

number of squares per column. The variations in the number ofsquares and the

resulting volume for each variation are shown in table 2.6.

Figs. 2.15 and 2.16, show the effect of the variation of each one of the parameters

of the squares back relief. The lines cross at the tile with default parameters for the

squares back relief.
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Figure 2.11: The thinnest tile under test T1. As in figure 2.10the stresses are also
concentrated in the oposite side of the bands, but are more spread.
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Figure 2.12: The back of the squares back relief under test T1. In the back the maxi-
mum stresses seem to flow horizontally.
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Table 2.4: Variation in depth of the prisms subtracted from the back relief

Depth of
the prisms
(10

−3m):
1 2 3 4 5 6 7

Volume
(10

−4m3):
8.23 7.74 7.26 6.77 6.29 5.81 5.32

Table 2.5: Variation in separation between squares of the back relief

Separation
between
squares
(10

−3m):

4 6 8 10 12 14 16

Volume
(10

−4m3):
5.71 6.09 6.45 6.77 7.08 7.36 7.61

Table 2.6: Variation in number of squares per row of the back relief

Number of
squares per
row:

4 6 8 10 12 14 16

Volume
(10

−4m3):
5.58 6.01 6.41 6.77 7.11 7.42 7.69

Figure 2.15: MFPS for the test T1. The curves represent each of the variations of the
parameters of the squares back relief
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Figure 2.16: MFPS for the test T2. The curves represent each of the variations of the
parameters of the squares back relief.
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The extreme values of the variation of the back relief squares are shown in Figs.

2.17, 2.18, 2.20 and 2.19. The tile with increased depth of prisms 7mm, (Fig. 2.17),

had a very good mechanical behavior and saved a lot of raw material. The tile with

decreased separation between squares 4mm, (Fig. 2.18), hadthe worst mechanical

behavior. The tile with the highest separation between squares, (Fig. 2.20) was the

strongest for both test, but not the heaviest.

2.4 Conclusions and future work

This section is organized in the following form. (i) A methodto evaluate the appro-

priateness of any model of back relief is proposed. (ii) The general conclusions of the

work are presented. (iii) The future work is presented.

2.4.1 A method to evaluate the appropriateness of a model of back

relief

In this paper we propose the following method. For a tileA, with back relief, and a test

TX the following steps are required:

1. To calculate the volume, (VA), and MFPS of the tileA for the test TX.
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Figure 2.17: The tile evaluated that had the highest depth ofthe prisms subtracted under
test T1. In this test, the variation of this parameter had thebest behavior. Tiles with
high and low depths of the prisms subtracted have almost the same strength
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Figure 2.18: The tile evaluated that had the shortest separation between squares under
test T1. In all the tests, the variation of this parameter hadthe worst behavior. The dif-
ference between the strengths of a tile with high and a tile with low separation between
squares is considerable for both tests.
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Figure 2.19: The tile evaluated that had the highest number of squares under test T2.
This was one of the strongest tiles under test T2.
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Figure 2.20: The tile evaluated that had the longest separation between squares under
test T2. As mentioned in Fig. 2.17, this parameter had the worst behavior. This tile
was the strongest under test T2.
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2. To calculate the relative thickness, (RTA), of a tile with the same volume, width

and height but lightened by making it less thick. The formula:

RTA =
VA

width × height

can be used for this.

3. To calculate the MFPS of the equivalent thin tile ofA, (TTA), without back relief

and with dimensionsRTA × width × height.

As shown in subsection 2.3.1 of section 2.3, this comparisonwould be very direct;

because for both tests, the curve of the volume vs MPFS, in thecase of the tiles with

variation of thickness, is monotone. Instead, the curves generated by the change of the

parameters of a simple back relief, like the squares back relief, were not monotone and

had very strong variations.

2.4.2 General conclusions

The general conclusion is that the choice of the back relief has an important impact

during the handling of the tiles in green state. Some specificconclusions can be:

1. For both tests, the MFPS that resulted from the variation of the thickness of the

tiles drew a very perfect curve of the form:

MFPS ∝ 1

VOLUME
.

This makes the thin tiles method, proposed in subsection 1 ofthis section, appro-

priate for comparing them with the tiles with deep back relief. The authors think

that this will be the case for many processes that the tiles can undergo during

their manufacture, even when their nature could be different.

2. The squares and the hexagons back reliefs lay under the curve, (of MFPS for

reduced thickness), of test T1. That means that a tile with reduced thickness,

that would have the same volume as the hexagons or squares standard back relief,

would resist less than the tiles with this back relief when subject to test T1. In

test T2 they both lie under the curve, but they are very close.This means that

both back reliefs are appropriate for the handling in green.In both tests, the

squares back relief was the best behaved. The diamonds back relief, instead,

lies over both curves and very far from them. It was the worst behaved in both

tests. The geometries of the squares and hexagons back reliefs are very close to

each other. If we subtract their solid top, we would have connected solids that

are very symmetric. In the back of the tile, the higher stresses are lines parallel
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to the X axis. This is because the stresses flow between stressconcentrators.

In the squares back relief the stress concentrators are aligned in the same line

parallel to the X axis. In the hexagons back relief the shortest paths between

stress concentrators are almost parallel to the X axis, and are the places where

the stresses are higher. As the hexagons back relief has morestress concentrators,

it is weaker. If we subtract the solid top of the diamonds backrelief, it would

be disconnected. The diamonds back relief accumulates stresses near the sharp

vertices of the diamonds. In these tests, specifically, thiszone has higher stresses

because they it supports the weight of the diamonds. This is the reason why this

back relief is much weaker than the other two.

3. The variation of the parameters, chosen for the squares back relief, shown non

monotonic curves that had not the same shapes for both tests.The MFPS, of a

parametric variation of the squares back relief under both tests, usually decreased

when the volume increased, but this was not the case for all the variations. In

fact, the curves were non monotonic and searching for a minimum would re-

quire the variation of several parameters at the same time. This would be very

difficult with real life experiments. Instead, computer simulations offer a very

good alternative when searching the most suited deep back relief. For test T1,

when the volume decreased by varying the depth of prisms; thestrength did not

decrease as fast as by varying the rest of the parameters. This was due to the

fact that the variation in depth reduces the volume by leaving the skeleton that

supports the tile unchanged. The same happened for that variation in test T2, but

with a peak in the tile with less volume. For test T2 the best behavior was that

of the variation of number of squares per row. Instead, for both tests, when the

volume is decreased by varying the separation between the squares, the tiles be-

come weaker with low variations in volume. This is because the sections where

the stresses flow are reduced.

The general conclusion is that ceramic tiles with back relief, not only, help to in-

crease the strength of the finished product. Depending on thedesign of the back relief,

they can also help to reduce the waste of the tiles by increasing their strength. Com-

puter simulations have shown to be necessary when searchingfor a tile that reduces

the amount of raw material used and can undergo the differentprocesses during the

handling in green.

2.4.3 Future work

A lot of work has to be done to assure that the tiles with back relief can undergo the

manufacturing process. Some of this work is:
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1. The simulation of other stages of the ceramic tiles manufacturing process for the

back relief. Important focus in the drying and dry handling,and in the sintering.

2. The evaluation, with help of the Weibull Statistics, of the probability of fracture

of the compacts, could be a better measure of the strength than the MFPS.
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Conclusion

The first paper showed a new method to generate a mesh given a surface of the form

S : R2 −→ R3. This mesh is an important step for the FEM. Of the correctness and

appropriateness of this mesh depends that the solver can finda solution with a good

accuracy, or even that the problem is tractable. The paper centered its attention on

how to reconstruct and respect the boundaries and make them part of a triangulation

that is compatible for neighbor surfaces. It showed that given certain properties of the

B-rep triangulated, the triangles could be well shaped. It also showed the importance

of obtaining a solution of this problem that is not heuristic.

The second paper showed step by step how to model a specific problem by means

of the FEM. Defining a few parameters to generate a ceramic tile and changing them

to obtain pairs of volume and strength (obtained from the Maximum First Principal

Stress), served to obtain tiles better suited for this stage. The tiles with deep back

relief showed to behave very well compared to the tiles lightened by reducing their

thickness. It also showed that different models of deep backreliefs had a very different

performance in this stage.
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Appendix A

Simulation of the Firing

Ceramic Tiles

Introduction

The manufacturing of ceramic tiles is, usually, studied in an experimental manner and

without the use of any computer modeling. This is because theprocesses involved

are very complex and most of them are not well documented. Also, ceramic materials

don’t have simple and well described features as metals do but, as they become more

important for today’s technology, the nature of the processes need to be understood and

also theoretical and computational models need to be developed.

The most important and studied stage of the ceramic tile manufacturing process is

the firing.

In this report a research about the firing of the ceramic tilesis presented. The word

sintering has the same meaning, except that is used often forvery pure materials where

their behavior can be understood. This report contains the following sections:

1. Theory: presents methods to transfer heat to the tiles, physical properties that

are needed to describe the behavior of the tile and the stagesof ceramic tiles’

sintering.

2. Literature Review: presents works that have been done to simulate the sintering

of ceramics specially of ceramic tiles.

3. Computational modeling: presents the steps needed to model the problem by

means of the FEM, the considerations, simplifications, and the actual properties

of the materials and stages of the sintering.

4. Results: presents the results obtained for the modeling.Animations that show
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the curvatures, strains and temperatures are shown. Also, adiscrete measure of

the curvatures of the surface is presented.

A.1 Theory

The sintering transforms the raw materials from the paste into the final product giving

them their finished features. The sintering works in the transmission of energy to the

dry product until it reaches a established heat and during a determined time. In this

way the physical and chemical reactions can be taken to the paste and the glaze so it

can acquire its final properties.

The modeling of the sintering can be divided in two problems.The first involves

the heat transfer from the oven to the tiles and the distribution of the heat within the

ceramic body. The second involves the use of constitutive equations and possibly the

shrinking of the body to calculate stresses or deformations.

The first will be called the thermal problem and the second thestructural problem.

A.1.1 Thermal problem

There are several forms in which the energy can be transmitted to the tiles [1, 2, 3, 4, 5]:

1. Conduction: it’s the least important form of heat transmission to the tiles. The

heat is transmitted to the tiles by means of the bodies near them. The equation

that relates the heat flow by conduction is:

∂Q

∂t
= −k A

∆T

∆x
(A.1.1)

Where∂Q
∂t is the heat flow that traverses the areaA in the directionx. ∆T is the

difference of the temperatures between the ends located at adistance∆x. The

conduction heat transfer coefficient isk.

2. Radiation: it’s only important when the environment around the heat sinks has

a great difference of temperature with them. For some works it’s the most impor-

tant form of heat transfer. The heat is transmitted to the tiles by electromagnetic

waves that are produced with more intensity when the difference of temperatures

is greater. The equation relating the rate of the heat flow (Q) transmitted between

a emitter (sup) and a receiver (inf ) is:

Q = σAsupFsup−inf

(

T 4
sup − T 4

inf

)

(A.1.2)

WhereAsup is the area ofsup that is emitting heat toinf , Fsup−inf is the

fraction of energy received byinf , (it is also called view factor, configuration
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factor or shape factor),σ is Stefan-Boltzmann’s constant andTsup andTinf are

the temperatures of the source and sink of heat respectively.

3. Convection: is the most important form of heat transfer to the tiles. The trans-

mission of heat is carried on by the gas around the surface of the tile. The equa-

tion relating the convective heat transfer is:

∂Q

∂t
= hA (Tsup − Tinf ) (A.1.3)

Where ∂Q
∂t is the heat flow transmitted over the areaA, t is the time,h is the

convection heat transfer coefficient andTsup andTinf are the temperatures of

the bulk fluid and the surface respectively.

The heat transfer in the interior of the tile can be governed by the following prop-

erties [6, 7]:

1. Density (ρ): it’s a measure of the mass (m) per unit volume (V) of a material[6,

3, 8]. The units are reported in g/cm3 or in Kg/m3 for the MKS system. In

ceramics, the term density can be used in different ways, some of them are:

(a) Crystallographic density: the ideal density of a specific crystal structure

calculated from the chemical composition and the inter-atomic spacing.

(b) Real or theoretical density: the density of a material that contains zero

microstructural porosity, i.e the mass per unit volume of the solids of the

ceramic.

(c) Bulk density: the measured density of a bulk ceramic body. It is easily

obtained with the Archimedes principle: the tile is immersed in a liquid,

and the volume is calculated; after that, it is weighted to measure its mass.

(d) Specific gravity: the density of a material relative to the density of an equal

volume of water at 4◦C.

The density is probably the most studied property. Studies of the density

of ceramics have been related with compaction pressure and mechanical

properties after sintering ([9, 10, 11, 12, 3, 13, 14, 15]) and during sintering

([16, 17, 1, 18, 19, 20, 21, 22]). Widely studied has also beenthe relation

between density, (or porosity), with the mechanical properties, obtained

analytically ([23, 24])or numerically ([25]). Density is generally the most

important parameter when describing a powder compact. In the literature

the density is one of the parameters that best describe the materials used

for experimentation.
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2. Heat capacity (c): it’s the energy required to raise the temperature of a substance

one degree ([6]). Its units are: J/◦C. The ratio from the heat capacity of a material

and the heat capacity of water, (which is about 4186 J/Kg.K),is known as the

specific heat and is dimensionless. One of the major factors in the heat capacity

is porosity. A ceramic material with no porosity, requires more heat energy than

a porous ceramic to heat to a specific temperature.

Few literature has been found for the heat capacity of stoneware ceramic tiles

([1, 26, 27]).

3. Thermal conductivity (k): it’s the rate of heat flow through a material [6]. Its

units, in SI, are:W/ (m · K). Pure metals have a very high thermal conductivity,

while organic materials have a low one. In the other side ceramics show a wide

range of thermal conductivities. For a material with several phases the thermal

conductivity depends on the conductivity of each of the phases and the distribu-

tion of the phases. The equations for the thermal conductivity of parallel A.1.4

and serial A.1.5 alignments resemble the ones of capacitors.

km = V1k1 + V2k2 (A.1.4)

1

km
=

k1k2

V1k2 + V2k1
(A.1.5)

Where,km is the thermal conductivity of the bulk material,k1 andV1 are the

thermal conductivity and the volume for material 1, andk2 andV2 are for ma-

terial 2. For dispersed phases, the bulk conductivity can beapproximated with

equation A.1.6.

km = kc

(

1 + 2Vd (1 − kc/kd) / (2kc/kd + 1)

1 − Vd (1 − kc/kd) / (kc/kd + 1)

)

(A.1.6)

Wherekd andkc are the thermal conductivities for the dispersed phase and the

continuous phase respectively, andVd is the volume fraction of the dispersed

material. Porosity is a special case of dispersion, in whichthe dead air space, a

bad conductor, is the dispersed phase.

Few literature has been found for the thermal conductivity of stoneware ceramic

tiles ([1, 26, 27]).

These properties of the material can be used to define the thermal problem as to

find T (x, y, z, t) where:

∂T

∂t
=

k

ρc
∇ · ∇T (A.1.7)
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With boundary conditions defined by the different forms of heat transfer.

A.1.2 Structural Problem

In the structural problem the tile is expected to deform due to the uneven distribution of

temperatures. Deformations are generally expressed in terms of strains (ǫ), (also called

unitary deformations) . The properties that govern the deformation are:

1. Thermal expansion: it’s the tendency of a material to change its volume when

the temperature is increased or decreased. The linear thermal expansion coeffi-

cientα is calculated with the equation A.1.8:

α =
∆l/l0

T − Tref
(A.1.8)

Wherel0 is the length at the reference temperatureTref , ∆l is the change in

length atT . Ceramics, (except those with cubic symmetry), have different ther-

mal expansion along different crystallographic directions and are referred to

as anisotropic or nonisotropic. If the grains in a polycrystalline ceramic have

random orientation, the bulk thermal expansion of the ceramic body will be

isotropic.

If α is a function of temperature, the strains are calculated as:

ǫ = α (T ) (T − Tref ) (A.1.9)

At very high temperatures the change in length of a ceramic tile does not only de-

pend on the temperature but also in the heating rate. Besides, it is not a reversible

process. Linear shrinkage is then a more appropriate name for the property dur-

ing sintering. It is defined as:

Linear shrinkage = ∆l/l0 (A.1.10)

Linear shrinkage is a very studied property for the sintering process ([1, 28, 19,

20, 29, 30, 31, 22]). This is because it is the material property that governs the

deformation of the ceramic body.

2. Mechanical constitutive equation:In continuum theory, constitutive equations

are the way in which empirically determined material properties are expressed

[32, 33]. The mechanical constitutive equation of a material relates the loads

with the deformations. In the case of a linear elastic material, it is the hook law

which relates the loads, (defined in terms of stresses(σ)), and the deformation,

(defined in terms of strains(ǫ)):
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σ = ηǫ (A.1.11)

Whereη is called the elastic, (or Young’s), modulus. This is the case for ceram-

ics at ambient temperatures. Ceramic materials are anisotropic; that is, tensile

stresses can produce different deformations in different dimensions. Because

most of the ceramic materials are polycrystalline with random orientation of

their grains, they can be threated as isotropic ([6, 7]). Stoneware ceramic tiles

and other ceramic materials have been characterized in several papers with their

elastic modulus ([16, 34, 35]). In certain situations in green state the tile behaves

elastically ([15]). At high temperatures the elastic modulus of ceramic materi-

als has been calculated, ([22]), but this parameter does notdescribe entirely the

behavior of the ceramics at those temperatures.

FunctionsH (t) andδ(t) are Heaviside step function and Dirac delta function re-

spectively. A material is viscoelastic material if it has elastic and viscous defor-

mations. The elastic deformation is immediate. Instead theviscous deformation

also depends on time. At high temperatures ceramic materials start to describe

viscoelastic behavior. Green ceramic materials have shownto be viscoelastic

when they contain binders ([36, 9, 10, 11, 12, 14]).

Creep is the increase of the strain over time under a constantstress. For a constant

stress (σ (t) = σ0) the following equation shows the creep behavior:

ǫ (σ0, t) = α (σ0, t) σ0H (t) (A.1.12)

Wheret is the time. Instead, if a strain is given to the material and the stress is left

constant, then the stresses disappear with time. This is called stress relaxation

and is given by the equation:

σ (ǫ0, t) = β (ǫ0, t) ǫ0H (t) (A.1.13)

If α = α (t) andβ = β (t), (they only depend on time) then the material is

said to be linear viscoelastic. A very simple and useful model of constitutive

equation for a linear viscoelastic material is Maxwell’s model. Maxwell’s model

is a series of a linear spring and a linear dashpot. The equation for this is:

dǫ (t)

dt
δ(t) =

dσ (t)

dt

1

η
+

σ (t)

η̃
(A.1.14)

Where σ
η̃ represents the rate of strain of the damper anddσ

dt
1
η the rate of strain

of the spring. It can be seen thatη̃ is the damper coefficient andη is the elastic
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(or Young’s) modulus. Ifσ = σ0 the creep equation is obtained. If conversely

ǫ = ǫ0 and the differential equation that arises is solved, the stress relaxation

equation can be obtained.

Ceramics at high temperatures follow a non-linear creep model. The model is

described by equation:

dǫ (t)

dt
= Aσ0

n (A.1.15)

WhereA andn are temperature dependent constants. It has also been written in

the following form:

dǫ (t)

dt
= A0e

−Qc/RT σ0
n (A.1.16)

Which uses an Arrhenius-like equation withA = A0e
−Qc/RT . T is the temper-

ature in Kelvins,R is the ideal gas constant andQc is the energy of activation.

When Maxwell’s model (A.1.14) is combined with Norton’s creep law, Norton’s

model is obtained:

dǫ (t)

dt
=

dσ (t)

dt

1

η
+ Aσ (t)

n (A.1.17)

Whereη is the elastic modulus. The main difference between equations A.1.15

and A.1.17 is that equation A.1.17 can also describe the stress relaxation phe-

nomena. To obtain the stress relaxation equation an axial constant stress is given

to a bar(ǫ = ǫ0). From that and equation A.1.17 the following is obtained:

0 =
dσ (t)

dt

1

η
+ Aσ (t)

n (A.1.18)

When the differential equation is solved the following is obtained:

σ (t) =
[

(ηǫ0)
1−n

+ (n − 1) ηAt
]

1

1−n

(A.1.19)

This model needs constantsη, A and n to be obtained. The creep behavior

of ceramic materials at high temperatures has been extensively studied. The

constantn is specially important as it can serve to describe the creep mechanism

of a material ([37, 38]). It has been shown thatn ≈ 1 when the behavior is

some form of diffusion creep and3 ≤ n ≤ 5 when the behavior is some kind of

dislocation creep. Obtaining these parameters is very difficult ([39, 40, 41, 42, 1,

43]). It involves apparatus able to withstand very high temperatures and furnaces

adapted for the task. It also involves fitting very complex functions. Those
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constants are dependent, not only, on the temperature but also on the heating

rate, (some times also on the stress or other factors).

With these two properties the total strains are defined by:

ǫtotal = ǫmechanical + ǫthermal (A.1.20)

Whereǫmechanical is defined from equation A.1.17 andǫthermal is defined from

equation A.1.9.

A.1.3 Sintering

Some terms used in the rest of the report [3]:

1. Quartz group: is the set of diverse forms in which the silica or silicon dioxide

(SiO2) can be organized in a neutral structure.

2. Alpha Quartz(α): is the quartz referred usually. Is the most stable kind of quartz

under the 573◦C at1Kbar of pressure. When the pressure increases this quartz

becomes even more stable. Some features of this quartz are:

(a) Crystal System: trigonal.

(b) Specific Gravity: 2.65.

(c) Index of Refraction: 1.55.

3. Beta Quartz(β): is the only form of quartz that is stable at more than 1300◦C

and pressures under35Kbars. Theβ quartz begins its transformation at 573◦C.

The transformation of theα quartz is quick, reversible, and is accompanied by a

small amount of energy. Some properties of theβ quartz are:

(a) Crystal System: hexagonal.

(b) Specific Gravity: 2.53.

(c) Index of refraction: 1.54.

4. Hygroscopic water: is the water absorbed by the environment.

5. Zeolitic water: is the water that is tied to the pores sincethe press.

At some temperatures, during the sintering process, some critical zones can be

identified. These are given, usually, to the chemical reactions of the materials during

the sintering process. These zones are:

1. Under 100◦C: elimination of the hygroscopic water, which the reabsorbed water

from the environment during the glazing stage; or the residual humidity after a

non-perfect drying.
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2. Under 200◦C: elimination of the zeolitic water or crystallization water. The

molecules in this water are tied by absorption in the crystalline structures.

3. Between 350◦C y 650◦C:

(a) Combustion of the organic substances that can be presentin their different

portions in the clays.

(b) Oxidant dissociation of the oxidant sulphides with the sulfur trioxide.

4. Between 450◦C y 650◦C: elimination of the constitution water (dehydroxyla-

tion) and the consequent destruction of the clay’s crystalline reticulum.

5. At 573◦C: allotropic transformation of the quartzα in β. It generates an abrupt

change in volume.

6. Between 800◦C y 950◦C: decarbonization of the limestone and the dolomite with

the liberation ofCO2.

7. After the 700◦C: formation of new crystalline phases constituted by theSiO2 of

the minerals.

8. After approximately 900◦C: thermal dissociation of other present salts.

9. If higher temperatures are reached, some components of the pastes can be evap-

orated, and their coatings like the alkaline oxides, the lead oxide, the zinc oxide

and the boric anhydride.

The sintering cycle

The cycle is the variation of the temperature over time. The sintering cycle is composed

at least of 3 stages:

1. An increase in the temperature from the value of the environment to the maxi-

mum established and after several tests considered optimumto obtain the desired

properties for the ceramic product. The velocity of the increase of the temper-

ature is regulated in a convenient way in function of the intrinsic parameters of

the material and the conditions of the work.

2. Permanence at the maximum heat of the product. This depends on the dimen-

sions of the product and the oven. The more elevated these parameters are the

demand, (for the physical and chemical transformations to be uniform), is higher.

3. Reduction of the temperature until the environment values are reached. This has

to do with a program that has into account the sensitivity of the ceramic body, the

heat gradient and specific demands; for example, in this stage the crystallization

phenomenon will be favored, slowing down the cooling in someintervals of the

temperature.
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The oven

In the oven, the sintering cycle is divided in sections. In these sections the necessary

machines are conditioned so, the sintering can be realized in a satisfactory way. The

parts that compose the oven are:

1. Pre-oven: is the section of the oven that has the followingfunctions:

(a) To eliminate the hygroscopic water and the zeolitic water.

(b) To elevate slowly the temperature of the tile.

(c) To keep the tile at temperatures between 50 and 20◦C.

(d) To keep the gases, that are taken from other stages of the sintering, between

200 and 500◦C.

2. Pre-sintering: is the section of the oven whose functionsare:

(a) To degasify the ceramic body; so, it does not have problems during the

sintering.

(b) To evaporate the rest of the zeolitic water.

(c) To start to convert theα quartz inβ quartz.

(d) To increase in a controlled manner the temperature untilthe maximum; that

is the temperature in which the sintering will work.

This part of the oven has temperatures between the 500 and the1100◦. From this

zone, data should be collected that will work in the sintering stage.

3. The Sintering: it is the zone of the oven where the temperature is the maximum.

Its functions are:

(a) To finish the conversion ofα quartz inβ quartz.

(b) To make the chemical transformations that will give the tile finish to the

tile.

The maximum temperatures can be between the 1100 and the 1250◦C.

4. Quick cooling: In this zone the tiles are cooled as fast as possible. It has the

functions of:

(a) To transform the support and the glaze state from liquid to solid.

(b) To hold the temperature just above the re transformationof theβ quartz to

α quartz. The temperatures go from the sintering to the 600◦C.
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5. Slow cooling: is the zone where the quartz should be transformed homoge-

neously. Its functions are:

(a) To change the temperature at a slow rate; such that, the tile is transformed

homogeneously.

(b) To transform, specifically, theβ quartz inα quartz.

This zone works in temperatures between the 600 and 450◦C.

6. Final cooling: it is the stage dedicated to:

(a) To reduce the temperature of the tile to the temperature of the environment

as fast as possible because it has passed its critical zone.

It is equipped with a cold air blowing system, under and over the tile.

A.2 Literature Review

Numerical simulations of the sintering can be classified according to many criteria. In

the problem studied in this review there are 3 interest areas:

1. To calculate the heat transfer from an oven to a ceramic tile. That calculation

includes the radiation, convection and conduction of heat to the tile to produce

meaningful parameters for the control of the oven.

2. To calculate the microstructure of the ceramic component. The papers assume a

geometry of the microstructure and calculate the sinteringof a few particles.

3. To calculate macroscopic effects of the sintering. The macroscopic effects in-

clude deformation of the geometry and the residual stresses.

For all the interests and approaches a few examples will be shown.

There are few papers that simulate the heat transfer from theoven to the ceramic

tile. In [2] the equations to simulate a single-deck roller kiln are proposed. The oven is

divided into several isothermal zones and they are connected to simulate the exchange

of heat between high temperature zones and low temperature ones. The number of

parameters is very high and none of them are determined in thepaper. In the paper the

gases spent and the energy density by mass are determined fora kiln used in ceramic

tiles and compared with data from the ceramic tiles industry. In [44], a ceramic oven

for tiles and bricks is simulated. The most important heat transfer form is said to be the

non-luminous gaseous radiation. The main goal is to obtain parameters for a controller

to optimize the oven according to several parameters hierarchically organized. In [45,

46, 47, 48] descriptions of several forms to optimize the furnaces for ceramic tiles are
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presented. Specifically in [48], a model to estimate the distribution of temperatures in

the ceramic tile is developed. The approach requires knowledge of the temperature in

one of the faces of the tile, in this case the lower face that has contact with the rollers,

and of the conditions within the oven. This technique is usedin [1] to calculate the

distribution of heat within the tile.

It has always been a top priority of the ceramic industry to obtain methods that

evaluate the microstructure and final shape of the sintered bodies. For glasses, because

of their amorphous nature, there are lots of methods that quantitatively evaluate at some

extent these properties. For polycrystalline ceramics, instead, all the methods that are

currently used are qualitative [8]. The main difficulties are:

1. Solving the equations involved: Even when the models havemany simplifica-

tions, (and these simplifications are not usually approximated to the phenom-

ena), the computational resources necessary to evaluate them are very high and

the equations are dependent upon many parameters.

2. Obtaining the parameters: The constitutive equations for the model, even ignor-

ing several conditions, have many parameters that are difficult to obtain. Many

of them depend upon temperature and time and have to be evaluated at very high

temperatures not suitable for usual instruments. This temperatures are, usually,

near the melting point of the material.

In terms of the microstructure the sintering has 3 stages ([8]):

1. First stage (Initial Stage): A neck between adjacent particles is formed and in-

creases until it reaches a value of≈ 0.4−0.6 of the particle radius. For a powder

system with an initial density of0.5 − 0.6 of the theoretical density this corre-

sponds to a linear shrinkage of3−5% or an increase in density to≈ 0.65. Matter

is transported by diffusion, vapor transport, plastic flow or viscous flow.

2. Second stage (Intermediate Stage): It begins when the pores have reached their

equilibrium shapes as dictated by the surface and interfacial tensions. The pore

phase is still continuous. Densification is assumed to occurby the pores simply

shrinking to reduce their cross section. Eventually, the pores become unstable

and pinch off, leaving isolated pores. This stage covers most of the sintering

process and ends when the density if≈ 0.9 of the theoretical.

3. Third stage (Final Stage): When the pores are isolated in the corners they shrink

continuously and may disappear altogether. The removal of almost all the poros-

ity has been achieved for real powder systems.

Many papers calculate the microstructure of a ceramic component. Most of them

for the first stage of sintering. In [49, 50], the microstructure for a metal powder is
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determined and a computational model for the sintering of two particles is developed.

It provides information for the final shrinkage ratio of the ceramic component which

is comparable with the physical powder. Montecarlo models are the most used for this

task. Papers that describe Montecarlo models for sinteringinclude [51, 52].

When calculating macroscopic effects of the sintering, there are 3 approaches:

1. To calculate full constitutive equations using microstructural parameters as input.

This requires a lot of effort in finding several microstructural parameters and

fitting them. It’s very difficult to even identify the constitutive equation that a

powder follows.

2. To calculate some effects like deformations without using full constitutive mod-

els. This approach is championed by the use of density as a characterizing factor

for all the geometrical parameters of a powder.

3. To use phenomenological relationships and calculate macroscopic parameters.

After this, generally a macroscopic constitutive equation, (like Norton’s model),

is used.

The first approach reviewed is the one in which a full constitutive macroscopic

model is obtained from a microscopic model. The parameters from the microscopic

model can be obtained either numerically, analytically or phenomenologically. As sin-

tering is a very complicated process even for a few particles, these models have only

been tested with very pure ceramics for advanced componentsthat require a lot of con-

trol in their microstructure. Some of the assumptions made include that there are no

chemical reactions or that the parameters for the sinteringonly depend upon the density

at a given time [53]. In [54, 55] the second and third stages ofsintering are modeled

and the deformation of a ceramic component is predicted. Forthe first stage of sin-

tering a simple phenomenological model is used. In the paperseveral microscopic

parameters are determined for a powder system, and a macroscopic constitutive model

is defined. The parameters that this model requires are many,most of them obtained

from phenomenological relations. Some of them are not even valid in the sintering of

ceramic tiles, because of their complex nature. To solve theproblem of the deforma-

tion of a component, thermal gradients and stresses due to the tools used are calculated

within the program ABAQUSR©, and a user routine, within this same application, is

developed to obtain the sintering rates and deformations. Other papers that use the full

constitutive model approach from microscopic parameters are [56, 57, 58].

There are certain simplifications that allow to formulate a numerical simulation of

the sintering without using full constitutive models. In [59], a finite element method is

proposed. It takes as input a set of areas that compose a planar and connected geome-

try of a ceramic body. Each area has a different density and all of them are fired at the

same temperature and firing rate. The material property thatgoverns the deformation
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in this paper is the linear shrinkage. As it has been noted, the linear shrinkage depends

on the history of the temperatures that the fired body goes through. The model is valid

when the history of the temperatures for the predicted deformed body is the same than

the one used to evaluate the material parameters of the homogeneous specimens. It

also needs to be noted that the mechanical equations are not considered in the model.

The output of the algorithm is the deformed model. In [60], a densification-based fi-

nite element method is proposed. It uses the principle of theMaster Sintering Curve

([53]), which states that the geometric parameters used in constitutive equations often

are functions only of density. For a sintering process, in which the ceramic component

has no extra forces applied, terms of the constitutive equation can be eliminated. This

makes possible a formulation that depends only upon density. The paper compares the

results of the simulations with other authors who simulate the sintering with full con-

stitutive equations for very pure ceramics. It also shows that the method is applicable

to a mixture of materials that resemble porcelain and obtains a good approximation.

This kind of materials are certainly not suitable for simulation using a full constitu-

tive equation. A report on this method can bee seen in [61], inwhich error estimation

techniques are developed and more case studies are presented.

The most useful approach for the ceramic tile sintering, until now, has been to use

phenomenological models that predict the macroscopic behavior without caring about

the microstructure. This is because a full constitutive model has not been developed for

such a complicated sintering with many phases, compounds, and with very important

and highly energetic chemical reactions as the change fromα-quartz toβ-quartz and

back toα-quartz. This is why traditionally, the process of obtaining finished traditional

ceramic products has been called firing, while the term used for advanced ceramics and

metals is sintering.

Constitutive models that make heavy use of phenomenological equations have been

presented in many papers. For constrained sintering, in [62, 63, 64] constitutive models

for solid state sintering under an applied pressure are evaluated. A stress distribution

problem is reduced to an elastic one using phenomenologicalequations for the Young’s

model, and then the sintering conditions are calculated from constitutive equations. In

[65], FEM is used to evaluate the sintering behavior under cold compaction. Cold com-

paction is a constrained sintering process in which the temperature is low, (compared

to the melting point), and the creep mechanisms are despicable.

In [66], a constitutive equation in terms of macroscopic parameters is presented.

These include Young’s modulus, Poisson’s ratio and viscosity. These parameters are

calculated for an explicit rate and phenomenological equations are used so they change

with the sintering conditions. The sintering of a cylinder is simulated and evaluated

against an experimental specimen in terms of the shrinkage in all the directions. In

[67], a phenomenological model for the sintering is developed. This admits free and

constrained sintering and it’s based in a Newtonian constitutive model, (linear).
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There are also papers in which the densification and other sintering parameters are

not modeled either phenomenologically, analytically or numerically. The parameters

appearing in the equations are only determined by macroscopic experiments at different

conditions that emulate the sintering. In [68] the ceramic firing process is simulated for

a sample with many characteristics of that of the ceramic tile. It divides the problem

into a thermal one and a structural one. The first is calculated as an isothermal one.

The thermal profiles serve to calculate thermal deformationbut no stresses appear. The

structural problem follows a viscoelastic model. Stressesand strains appear due to the

gravity.

For the best of the knowledge of the author, only two approaches have been pre-

sented to simulate the deformation of the ceramic tile during sintering. In [62, 63] the

distribution of the stresses in the ceramic tile is evaluated. For this a thermal and a

structural problem are defined in ANSYSR©. The thermal problem uses a program of

temperatures in the upper and lower faces of the tile and findsthe different gradients.

The structural problem uses an elastic model and finds the deformations and stresses

suffered by the ceramic body. The calculations from the structural problem are fed to

a model for viscous sintering to calculate the viscous deformations. In the paper only

Young’s modulus is found and the rest of relationships is done in base to phenomeno-

logical equations. Using the calculation of stresses in an elastic model can serve to

calculate the stresses and strains in a linear viscoelasticmodel but not in a non-linear

model as Norton’s model.

In [1, 69, 70] a finite element method is developed. The heat flow is simulated in 2-

dimensions, it takes into account the radiation and conduction and the heat generation,

(absorption), and calculates the distribution of the temperatures in the tile. Thermal

parametersk, ρ andc are calculated at different temperatures. Also the heat generation

is calculated for different zones of temperature. The conduction and radiation are mod-

eled as in [48]. For the structural problem a viscoelastic constitutive model is used.

The model is a modification of Norton’s model:

dǫ (t)

dt
=

dσ (t)

dt

1

η
+ A e−b dǫ(t)/dtσ (t)

n (A.2.1)

The model deforms because of the thermal expansion, (or shrinkage), that the

body, which is subject to different deformations, suffers.The FEM proposed is a 1-

dimensional beam with different temperatures in each node.The parameters for equa-

tion A.2.1 are calculated from stress relaxation experiments at different temperatures.

This modification is made so the parameters obtained from thecurves don’t change

with the conditions of a four-point flexural test. Small specimens of ceramic tiles are

sintered to evaluate the accuracy of the method.
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A.3 Computational modeling of the problem

For the finite element method, the procedure of creating a finite element model to be

solved by a computer broadly consists of four steps [71]:

1. Modeling the geometry.

2. Meshing (discretization).

3. Specification of material property.

4. Specification of boundary, initial, and loading conditions.

As seen in section A.1, the problem can be divided in a thermaland a structural

problem. Both of them have their own boundary conditions andmaterial properties.

A.3.1 Modeling the geometry

A ceramic tile with deep back relief has the following geometric characteristics: (i)

It’s a box with 1 dimension significantly smaller than the other 2 dimensions, (ii) The

thickness is non-constant; and can produce regular shapes.The other two dimensions

are, usually, equal.

The ceramic tile modeled is a squared one with two sides of33cm and thickness

3cm. The tile is presented in Fig. A.1. In the figure can be seen that the sides are

parallel to planes YZ and ZX respectively. The upper and lower surfaces are parallel

to the plane XY. The boundary conditions that appear in the figure are explained in

subsection A.3.3.

If the tile is cut in four with two planes parallel to YZ and ZX respectively and

that pass by the center of the tile, it can be seen that the tileis symmetric and can

be modeled as a fourth with symmetry constrains. The boundary conditions are also

symmetric. The tile has been modeled as a box with two sides of16.5mm and the

same thicknesses. It appears in Fig. A.2.

A.3.2 Meshing (discretization)

The elements used are SOLID90 for the thermal problem and SOLID186 for the struc-

tural problem. Both are 20 node hexahedrals. The nodes at SOLID90 have one degree

of freedom, the temperature. The nodes at SOLID186 have 3 degrees of freedom, dis-

placements in X, Y and Z. SOLID186 supports, among others, large deformations and

creep. The tile is meshed with ANSYSR©hexahedral mesher. The mesher produces

8712 elements and 39848 nodes when 33 elements are required in the edges that serve

as a border for the upper and the lower surfaces and 8 for the edges parallel to the

thickness. The hexahedral mesher of ANSYSR©can only be used when the geometry is

a box.
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Figure A.1: Tile with displacement boundary conditions.
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Figure A.2: Tile with symmetry boundary conditions and two nodes constrained in the
Z direction.

A.3.3 Modeling the boundary conditions

The problem is modeled as follows: first a thermal simulationcalculates the gradient

of temperatures in function of the time. The temperatures atthe nodes every certain

time are applied as body force loads to an structural problemin which the deformation
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is calculated. The two problems are modeled as follows:

Thermal problem

A modeling of the heat transfer between the oven and the ceramic tile is a complicated

one that requires very specific information about the characteristics of the oven. It has

been shown that the temperatures at the lower and upper surfaces of the tile are uniform

[1]. In this model constant temperatures are assigned at thesurfaces. The history of

temperatures is loaded from a file. The file contains the timeswere the temperature

changes as follows:
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Figure A.3: Temperatures in each of the surfaces of the tile as a function of time in the
oven.

At each time of the table, fixed temperatures, (Dirichlet boundary conditions), are

applied at the nodes of the surfaces. The intervals between the times in the file are

divided into substeps of around5s, (ANSYSR©calculates the time so all the substeps

are equal). ANSYSR©makes a linear interpolation for the loads at each substep. To

be able to simulate the process in the oven the temperatures at the surfaces need to be

estimated.

This boundary conditions comply with the symmetry claimed in A.3.1.

A.3.4 Structural problem

The structural problem appears when the non-uniform distribution of the temperatures

in the interior of the tile produces uneven deformations. This is expected to curve

the tiles. The deformations occur in all directions and eventhe direction of the curve
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can change when the linear thermal expansion coefficient starts to become smaller as

the temperature increases. Figure A.1 shows that three of the four lower corners have

their movements restricted in the Z direction, while one of them (keypoint 4) has its

movements restricted in all directions. All the movements of the tile are referenced to

that keypoint. Figure A.2 shows a transformation to the problem. Symmetry constraints

have been applied to the nodes in the planes YZ and ZX and two other nodes are

constrained in the Z direction. These nodes constrained in the Z direction were chosen

to minimize errors, this is because the constitutive model is Norton’s model. In this

model,ǫ ∝ σn. If sigma grows a little because of the errors then the strains grow much

more. Errors are maximized when single nodes in corner locations are constrained.

Instead, as the nodes selected in this model are not corner, the error is minimized

without over constraining the model which would give a different solution that the one

wanted.

The constrains, (symmetry and displacements), only serve to maintain the problem

in the field of statics and ANSYSR©can calculate the equilibrium. If the simulation has

no errors, no reaction forces should appear due to the constraints as all the forces are

compensated internally.

A.3.5 Specifying the material properties

The material evaluated in the experiments was a common slurry used for stoneware

ceramic tiles. All the properties used are taken from [1]. The chemical composition of

the slurry is:

Table A.1: Properties of the materials for the study

Oxides Mass Fraction (%)
SiO2 63.3
Al2O3 17.5
Fe2O3 6.03
CaO 1.44
MgO 1.28
Na2O 0.39
K2O 3.36
TiO2 0.79
MnO 0.04
P2O5 0.18

The powder is compacted to several densities. The one taken is2 150 Kg/m3.
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Thermal properties

Thermal properties are determined from [1]. They showed that the conduction(k) and

specific heat capacity(c) did not dependent on the temperature. The properties for the

thermal problem are:

Table A.2: Thermal properties of the materials for the study

Property Value (Units)
Density(ρ) 2 150 Kg/m3

Thermal conductivity(k) 0.57 W/ (m K)
Heat capacity(c) 1 250 J/ (Kg K)

Structural properties

Even when the behavior of the powder during firing is more complicated than a simple

thermal expansion, (in which the density is only dependent on temperature), the linear

coefficient of thermal expansion is used based on data collected from [1]. The secant

coefficient of thermal expansion in function of the temperature is shown in Fig. A.4:
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Figure A.4: Secant coefficient of thermal expansion in function of the time.

For the constitutive equations a simple Norton’s model was used. The parameters

that are presented in [1] can’t describe a real powder. This is because the creep ratio,

value that relates the creep deformation in an interval of time with the elastic deforma-

tion, was very high for temperatures under the 40◦C. The test used in [1] described a
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relaxation test. Engauge Digitizer ([72]) is used to extract the data from the stress re-

laxation tests in the document. After this, a nonlinear least squares fit is used with help

of equation A.1.19. The programming language R and its toolsfor nonlinear regression

are used ([73, 74, 75, 76]).

The original mechanical properties that are found in [1] are:

Table A.3: Structural constants of the constitutive model found in [1]

T (K) η (Pa) A
(

s−1
)

n
293.15 6.5 × 109 1.7 × 10−17 17
773.15 8.2 × 109 9.2 × 10−14 11
973.15 9.2 × 109 4.3 × 10−17 11
1073.15 11 × 109 4.8 × 10−13 7
1173.15 20 × 109 8.0 × 10−10 4.8
1273.15 21 × 109 3.8 × 10−7 2.5
1323.15 17 × 109 3.2 × 10−6 2.5
1373.15 5.7 × 109 3.4 × 10−5 2.1

The properties found using R are:

Table A.4: Structural constants of the constitutive model for the study

T (K) η (Pa) A
(

s−1
)

n
293.15 3.06 × 109 ≈ 0 -
773.15 3.75 × 109 2.289 × 10−26 5
973.15 4.48 × 109 4.010 × 10−28 5
1073.15 4.63 × 109 1.164 × 10−27 5
1173.15 6.07 × 109 1.778 × 10−21 4.27
1273.15 6.63 × 109 5.046 × 10−8 2.42
1323.15 6.49 × 109 1.418 × 10−6 2.30
1373.15 3.14 × 109 7.358 × 10−7 2.44

It has to be recalled that there is an error when digitizing the document, but the

values at293.15 K near zero makes more sense and the values under1 273.15 K show

a very low creep and during the experiments this resulted in lower creep ratios. The

value of 5 forn was fixed in the linear regression because ceramics have thisrange of

creep exponents.

A.4 Results

The simulations show no convergence for the entire time in the oven. Several varia-

tions of the experiment don’t give different results. However, for a range of times the
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simulations show convergence and are summarized in videos.Here, images of the last

load step for the simulations are shown.

Fig. A.5 shows the temperature and the deformation of the tile at 655 seconds. The

deformations are scaled 10 times to be able to observe the phenomenon. At certain

temperatures the curvature changes of sign. This is becauseof the change in the sign

of the slope seen in Fig. A.4.
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Figure A.5: Temperatures of the ceramic tile at 655 seconds.

Fig. A.6 shows the vector sum of the displacements at the lastload step. Recall the

constrained displacements in the Z direction for two non-corner nodes.

Fig. A.7 shows the strains, (First Principal Strains) caused by thermal expansions.
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Figure A.6: Vector sum of the displacements of the ceramic tile at 655 seconds.
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Figure A.7: First principal thermal strains of the ceramic tile at 655 seconds.
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Other measures can also be captured as a function of the time but they don’t show

any pattern as stresses relax too quickly.

Also, a program that evaluates the mean discrete curvaturesat the nodes is pre-

sented. It shows the evolution of the curvatures with the time in the oven. For this

program, developed completely in ANSYSR©and TCL, the mean discrete curvature is

evaluated for each node using Simpson’s method, ([77]). Thecurvatures are presented

for the lower and upper surfaces of the tile.
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Figure A.8: Curvatures at lower and upper surfaces for time 55.
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Figure A.9: Curvatures at lower and upper surfaces for time 115.

89



1

X

Y

Z

                                                                                
.010709

.010756
.010803

.010849
.010896

.010943
.010989

.011036
.011083

.011129

SEP 30 2009
22:37:24

PLOT NO.   1

ELEMENTS

TEMPERATURES
TMIN=.010709
TMAX=.011129

(a) Lower surface.

1

X

Y

Z

                                                                                
.010316

.010363
.01041

.010457
.010503

.01055
.010597

.010644
.010691

.010737

SEP 30 2009
22:22:29

PLOT NO.   1

ELEMENTS

TEMPERATURES
TMIN=.010316
TMAX=.010737

(b) Upper surface.

Figure A.10: Curvatures at lower and upper surfaces for time175.
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Figure A.11: Curvatures at lower and upper surfaces for time235.
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Figure A.12: Curvatures at lower and upper surfaces for time295.
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Figure A.13: Curvatures at lower and upper surfaces for time355.
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Figure A.14: Curvatures at lower and upper surfaces for time415.
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Figure A.15: Curvatures at lower and upper surfaces for time475.
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Figure A.16: Curvatures at lower and upper surfaces for time535.
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Figure A.17: Curvatures at lower and upper surfaces for time595.
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Figure A.18: Curvatures at lower and upper surfaces for time655.
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[49] X. Xu, P. Lu, and R.M. German. Densification and strengthevolution in solid-

state sintering. Part I Experimental Investigation.Journal of Materials Science,

37:567–575, 2002.

96



[50] X. Xu, P. Lu, and R.M. German. Densification and strengthevolution in solid-

state sintering. Part II Strength model.Journal of Materials Science, 37(1):117–

126, 2002.

[51] M. Braginsky, V. Tikare, and E. Olevsky. Numerical simulation of solid state

sintering.International Journal of Solids and Structures, 42(2):621–636, 2005.

[52] E.A. Holm and C.C. Battaile. The computer simulation ofmicrostructural evolu-

tion. JOM Journal of the Minerals, Metals and Materials Society, 53(9):20–23,

2001.

[53] Hunghai Su and D. Lynn Johnsonn. Master sintering curve: A practical approach

to sintering.Journal of the American Ceramic Society, 79(12):3211–17, 1996.

[54] Hermann Riedel Torsten Kraft. Numerical simulation ofsolid state sintering;

model and application.Journal of the European Ceramic Society, 24:345–361,

2004.

[55] H. Riedel and B. Blug. A comprehensive model for solid state sintering and its

application to silicon carbide.Solid Mechanics and Its Applications, 84:49–70,

2001.

[56] E.A. Olevsky and V. Tikare. Combined macro-meso scale modeling of sintering.

part i: Continuum approach.Recent Developments in Computer Modeling of

Powder Metallurgy Processes, page 85, 2001.

[57] V. Tikare, E.A. Olevsky, and M.V. Braginsky. Combined macro-meso scale mod-

eling of sintering. Part II, Mesoscale simulations.Recent Developments in Com-

puter Modeling of Powder Metallurgy Processes, page 94, 2001.

[58] K. Shinagawa. Finite element simulation of sintering process: Microscopic mod-

elling of powder compacts and constitutive equation for sintering. JSME inter-

national journal. Series A, mechanics and material engineering, 39(4):565–572,

1996.

[59] A. Easton I. Freshwater A. Tsvelikh, W. Thompson. A geometrical finite element

model of the sintering process of advanced ceramics.Computational Materials

Science, 3:457–464, 1995.

[60] Julie A. Yeomans Magali Barriere Philippe Blanchart Sasan Kiani, Jingzhe Pan.

Finite element analysis of sintering deformation using densification data instead

of a constitutive law.Journal of the European Ceramic Society, 27:2377–2383,

2007.

97



[61] Jingzhe Pan Ruoyu Huang. A further report on finite element analysis of sintering

deformation using densification data–error estimation andconstrained sintering.

Journal of the European Ceramic Society, 28:1931–39, 2008.

[62] H. Camacho, M. E. Fuentes, L. Fuentes, A. Garcia, and Perez A. Stress distribu-

tion in ceramic tile walls under thermic dilatations. volume 42, pages 283–288.

Bol. Soc. Esp. Ceram., 2003.

[63] H. Camacho, M. E. Fuentes, L. Fuentes, A. Garcia, and Perez A. Stress distribu-

tion in ceramic tile walls under thermic dilatations. volume 42, pages 353–359.

Bol. Soc. Esp. Ceram., 2003.

[64] H. Camacho-Montes, P.E. Garcia-Casillas, R. Rodriguez-Ramos, M.E. Fuentes-

Montero, and L.E. Fuentes-Cobas. Simulation of the stress-assisted densification

behavior of a powder compact: Effect of constitutive laws.Journal of the Ameri-

can Ceramic Society, 91(3):836–845, 2008.
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