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Introduction

Computational modeling is the use of algorithms and datzcsires to transform a
physical or theoretical problem into a problem solvable bgomputer. The branch
of Computer Science that supports engineers in tasks liké/sin, simulation, de-
sign, manufacture, planning, diagnosis and repair is thapiler Aided Engineering
(CAE). Some of the problems found in CAE, like the ones désctiin this thesis, re-
guire extensive use of Geometric Modeling. Geometric Miodgk the branch of Ap-
plied Mathematics and Computational Geometry that stugiethods and algorithms
for the mathematical description of shapes.

Several engineering problems depend on too complicatedtiegs to be solved
analytically. One of the methods developed for solvingiphdifferential, (and other
kind of), equations is the Finite Element Method (FEM). FE&tdmposes a problem
into simpler sub-domains and feeds it to a solver, whichgjaveolution.

Modeling a problem by means of the FEM broadly consists of:

1. Modeling the geometry.

2. Meshing (Discretization).

3. Specification of material property.

4. Specification of boundary, initial and loading condison

At the CAD/CAM/CAE laboratory EAFIT and at the CITG UPV twoffdirent
projects were carried on. One aimed to produce a mesher ofaap#ic surface
that could be used for FEM. The second one tried to modelgusimmercial FEM
packages, the stages that the ceramic tile undergoes dtsripgpduction. The results
of both projects are presented in the manner of papers wetfottowing titles:

1. Gabriel-constrained Parametric Surface Triangulation
2. Simulation of the handling in green of ceramic tiles wided back relief.

The topic of the first paper is the triangulation of a parainetrfaceS : R? —
R3, of the clas0? with border. The boundary o is the collection of loopd.; em-
bedded inS. The triangulation algorithm generates a mesh that is aBoeranifold



but of the clas€”° with border. The algorithm receives as an input a boundarsere
sentation model (b-rep): one of the most common ways in wiab systems model
the geometry and topology of solids.

The chapter presents:

1. A literature review of algorithms that triangulate sgda. Most of these algo-
rithms don’t have any guarantee or special method to hahdlbdrder properly.

2. An introduction to the Gabriel Complex. Also, an introtlan to the curvature
of smooth parametric surfaces.

3. Four algorithms that take care of each stage of the triatign of a (b-rep).
4. The complexities of each of the algorithms.
5. Results, conclusions and future work.

The topic of the second paper is the use of the FEM for the atialu of the han-
dling in green of a ceramic tile. The ceramic tile evaluatad tdeep back relief. Tiles
with back relief can have different mechanical behavionttieeir counterparts. A ce-
ramic tile is said to be in green state after pressure formihbas a high content of
water and it's in its weakest state; because of this, thétileis stage does not undergo
many processes. An evaluation of the strength for the diffeprocesses that the tile
undergoes during this stage can be done with help of the FEBEMbeTable to do this
with a parametric approach, a computer software that redeivset of parameters to
generate the model of tile with back relief was created. filiag the necessary bound-
ary conditions and the rest of the steps needed to use FEM sodtiel would be ready
to be solved. It also generated a set of commands that werte #&NSYS®, which
performed a set of boolean operations that gave as resulfeitimetric model of the
tile required.

The chapter presents:

1. A description of the steps taken by a user in ANSY® model a problem by
means of the FEM and how we improved that workflow for the djmepirob-
lem of modeling the production stages that a ceramic til& wé@ep back relief
undergoes.

2. Anintroduction to theories needed to model the problemrmbgns of the FEM.

3. An evaluation of the strength of tiles lightened by a mdtkionpler than the back
relief: reducing their thickness.

4. An evaluation of the strength of tiles with a model of bagliaf but with different
parameters.



5. A method to evaluate the appropriateness of a back religfrfy given test.

6. Conclusions and future work.






Chapter 1

Gabriel-constrained Parametric
Surface Triangulation



Context

The CAD/CAM/CAE Laboratory at EAFIT University, under myaalination, started
in 2007 the projectStochastical Computational Geometry in CAD CAM CAE part
of this project, some probably correct sampling and recanogon algorithms have
been proposed and developed by me, the Professors and istarassat the lab. One
of such projects involved Ricardo Serrano who implementealgorithm that triangu-
lates b-reps.

The algorithms developed used knowledge in the fields of féimal and Com-
putational Geometry, Computer Assisted Design, Geombtodeling, Graph Theory
and Software Development in the C++ language. This resdwslygreat application
in the field of Computer Aided Engineering, specifically tHeMr, and in the field of
Computer Aided Manufacturing.

The theoretical contributions of the project appear on Hyeep:

1. Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricard@8e, and Guillermo
Peris-Fajarnes. Gabriel-constrained parametric sutfénegulation. Proceed-
ings of World Academy of Science, Engineering, and Techydg:578 585,
2008.

2. Oscar E. Ruiz, John Congote, Carlos Cadavid, Juan G.deglf@uillermo Peris-
Fajarrés, Beatriz Defez, Ricardo Serrano. Gabriel-constrajpa@dmeter-independent,
curvature-sensitive parametric surface triangulatiofhdvanced Technologies,

ISBN 978-953-7619-X-X.

As coauthor of the publications we give the permissionsHi material to appear
in this document. We are ready to provide any additionalrinfition on the subject,
as needed.

Prof. Dr. Eng. Oscar E. Ruiz
oruiz@eafit.edu.co

Coordinator CAD CAM CAE Laboratory
EAFIT University

Medelliin, Colombia



Abstract

The Boundary Representation of a 3D manifold contains FA@B8nected subsets of
a parametric surfac§ : R? — R3). In many science and engineering applications
it is cumbersome and algebraically difficult to deal with ffl@dynomial set and con-
straints (LOOPS) representing the FACE. Because of thisoreaa Piecewise Linear
(PL) approximation of the FACE is needed, which is usuallyresented in terms of
triangles (i.e. 2-simplices). Solving the problem of FACGERgulation requires pro-
ducing quality triangles which are: (i) independent of thguanents ofS, (ii) sensitive
to the local curvatures, and (iii) compliant with the bouneés of the FACE and (iv)
topologically compatible with the triangles of the neighihhg FACEs. In the existing
literature there are no guarantees for the point (iii). Hnt&cle contributes to the topic
of triangulations conforming to the boundaries of the FAGEpplying the concept of
parameter-independent Gabriel complex, which improvestirectness of the trian-
gulation regarding aspects (iii) and (iv). In addition, #r¢icle applies the geometric
concept of tangent ball to a surface at a point to addressp@jrand (ii). Additional
research is needed in algorithms that (i) take advantadeeafdncepts presented in the
heuristic algorithm proposed and (ii) can be proved correct



Glossary

S: Parametric SurfaceS : R? — R3. is an (infinite)
2-manifold without border.

F.H: Faces. Connected subsets of a parametric surface
(F,H C95).

S—F) Pre-image off” in parametric spacg — V.

Tr: Triangulation of face” in Euclidean space.

Tyv: A triangulation in parametric spaéé— V.

T=5STyv): Triangulation inR? as a mapping, vi&, of the trian-
gulationTyy in U — V' parametric space.

0X: Boundary of the seX.

L;: Aloop (L; € OF'), is a 1-manifold without border.
It is a connected subset of the boundaryof

E; Anedge E; C L;), is a 1-manifold with border.

t: A triangle of the triangulatiofd’.

D, q. Points in Euclidean spacg, g € R3.

U, v, W: Real parameters of a cur¢gw) or a surfaces (u, v).

cl(A): Closure of the sel. cl(A) = AU JA.

int(A): Interior of the setd. int(A) = A — 0A.

Ba(p,q,r): Gabriel Ball inR3. Spherical point set whose center is
contained in the planggr, passing through the points
p,q,7 € R3.

Bea(p, q): Gabriel Ball inR3. Spherical point set whose center

is contained in the edge), passing through the points
p,q € R3.
Edge of a triangle.

1.1 Introduction

Boundary Representations, B-Reps, are the computer faatiah of the boundary
of a body M = 0BODY). Shortly, M is a collection of SHELLSs, which in turn
are collections of FACEs. For convenience, we will assuna¢ tithe SHELLs are 2-
manifolds without border ilR?. Each SHELL is decomposed into FACES, which must
have boundary. It is customary in geometric modeling to neekACE I’ a connected
proper subset ofneparametric surfacé(u,v) C R3. In this article we consider the
b-reps as closed 2-manifolds with continuity inside each face and® among them.
The border off' is 9F', which is the collection of LOOPS; embedded irs. The
LOOP L; can be thought of as a 1-manifold without border, witfy continuity except
in a finite number of points, where it i§°-continuous. In such locations; is split



into EDGESLE);, each one being@ 1-manifold with border. The problem of surface
triangulation takes place in one of such FACESA PL approximatiori ' of faceF' is
required which: (a) is formed by triangles, (b) departs frBrm less than a distance

(c) has triangles as equilateral as possible, (d) has agitavgles as possible, and, (e)
each edge; of the triangle set has exactly two incident triangles. Brop(e) is a con-
sequence of the fact that a B-Rep is a 2-manifold without daan The triangulation
T is also a 2-manifold (of th€° class) without boundary. Condition (e) also holds
for edgese; whose extremes lie on any lodp. This means, this edge receives a
triangle from the triangulatiofi» (face F) and another from the triangulatidn; (face
H).

An important aspect to control in triangulating a faEds that having a triangu-
lation iy correctly coveringS—!(F) in parametric spac& — V is not a guarantee
for the triangulatioril” = S(Tyv) in R3 to be correct. Several problems may arise: (i)
Fig. 1.1 illustrates that a completely internal triangleb, | in parametric spack — V'
may not be mapped h§ to an internal triangléS(a), S(b), S(c)] in R3. (ii) roughly
equilateral triangles in U — V space may map to extremely deformed trianglés
in R? because of sharp warping caused%yiii) neighboring triangles;, ¢;, tx, .... in
U — V space mapped vié() may form a fish scale effect iR® because of the same
warping inS.

6 y
S:R* —» R’
z b
¢ S(c
(b (a) <
0 a R
To re

Figure 1.1: Trianglezbe is internal in parameter space. Triangiéa)S(b)S(c) is
external to the surfac&(r, 0) = (r cos(#), r sin(6), 0)

1.2 Related Work

1.2.1 Fundamental definitions

As discussed in [1] a smooth 2-manifold with boundary (faEe)s a sub-manifold
of a smooth 2-manifolds’ without boundary. If the neighborhood of a popmte F
is homeomorphic to a 2 dimensional euclidean space, therawéhat thep is in the
interior of F' (int(F)). If the neighborhood of a pointin F' is homeomorphic to a half
euclidean space then we say that the point is in the boundary(6F’). The exterior
of the submanifoldF’ is composed by the poings € S and not in the closure of’



(p ¢ cl(F)). Itincludes all the points neither in the interior nor treubdary ofF but
still in S. The boundary is a closed set and the interior and exter@open sets. In
Fig. 1.4 the interior, boundary and exterior are showh-{ B denotes the difference
between setgl andB).

Fl=8%F) 2-Manifold Sfuv)

\Stia, v)=
[ Xt v),
Yiu,v),
Ziuvy]

Figure 1.2: Pre-imagé& ! = S~!(F) of the faceF by the parametric surface.

Fig. 1.2 displays the general situation in which a fdcds carried by a para-
metric surfaceS in R3. F is a connected subset &, with the boundary ofF,
OF = {Ly,...,L,} being the set of loop<; which limit £ on S. If the function
S(u,v) is 1-1 (which can be guaranteed by a convenient decomposifithe overall
B-Rep) then there exists a pre-imagefoin parametric space x V, that we callF' 1.
Such a region can be calculated/as! = S~1(F). To do so, a point sample &fF
formed by pointg; € R? is tracked back to their pre-images;, v;) € (U x V) there-
fore rendering a connected regidit! C (U x V'), most likely with holes, bounded
by a set of planar Jordan curveg'~! = {T'g, ...,T',, }.

Delaunay Tetrahedron Gabriel 2-simplex
a-b-c-d in R’ a-b-c in R’

Gabriel 1-simplex a-b Gabriel 1-simplex a-b
in R’ in R

Figure 1.3: Delaunay tetrahedron for pointsh, c,d € R?, Gabriel 2-simplex for
a,b, c € R3, Gabriel 1-simplex for, b € R?, Gabriel 1-simplex for, b € R2.
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Fig. 1.3 displays a short collection of Delaunay and Galmeehplexes. A Delau-
nay tetrahedron in a set of points in 3D is a tetrahedronr(§&ix) formed by four
points whose circumscribed sphere contains no other pbithtecset. Given vertices
v;v;U I the point set, they form a Gabriel triangle (2-simplexihié smallest sphere
through them contains no other point of the set. The triangtev;, is embedded in
the equatorial plane of such a sphere. A Gabriel edge (1-simplex) is one with
v; andv; in the point set, such that the sphere centeretvjnt+ v;)/2 with radius
r = d(v;, v;)/2 contains no point of the sample other tharandv;. Such a sphere is
the smallest one containing andv;. Each Gabriel 1-simplex makes part of at least
one Gabriel 2-simplex, and each Gabriel 2-simplex makeaxpat least one Delaunay
tetrahedra.

The present article applies the Gabriel variant (1- and pkces) to Delaunay
connectivity to calculate a triangulation for a point saeng)- (sensitive to curvature
and independent of the parameterization) on the facearried by a parametric surface
S. Section 2 reviews theoretical and algorithmic knowledglated to triangulations
and surface curvatures. Section 3 discusses the algorilkrised and implemented
to triangulate Boundary Representations. Section 4 ptedie complex Boundary
Representations with manufacturing and organic surfasdshah genii triangulated
by the implemented algorithm. Section 5 concludes thislartind sketches directions
for future work.

1.2.2 Curvature Measurement in Parametric Surfaces

A parametric surface is a functigh : R? — R3, which we assume to be twice deriv-
able in every point. The derivatives are named in the follmuinanner ([10], [20],):

2 2
5.= 0%, =05 5, =055, =05, (12.1)
2 W X Sy
Suv = Sou = aiégv; "= gu X §v|
with n being the unit vector normal to the surfaget S(u, v).
The Gaussian and Mean curvatures are given by:
where the coefficient&, F', G, L, M, N are:
E=5,05,; F=5,05,=5,5,; (1.2.3)

G=5,085,; L=S,,en;
M:Suv.n; N:S'uv.n;

11



Minimal, Maximal, Gaussian, Mean Curvatures from the Weingarten Application
The Weingarten Application ([10]}} is an alternative way to calculate the Gaussian
and Mean curvatures.

W= | 02 (1.2.4)
a21 a22
with ai1, 12,021,022 being:
MF — LG NF - MG
MEEG-F "M T EG-F? (1.2:5)
_ LF-ME _ MF-NE
PTG 2T TEG - p2

The following facts allow to calculate the curvature measuior S from the Wein-
garten Application: (i) The eigenvaluésy k-, of W are calledPrincipal Curvatures,
with k; being themaximalcurvature and; being theminimal curvature (assume that
|k1] > |k2]). (i) K = det(W) is theGaussian Curvature, with K = k; * ko. (jii)
2H = trace(W) is twice theMean Curvature, with H = £:££2_ (iv) The maximal
and minimal curvatures aré; = H +vH? — K andk, = H — VH? — K.

W x v = k % v is the eigenpair equation for th& matrix. The solutions for such
an equation are the eigenpafts , v1) and(kz,v2). Therefore W x v; = k; * v and
W x va = ko % vo. The directions of principal curvatuia U x V spacearewv; and
vg (v1 = (w11, w12) andvy = (w21, wa2)). The directions of maximal and minimal
curvatures inR® areu; = wig * Sy + Wi * S, andus = woq * Sy, + was * Sy,
respectively.

1.2.3 Previous Work

[12] implements an algorithm which starts with an alreadiidv&riangulation on a
trimmed surfaceS(u, v) and originates a new triangular mesh. It proposes a surface
triangulation with a Delaunay method given 3 pointsRih which determine a sphere
whose equatorial plane is defined by the 3 given points. Tderighm creates a point
set which may be more dense as needed by a particular cnitgrig. curvature). This
algorithm uses expensive operations (e.g. surface-limesection). The boundary of
the triangulated trimmed and meshed face is expressed dndatad in handled in
parametric space. Since the algorithm in [12] starts withvargtriangulation and
modifies it, if such triangulation is not correct, or it does nespect the boundary of
the trimmed surface, the triangulations following keeptsalearacteristic. According
to [16], the restricted Delaunay triangulation of geneogidiogical spaces is defined.
The restricted Delaunay triangulation in the case of trimmgrface inR? is the dual
of the Voronoi diagram intersected with the surface. Thaeefa triangle is created in
each intersection of 3 voronoi cells with the surface. A dbntion of the paper is to
show that Chew’s algorithm is a restricted Delaunay tridaugon.

12



In the problem of the triangulation of manifolds with boungdahe theoretical
guaranties that serve for surface reconstruction do ndyappr examples-samples
([4],[3]) which use the smallest distance of a sample panthe medial axis of the
solid (i.e. thee). Since a trimmed surface may be close or far from the medial a
such criteria do not apply for surface triangulations.

In [7], The ball pivoting algorithm, (BPA), is presented. dbmputes a triangle
mesh interpolating a given point cloud: 3 points form a tgienif a ball of radius
smaller thanp (a user specified radius) touches them without containingcther
point. This triangle is a Gabriel 2-simplex R?®. The algorithm makes a region of
triangles grow by adding a triangle to one of the boundaryesdd the triangle mesh.
The reconstruction algorithm needs a very uniform sample.

In [19] the intrinsic Delaunay triangulation of a Riemarmiaanifold is shown to
be well defined in terms of geodesics. A smooth surface endgeatdR? can define
a Riemannian manifold. The Riemannian manifolds have tbpgty that if all the
calculations and definitions are done in a small subset afidngifold, (as they can be
done with a good sampling condition), the Delaunay triaatioh and the Voronoi di-
agram are defined exactly as with the euclidean metric anduatie Although defining
triangulations with geodesics is theoretically sound,ai$ la prohibitively high com-
plexity because it implies the solution of simultaneoushlgic systems.

In [2] the Gabriel complex is defined f@®™. For a set of points ifR? the Gabriel
complex is composed of triangles whose smallest definedrosphere is free of points
in the set. The advantage with respect to [12] is that it do¢®@ed information about
the surface. The Umbrella filter algorithm described predutmpologically correct
triangulations. Our article takes advantage of such a diefimialong with a curvature
- sensitive point sample.

[5] gives lower bounds for densities of well distributedmisiin surfaces, based on
Delaunay triangulations. [11] presents an algorithm toarand triangulate a surface,
but it uses computer expensive and not common operationg8] lthe concept of
loosee-sample is developed but the operations which implemeng¢ itamputationally
expensive.

[9] presents the Lipschitz-samples, analogous-samples, but applied to piece-
wise smooth (Lipschitz) surfaces. Such a distance permisanple a Lipschitz sur-
face and to define a mesh on it. However, [9] does not presamlaaxamples of the
performance of the algorithm (as we do here). We do also addte sampling of
edges which bound two incoming smooth surfaces by using tist larger of the two
involved curvatures.

In [13], the greedy Delaunay - based surface reconstruatgorithm from a point
sample is presented. The algorithm uses the fact that theiébagbaph is a subset
of the Delaunay triangulation (DT). From a starting triangt grows matching each
of the edges in the boundary with a triangle in the DT that hasminimum radius.
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As disadvantages, we may note that the algorithm: (i) reguine usual distance for
Delaunay triangulations, (ii) needs a very uniform sanmplimthe loops and (ii) does
not provide guarantee in the reconstruction.

[1] is focused in the notion of envelope that is the coverihg 8-manifold created
with spheres of\ size and centered in the points of the surface. From the epwel
a surface with boundaries can be reconstructed, but thioapp does not conserve
the original points sampled in the boundary, and parametersieeded. In practice
the envelope approach does not seem to produce topolggimaitect results. We
dispose of information about the surface and boundariesiaednother approach to
the problem.

In [14] an advancing front method to triangulate paramedtifaces is presented.
The method triangulates a B-Rep by discretizing edges aridcas. The number of
triangles generated can be adapted to any density functitreisurface. The correct-
ness of the solution depends on the density function providethe edges and for the
surface. In [6] a parameterization-independent algorithiproposed to triangulate a
surface. In the algorithm, a circle in the normal plane of @pp in the surfaceS,
Tp (S, p), is chosen. A polygon of sides, (withn > 4), and defined by vertices
{p1,p2,...,pn}, is inscribed in the circle. Rays from the vertices and pedp=ilar
to T'p (S, p), intersect the surface and generate new vertices for gaeguiation. The
algorithm has the advantage that the connectivity of thenglies is present through
the algorithm. In the other side, the paper handles the kayrid the parameter do-
main and reports a non-uniform sample near to this. The paperts problems are
in regions of high curvature. Also in [21], the algorithm deked in this paper is im-
plemented and problems are reported near the boundarieggérteralization of their
algorithm to closed surfaces needs a sewing procedureretes additional borders.
In [23], an algorithm that triangulates parametric surasepresented. The algorithm
uses an advancing front method. The loops aren't taken taouat. This algorithm
generates two fronts of triangles that advance one towaelsther. The two fronts
are in opposite sides of the parameter space. The main dclvibhis algorithm is
that: only a squared parameter space is considered. No tiotesnplex features are
reported in the paper. In [22] an algorithm to triangulateeps is presented. In the
algorithm all the triangulation occurs in parametric spacd is mapped t&3. In [21]
two sampling methods and a triangulation algorithm are @sed. In the algorithm the
boundaries are isosampled, i.e not sensitive to the cuevatuany other parameter. In
the triangulation algorithm, a parametric information éeded, so it can fix problems,
and the boundaries are not handled well in all the situations

14



infinite 2-manifold

Exterior of F carrier surface S(u,v)

sub-manifold F
of manifold §.

Boundary of F:
OF = closure(F) — F

Figure 1.4: Interior, boundary and exterior of a submadif6lwith respect to a mani-
fold S.

Gabriel 1-simplex

Center of Gabriel

. . 1-simplex
Gabriel 2-simplex

onint( F) Center of Gabriel
2-simplex

Figure 1.5: Gabriel 1- and 2-simplices on face

1.3 Methodology

The implemented algorithm to triangulate a fdcenounted onto a parametric surface
S (Fig. 1.4) has the following layout, whose details will bedissed later: (1) Calcu-
late the pre-imagé —! of the faceF through the functiors (Fig. 1.2). (2) Initialize
the vertex sel/ with a curvature-sensitive sample of the lodps ..., L,, of the face
boundaryoF'. (3) Introduce points in the sampled loops, ..., L,,; such that, all the
segments i F are Gabriel 1-simplex. (4) Sprinkle the faEewith verticesv; achiev-
ing a vertex density proportional to the local curvatureFgfK,, .., inserting those
vertices in set/’. Segments i F remain Gabriel 1-simplex during this stage. (5)
Calculate a Gabriel connectivifil for the vertex sevr.
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1.3.1 Edge Sampling

Algorithm 1 is used to produce a curvature - sensitive sarapbn EdgeFE. Unlike
previous approaches ([22]) such a sample is not an isortistane. Instead, the sam-
pling interval at pointp on the underlying curvé&’ is sensitive to the largest of the
maximal curvatures of; and Ss in such a poinp (line 6). Notice that the curva-
ture of the curveC at p needs not to be considered in addition to the surface curva-
tures because it will be always less than or equal to the sini@gaximal curvatures

(Kmaat(Slap)y Kmam(s27p))'

Algorithm 1 Sample of the Edg& between Faceg; and I,
S1(u,v), Sa(u,v): Underlying surfaces for Facdg and Fs.
C(A): Underlying Curve forE.

Ao, Ay: Parameters of the extremesgfin curveC'.

Ve = {p1, p2, ..., pn }: Output. Sequence of point sample/of
Kz (S, p)): Maximal curvature of Surfac# at pointp.
Niqes: Number of sides of a regular polygon.

1. Vg = {}

2 A=Ag

3: while A <Ay do

4 p=C(\

5: VeE=VgU {p}

6: k= max(Kmaw(Slap)y Kmaw(s%p))

7. r=1/k

8:  § = polygon_determined_arc(r, Nsides)
9:  AM = dist_to_param(d)

100 A=A+ A\
11: end while

C(u) S(u,v) Polygon side &

r=1/k
p=S(u,v)

pe=C(u)+r.n Regular tangent Direction of maximal
polygon at p=S(u,v) curvature W,

Figure 1.6: Locally planar curve and local curvature. Apgmaation by regular poly-
gon of N sides.

Fig. 1.6 displays the geometrical idea behind lines 7 and tBeflgorithm: the
radius of curvature is the inverse of the curvatuke A circle tangent to a curve with
such a curvature may be approximated by a regular polygovi,gf s sides. The arc
0 determined by such a polygon is considered as a good euclgiapling distance
for the curveC atp (line 8). Such an euclidean distance must be transformetbizah
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parameter distance\ at C'(\) (line 9).

1.3.2 Loop Resampling. Ensuring that each edge of each loop is a
Gabriel 1-simplex

Algorithm 2 creates new vertices in the loops sampled byrélga 1, in such a way
that each segment in the new sample is a Gabriel 1-simplexwe®a lines 4 and
16, each loop/;; is traversed as a circular linked list. Each segment, v,e.: IS
tested to be a Gabriel 1-simplex in line 7. If it is not a Gabfiesimplex, a new
point, returned by functiomoint_middle_of _arc (lines 8 and 9), is inserted to the
circular linked list afterv.,,, and previous ta,..: (lines 10 and 11). LeC, (\)
be a curve parameterized by arc length. betandp, be two points inC,, (A). Let
A, and A, be the parameters gf, andp, respectively withA, < A,. Function
point_middle_of _arc(C, (\), ps, py) performs the following procedure:

1. Finds the arc length betweerp, andp, in curveC, ().
2. Returns a point,e, = C (A, + 2).

If any segment.,,.» v,z iS NOt Gabriel 1-simplex, the variabl@nished is set
to false (line 12). In line 21 the variablginished is testedirue, to ensure that this
procedure is repeated until all segments are Gabriel 1isimp

Fig. 1.7 shows the behavior of algorithm 2. In Fig. 1.7(a)inpe, € Vi,; is
inside Bg (Veurr, Unext) @Nd SEIMENEy, - Unert IS NOt Gabriel 1-simplex. Aftev,,q,,
is inserted td/z;, the new segments at€..,+, Vnew) aNd(Vnew, Unezt). AS Shown in
Fig. 1.7(b),B¢ (Vewrrs Vnew) aNABg (Vnew, Unest) are empty of other points iy r;
and segment&curr, Vnew) 8NA(Vnew, Unert) are Gabriel 1-simplex.

Sometimes, B-rep models are not well stitched ([24]), arad theates extremely
narrow faces. Every time the loop between lines 1 and 21 isutad, at least 2 seg-
ments become shorter. In line 18, functibnany_segment_too_short (Vyr) evalu-
ates this case and returns failure when an edge is too sledti€iloop is being repeated
too many times). This adds robustness to algorithm 2. Ofisepf two lines of a b-
rep are geometrically equal, but have not been merged in tlikelnalgorithm 2 would
never stop.

1.3.3 Face Sampling. Vertex Sprinkle on Facé’

Algorithm 3 constructs the vertex s} of the triangulation sought for fack.
The initialization of Vy (line 1) is done with the vertices sampled on the boundary
loops of F, OF = {Ly,..., L,}, as per algorithm 1. Such vertices correctly sample
OF. However, the interioint(F') needs to be sampled. To do so, trial vertices are
generated inside the pre-image! in U x V space (line 4) and their image vfais
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Algorithm 2 Insert vertices in the sampled loops until all the segmergsGabriel
1-simplex.

Var = {Vi1, VL2, VL, }: is the set of vertices that sample the boundary of the face
Vii = {VE1, Vga, ..., VEm }: is acircular linked list that contains all the points saetbl

in the loop with algorithm 1 andfz; is the ordered sample of edgs.

Vor = {Vr1, VL2, VLo }. Output. The set of vertices that sample the boundary of face

F.
1: repeat
2. finished = true
3: forall Vi; € Vogr do
4: Veurr = head (Vi;)
5 Uneat = Next (VLia vcurr)
6 repeat
7 if HU;E € (VLz - {Ucurm vneajt})a
such that: v, € Bg (Veyrrs Unewt) then
8: C; () is the curve, of an edgE;, that containg veyrr, Vneat }-
9 Unew =
point_middle_of _arc(Cj (X), Veurr; Vnest)-
10: nemt,of (VLi7 Ucurr) = Unew
11: next_of (Vii,Vnew) = Uneat
12: finished = false
13: end if
14: Veurr = Unext
15: Unext = next (Vii, Uneat)
16: until veyr = head (Vi;)
17:  end for
18:  if is_any_segment_too_short (Var) then
19: return FAILURE
20.  endif

21: until finished = true

18



Algorithm 3 Sprinkle triangulation vertices on Faée

F': Input. Face to triangulate.

F~1: pre-image of Facé’ in spacel/ x V/
S(u,v): Underlying surface for Fack.

OF ={Ly,..., L,}: Loops Bounding the Fackg.
N¢: Number of tolerated failures.

Vr: Output. Vertex set sampled on FaEe

1: Vp = sampling of boundarg F’

2: fails=0

3: while fails < Ny do
4:  generate parameter pair,v) € F~!
5. k= Kpne(S(u,v))
6: r=1/k

7. p=S(u,v)

8: R = polygon_side(r, Nsides)

9: if 3¢ € Vi such thatq € B(p, R) then

10: if Jv;v;, a segment of the boundary
such that: p € Bg(v;,v;) then

11: fail = fail +1

12: else

13: Ve=Vp U {p}

14: fail =0

15: end if

16: else

17: fail = fail + 1

18: endif

19: end while
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(@) First a sampled vertexv, is inside of
BG ('Ucu’r"ra Unezt)- Segment ('Ucu'r'm Unezt) is
not Gabriel 1-simplex.

(b) When algorithm 2 insertsvpew, Segment
VeurrUnezt 1S replaced by segment®cyrrvnew
and vnewvnezt- NO point sampled is inside balls
BG ('Ucur'r: Unew) andBG (vneum 'Unezt)- SegmentS
VeurrUnew aNdUpewUnest are Gabriel 1-simplex.

Figure 1.7: The two basic steps of algorithm 2.

calculated (line 7). Such a trial vertgxs rejected if (a) it is too close to other vertices
already accepted il (line 11) or (b) if it is contained in the smallest ball defined

a pair of vertices consecutive on a logg. The closeness criteria is dictated by the
maximal curvaturey,,,...(S(u,v)) atp = S(u,v) (line 5). In case (a) each already
accepted vertex i’y is tested for inclusion inside a balt(p, R) centered ap with
radiusR = polygon_side(r, Nyides) (line 9). In case (b) each segmanv; in the
sample of the border is tested as a Gabriel segment (1-sijnpith respect to the
candidatep. If every segment of the border is Gabriel with respecp,tove assume
thatp is not too close to the border (line 10). A segment is said tedepled in the
boundary if its two end vertices are consecutive in a labp € 9F'. If tests (a) and
(b) are passedy is accepted i/ (line 13). Fig. 1.6 depicts that the value fris
computed as the cord of th€,;,.-regular polygon inscribed in the circle with radius
1/k. Functionpolygon_side(r, Nyides) equals t@r sin(w/Nyides). Fig. 1.5 displays
the two tests mentioned in items (a) and (b) above.
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high curvature
region

low curvature
region

Figure 1.8: Goal Point Population on fage

(sharp sprinkle)

high curvature E
region =

low curvature
region
(wide sprinkle)

Figure 1.9: Curvature-sensitive Sprinkle Airbrush

1.3.4 Face Triangulation. Gabriel Connectivity on Vertex &t V7.

Algorithm 4 builds the connectivity inside the vertex $&t. The algorithm seeks
to complete edge, v1) already known to belong to the triangulati@r{line 6) with
an additional vertex,,.., to build a Gabriel Triangléuvg, v1, Upnew) (line 9).

Any internal Gabriel triangle is the first formed trianglaés 1,4). It is also a seed
to initialize theQueue of edges potentially able to span Gabriel triangles.

If the edge extracted from th@ueue is part of the boundary, it is not expanded
any more (line 7). All the edges which are part of the boundadlybe found because
they are Gabriel 1-simplex and make part of a Gabriel 2-gngf a Gabriel triangle
(vo, V1, Unew) €aN be built, it is added to the triangulati@h(line 10). If a Gabriel
triangle can be built using only an existing edgg, v1) and a new vertex,,.,,, the
general situation is that the new eddes, v,,cw) and (vyew, v1) Should be queued to
be eventually expanded (line 20). However, this is not agmdne case, since such a
triangle may use 1 or 2dditional edges already in the queue. In the first case, the
triangle is filling a corner (lines 13-18). In the second ¢dke triangle is filling a
triangular hole (lines 11,12). In such special cases amfditiedges (1 or 2 besides the
expanded one) should be taken away from the queue.
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Algorithm 4 Triangle Connectivity in the sétp

Ve Input. Vertex set sampled on Fage
Queue: List of triangle edges to expand.

OF ={Ly,..., L, }: Loops Bounding the Fack.
T Output. Triangulation.

1: seed = triangle_in_interior(F)

2: {(vo, v1), (v1,v2), (v2,v0)} = edges_of -triang(seed)

3: Queue = {(vg,v1), (v1,v2), (va,v0)}

4 T = { seed}

5. while (Queue # ®) do

edge_to_expand = extract(Queue)

if edge_to_expand is not part of the sample of the boundattyen
(vo, v1) = vertices(edge_to_expand)
Unew = vert_for_Gabriel 2_Simplex(Vg, v, v1)

10: T =T U {(vo, v1, Vnew) }

11: if ((v0,Vnew) € Queue) A ((Vnew,v1) € Queue) then
12: Queue = Queue — {(vo, Unew)s (Vnew, v1)}
13: else if ((vo, Vnew) € Queue) then

14: Queue = Queue — {(vg, Vnew) }

15: Queue = Queue U {(v1, Vnew) }

16: else if ((vpew, v1) € Queue) then

17: Queue = Queue — {(Vpew,v1)}

18: Queue = Queue U {(Vpew, Vo) }

19: else

20: Queue = Queue U {(v1, Unew), (Vnew, Vo) }
21: end if

22:  endif

23: end while
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1.4 Complexities of the algorithms

Time and space complexities of all the algorithms were foumtey are all output
sensitive; that is, their complexities depends on the sizbeboutput given by them.
The first 3 algorithms depend on the number of nodes genebgtédem. The last
algorithm depends on the number of nodes in the input anceiméimber of triangles
generated.

1.4.1 Edge Sampling

The time and space complexities of algorithm 1, have beendan the following
manner.

1. Time complexity. The operations with the curve and theraipens to find the
curvatures are dependent upon the parameterization anid tioé number of
points generated. Because of this, the time complexitiealldhe operations
within the loop, (lines 3 to 11), can be assumediad ). The loop is repeated
Ng; times. Ng; is the number of points generated to sample the ddgerhe
time complexity of algorithm 1i© (Ng;).

2. Space complexity. As the algorithm only stores the papetserated, the space
complexity isO (Ng;).

1.4.2 Loop Resampling

The time and space complexities of algorithm 2, have beendon the following
manner:

1. Time complexity. LetNyr be the number of vertices iy, at the end of
algorithm 2. For algorithm 2 the following facts hold:

(a) Nor changes. In the worst case it grows as an arithmetic pragregsth
difference 1. That is why in this paper the calculations amgpkfied by
considering, at any stepNsr as the number of vertices Wy r.

(b) The number of segments iy is the same as the number of points.

(c) Each time a segment,,,.v,..¢ iS tested to be Gabriel 1-simplex, (line 7),
algorithm 2 tests all the points Wy . This takes time (Nyg).

(d) The number of segments tested will @€ Ny ), no matter the number of
points added to the sample in the previous step.

(e) The worst case scenario occurs when only one point isdagldthe time.
This is because of fact (d). In that case, the loop from lindgs 21 is
repeatedVyr times.
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(f) The worst case scenario occurs when only 3 vertices haee generated
by algorithm 1. This is the worst case because it means thauita3 of the
points inVyr are generated by algorithm 2. The number of times that the
loop between lines 1 to 21 is repeatedig$Nyr ).

Combining facts (c), (d) and (e) the worst case time complefithe algorithm
2isO (N3p).

2. Space complexity. Onlyyr is stored by the algorithm. The space complexity

of algorithm 2 isO (Nar).

1.4.3 Face Sampling

The time and space complexities of algorithm 3, have beendan the following
manner:

1. Time complexity. The algorithm terminates if variatfleils > Ny; so for each

new point, the algorithm tries at moai; times. The number of times that the
loop between lines 3 and 19 @ (Ny x N), being Np the number of points
generated in the interior of the face. In the loop, for a nenegated poinp two
tests are performed:

(@) Inline 9, every € Vr is tested for inclusion itB (p, R). R is as described
in line 8. This operation can be performed Nr + NsF).

(b) Inline 10,p is tested for inclusion in everB¢ (v;, v;), wherev;v; are two
consecutive points in the sample of the boundary'ofThis operation can
be performed irO (Nyr).

The worst complexity is that of test (a).
Combining test (a) with the number of times the loop betwéeesl3 and 9 is re-
peated, we have that the complexity of the algorithnti$N; x Nr (Ng + Nar)).

. Space complexity. The algorithm only stores the poings #ine accepted. The
space complexity of the sampling algorithn(ig N).

1.4.4 Face Triangulation

The time and space complexities of the algorithm 4, have bmamd in the following
manner.

1. Time complexity. For algorithm 4, the following facts Hol
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(a) Each time that the loop (lines 5 to 23) is repeated, tlgerdghm checks a
different edge that belongs to the triangulation. The nunatbedges that
belong to the triangulation is a linear function of the numdfdriangles (i.e
each new triangle adds a maximum of 3 edges). The numberaofjtés
generated will be denoted a&’r.

(b) The operatiorvert for_Gabriel 2_Simplex(line 9), is the one that has the
highest complexity within the loop (lines 5 to 23). The rekthe opera-
tions haveO (1) complexity.

(c) For thevertfor_Gabriel.2_Simplex(line 9) operation, first a candidate ver-
tex () is chosen. This vertex can complete a Gabriel simplex gitien
edgevgu;. All the points inVy, except foryy ,v; andr are tested for in-
clusion in B¢ (vg, v1, 7). Using a naive approach, the time complexity of
this operation would b&® (NQ), whereN is the number of vertices .

Combining facts (a), (b) and (c), the complexity of algamith isO (Nz x N?).

2. Space complexity. The algorithm stores a set of edgéguiewe. As a topo-
logical constrainQueue can only contain the same edge twice. The number of
edges stored is, in the worst case, a linear function of tmebeun of triangles
stored. The space complexity@s(Nr).

1.5 Results

Several Boundary Representations B-Reps were used tchedinplemented algo-
rithm, proposed in this article. Such B-reps have genera Superior, and present
faces ' whose underlying surfaceS are parametric ones of the NURBS or Spline
types. AnN; = 1000 maximal number of failed trials was used to stop the spriokle
vertices onF' (generation of the sétr). The number of sides for the approximating
polygon wasNg;4.s = 30. Figs. 1.10, 1.11 and 1.13 show complex B-Reps. Other
examples of B-reps triangulated include a model of a prarablan fish in Fig. 1.14,

a support of an axle in Fig. 1.15, and a stub axle in Fig. 1.16.

The attention of the reader is called to the fact that the eotivity construction is a
process completely independent of the vertex generatmeegs. Since the vertex gen-
eration algorithm (Sprinkle) is the most critical one, thxeeution time was recorded
for such an aspect.

For the model$?umpandHands Figs. 1.12(a) and 1.12(b) show execution times,
corresponding to the vertex generation process. Fig. 4) 5hows the comparison of
vertex generation times for such runs.
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Figure 1.11: 2 hands with 3 genus, scanned and reconstrusieg RainDrop Geo-
magic. Colormap according to the size of the triangles
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Figure 1.12: Times spent sampling the faces and their casgrar
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Figure 1.13: Other view of the 2 hands with 3 genus. Colorntapmling to the quality
of the triangles.
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Figure 1.14: Artificial replica of a pre-columbian gold fistb]. Colormap according
to size of the triangles

1.6 Conclusions and future work

The proposed algorithm for generating triangulation vesiets and for calculating the
connectivity among them proved to function correctly, ef@nvery extreme geome-

tries and topologies. Several aspects of the algorithm breiatidressed: the continuity
of triangle sizes at the Face Edges, the possibility of uakarg re-meshing of already
existing triangulations and its related endeavor, nantedylével of detail, necessary
for Finite Element Analysis applications. Additional raseh is needed in algorithms
that (i) take advantage of the concepts presented in thashiewalgorithm proposed

here, but (ii) can be proved correct.
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Figure 1.15: Support of an axle. Colormap according to sizbetriangles

Figure 1.16: Stub axle [18]. Colormap according to the dquali the triangles
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Chapter 2

Simulation of the handling in
green of ceramic tiles with deep
back relief
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Context

The CAD CAM CAE Laboratory at EAFIT University has kept thghout the years
cooperation agreements with research universities atitlitiens in Europe including:
Max-Planck-Institut fur Informatilat Universitt des SaarlandeSaarbrcken, Germany,
Fraunhofer InstGraphische Datenverarbeitun@armstadt, Germany, the University
of Vigo, Vigo, Spain and théJniversidad Poliecnica de Valenciavalencia, Spain.
As a part of such agreements, students hold visiting relemsistant positions at the
hosting institution for periods ranging from 6 to 12 months.

Ricardo Serrano has been invited by Prof. Guillermo Perjarkas, director of
the Centro de Investigaéh en Tecnolotas Géficasat theUniversidad Poliécnica de
Valencig Valencia, Spain to join his group as visiting researchségst. During his
internship, (October 2008-April 2009), Ricardo parti¢grhin the development of a
software for the evaluation of the ceramic tiles manufantuprocess.

The software developed used knowledge in the fields of Coatipual Geome-
try, Geometric Modeling, Computer Assisted Design, Corapuéissisted Engineer-
ing, Finite Element Analysis, Mechanics of Materials andt@are Development in
the TCL/TK language and in ANSY® Parametric Design Language (APDL). This
research has application in the fields of Computer Aided few®ying and Ceramics
Manufacturing. The research is very important for the CécariMlanufacturing field
because it helps to evaluate the possible designs so theylyotomply with the reg-
ulations and quality standards but also withstand theraiffehandling processes.

The work is yet unpublished.
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Software Developed

When modeling a problem by means of the FEM, the engineer ose&s general steps:
1. To model the geometry.
2. To specify boundary and initial conditions.
3. To specify the material property.
4. To mesh the geometry.

The UML (Unified Modeling Language) Activity Diagram, of theodeling a prob-
lem by means of the FEM, can be seen in figure 2.1. All the staps Ib be done

carefully by the user.

DEFINE THE MATERIAL | |DEFINE THE TYPES OF THE!
PROPERTIES ELEMENTS

o

MODEL THE GEOMETRY

MODEL THE GEOMETRY
USING A CAD SYSTEM AND
IMPORT IT TO ANSYS

USING BOOLEAN
OPERATIONS IN ANSYS

[SOLID MODEL
[FEM LOADS] I LOADS]

CREATE THE ENTITIES
TO APPLY THE
LOADS IN THE MODEL

APPLY THE LOADS TO THE
ENTITIES CREATED OR THE
EXISTING IN THE GEOMETRY

MESH THE MODEL

[SOLID MODEL

[FEM LOADS] LOADS]

APPLY THE LOADS TO EITHEI
THE NODES OR THE ELEMENTS

Figure 2.1: UML Activity Diagram to create an FEM model in ANS®.

In this project a software that automates the, sometimasoas] process of mod-
eling the ceramic tiles manufacturing process by means @fREM is presented.
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ANSYS® provides a command interface to the user called APDLOf these, the
preprocessor commands are the used to model the problembéaid the solution.
Everything that can be done in the GUI can be translated td afs€PDL® com-
mands. Since ANSY8 5.5, TCL/TK, a scripting language designed for embedded
systems, is included in the application. It was used by ANSYt&velopers to create
a more pleasant GUI for the user. TCL/TK can send commandsewnvith APDL®
syntax to ANSY®® which interprets and executes them. An application thatedlthe
user to create a working FEM model in ANS®S using only high level parameters,
was created using TCL.

The application allows the easy and fast variation of patarsén the geometry of
the ceramic tile and production stages. The UML Activity @i@am to create the model
with the application can be seen in figure 2.2. The user onfippas a few high level
steps.

USER TCL INTERFACE ANSYS
(GRAPHICAL WITH ANSYS
INTERFACE)

GENERATE THE APDL
COMMANDS THAT DESCRIBE
‘THE BOOLEAN OPERATIONS
THAT CREATE THE TILE
SPECIFIED

INTRODUCE THE
PARAMETERS THAT DEFINE
THE DIFFERENT KINDS OF
GEOMETRIES OF CERAMIC
TILES

GENERATE INTERNALLY
THE MODEL (PROBABLY A BREP)

SPECIFIED BY THE BOOLEAN
OPERATIONS

SPECIFY THE STAGE OF THE
TILE AND THE TEST PERFORMED

GENERATE THE COMMANDS TO
CREATE ENTITIES AND APPLY
THE SOLID MODEL LOADS
TO THEM.

SPECIFY THE PARAMETERS
FOR THE TEST

( omy THE GEOMETRY A )

MODIFY THE GEOMETRY AND

TOPOLOGY TO CONTAIN THE

ENTITIES NEEDED TO SPECIFY
THE LOADS

—

ASSOCIATE THE LOADS WITH
THE CORRESPONDING ENTITIES

MESH THE GEOMETRY AND

ASSOCIATE THE MATERIAL
PROPERTIES AND TYPES OF
ELEMENTS WITH THE ELEMENTS

CREATED

GENERATE THE COMMANDS
NEEDED TO SPECIFY THE
ELEMENTS AND MATERIAL
PROPERTIES AND MESH
THE TILE

ISSUE THE SOLUTION
COMMANDS AND ANALYZE
THE RESULTS

Figure 2.2: UML Activity Diagram for the software developesing TCL/TK.
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Abstract

To keep its competitiveness, the Spanish ceramic indusiry,of the biggest of the
world, needs to reduce costs and assure quality in its pted@ne way to do this is
to design and produce tiles with less raw material in thgapsut. This could be done
with help of the deep back relief. The design of the tiles mdy meeds to comply with
the regulations and quality standards. It also needs tcstaitid the different handling
processes. One of the most important stages in the devetapheeramic tiles is the
pressure forming and subsequent handling in green. Afeetilthis pressure formed,
it's said to be in green state and it's in its weakest form. @otational simulations
based on the finite element method, (FEM), could offer ingutrinformation and save
costs and development time when evaluating if the tiles catergo the handling in
green process. This paper presents the steps taken totevtileappropriateness of a
back relief for the green handling. (i) It shows an introdetof the theories needed
to apply the finite element method to some models of cerateiiti green state. (ii) It
proposes a method to evaluate the appropriateness of addatk With this method, a
tile with back relief is compared with tiles lightened by vethg their thickness. (iii) It
makes a parametric study of the squares back relief, whightleabest behaved when
comparing it to the thin tiles. (iv) Generalizes the methooposed and formulates it
in terms of simple calculations. The main conclusion of theey is that the design
of the back relief could have an impact the strength of tles tiluring the handling in
green process. It concludes, also, that a good design ofretiek can compare well
with a thinner tile with the same raw material.
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Glossary

Young's or elastic modulus.

Poisson’s ratio

Bulk density of the tile

The gravitation of the system. The sign convention
of the gravitational acceleration denotes as positive
the direction of the reaction force.

« The angular acceleration.

RS T &S

2.1 Introduction

To keep its competitiveness, the Spanish ceramic indu$itiy,second most important
of the world), needs to reduce costs and assure the quality pfoducts. As shown
in [7] and [8], one of the possibilities that could help towed costs is the back relief
of the ceramic tile. Back reliefs have always existed. Theyenpresent in the past to
help to the ventilation during the piling phase before bgkifhey later fell in disuse,
because of the introduction of continuous kilns and sirtiglking. Recently, it has been
seen as a very promising approach to reduce the costs of résviahamanufacturing
and handling. A non-constant thickness in the back religheftile could also help
to increase the adherence of the tile to the concrete. Of grgmrtance also, is the
production of specifically designed tiles that allow wireother kind of structures to
be perfectly camouflaged in the decoration.

One of the stages of the ceramic tile manufacturing prosstbeipressure forming
and the handling in green state. After the pressure fornthmgtile is in its weakest
state and can be easily broken. It has been shown that tlgje ataounts loses of
around 200 millior€ in Europe alone ([2]). The mechanical and thermal propedfe
ceramic tiles are dependent on the design of the back rédie?( 8]). In green state
the tile is weaker and those differences can be more importar that reason, the
strength of any proposed design need to be evaluated noftroitk/final properties.
It also needs to be evaluated within the manufacturing stadde traditional form
of doing this is making the tiles to undergo the differentqasses, but producing and
evaluating the designs in real life can be really expensive.

The Finite Element Method is a numerical method that seeleparoximated so-
lution of the distribution of field variables in a problem daim ([14]). It is often used
when a solution is difficult to obtain analytically. The coleyw geometries found in
several designs of the ceramic tiles’ deep back relief, ntlilsemethod the most use-
ful.

In this paper are presented:

1. A description of: (i) the problem, (ii) the theories aneépt needed to model
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the problem by means of the FEM and (iii) the actual constitera taken when
modeling the problem by means of the FEM.

2. A method to evaluate the appropriateness of a tile wittk bakef, compared
with a tile lightened by making it less thick. The results amdhlysis of these
comparisons are carried out for some standard back refi¢is®

3. The results and analysis of the behavior of parametriatians for some a stan-
dard kind of back relief.

4. Conclusions and future work.

2.2 Modeling the problem by means of the FEM

2.2.1 Modeling the geometry

A ceramic tile with deep back relief has the following georitetharacteristics. (i)
It's a box with 1 dimension significantly smaller than the a2, which are usually
equal. (ii) The thickness is non-constant and producedaeghapes. In the paper, the
reference tile has dimensiofs33m x 0.33m x 0.008m. The tile can be observed in
Fig. 2.3.

33cm

33cm

smm |

Figure 2.3: Reference tile with its dimensions.
The kinds of back reliefs modeled were 3:

1. The squares back relief is shown in Fig. 2.4. The set ofreguile the back of
the support, except on the separation between them. Thexareled to form
the prisms subtracted from the tile.

2. The hexagons back relief is shown in Fig. 2.5. The set ohAgeRs tile the back
of the support, except on the separation between them. Tieegxdruded to
form the prisms subtracted from the tile.
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3. The diamonds back relief is shown in Fig. 2.6. The set obegg) are rotated
45° in relation to the axes. They are extruded to form prisms aadeédded to
the back of the tile. In this back relief a border is present.

These are some of the shapes that are found the most in therin¢6]).
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Figure 2.4: Back relief of squared prisms subtracted froenatick.

The parameters used to define each back relief were: (i)léhdithensions, (ii) the
separation of the first polygon from the border, the sepamatf each polygon from
each other, the number of polygons per row and the depth gqfribms.

2.2.2 Applying the boundary, initial and loading conditions

In ANSYS®, two kinds of loads can be applied: (i) Solid model loads d@)Nd-EM
loads. The solid model loads are applied to the entities. eftiigies can be: (i) vol-
umes, (ii) areas, (iii) lines and (iv) keypoints. When the mesmaodified the solid
model loads remain intact. That does not occur for FEM lohdt dre applied either
to: (i) the nodes or (ii) the elements. Solid model loads telge an advantage: they
can describe the geometry of the loads more correctly.

For this project solid model loads were used. The main reagarthat the places,
where forces needed to be applied or displacements needmdpescribed, did not
exist as separate entities and any selection of nodes didanctly describe this
places. Boolean operations of subtraction and overlappiag used to create the
exact areas where the loads were to be applied independsritiy model of back
relief represented ([13]).

The boundary conditions, to be applied to each model of certim, were 2:
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Figure 2.5: Back relief of hexagonal prisms subtracted fthenback.

1
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TYPE NM 20:47: 27
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Figure 2.6: Back relief of diamond prisms added to the back.

43



1. The tile supported in a band and loaded by its own weightaristic drawing
of the test can be seen in Fig. 2.7(a). The parameters ofttisite:

(a) The separation of each band from the border of the ti&é75m.
(b) The width of each of the bands: 0.02m
(c) The gravity ¢)): 9.81m/g

2. The tile in a rotational machine, and loaded by its own Wweand the effect of
the rotational acceleration. An artistic drawing of thet tesn be seen in Fig.
2.7(b). The parameters of the test are:

(a) The separation from the center of the machine to the bofdke tile: 1m.

(b) The separation from the border closest to the centeheditst cylinder:
0.075m.

(c) The separation between the cylinders: 0.1m.
(d) The angular acceleration) 1 rad/s.

(e) The gravity ¢): 9.81m/S.

They will be called test T1 and T2 in the rest of the paper.

2.2.3 Specifying the material property

Ceramic materials are anisotropic; that is, tensile stéesan produce different elastic
deformations in different directions. Because most of tlagemials are poly crystalline
with random orientations of their grains, the variation loé tYoung modulus, K),
produces a uniform pattern of stresses. Because of thisnéterial can be threated
as isotropic and the mean elastic modulus is appropriat, ([10]). This fact is very
useful for FEM simulations of structural problems; becawosgefine the material, only
the mean Young’s modulus and mean Poisson’s ratjpngeed to be provided.
Young's modulus and Poisson'’s ratio has been establishiedvery reduced num-
ber of green ceramic materials. One of the difficulties thizeavith these materials, is
that they are compact and brittle powders, (they don't hawbey almost don't have
plastic deformation); because of this, the traditionakienspecimen does not work
to evaluate their behavior. As seen in [17], the main chgkeoonsists in avoiding
the premature failure related with unaligned attachmentbe contact effects of the
attachments. In this paper a description of the challengdssalutions to measure
the mechanical properties of as pressed compacts is peelsefite Weibull statistics
and their application to these compacts are also explam#tei paper. In [2] several
techniques to analyze compact powders, (formed by pressutén green state), are
analyzed. It is shown that, unlike the three and four poirxtiial tests, the strength of
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33cm
l l lg =9.81 m/s’
33cm

7z Smm |
7.5cm \ \5cm
2cm

(a) Test T1. Tile supported in a band

ang accel=1rad/s’

R

33cm

(b) Test T2. Tile in the rotational machine.

Figure 2.7: Different processes that the tiles underganduttieir handling in green.
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the compacts with binder in the diametral compression $asbi explained entirely by
Weibull statistics.

In [3], the relationship between the porosity of green plaicdiles and the porosity
of sintered porcelain tiles is shown to be very strong. Th®sity is also shown to be
correlated with the strength of the finished bodies.

Many green ceramics contain water and organic binders,hwtém make them
viscoelastic. This is shown in [18]. Other authors have ati@rized green ceramics
with binders. In the paper [12] a study of the mechanical progs in green state,
of compact alumina with different binders and at differerggsures, is presented. It
shows Young’s modulus, the Poisson coefficient and the f&stirength. It is reported
in the paper that the strength of the green ceramic bodieatent by pressure forming,
is increased with the compaction pressure. This could betaltize cohesion of the
granules. The effect of the binder is analyzed also in [4].this, only the tensile
strength is found. In [5], a specimen of raw material, conitaj a great amount of
alumina, traces of kaolin and other compounds, is studibeé. mechanical properties
of the green material with an organic binder were evaluaféé. main conclusions are
that the available, to that date, theoretical models diddestribe correctly the elastic
behavior of dry pressed bodies with binder. It is concludédsh, that the effect of the
binder disappears after sintering. Other study of the efitthe binder can be seen in
[19].

For dry pressed compacts without organic binders the sametisue. In [1] it
is shown that these materials exhibit more elastic behauothe paper, green com-
pacts of stoneware compositions that are used in ceraragdile evaluated for their
mechanical properties. Different granule sizes were etatll Young’'s modulus and
mechanical strength compacts made with a common slurrg insstoneware, were
found. In this paper we just evaluated green compacts tlaa skastic behavior.

The values for this work were obtained, by different authfstsn compositions of
stoneware floor tiles with no organic binder:

Table 2.1: Properties of the materials for the study

Young'’s modulus): 3.32GPa ([1])

Poisson'’s ratio\): 0.3 ([2])

Bulk density p): 2110 Kg/n¥ ([16])
2.2.4 Meshing

The element used for this test was the SOLID187 of ANSY[@1]). The SOLID187
is a tetrahedral element with ten nodes and 3 degrees ofdinednl each node: dis-
placements in the X, Y and Z directions of the element.
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ANSYS® SmartSiz& mesher was used to generate an acceptable mesh. Sm8itSize

algorithm meshes, in this order, (i) lines, (ii) areas aiiyl {blumes. This algorithm
creates a very uniform mesh with very good shapes of thegligarand acceptable for
solving most problems. The size level used was the finest one.

2.3 Methodology

With a few experiences, it could be said that the strengtith@ tests), of the reference
tile should be higher than the strength of a tile with the salingensions and deep
back relief. The simplest way to reduce the raw material énghpport is reducing the
thickness of the tile. The strength of the tiles that areteiavith this simple method

can be correctly compared. For a tile with back relief andvamgivolume, the strength
of the tile can, also, be compared with the strength of a iténatith the same mass.

A back relief can prove that is the best both in raw materigings and strength in

the given tests. Evaluating that model of back relief, wihiations of its parameters,
could allow the finding of a back relief that provides greafiisgs in raw material and,

at the same time, has a great strength. Following the raagaiiove, the experiments
are divided in two parts:

1. Compare the strength of the tiles, when there variatiothefthickness of the
reference tile, with the back reliefs described in sectidh 2Vith this method,
the squares back relief was found to have the best behavior.

2. Variate the parameters that describe the tiles with sguack relief and com-
pare their results in terms of volume and strength.

In the present work, Weibull statistics are not considef@},(which is the most
common way to evaluate the strength of the brittle and ponsat®rials. The evalua-
tions, instead, are focused on the maximum first principakses (MFPS). The lower
the maximum first principal stresses, the stronger the tile.

2.3.1 Variation of the thickness of the tile with no back relef vs
tiles with back relief

The following simulations were performed. First, a set &fgj thinner than the refer-
ence tile but with the same width and height, were modeledurArsary is shown in
Table 2.2. Tests T1 and T2, as described in section 2.2, vpgiged and simulated.
Second, the set of tiles with back relief, with their paraeng@shown in Table 2.3, was
modeled and also made undergo tests T1 and T2.

Figs. 2.8 and 2.9 show respectively the results for test Tiltest T2. The results
obtained show that, for both tests, the MFPS of each tileeimes when the tile is
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Table 2.2: Tiles with different thickness and without baekef, and their parameters

Model Thickness {0~°m) | Volume (10~ m?)
Reference tile 8 8.71
Thin tile #1 7 7.62
Thin tile #2 6 6.53
Thin tile #3 5 5.44
Thin tile #4 4 4.35
Thin tile #5 3 3.26

Table 2.3: Models of tiles with back relief and their paraenst

Model: Hexagons| Squares| Diamonds
Separation from

border (0~2m): L L L
Separation between 1 1 1
shapes10~2m):

Number of shapes 10 10 10
per row:

Volume (10~ m?): 6.95 6.77 5.54

lighter (i.e it is less strong). As the forces acting over titess are mainly related to
their mass, this is not completely obvious. The curves sihawthe MPFS of each tile
is inversely proportional to the volume of the tiles lighterby making them less thick.

Given a design of deep back relief, there exists a tile wigrsime weight but made
reducing the thickness of the reference tile. This will bikecbequivalent thin tile of a
tile with back relief. For test T1, the values obtained far tites with standard squares
and hexagons back reliefs lay under the curve. This meanhshibia equivalent tiles
are less strong.

A summary for the results of this test is:

1. For test T1 the squares back relief lies under the curve hEiagons back relief
also lies under the curve but is closer to it.

2. Fortest T1 the diamonds back relief lies over the curvefanfiom it.

3. For test T2 all the back reliefs lie over the curve. The diads back relief is
far. Instead the hexagons and squares back relief are \a&sg t the curve. The
squares back relief is closer than the hexagons back relief.

Figs. 2.10 and 2.11 show, respectively, the thickest anthiheest tiles evaluated
under test T1. It is shown that the stresses of the thickesdrt® not as spread as those
of the thinnest tile. The thinner the model, the more sprbadriaximum stresses are.
Figs. 2.12 and 2.13 show a very particular pattern of steessthe back of the tile,
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Figure 2.8: MFPS for the test T1. The curve represents teewith less thickness and

the solitary points the standard back reliefs.
Maximum first principal stress of each of the
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Figure 2.9: MFPS for the test T2. The curve represents taewith less thickness and

the solitary points the standard back reliefs.
Maximum first principal stress of each of the

x 10° tiles in test #2: tiles in the rotational machine.
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where this pattern seemed to flow horizontally. Fig. 2.14xshthe visible face of the
diamonds back relief under test T2. The highest FMPS wegdocover the cylinder
farthest from the border.

APR 10 2009
11:24: 16
PLOT N0 1

-4968 13998 23482 32965

4515
-226.725 9257 18740 28223 37707

Figure 2.10: The thickest tile under test T1. The stresses@rcentrated in the oposite
side of the bands.

2.3.2 Parametric variations of the squares back relief

As shown in subsection 2.3.1, the back relief that had theldedsvior was the squares

back relief. In this subsection, that back relief will be obad in each one of its

parameters to have a better understanding on how to ob&imdist appropriate tile.
The following parameters were changed:

1. The depth of the prisms. The variations in the depth of tiems and the result-
ing volume of each variation, are shown in table 2.4.

2. The separation between squares. The variations in sepabetween squares
and the resulting volume of each variation, are shown iretats.

3. The number of squares per row, that in this case as the tilsquare, is the same
number of squares per column. The variations in the numbegquéires and the
resulting volume for each variation are shown in table 2.6.

Figs. 2.15 and 2.16, show the effect of the variation of eathaf the parameters
of the squares back relief. The lines cross at the tile wilaweparameters for the
squares back relief.
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Figure 2.11: The thinnest tile under test T1. As in figure 2H® stresses are also
concentrated in the oposite side of the bands, but are mozadp
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Figure 2.12: The back of the squares back relief under testiTthe back the maxi-
mum stresses seem to flow horizontally.
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Figure 2.13: The back of the hexagons back relief under thieTte. The maximum
stresses also flow horizontally, even when the areas forméldebseparation between

hexagons are not horizontal.
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Figure 2.14: The diamonds back relief under the test T2. TAgimum stresses, for
all the models in this test, were concentrated near theastifarthest to the border.
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Table 2.4: Variation in depth of the prisms subtracted fromtack relief

Depth  of

the prisms| 1 2 3 4 5 6 7
(10~3m):

Volume

(10~4m): 823| 7.74| 726 | 6.77 | 6.29 | 581 | 5.32

Table 2.5: Variation in separation between squares of thk kedief

Separation
between
squares
(10~3m):
Volume
(10~*m®):

571 | 6.09 | 6.45| 6.77| 7.08 | 7.36 | 7.61

Table 2.6: Variation in number of squares per row of the batikefr

Number of

squares per 4 6 8 10 12 14 16
row:

Volume

(10-*m?): 558 | 6.01| 641 | 6.77 | 7.11| 7.42| 7.69

Figure 2.15: MFPS for the test T1. The curves represent efitte wariations of the

parameters of the squares back relief

Maximum first principal stress of the parametric
variations of the squares back relief in test #1:

x 10* tiles loaded under their own weight.
7 T T T
- variation in depth
of the holes
6.5 variation in separation |1
" between squares
g variation in number of
& 6 squares per row
©
2
2 55f i
poge
5T
i 5r i
IS
=}
£
% 45F B
=
4 - .
35 ! ! !
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Figure 2.16: MFPS for the test T2. The curves represent efitte wariations of the

parameters of the squares back relief.

Maximum first principal stress of the parametric
variations of the squares back relief in test #2:

o x 10* tiles loaded by the rotational machine.
T T T
variation in depth
of the holes
85l variation in separation| |

between squares
variation in number of
squares per row

Maximum First Principal Stress
(Pa)
~
&

6.5

6 L L L
5 6 7 8

Volume (m3) x 10

-4

The extreme values of the variation of the back relief square shown in Figs.
2.17, 2.18, 2.20 and 2.19. The tile with increased depth ishgg 7mm, (Fig. 2.17),
had a very good mechanical behavior and saved a lot of rawrialat@ he tile with
decreased separation between squares 4mm, (Fig. 2.18}héadorst mechanical
behavior. The tile with the highest separation between eggFig. 2.20) was the
strongest for both test, but not the heaviest.

2.4 Conclusions and future work

This section is organized in the following form. (i) A methtmevaluate the appro-
priateness of any model of back relief is proposed. (ii) Teeegal conclusions of the
work are presented. (iii) The future work is presented.

2.4.1 A method to evaluate the appropriateness of a model ook
relief

In this paper we propose the following method. For afilaevith back relief, and a test
TX the following steps are required:

1. To calculate the volumeVfy), and MFPS of the tiled for the test TX.
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Figure 2.17: The tile evaluated that had the highest deptieqfrisms subtracted under
test T1. In this test, the variation of this parameter hadbiést behavior. Tiles with
high and low depths of the prisms subtracted have almosttine strength
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Figure 2.18: The tile evaluated that had the shortest sepataetween squares under
test T1. In all the tests, the variation of this parameterthadvorst behavior. The dif-
ference between the strengths of a tile with high and a titk leiv separation between
squares is considerable for both tests.
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Figure 2.19: The tile evaluated that had the highest numbsquares under test T2.
This was one of the strongest tiles under test T2.
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Figure 2.20: The tile evaluated that had the longest separhetween squares under
test T2. As mentioned in Fig. 2.17, this parameter had thestlmghavior. This tile
was the strongest under test T2.
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2. To calculate the relative thicknes®14), of a tile with the same volume, width
and height but lightened by making it less thick. The formula

Va

Ty=— A
R = i = height

can be used for this.

3. To calculate the MFPS of the equivalent thin tilegf(7'T4), without back relief
and with dimension&Ts x width x height.

As shown in subsection 2.3.1 of section 2.3, this compangauid be very direct;
because for both tests, the curve of the volume vs MPFS, inake of the tiles with
variation of thickness, is monotone. Instead, the curveggded by the change of the
parameters of a simple back relief, like the squares ba@ relere not monotone and
had very strong variations.

2.4.2 General conclusions

The general conclusion is that the choice of the back reksfdn important impact
during the handling of the tiles in green state. Some speamificlusions can be:

1. For both tests, the MFPS that resulted from the variatidhethickness of the
tiles drew a very perfect curve of the form:

1
MFPS x VOLUME"
This makes the thin tiles method, proposed in subsectiortHioéection, appro-
priate for comparing them with the tiles with deep back felidhe authors think
that this will be the case for many processes that the tilasucalergo during
their manufacture, even when their nature could be difteren

2. The squares and the hexagons back reliefs lay under the, daf MFPS for
reduced thickness), of test T1. That means that a tile wiluced thickness,
that would have the same volume as the hexagons or squandaistédoack relief,
would resist less than the tiles with this back relief whebjsct to test T1. In
test T2 they both lie under the curve, but they are very clddes means that
both back reliefs are appropriate for the handling in greenboth tests, the
squares back relief was the best behaved. The diamonds elelk instead,
lies over both curves and very far from them. It was the woestaved in both
tests. The geometries of the squares and hexagons badk exbevery close to
each other. If we subtract their solid top, we would have eated solids that
are very symmetric. In the back of the tile, the higher seesge lines parallel
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to the X axis. This is because the stresses flow between stesentrators.
In the squares back relief the stress concentrators aneedlil the same line
parallel to the X axis. In the hexagons back relief the slsbnpaths between
stress concentrators are almost parallel to the X axis, entha places where
the stresses are higher. As the hexagons back relief hassiness concentrators,
it is weaker. If we subtract the solid top of the diamonds bwesdief, it would
be disconnected. The diamonds back relief accumulatessssaear the sharp
vertices of the diamonds. In these tests, specificallyziwie has higher stresses
because they it supports the weight of the diamonds. Thigisgason why this
back relief is much weaker than the other two.

. The variation of the parameters, chosen for the squadsrieéief, shown non
monotonic curves that had not the same shapes for both fEssMFPS, of a
parametric variation of the squares back relief under besttst usually decreased
when the volume increased, but this was not the case foraNadhations. In
fact, the curves were non monotonic and searching for a miminvould re-
quire the variation of several parameters at the same tirhes Would be very
difficult with real life experiments. Instead, computer siations offer a very
good alternative when searching the most suited deep b&ek rEor test T1,
when the volume decreased by varying the depth of prismsstteagth did not
decrease as fast as by varying the rest of the parameters.waki due to the
fact that the variation in depth reduces the volume by leattie skeleton that
supports the tile unchanged. The same happened for thatigarin test T2, but
with a peak in the tile with less volume. For test T2 the bestaber was that
of the variation of number of squares per row. Instead, fah bests, when the
volume is decreased by varying the separation between tlees) the tiles be-
come weaker with low variations in volume. This is becausesttctions where
the stresses flow are reduced.

The general conclusion is that ceramic tiles with back fetiet only, help to in-

crease the strength of the finished product. Depending odeign of the back relief,
they can also help to reduce the waste of the tiles by inargabkir strength. Com-
puter simulations have shown to be necessary when searfdvirgtile that reduces
the amount of raw material used and can undergo the diffgretesses during the
handling in green.

2.4.3 Future work

A lot of work has to be done to assure that the tiles with batikfrean undergo the
manufacturing process. Some of this work is:
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1. The simulation of other stages of the ceramic tiles martufang process for the
back relief. Important focus in the drying and dry handliagd in the sintering.

2. The evaluation, with help of the Weibull Statistics, of fprobability of fracture
of the compacts, could be a better measure of the strengihifteaVFPS.
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Conclusion

The first paper showed a new method to generate a mesh givafaaesaf the form
S : R? — R3. This mesh is an important step for the FEM. Of the correctizesl
appropriateness of this mesh depends that the solver caa fintltion with a good
accuracy, or even that the problem is tractable. The pap#ems its attention on
how to reconstruct and respect the boundaries and make therofpa triangulation
that is compatible for neighbor surfaces. It showed thagmizertain properties of the
B-rep triangulated, the triangles could be well shapedIsti ahowed the importance
of obtaining a solution of this problem that is not heuristic

The second paper showed step by step how to model a specifieprdoy means
of the FEM. Defining a few parameters to generate a cerami@titl changing them
to obtain pairs of volume and strength (obtained from the ilhaxn First Principal
Stress), served to obtain tiles better suited for this stafjee tiles with deep back
relief showed to behave very well compared to the tiles &gkt by reducing their
thickness. It also showed that different models of deep belokfs had a very different
performance in this stage.
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Appendix A

Simulation of the Firing
Ceramic Tiles

Introduction

The manufacturing of ceramic tiles is, usually, studiedrireaperimental manner and
without the use of any computer modeling. This is becausetheesses involved
are very complex and most of them are not well documented, Alsramic materials
don't have simple and well described features as metals abuhey become more
important for today’s technology, the nature of the proeesged to be understood and
also theoretical and computational models need to be daweélo

The most important and studied stage of the ceramic tile faatwring process is
the firing.

In this report a research about the firing of the ceramic tigsesented. The word
sintering has the same meaning, except that is used ofteefppure materials where
their behavior can be understood. This report containsal@ifing sections:

1. Theory: presents methods to transfer heat to the tilessiqdd properties that
are needed to describe the behavior of the tile and the stdgegamic tiles’
sintering.

2. Literature Review: presents works that have been donienidate the sintering
of ceramics specially of ceramic tiles.

3. Computational modeling: presents the steps needed telntiwal problem by
means of the FEM, the considerations, simplifications, aedttual properties
of the materials and stages of the sintering.

4. Results: presents the results obtained for the modeAmimations that show
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the curvatures, strains and temperatures are shown. Atiieceete measure of
the curvatures of the surface is presented.

A.1 Theory

The sintering transforms the raw materials from the padtethre final product giving

them their finished features. The sintering works in thedmaission of energy to the
dry product until it reaches a established heat and duringterchined time. In this

way the physical and chemical reactions can be taken to tbte pad the glaze so it
can acquire its final properties.

The modeling of the sintering can be divided in two problefke first involves
the heat transfer from the oven to the tiles and the disiobubf the heat within the
ceramic body. The second involves the use of constitutivagons and possibly the
shrinking of the body to calculate stresses or deformations

The first will be called the thermal problem and the secondthectural problem.

A.1.1 Thermal problem

There are several forms in which the energy can be transhtdtene tiles [1, 2, 3, 4, 5]:

1. Conduction: it's the least important form of heat transmission to thestilThe
heat is transmitted to the tiles by means of the bodies nean.tifhe equation
that relates the heat flow by conduction is:

A el (A.1.1)

Where%ﬁ2 is the heat flow that traverses the ark the directiornw. AT is the
difference of the temperatures between the ends locatediateaceAz. The
conduction heat transfer coefficientkis

2. Radiation: it's only important when the environment around the hedtsimas
a great difference of temperature with them. For some wa'skgie most impor-
tant form of heat transfer. The heat is transmitted to tles tily electromagnetic
waves that are produced with more intensity when the diffegef temperatures
is greater. The equation relating the rate of the heat figitransmitted between
a emitter gup) and a receiveri f) is:

Q= UAsustup—inf (Tjup - Tﬁlf) (A12)

Where A,,,, is the area ofsup that is emitting heat tanf, Fg,p—ins is the
fraction of energy received bin f, (it is also called view factor, configuration
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factor or shape factor); is Stefan-Boltzmann’s constant affgl,, and7;,,; are
the temperatures of the source and sink of heat respectively

3. Convection: is the most important form of heat transfer to the tiles. Taag-
mission of heat is carried on by the gas around the surfadeedfle. The equa-
tion relating the convective heat transfer is:

B
aif — h A (Tsup — Tiny) (A.1.3)

Where%—? is the heat flow transmitted over the ardat is the time,h is the
convection heat transfer coefficient aifg,, and7;,; are the temperatures of
the bulk fluid and the surface respectively.

The heat transfer in the interior of the tile can be governgthk following prop-
erties [6, 7]:

1. Density (p): it's a measure of the mass (m) per unit volume (V) of a matérial
3, 8]. The units are reported in/gm® or in Kg/m? for the MKS system. In
ceramics, the term density can be used in different waysesthem are:

(a) Crystallographic density: the ideal density of a spedifiystal structure
calculated from the chemical composition and the interétspacing.

(b) Real or theoretical density: the density of a material ttontains zero
microstructural porosity, i.e the mass per unit volume @f $blids of the
ceramic.

(c

~—

Bulk density: the measured density of a bulk ceramic bddys easily
obtained with the Archimedes principle: the tile is immerse a liquid,
and the volume is calculated; after that, it is weighted tasoee its mass.

(d) Specific gravity: the density of a material relative te ttensity of an equal
volume of water at 4C.
The density is probably the most studied property. Studighendensity
of ceramics have been related with compaction pressure @uothanical
properties after sintering ([9, 10, 11, 12, 3, 13, 14, 15} daring sintering
([16, 17, 1, 18, 19, 20, 21, 22]). Widely studied has also kberrelation
between density, (or porosity), with the mechanical propgr obtained
analytically ([23, 24])or numerically ([25]). Density issgerally the most
important parameter when describing a powder compact. diitérature
the density is one of the parameters that best describe tteriais used
for experimentation.
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2. Heat capacity ): it's the energy required to raise the temperature of a snbsta
one degree ([6]). Its units are*@. The ratio from the heat capacity of a material
and the heat capacity of water, (which is about 4186 J/Kgsknown as the
specific heat and is dimensionless. One of the major faatdisei heat capacity
is porosity. A ceramic material with no porosity, requiresrmheat energy than
a porous ceramic to heat to a specific temperature.

Few literature has been found for the heat capacity of stareweramic tiles
(1, 26, 27]).

3. Thermal conductivity (k): it’s the rate of heat flow through a material [6]. Its
units, in Sl, areW/ (m - K). Pure metals have a very high thermal conductivity,
while organic materials have a low one. In the other sidememshow a wide
range of thermal conductivities. For a material with sevpleases the thermal
conductivity depends on the conductivity of each of the peamnd the distribu-
tion of the phases. The equations for the thermal condtctdfiparallel A.1.4
and serial A.1.5 alignments resemble the ones of capacitors

km = Viky + Vaka (A.1.49)

1 k1ko
—_— = A.1.5
km  Viks + Voky ( )
Where, k,,, is the thermal conductivity of the bulk materidl, andV; are the
thermal conductivity and the volume for material 1, a@sdand V5 are for ma-
terial 2. For dispersed phases, the bulk conductivity caagpgoximated with

equation A.1.6.

_ 1+2Vy (1 — kc/kd) / (ch/kd + 1)
fim = e ( T Vy (1= ku/ka)/ (hefka + 1) ) (A.16)

Wherek,; andk, are the thermal conductivities for the dispersed phasefand t
continuous phase respectively, algis the volume fraction of the dispersed
material. Porosity is a special case of dispersion, in wiiehdead air space, a
bad conductor, is the dispersed phase.

Few literature has been found for the thermal conductivitstoneware ceramic
tiles ([1, 26, 27]).

These properties of the material can be used to define thedihg@roblem as to
find T (x, vy, z, t) where:

= =2v.VT (A.1.7)



With boundary conditions defined by the different forms ctteansfer.

A.1.2 Structural Problem

In the structural problem the tile is expected to deform duéé uneven distribution of
temperatures. Deformations are generally expressedistef strainsd), (also called
unitary deformations) . The properties that govern the whefédion are:

1. Thermal expansion: it's the tendency of a material to change its volume when
the temperature is increased or decreased. The lineardhexpansion coeffi-
cienta is calculated with the equation A.1.8:

~Al/l

o= (A.1.8)

Wherel, is the length at the reference temperatiliyer, Al is the change in
length atT". Ceramics, (except those with cubic symmetry), have diffether-
mal expansion along different crystallographic direcsicand are referred to
as anisotropic or nonisotropic. If the grains in a polycallste ceramic have
random orientation, the bulk thermal expansion of the cerdsody will be
isotropic.

If «is a function of temperature, the strains are calculated as:

e =a(T) (T = Tyey) (A.1.9)

At very high temperatures the change in length of a ceramaidties not only de-
pend on the temperature but also in the heating rate. Bed#idkesot a reversible
process. Linear shrinkage is then a more appropriate nantiee@roperty dur-
ing sintering. It is defined as:

Linear shrinkage = Al/l (A.1.10)

Linear shrinkage is a very studied property for the sintgprocess ([1, 28, 19,
20, 29, 30, 31, 22]). This is because it is the material ptypbat governs the
deformation of the ceramic body.

2. Mechanical constitutive equation: In continuum theory, constitutive equations
are the way in which empirically determined material projsrare expressed
[32, 33]. The mechanical constitutive equation of a mategktes the loads
with the deformations. In the case of a linear elastic malgitiis the hook law
which relates the loads, (defined in terms of stre¢s¢f and the deformation,
(defined in terms of straing)):
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o = ne (A.1.12)

Wherer, is called the elastic, (or Young’s), modulus. This is theectas ceram-
ics at ambient temperatures. Ceramic materials are aosofrthat is, tensile
stresses can produce different deformations in differémedsions. Because
most of the ceramic materials are polycrystalline with @ndorientation of
their grains, they can be threated as isotropic ([6, 7]).n8i@re ceramic tiles
and other ceramic materials have been characterized inas@apers with their
elastic modulus ([16, 34, 35]). In certain situations inggretate the tile behaves
elastically ([15]). At high temperatures the elastic magubf ceramic materi-
als has been calculated, ([22]), but this parameter doedesatribe entirely the
behavior of the ceramics at those temperatures.

FunctionsH (t) andd(t) are Heaviside step function and Dirac delta function re-
spectively. A material is viscoelastic material if it haastlc and viscous defor-
mations. The elastic deformation is immediate. Instead/ibepus deformation
also depends on time. At high temperatures ceramic matestait to describe
viscoelastic behavior. Green ceramic materials have showre viscoelastic
when they contain binders ([36, 9, 10, 11, 12, 14]).

Creepistheincrease of the strain over time under a corstast. For a constant
stress ¢ (t) = o) the following equation shows the creep behavior:

€(00,t) = a(og,t) oo H (t) (A.1.12)

Wheret is the time. Instead, if a strain is given to the material dedstress is left
constant, then the stresses disappear with time. This ledcstress relaxation
and is given by the equation:

o (e0,t) = B (€o,t) eoH (t) (A.1.13)

If « = a(t)andg = G (t), (they only depend on time) then the material is
said to be linear viscoelastic. A very simple and useful nhadieonstitutive
equation for a linear viscoelastic material is Maxwell'sdeb Maxwell’s model

is a series of a linear spring and a linear dashpot. The equea this is:

de (t)5 ;

_do(t)1  o(t)
o 0 +

— - A.1.14
dt n n ( )

Where% represents the rate of strain of the damper %flg the rate of strain
of the spring. It can be seen thais the damper coefficient angis the elastic
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(or Young's) modulus. I = o the creep equation is obtained. If conversely
e = €9 and the differential equation that arises is solved, thesstrelaxation
equation can be obtained.

Ceramics at high temperatures follow a non-linear creepaihotihe model is
described by equation:

de (t)
dt

= Aoo" (A.1.15)

WhereA andn are temperature dependent constants. It has also beeenamitt
the following form:

de (1)
dt

= Age @/ BT 5o (A.1.16)

Which uses an Arrhenius-like equation with= Age~9¢/ 5T T is the temper-
ature in Kelvins,R is the ideal gas constant agit is the energy of activation.

When Maxwell's model (A.1.14) is combined with Norton’s gpdew, Norton’s
model is obtained:

de(t) do(t)1 n
= T A (A.1.17)

Wheren is the elastic modulus. The main difference between equa#ol.15
and A.1.17 is that equation A.1.17 can also describe thesstedaxation phe-
nomena. To obtain the stress relaxation equation an axiatant stress is given
to a bar(e = ¢y). From that and equation A.1.17 the following is obtained:

_do(t)1 n

When the differential equation is solved the following isaibed:

1
o(t) = |(neo) ™™+ (n—1) nAt} o (A.1.19)
This model needs constants A andn to be obtained. The creep behavior
of ceramic materials at high temperatures has been exedpnsitudied. The
constant: is specially important as it can serve to describe the cresghamism
of a material ([37, 38]). It has been shown that~ 1 when the behavior is
some form of diffusion creep arsl< n < 5 when the behavior is some kind of
dislocation creep. Obtaining these parameters is verydiff{[39, 40, 41, 42, 1,
43)). Itinvolves apparatus able to withstand very high terafures and furnaces
adapted for the task. It also involves fitting very complerdiions. Those
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constants are dependent, not only, on the temperature $mital the heating
rate, (some times also on the stress or other factors).

With these two properties the total strains are defined by:

total __

€ 6mechanzcal _|_€thermal (A120)

Whereemecharical s defined from equation A.1.17 art*" ™ is defined from
equation A.1.9.

A.1.3 Sintering
Some terms used in the rest of the report [3]:

1. Quartz group: is the set of diverse forms in which the sibic silicon dioxide
(Si04) can be organized in a neutral structure.

2. Alpha QuartZ«): is the quartz referred usually. Is the most stable kind afrtqu

under the 573C at1Kbar of pressure. When the pressure increases this quartz

becomes even more stable. Some features of this quartz are:
(a) Crystal System: trigonal.
(b) Specific Gravity: 2.65.
(c) Index of Refraction: 1.55.

3. Beta QuartZ3): is the only form of quartz that is stable at more than T&D0
and pressures undgs K bars. The 8 quartz begins its transformation at 573

The transformation of the quartz is quick, reversible, and is accompanied by a

small amount of energy. Some properties of thguartz are:

(a) Crystal System: hexagonal.
(b) Specific Gravity: 2.53.

(c) Index of refraction: 1.54.
4. Hygroscopic water: is the water absorbed by the envirotime
5. Zeolitic water: is the water that is tied to the pores sitheepress.

At some temperatures, during the sintering process, soitieatizones can be
identified. These are given, usually, to the chemical reastof the materials during
the sintering process. These zones are:

1. Under 100C: elimination of the hygroscopic water, which the reabsdrivater
from the environment during the glazing stage; or the redilumidity after a
non-perfect drying.
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2. Under 200C: elimination of the zeolitic water or crystallization weat The
molecules in this water are tied by absorption in the criiggbktructures.

3. Between 350C y 650°C:

(a) Combustion of the organic substances that can be priestngir different
portions in the clays.

(b) Oxidant dissociation of the oxidant sulphides with thHs trioxide.

4. Between 450C y 650°C: elimination of the constitution water (dehydroxyla-
tion) and the consequent destruction of the clay’s crys&aleticulum.

5. At 573C: allotropic transformation of the quarézin 3. It generates an abrupt
change in volume.

6. Between 800C y 950°C: decarbonization of the limestone and the dolomite with
the liberation ofCO».

7. After the 700C: formation of new crystalline phases constituted bySh®- of
the minerals.

8. After approximately 900C: thermal dissociation of other present salts.

9. If higher temperatures are reached, some components paites can be evap-
orated, and their coatings like the alkaline oxides, thd l®dde, the zinc oxide
and the boric anhydride.

The sintering cycle

The cycle is the variation of the temperature over time. TihteEng cycle is composed
at least of 3 stages:

1. An increase in the temperature from the value of the enwient to the maxi-
mum established and after several tests considered opttmabtain the desired
properties for the ceramic product. The velocity of the éase of the temper-
ature is regulated in a convenient way in function of theimsic parameters of
the material and the conditions of the work.

2. Permanence at the maximum heat of the product. This depanthe dimen-
sions of the product and the oven. The more elevated thesenpéars are the
demand, (for the physical and chemical transformationg tartiform), is higher.

3. Reduction of the temperature until the environment \&hre reached. This has
to do with a program that has into account the sensitivithefderamic body, the
heat gradient and specific demands; for example, in thig dtegcrystallization
phenomenon will be favored, slowing down the cooling in samervals of the
temperature.
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The oven

In the oven, the sintering cycle is divided in sections. lesea sections the necessary
machines are conditioned so, the sintering can be realizadsatisfactory way. The
parts that compose the oven are:

1. Pre-oven: is the section of the oven that has the followiungtions:

(a) To eliminate the hygroscopic water and the zeolitic wate
(b) To elevate slowly the temperature of the tile.
(c) To keep the tile at temperatures between 50 al€20

(d) To keep the gases, that are taken from other stages dhtkeisg, between
200 and 500C.

2. Pre-sintering: is the section of the oven whose functayes

(a) To degasify the ceramic body; so, it does not have prabléaning the
sintering.

(b) To evaporate the rest of the zeolitic water.
(c) To start to convert tha quartz ing quartz.

(d) Toincrease in a controlled manner the temperature thvatinaximum; that
is the temperature in which the sintering will work.

This part of the oven has temperatures between the 500 add @ From this
zone, data should be collected that will work in the sintgstage.

3. The Sintering: it is the zone of the oven where the tempezas the maximum.
Its functions are:

() To finish the conversion af quartz ing quartz.

(b) To make the chemical transformations that will give tihe finish to the
tile.

The maximum temperatures can be between the 1100 and the@.250

4. Quick cooling: In this zone the tiles are cooled as fast@ssiple. It has the
functions of:

(a) To transform the support and the glaze state from liquibtid.

(b) To hold the temperature just above the re transformatidhe 5 quartz to
« quartz. The temperatures go from the sintering to thé 600
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5. Slow cooling: is the zone where the quartz should be toamsfd homoge-
neously. Its functions are:

(a) To change the temperature at a slow rate; such that|¢hs transformed
homogeneously.

(b) To transform, specifically, thé quartz ina quartz.

This zone works in temperatures between the 600 an8@50

6. Final cooling: it is the stage dedicated to:

(a) To reduce the temperature of the tile to the temperafittee@nvironment
as fast as possible because it has passed its critical zone.

It is equipped with a cold air blowing system, under and okertile.

A.2 Literature Review

Numerical simulations of the sintering can be classifiedediog to many criteria. In
the problem studied in this review there are 3 interest areas

1. To calculate the heat transfer from an oven to a cerandc fihat calculation
includes the radiation, convection and conduction of hedhé¢ tile to produce
meaningful parameters for the control of the oven.

2. To calculate the microstructure of the ceramic compariEm papers assume a
geometry of the microstructure and calculate the sintesfregfew particles.

3. To calculate macroscopic effects of the sintering. Therosropic effects in-
clude deformation of the geometry and the residual stresses

For all the interests and approaches a few examples will @rsh

There are few papers that simulate the heat transfer frorouvée to the ceramic
tile. In [2] the equations to simulate a single-deck rollién lare proposed. The oven is
divided into several isothermal zones and they are condeatsimulate the exchange
of heat between high temperature zones and low temperat@® orhe number of
parameters is very high and none of them are determined ipaper. In the paper the
gases spent and the energy density by mass are determirediforused in ceramic
tiles and compared with data from the ceramic tiles indudinj44], a ceramic oven
for tiles and bricks is simulated. The most important heatdfer form is said to be the
non-luminous gaseous radiation. The main goal is to obt@iameters for a controller
to optimize the oven according to several parameters loeiGally organized. In [45,
46, 47, 48] descriptions of several forms to optimize the&ees for ceramic tiles are
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presented. Specifically in [48], a model to estimate theibistion of temperatures in
the ceramic tile is developed. The approach requires kridyel®f the temperature in
one of the faces of the tile, in this case the lower face thatdeatact with the rollers,
and of the conditions within the oven. This technique is used] to calculate the

distribution of heat within the tile.

It has always been a top priority of the ceramic industry ttambmethods that
evaluate the microstructure and final shape of the sintesdibb. For glasses, because
of their amorphous nature, there are lots of methods thattatively evaluate at some
extent these properties. For polycrystalline ceramicsteid, all the methods that are
currently used are qualitative [8]. The main difficulties:ar

1. Solving the equations involved: Even when the models naamy simplifica-
tions, (and these simplifications are not usually approt@hdo the phenom-
ena), the computational resources necessary to evaliatedte very high and
the equations are dependent upon many parameters.

2. Obtaining the parameters: The constitutive equationg®model, even ignor-
ing several conditions, have many parameters that areuiff obtain. Many
of them depend upon temperature and time and have to be ®dhiasery high
temperatures not suitable for usual instruments. This ésatpres are, usually,
near the melting point of the material.

In terms of the microstructure the sintering has 3 staggk ([8

1. First stage (Initial Stage): A neck between adjacentigastis formed and in-
creases until it reaches a valueof.4 — 0.6 of the particle radius. For a powder
system with an initial density di.5 — 0.6 of the theoretical density this corre-
sponds to a linear shrinkage®+ 5% or an increase in density te 0.65. Matter
is transported by diffusion, vapor transport, plastic flawigcous flow.

2. Second stage (Intermediate Stage): It begins when thes ave reached their
equilibrium shapes as dictated by the surface and intatfgamsions. The pore
phase is still continuous. Densification is assumed to oeguhe pores simply
shrinking to reduce their cross section. Eventually, theepdecome unstable
and pinch off, leaving isolated pores. This stage coverst mbthe sintering
process and ends when the densityi6.9 of the theoretical.

3. Third stage (Final Stage): When the pores are isolatectindmers they shrink
continuously and may disappear altogether. The removadihadst all the poros-
ity has been achieved for real powder systems.

Many papers calculate the microstructure of a ceramic compo Most of them
for the first stage of sintering. In [49, 50], the microsturet for a metal powder is
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determined and a computational model for the sintering of prarticles is developed.
It provides information for the final shrinkage ratio of theramic component which
is comparable with the physical powder. Montecarlo modedstae most used for this
task. Papers that describe Montecarlo models for sintémirigde [51, 52].

When calculating macroscopic effects of the sintering,afeee 3 approaches:

1. To calculate full constitutive equations using microstural parameters as input.
This requires a lot of effort in finding several microstrueiuparameters and
fitting them. It's very difficult to even identify the consttive equation that a
powder follows.

2. To calculate some effects like deformations without gdinl constitutive mod-
els. This approach is championed by the use of density asraatbezing factor
for all the geometrical parameters of a powder.

3. To use phenomenological relationships and calculateosecpic parameters.
After this, generally a macroscopic constitutive equatitike Norton’s model),
is used.

The first approach reviewed is the one in which a full constiéumacroscopic
model is obtained from a microscopic model. The parametera the microscopic
model can be obtained either numerically, analytically fmemomenologically. As sin-
tering is a very complicated process even for a few partitlesse models have only
been tested with very pure ceramics for advanced compotieaiteequire a lot of con-
trol in their microstructure. Some of the assumptions madétude that there are no
chemical reactions or that the parameters for the sintemhgdepend upon the density
at a given time [53]. In [54, 55] the second and third stagesirdering are modeled
and the deformation of a ceramic component is predicted.th®first stage of sin-
tering a simple phenomenological model is used. In the papeeral microscopic
parameters are determined for a powder system, and a maprosonstitutive model
is defined. The parameters that this model requires are mawst, of them obtained
from phenomenological relations. Some of them are not eaéid in the sintering of
ceramic tiles, because of their complex nature. To solveothblem of the deforma-
tion of a component, thermal gradients and stresses due todls used are calculated
within the program ABAQUS®, and a user routine, within this same application, is
developed to obtain the sintering rates and deformatiotfseerpapers that use the full
constitutive model approach from microscopic parameter$s6, 57, 58].

There are certain simplifications that allow to formulateuanerical simulation of
the sintering without using full constitutive models. I9]5a finite element method is
proposed. It takes as input a set of areas that compose a plasth@onnected geome-
try of a ceramic body. Each area has a different density draf #lem are fired at the
same temperature and firing rate. The material propertygthagrns the deformation

77



in this paper is the linear shrinkage. As it has been notedjrkar shrinkage depends
on the history of the temperatures that the fired body goesititr. The model is valid
when the history of the temperatures for the predicted deddrbody is the same than
the one used to evaluate the material parameters of the rraogs specimens. It
also needs to be noted that the mechanical equations aremsitiered in the model.
The output of the algorithm is the deformed model. In [60]easification-based fi-
nite element method is proposed. It uses the principle oMhaster Sintering Curve
([53]), which states that the geometric parameters usednstitutive equations often
are functions only of density. For a sintering process, ifictvithe ceramic component
has no extra forces applied, terms of the constitutive éguaain be eliminated. This
makes possible a formulation that depends only upon derisig/ paper compares the
results of the simulations with other authors who simulbtedintering with full con-
stitutive equations for very pure ceramics. It also shoves the method is applicable
to a mixture of materials that resemble porcelain and obtaigood approximation.
This kind of materials are certainly not suitable for sintigia using a full constitu-
tive equation. A report on this method can bee seen in [62hiith error estimation
techniques are developed and more case studies are presente

The most useful approach for the ceramic tile sinteringi] aotv, has been to use
phenomenological models that predict the macroscopicvi@haithout caring about
the microstructure. This is because a full constitutive edbds not been developed for
such a complicated sintering with many phases, compoumdiswéh very important
and highly energetic chemical reactions as the change frayuartz tos-quartz and
back toa-quartz. This is why traditionally, the process of obtagnfimished traditional
ceramic products has been called firing, while the term useadvanced ceramics and
metals is sintering.

Constitutive models that make heavy use of phenomenologicetions have been
presented in many papers. For constrained sintering, ir6f54] constitutive models
for solid state sintering under an applied pressure araiaied. A stress distribution
problem is reduced to an elastic one using phenomenolagigedtions for the Young's
model, and then the sintering conditions are calculatem ftonstitutive equations. In
[65], FEM is used to evaluate the sintering behavior undkir compaction. Cold com-
paction is a constrained sintering process in which the &atpre is low, (compared
to the melting point), and the creep mechanisms are dedpicab

In [66], a constitutive equation in terms of macroscopicapagters is presented.
These include Young's modulus, Poisson’s ratio and visgodihese parameters are
calculated for an explicit rate and phenomenological éqoatare used so they change
with the sintering conditions. The sintering of a cylindsrsimulated and evaluated
against an experimental specimen in terms of the shrinkagdl the directions. In
[67], a phenomenological model for the sintering is devetbpThis admits free and
constrained sintering and it's based in a Newtonian caristd model, (linear).
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There are also papers in which the densification and othtarsig parameters are
not modeled either phenomenologically, analytically omeuically. The parameters
appearing in the equations are only determined by macraserperiments at different
conditions that emulate the sintering. In [68] the ceramindiprocess is simulated for
a sample with many characteristics of that of the ceraméc il divides the problem
into a thermal one and a structural one. The first is calcdlatean isothermal one.
The thermal profiles serve to calculate thermal deformdiidmo stresses appear. The
structural problem follows a viscoelastic model. Stressebstrains appear due to the
gravity.

For the best of the knowledge of the author, only two appreadtave been pre-
sented to simulate the deformation of the ceramic tile dusintering. In [62, 63] the
distribution of the stresses in the ceramic tile is evaldatEor this a thermal and a
structural problem are defined in ANS®S The thermal problem uses a program of
temperatures in the upper and lower faces of the tile and thldlifferent gradients.
The structural problem uses an elastic model and finds tr@rdations and stresses
suffered by the ceramic body. The calculations from thecstinal problem are fed to
a model for viscous sintering to calculate the viscous aeftions. In the paper only
Young's modulus is found and the rest of relationships isedorbase to phenomeno-
logical equations. Using the calculation of stresses inlastie model can serve to
calculate the stresses and strains in a linear viscoelasiitel but not in a non-linear
model as Norton’s model.

In[1, 69, 70] a finite element method is developed. The heati8simulated in 2-
dimensions, it takes into account the radiation and comolueind the heat generation,
(absorption), and calculates the distribution of the terafpees in the tile. Thermal
parameters, p andc are calculated at different temperatures. Also the heatrgéion
is calculated for different zones of temperature. The cotidao and radiation are mod-
eled as in [48]. For the structural problem a viscoelastitstitutive model is used.
The model is a modification of Norton’s model:

de(t) do(t)1
at  dt 7
The model deforms because of the thermal expansion, (onkslge), that the
body, which is subject to different deformations, suffefhe FEM proposed is a 1-
dimensional beam with different temperatures in each ndte.parameters for equa-
tion A.2.1 are calculated from stress relaxation experisiahdifferent temperatures.
This modification is made so the parameters obtained frorathees don’t change
with the conditions of a four-point flexural test. Small sipeens of ceramic tiles are
sintered to evaluate the accuracy of the method.

L Aet de(t)/dto_(t)” (A.2.1)
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A.3 Computational modeling of the problem

For the finite element method, the procedure of creating tefelement model to be
solved by a computer broadly consists of four steps [71]:

1. Modeling the geometry.

2. Meshing (discretization).

3. Specification of material property.

4. Specification of boundary, initial, and loading condito

As seen in section A.1, the problem can be divided in a theandla structural
problem. Both of them have their own boundary conditionsrmatkrial properties.

A.3.1 Modeling the geometry

A ceramic tile with deep back relief has the following georniwetharacteristics: (i)
It's a box with 1 dimension significantly smaller than theent dimensions, (ii) The
thickness is non-constant; and can produce regular sh@pesother two dimensions
are, usually, equal.

The ceramic tile modeled is a squared one with two sideB3of, and thickness
3cm. The tile is presented in Fig. A.1. In the figure can be seenttiesides are
parallel to planes YZ and ZX respectively. The upper and tosugfaces are parallel
to the plane XY. The boundary conditions that appear in theréigire explained in
subsection A.3.3.

If the tile is cut in four with two planes parallel to YZ and ZXspectively and
that pass by the center of the tile, it can be seen that théstd&gmmetric and can
be modeled as a fourth with symmetry constrains. The boyndanditions are also
symmetric. The tile has been modeled as a box with two sidd$.6fnm and the
same thicknesses. It appears in Fig. A.2.

A.3.2 Meshing (discretization)

The elements used are SOLID90 for the thermal problem and[3T86 for the struc-
tural problem. Both are 20 node hexahedrals. The nodes all¥0Llhave one degree
of freedom, the temperature. The nodes at SOLID186 have r@ee@f freedom, dis-
placements in X, Y and Z. SOLID186 supports, among othergeldeformations and
creep. The tile is meshed with ANS¥hexahedral mesher. The mesher produces
8712 elements and 39848 nodes when 33 elements are requtredlédges that serve
as a border for the upper and the lower surfaces and 8 for theseparallel to the
thickness. The hexahedral mesher of ANSY&n only be used when the geometry is
a box.
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Keypoints restricted in
the Z direction.

Keypoi nt restricted in
all directions.

Figure A.1: Tile with displacement boundary conditions.

Nodes with their displacenents
in the Z direction constrained.

Nodes with symmetry constraints.

Figure A.2: Tile with symmetry boundary conditions and twamles constrained in the

Z direction.

A.3.3 Modeling the boundary conditions

The problem is modeled as follows: first a thermal simulatiattulates the gradient
of temperatures in function of the time. The temperaturab@mnodes every certain
time are applied as body force loads to an structural prolxtenhich the deformation
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is calculated. The two problems are modeled as follows:

Thermal problem

A modeling of the heat transfer between the oven and the ¢etdenis a complicated

one that requires very specific information about the charestics of the oven. It has
been shown that the temperatures at the lower and uppecssidathe tile are uniform
[1]. In this model constant temperatures are assigned atifaces. The history of
temperatures is loaded from a file. The file contains the time® the temperature
changes as follows:

Temperatures vs of the surfaces of the tile vs Time
1400 T T T T T —

1200

1000

Temperatures (K)
(o]
o
o

600

lower surface
upper surface| |

400

200 L L L L L L
0 200 400 600 800 1000 1200 1400

Time in the oven (s)

Figure A.3: Temperatures in each of the surfaces of thegikfanction of time in the
oven.

At each time of the table, fixed temperatures, (Dirichletrimary conditions), are
applied at the nodes of the surfaces. The intervals betwetimhes in the file are
divided into substeps of arourid, (ANSYS®calculates the time so all the substeps
are equal). ANSY®makes a linear interpolation for the loads at each substep. T
be able to simulate the process in the oven the temperatuties surfaces need to be
estimated.

This boundary conditions comply with the symmetry claimed.i3.1.

A.3.4 Structural problem

The structural problem appears when the non-uniform bigion of the temperatures
in the interior of the tile produces uneven deformations.isT expected to curve
the tiles. The deformations occur in all directions and eendirection of the curve
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can change when the linear thermal expansion coefficierisstabecome smaller as
the temperature increases. Figure A.1 shows that threeedbtir lower corners have
their movements restricted in the Z direction, while onehafnh (keypoint 4) has its
movements restricted in all directions. All the movemeritthe tile are referenced to
that keypoint. Figure A.2 shows a transformation to the [ewb Symmetry constraints
have been applied to the nodes in the planes YZ and ZX and ther oiodes are
constrained in the Z direction. These nodes constraindtei tirection were chosen
to minimize errors, this is because the constitutive mogl@arton’s model. In this
model,e x o™. If sigma grows a little because of the errors then the strgiow much
more. Errors are maximized when single nodes in corneritmtsitare constrained.
Instead, as the nodes selected in this model are not cohreeertor is minimized
without over constraining the model which would give a difiet solution that the one
wanted.

The constrains, (symmetry and displacements), only serreaintain the problem
in the field of statics and ANSY&can calculate the equilibrium. If the simulation has
no errors, no reaction forces should appear due to the eamstias all the forces are
compensated internally.

A.3.5 Specifying the material properties

The material evaluated in the experiments was a commoryshsed for stoneware
ceramic tiles. All the properties used are taken from [1]e Themical composition of
the slurry is:

Table A.1: Properties of the materials for the study

Oxides Mass Fraction (%)

SiO, 63.3
Al,O; 17.5
Fe,0; 6.03
CaO 1.44
MgO 1.28
Na,O 0.39
K,0 3.36
TiO» 0.79
MnO 0.04
P,O5 0.18

The powder is compacted to several densities. The one taketbd Kg/m3.
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Thermal properties

Thermal properties are determined from [1]. They showetlttieaconductior{k) and
specific heat capacity) did not dependent on the temperature. The properties for the
thermal problem are:

Table A.2: Thermal properties of the materials for the study

Property Value (Units)
Density(p) 2150 Kg/m?
Thermal conductivityk)  0.57 W/ (m K)
Heat capacity(c) 1250 J/ (Kg K)

Structural properties

Even when the behavior of the powder during firing is more daraped than a simple
thermal expansion, (in which the density is only dependartemperature), the linear
coefficient of thermal expansion is used based on data tedldoom [1]. The secant
coefficient of thermal expansion in function of the temparais shown in Fig. A.4:

Secant coefficient of thermal expansion

x10~° in function of the temperature.
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Figure A.4: Secant coefficient of thermal expansion in fiorcof the time.

For the constitutive equations a simple Norton’s model wsexdu The parameters
that are presented in [1] can’t describe a real powder. Briietause the creep ratio,
value that relates the creep deformation in an intervahoétwith the elastic deforma-
tion, was very high for temperatures under th€@0The test used in [1] described a
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relaxation test. Engauge Digitizer ([72]) is used to extthe data from the stress re-
laxation tests in the document. After this, a nonlineartlsgeares fit is used with help
of equation A.1.19. The programming language R and its foolsonlinear regression
are used ([73, 74, 75, 76]).

The original mechanical properties that are found in [1] are

Table A.3: Structural constants of the constitutive modahid in [1]

T (K) n (Pa A (s n

293.15 65x 107 1.7x 10717 17
773.15 82x10° 92x107% 11
973.15 9.2x10° 43x107'7 11
1073.15 11 x10° 48 x 10713 7

1173.15 20x 10° 80x 10719 4.8
1273.15 21 x10° 3.8x10~7 25
1323.15 17x10° 32x10% 25
1373.15 57x10° 34x107° 21

The properties found using R are:

Table A.4: Structural constants of the constitutive modelfie study

T(K) 1 (P9 A«
293.15 3.06 x 107 ~0 -
773.15 3.75x10° 2289 x107% 5
973.15 4.48 x 10° 4.010x 1028 5

1073.15 4.63 x 109 1.164 x 10727 5

1173.15 6.07 x 10° 1.778 x 10721 4.27
1273.15 6.63 x 10° 5.046 x 1078  2.42
1323.15 6.49 x 10° 1418 x10°% 2.30
1373.15 3.14 x 10° 7.358 x 10~7 2.44

It has to be recalled that there is an error when digitizirgydbcument, but the
values aR93.15 K near zero makes more sense and the values un2ies.15 K show
a very low creep and during the experiments this resultedwet creep ratios. The
value of 5 forn was fixed in the linear regression because ceramics haveatige of
creep exponents.

A.4 Results

The simulations show no convergence for the entire time énoen. Several varia-
tions of the experiment don't give different results. Hoeevor a range of times the
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simulations show convergence and are summarized in vidta®, images of the last
load step for the simulations are shown.

Fig. A.5 shows the temperature and the deformation of teetib55 seconds. The
deformations are scaled 10 times to be able to observe theoptenon. At certain
temperatures the curvature changes of sign. This is becdiuke change in the sign
of the slope seen in Fig. A.4.

AN
NODAL SOLUTI ON
ocT 6 2009
STEP=132 15: 21: 40
SUB =155 pLoT N1
TI ME=655
| EXPANDED
BFETEVP  (AVG)
RSYS=0
DVK =. 003442
SW =1107
SW =1183
— o
1107 1124 1141 1157 1174
1115 1132 1149 1166 1183

Figure A.5: Temperatures of the ceramic tile at 655 seconds.

Fig. A.6 shows the vector sum of the displacements at thédadtstep. Recall the
constrained displacements in the Z direction for two nomebnodes.
Fig. A.7 shows the strains, (First Principal Strains) cdusgthermal expansions.

86



NODAL SQLUTI ON
OCT 6 2009

STEP=132 15: 22: 53
SUB =155 PLOT N0 1
TI ME=655
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DWK =. 003442

SW =. 001617
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Figure A.6: Vector sum of the displacements of the cerartaati 655 seconds.
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NODAL SQLUTI ON
OCT 6 2009

STEP=132 15: 22: 29
SUB =155 PLOT NO. 1
TI ME=655
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Figure A.7: First principal thermal strains of the ceranilie &t 655 seconds.
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Other measures can also be captured as a function of the titviedy don’t show
any pattern as stresses relax too quickly.

Also, a program that evaluates the mean discrete curvaaird®e nodes is pre-
sented. It shows the evolution of the curvatures with theetimthe oven. For this
program, developed completely in ANS®@nd TCL, the mean discrete curvature is
evaluated for each node using Simpson’s method, ([77]).Clineatures are presented
for the lower and upper surfaces of the tile.
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1536 03 158803 163603 168603 174803 1316 03 136603 141603 147603 152603

(a) Lower surface. (b) Upper surface.

Figure A.8: Curvatures at lower and upper surfaces for tige 5
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(a) Lower surface. (b) Upper surface.

Figure A.9: Curvatures at lower and upper surfaces for tiffe 1
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(a) Lower surface. (b) Upper surface.
Figure A.10: Curvatures at lower and upper surfaces for fifte
AN

016336 016395 016453 1512 16571
016365 016424 016483 o16sa1 o166

(a) Lower surface.

015995
016037

016077

% 16158 01624
ots118.

162 o1s321
016190

01628 o16361

(b) Upper surface.

Figure A.11: Curvatures at lower and upper surfaces for 28t
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Figure A.12: Curvatures at lower and upper surfaces for g6t
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(a) Lower surface. (b) Upper surface.
Figure A.13: Curvatures at lower and upper surfaces for 86
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Figure A.14: Curvatures at lower and upper surfaces for 4dfe
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Figure A.15: Curvatures at lower and upper surfaces for diite
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(a) Lower surface. (b) Upper surface.
Figure A.16: Curvatures at lower and upper surfaces for 68
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Figure A.17: Curvatures at lower and upper surfaces for 66t
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Figure A.18: Curvatures at lower and upper surfaces for 66
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