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Abstract. We describe a data structure for three-dimensional Nef complexes, al-
gorithms for boolean operations on them, and our implementation of data struc-
ture and algorithms. Nef polyhedra were introduced by W. Nef in his seminal
1978 book on polyhedra. They are the closure of half-spaces under boolean op-
erations and can represent non-manifold situations, open and closed boundaries,
and mixed dimensional complexes. Our focus lies on the generality of the data
structure, the completeness of the algorithms, and the exactness and efficiency of
the implementation. In particular, all degeneracies are handled.

1 Introduction

Fig. 1. A Nef polyhedron with
non-manifold edges, a dangling
facet, two isolated vertices, and
an open boundary in the tunnel.

Partitions of three space into cells are a common
theme of solid modeling and computational geom-
etry. We restrict ourselves to partitions induced by
planes. A set of planes partitions space into cells
of various dimensions. Each cell may carry a label.
We call such a partition together with the labelling
of its cells aselective Nef complex (SNC). When the
labels are boolean ({in,out}) the complex describes
a set, a so-calledNef polyhedron[23]. Nef poly-
hedra can be obtained from halfspaces by boolean
operations union, intersection, and complement.
Nef complexes slightly generalize Nef polyhedra
through the use of a larger set of labels. Figure 1
shows a Nef polyhedron.

Nef polyhedra and complexes are quite general. They can model non-manifold
solids, unbounded solids, and objects comprising parts of different dimensionality. Is
this generality needed?
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1. Nef polyhedra are the smallest family of solids containing the half-spaces and being
closed under boolean operations. In particular, boolean operations may generate
non-manifold solids, e.g., the symmetric difference of two cubes in Figure 1, and
lower dimensional features. The latter can be avoided by regularized operations.

2. In a three-dimensional earth model with different layers, reservoirs, faults, etc.,
one can use labels to distinguish between different soil types. Furthermore, in this
application we encounter complex topology, for example, non-manifold edges.

3. In machine tooling, we may want to generate a polyhedronQ by a cutting toolM.
When the tool is placed at a pointp in the plane, all points inp+M are removed.
Observe, when the cutting tool is modeled as a closed polyhedron and moved along
a pathL (including its endpoints) an open polyhedron is generated. Thus open and
closed polyhedra need to be modeled. The set of legal placements forM is the set
C = {p; p+M∩Q = /0}; C may also contain lower dimensional features. This is
one of the examples where Middleditch [22] argues that we need more than regu-
larized boolean operations. In the context of robot motion planning this example
is referred to astight passages, see [14] for the case of planar configuration spaces.

SNCs can be represented by the underlying plane arrangement plus the labeling of
its cells. This representation is space-inefficient if adjacent cells frequently share the
same label and it is time-inefficient since navigation through the structure is difficult.

We give a more compact and unique representation of SNCs, algorithms realizing
the (generalized) set operations based on this representation,and an implementation.
The uniqueness of the representation, going back to Nef’s work [23], is worth empha-
sizing; two point sets are the same if and only if they have the same representation.

The current implementation supports the construction of Nef polyhedra from mani-
fold solids, boolean operations (union, intersection, complement, difference, symmetric
difference), topological operations (interior, closure, boundary), rotations by rational
rotation matrices (arbitrary rotation angles are approximated up to a specified toler-
ance [7]). Our implementation is exact. We follow the exact computation paradigm to
guarantee correctness; floating point filtering is used for efficiency. .

Our representation and algorithm refine the results of Rossignac and O’Connor [24],
Weiler [31], Gursoz, Choi, and Prinz [13], and Dobrindt, Mehlhorn, and Yvinec [10],
and Fortune [12]; see Section 7 for a detailed comparison. Our structure explicitly de-
scribes the geometry around each vertex in a so-called sphere map; see Figure 4.

The paper is structured as follows: Nef polyhedra are reviewed in Section 2, our
data structure is defined in Section 3, and the algorithms for generalized set operations
are described in Section 4. We discuss their complexity in Section 5. We argue that our
structure can be refined so as to handle special cases (almost) as efficient as the special
purpose data structures. The status of the implementation is discussed in Section 6. We
relate our work to previous work in Section 7 and offer a short conclusion in Section 8.

2 Theory of Nef Polyhedra

We repeat a few definitions and facts about Nef polyhedra [23] that we need for our data
structure and algorithms. The definitions here are presented for arbitrary dimensions,
but we restrict ourselves in the sequel to three dimensions.
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Definition 1 (Nef polyhedron).A Nef-polyhedronin dimension d is a point set P⊆Rd

generated from a finite number of open halfspaces by set complement and set intersec-
tion operations.

Set union, difference and symmetric difference can be reduced to intersection and
complement. Set complement changes between open and closed halfspaces, thus the
topological operationsboundary, interior, exterior, closureandregularizationare also
in the modeling space of Nef polyhedra. In what follows, we refer to Nef polyhedra
whenever we say polyhedra.

A face of a polyhedron is defined as an equivalence class oflocal pyramidsthat are
a characterization of the local space around a point.

Definition 2 (Local pyramid). A point set K⊆ Rd is called acone with apex 0, if
K = R+K (i.e.,∀p∈ K,∀λ > 0 : λp∈ K) and it is called acone with apexx, x∈ Rd, if
K = x+R+(K−x). A cone K is called apyramidif K is a polyhedron.

Now let P∈ Rd be a polyhedron and x∈ Rd. There is a neighborhood U0(x) of x
such that the pyramid Q:= x+R+((P∩U(x))− x) is the same for all neighborhoods
U(x)⊆U0(x). Q is called thelocal pyramidof P in x and denotedPyrP(x).

Definition 3 (Face).Let P∈Rd be a polyhedron and x,y∈Rd be two points. We define
an equivalence relation x∼ y iff PyrP(x) = PyrP(y). The equivalence classes of∼ are
the facesof P. The dimension of a face s is the dimension of its affine hull,dims :=
dimaffs.

In other words, aface sof P is a maximal non-empty subset ofRd such that all
of its points have the same local pyramidQ denoted PyrP(s). This definition of a face
partitionsRd into faces of different dimension. A faces is either a subset ofP, or disjoint
from P. We use this later in our data structure and store a selection mark in each face
indicating its set membership.

Faces do not have to be connected. There are only two full-dimensional faces pos-
sible, one whose local pyramid is the spaceRd itself and the other with the empty set
as a local pyramid. All lower-dimensional faces form theboundaryof the polyhedron.
As usual, we call zero-dimensional facesverticesand one-dimensional facesedges.
In the case of polyhedra in space we call two-dimensional facesfacetsand the full-
dimensional facesvolumes. Faces arerelative opensets, e.g., an edge does not contain
its end-vertices.

Example 1.We illustrate the definitions with an example in the plane. Given the closed
halfspaces

h1 : y≥ 0, h2 : x−y≥ 0, h3 : x+y≤ 3, h4 : x−y≥ 1, h5 : x+y≤ 2,

we define our polyhedronP := (h1∩h2∩h3)− (h4∩h5). Figure 2 illustrates the poly-
hedron with its partially closed and partially open boundary, i.e., vertexv4,v5,v6, and
edgese4 ande5 are not part ofP. The local pyramids for the faces are PyrP( f1) = /0 and
PyrP( f2) = R2. Examples for the local pyramids of edges are the closed halfspaceh2

for the edgee1, PyrP(e1) = h2, and the open halfspace that is the complement ofh4 for
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Fig. 2. Planar example of a Nef-polyhedron.
The shaded region, bold edges and black
nodes are part of the polyhedron, thin edges
and white nodes are not.
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Fig. 3. Sketches of the local pyramids of the
planar Nef polyhedron example. The local
pyramids are indicated as shaded in the rela-
tive neighborhood in a small disc.

the edgee5, PyrP(e5) = {(x,y)|x−y < 1}. The edgee3 consists actually of two discon-
nected parts, both with the same local pyramid PyrP(e3) = h1. In our data structure, we
will represent the two connected components of the edgee3 separately. Figure 3 lists all
local pyramids for this example.

Definition 4 (Incidence relation).A face s isincidentto a face t of a polyhedron P iff
s⊂ clost. This defines a partial ordering≺ such that s≺ t iff s is incident to t.

Bieri and Nef proposed several data structures for storing Nef polyhedra in arbitrary
dimensions. In theWürzburg Structure[6], named after the workshop location where
it was first presented, all faces are stored in the form of their local pyramids, in the
Extended Ẅurzburg Structurethe incidencesbetween faces are also stored, and in the
Reduced Ẅurzburg Structure[5] only the local pyramids of the minimal elements in the
incidence relation≺ are stored. For bounded polyhedra all minimal elements are ver-
tices. Either Ẅurzburg structure supports Boolean operations on Nef polyhedra, neither
of them does so in an efficient way. The reason is that Würzburg structures do not store
enough geometry. For example, it records the faces incident to an edge, but it does not
record their cyclic ordering around the edge.

3 Data Structures

In our representation for three-dimensions, we use two main structures: Sphere Maps
to represent the local pyramids of each vertex and the Selective Nef Complex Rep-
resentation to organize the local pyramids into a more easily accessible polyhedron
representation. It is convenient (conceptually and, in particular, in the implementation)
to only deal with bounded polyhedra; the reduction is described in the next section.

3.1 Bounding Nef Polyhedra We extend infimaximal frames [29] already used
for planar Nef polygons [28, 27]. Theinfimaximal boxis a bounding volume of size
[−R,+R]3 whereR represents a sufficiently large value to enclose all vertices of the
polyhedron. The value ofR is left unspecified as aninfimaximal number, i.e., a number
that is finite but larger than the value of any concrete real number. In [29] it is argued
that interpretingR as an infimaximal number instead of setting it to a large concrete
number has several advantages, in particular increased efficiency and convenience.
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Fig. 4. An example of a sphere map.
The different colors indicate selected
and unselected faces.
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Fig. 5.An SNC. We show one facet with two vertices,
their sphere maps, the connecting edges, and both ori-
ented facets. Shells and volumes are omitted.

Clipping lines and rays at this infimaximal box leads to points on the box that we
call frame pointsor non-standard points(compared to the regularstandard pointsinside
the box). The coordinates of such points areRor−R for one coordinate axis, and linear
functions f (R) for the other coordinates. We use linear polynomials overR as coordi-
nate representation for standard points as well as for non-standard points, thus unifying
the two kind of points in one representation, theextended points. From there we can
defineextended segmentswith two extended points as endpoints. Extended segments
arise from clipping halfspaces or planes at the infimaximal box.

It is easy to compute predicates involving extended points. In fact, all predicates in
our algorithms resolve to the sign evaluation of polynomial expressions in point coordi-
nates. With the coordinates represented as polynomials inR, this leads to polynomials
in Rwhose leading coefficient determines their signs.

We will also construct new points and segments. The coordinates of such points are
defined as polynomial expressions of previously constructed coordinates. Fortunately,
the coordinate polynomials stay linear even in iterated constructions.

Lemma 1. The coordinate representation of extended points in three-dimensional Nef
polyhedra is always a polynomial in R with a degree of at most one. This also holds
for iterated constructions where new planes are formed from constructed (standard)
intersection points. (Proof omitted due to space limitations.)

3.2 Sphere Map The local pyramids of each vertex are represented by conceptually
intersecting the local neighborhood with a smallε-sphere. This intersection forms a
planar map on the sphere (Figure 4), which together with the set-selection mark for
each item forms a two-dimensional Nef polyhedron embedded in the sphere. We add
the set-selection mark for the vertex and call the resulting structure thesphere mapof
the vertex. Sphere maps were introduced in [10].

We use the prefixs to distinguish the elements of the sphere map from the three-
dimensional elements. Ansvertexcorresponds to an edge intersecting the sphere. An
sedgecorresponds to a facet intersecting the sphere. Geometrically the edge forms a
great arc that is part of the great circle in which the supporting plane of the facet inter-
sects the sphere. When there is a single facet intersecting the sphere in a great circle, we
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get ansloopgoing around the sphere without any incident vertex. There is at most one
sloopper vertex because a secondsloopwould intersect the first. Ansfacecorresponds
to a volume. This representation extends the planar Nef polyhedron representation [27].

3.3 Selective Nef Complex RepresentationHaving sphere maps for all vertices of
our polyhedron is a sufficient but not easily accessible representation of the polyhe-
dron. We enrich the data structure with more explicit representations of all the faces
and incidences between them. We also depart slightly from the definition of faces in
a Nef polyhedron; we represent the connected components of a face individually and
do not implement additional bookkeeping to recover the original faces (e.g., all edges
on a common supporting line with the same local pyramid) as this is not needed in our
algorithms. We discuss features in the increasing order of dimension; see also Figure 5:

edges: We store two oppositely oriented edges for each edge and have a pointer from
one oriented edge to its opposite edge. Such an oriented edge can be identified with
an svertexin a sphere map; it remains to link onesvertexwith the corresponding
oppositesvertexin the other sphere map.

edge uses:An edge can have many incident facets (non-manifold situation). We intro-
duce two oppositely oriented edge-uses for each incident facet; one for each ori-
entation of the facet. An edge-use points to its corresponding oriented edge and to
its oriented facet. We can identify an edge-use with an orientedsedgein the sphere
map, or, in the special case also with ansloop. Without mentioning it explicitly in
the remainder, all references tosedgecan also refer tosloop.

facets: We store oriented facets as boundary cycles of oriented edge-uses. We have a
distinguished outer boundary cycle and several (or maybe none) inner boundary cy-
cles representing holes in the facet. Boundary cycles are linked in one direction. We
can access the other traversal direction when we switch to the oppositely oriented
facet, i.e., by using the opposite edge-use.

shells: The volume boundary decomposes into different connected components, the
shells. They consist of a connected set of facets, edges, and vertices incident to this
volume. Facets around an edge form a radial order that is captured in the radial
order ofsedgesaround ansvertexin the sphere map. Using this information, we
can trace a shell from one entry element with a graph search. We offer this graph
traversal in a visitor design pattern to the user.

volumes: A volume is defined by a set of shells, one outer shell containing the volume
and several (or maybe none) inner shells excluding voids from the volume.

For each face we store a label, e.g., a set-selection mark, which indicates whether
the face is part of the solid or if it is excluded. We call the resulting data structure
Selective Nef Complex, SNCfor short.

4 Algorithms

Here we describe the algorithms for constructing sphere maps for a polyhedron, the
corresponding SNC, and the simple algorithm that follows from these data structures
for performing boolean operations on polyhedra.
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4.1 Construction of a Sphere Map We have extended the implementation of the
planar Nef polyhedra in CGAL to the sphere map. We summarize the implementation
of planar Nef polyhedra described in [28, 27] and explain the changes needed here.

The boolean operations on the planar Nef polyhedra work in three steps—overlay,
selection, and simplification—following [24]. The overlay computes the conventional
planar map overlay of the two input polyhedra with a sweep-line algorithm [21, section
10.7]. In the result, each face in the overlay is a subset of a face in each input polyhe-
dron, which we call the support of that face. The selection step computes the mark of
each face in the overlay by evaluating the boolean expression on the two marks of the
corresponding two supports. This can be generalized to arbitrary functions on label sets.
Finally, the simplification step has to clean up the data structure and remove redundant
representations.

In particular, the simplification in the plane works as follows: (i) if an edge has the
same mark as its two surrounding regions the edge is removed and the two regions are
merged together; (ii) if an isolated vertex has the same mark as its surrounding region
the vertex is removed; (iii) and if a vertex is incident to two collinear edges and all
three marks are the same then the vertex is removed and the two edges are merged. The
simplification is based on Nef’s theory [23, 4] that provides a straightforward classifica-
tion of point neighborhoods; the simplification just eliminates those neighborhoods that
cannot occur in Nef polyhedra. The merge operation of regions in step (i) uses a union
find data structure [8] to efficiently update the pointers in the half-edge data structure
associated with the regions.

We extend the planar implementation to sphere maps in the following ways. We
(conceptually) cut the sphere into two hemispheres and rotate a great arc around each
hemisphere instead of a sweep line in the plane. The running time of the sphere sweep
is O((n+m+s) log(n+m)) for sphere maps of sizen andm respectively and an output
sphere map of sizes. Instead of actually representing the sphere map as geometry on
the sphere, we use three-dimensional vectors for thesvertices, and three-dimensional
plane equations for the support of thesedges. Step (iii) in the simplification algorithm
needs to be extended to recognize the special case where we can get ansloopas result.

4.2 Classification of Local Pyramids and SimplificationIn order to understand the
three-dimensional boolean operations and to extend the simplification algorithm from
planar Nef polyhedra to three-dimensions, it is useful to classify the topology of the
local pyramidof a pointx (the sphere map that represents the intersection of the solid
with the sphere plus the mark at the center of the sphere) with respect to the dimension
of a Nef face that containsx. It follows from Nef’s theory [23, 4] that:

– x is part of a volume iff its local sphere map is trivial (only onesface fs with no
boundary) and the markf s corresponds to the mark ofx.

– x is part of a facetf iff its local sphere map consists just of ansloop ls and two
incidentsfaces fs1, f s

2 and the mark ofls is the same as the mark ofx. And at least
one of f s

1, f s
2 has a different mark.

– x is part of an edgee iff its local sphere map consists of two antipodalsvertices vs1,
vs

2 that are connected by a possible empty bundle ofsedges. Thesvertices vs1, vs
2
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andx have the same mark. This mark is different from at least onesedgeor sface
in between.

– x is a vertexv iff its local sphere map is none of the above.

Of course, a valid SNC will only contain sphere maps corresponding to vertices.
But some of the algorithms that follow will modify the marks and potentially invalidate
this condition. We extend the simplification algorithm from planar Nef polyhedra to
work directly on the SNC structure. Based on the above classification and similar to the
planar case, we identify redundant faces, edges, and vertices, we delete them, and we
merge their neighbors.

4.3 Synthesizing the SNC from Sphere MapsGiven the sphere maps for a partic-
ular polyhedron, we wish to form the corresponding SNC. Here we describe how this
is done. The synthesis works in order of increasing dimension:

1. We identifysverticesthat we want to link together as edges. We form an encoding
for eachsvertexconsisting of: (a) a normalized line representation for the support-
ing line, e.g. the normalized Plücker coordinates of the line [30], (b) the vertex co-
ordinates, (c) a+1 or−1 indicating whether the normalization of the line equation
reversed its orientation compared to the orientation from the vertex to thesvertex.
We sort all encodings lexicographically. Consecutive pairs in the sorted sequence
form an edge.

2. Edge-uses correspond tosedges. They form cycles aroundsvertices. The cycles
around twosverticeslinked as an edge have opposite orientations. Thus, corre-
spondingsedgesare easily matched up and we have just created all boundary cycles
needed for facets.

3. We sort all boundary cycles by their normalized, oriented plane equation. We find
the nesting relationship for the boundary cycles in one plane with a conventional
two-dimensional sweep line algorithm.

4. Shells are found with a graph traversal. The nesting of shells is resolved with ray
shooting from the lexicographically smallest vertex. Its sphere map also gives the
set-selection mark for this volume by looking at the mark in the sphere map in−x
direction. This concludes the assembly of volumes.

4.4 Boolean OperationsWe represent Nef polyhedra as SNCs. We can trivially con-
struct an SNC for a halfspace. We can also construct it from a polyhedral surface [18]
representing a closed 2-manifold by constructing sphere maps first and then synthesiz-
ing the SNC as explained in the previous section.

Based on the SNC data structure, we can implement the boolean set operations. For
the set complement we reverse the set-selection mark for all vertices, edges, facets, and
volumes. For the binary boolean set operations we find the sphere maps of all vertices
of the resulting polyhedron and synthesize the SNC from there:

1. Find possible candidate vertices. We take as candidates the original vertices of both
input polyhedra, and we create all intersection points of edge-edge and edge-face
intersections. Optimizations for an early reduction of the candidate set are possible.
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2. Given a candidate vertex, we find its local sphere map in each input polyhedron.
If the candidate vertex is a vertex of one of the input polyhedra, its sphere map is
already known. Otherwise a new sphere map is constructed on the fly. We use point
location, currently based on ray shooting, to determine where the vertex lies with
respect to each polyhedron.

3. Given the two sphere maps for a candidate vertex, we combine them into a resulting
sphere map with boolean set operation on the surfaces of the sphere maps. The
surfaces are 2D Nef polyhedra.

4. Using the simplification process described in Section 4, we determine if the result-
ing sphere map will be part of the representation of the result. If so, we keep it for
the final SNC synthesis step.

We can also easily implement the topological operationsboundary, closure, inte-
rior , exterior, andregularization. For example, for the boundary we deselect all volume
marks and simplify the remaining SNC (Section 4). The uniqueness of the representa-
tion implies that the test for the empty set is trivial. As a consequence, we can imple-
ment for polyhedraP andQ the subset relation asP⊂Q≡ P−Q = /0, and the equality
comparison with the symmetric difference.

5 Complexity and Optimizations
Let the total complexity of a Nef polyhedron be the number of vertices, edges, and faces.
Given the sphere map representation for a polyhedron of complexityn, the synthesis of
the SNC is determined by sorting the Plücker coordinates, the plane sweep for the facet
cycles, and the shell classification. It runs inO(nlogn+ c ·T↑) whereT↑ is the time
needed for shooting a ray to identify the nesting relationship of one of thec different
shells. This is currently the cost for constructing a polyhedron from a manifold solid.

Given a polyhedron of complexityn, the complement operation runs in time linear
in n. The topological operationsboundary, closure, interior, exterior, andregularization
require simplification and run in timeO(n ·α(n)) with α(n) the inverse Ackermann
function from the union-find structures in the simplification algorithm.

Given one polyhedron of complexityn and another polyhedron of complexitym,
the boolean set operation that produces a result of complexityk has a runtime that
decomposes into three parts. First,TI , the total time to find all edge-face and edge-
edge intersections. We also subsume inTI the time needed to locate the vertices of one
polyhedron in the respective other polyhedron. Lets be the number of intersections
vertices found in this step. Second,O((n+ m+ s) log(n+ m)) is the runtime for the
overlay computation of alln+m+ssphere map pairs. Third, after simplification of the
sphere maps we are left withk maps and the SNC synthesis runtime from above applies
here with the timeO(k logk+c·T↑).

We have kept the runtime cost for point location and intersection separate since
we argue that we can choose among different well known and efficient methods in our
approach, for example, octrees [26] or binary space partition (BSP) trees [9].

The space complexity of our representation is clearly linear in our total complex-
ity of the Nef polyhedron. However, in absolute numbers we pay for our generality
in various ways. We argue to use exact arithmetic and floating point filters. However,
since cascaded construction is possible, we have to store the geometry using an exact
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arithmetic type with unbounded precision. We further added the infimaximal box for
unbounded polyhedra. Its coordinate representation uses a (linear) polynomial in the
infimaximalR and thus doubles the coordinates we have to store. Both, the arithmetic
and the extended kernel for the infimaximal box, are flexible and exchangeable based on
the design principles of CGAL. So, assuming a user can accept less general arithmetic1

and a modeling space restricted to bounded polyhedra then we can offer already in our
current implementation a choice of number type and kernel that makes the geometry
part of the SNC equal to other conventional representations in size and expressiveness.

What remains is the space complexity of the connectivity description (ignoring the
geometry). We compare the SNC with a typical data structure used for three-dimension-
al manifold meshes, the polyhedral surface in CGAL based on halfedges [18]. We need
five to eight times more space for the connectivity in the SNC; five if the polyhedral sur-
face is list based and eight if it is stored more compactly—but also less powerful—in an
array. Clearly this can be a prohibitive disadvantage if the polyhedron is in most places
a local manifold. Although not implemented, there is an easy optimization possible that
can give the same space bounds. We can specialize the sphere maps for vertices that are
locally an oriented 2-manifold to just contain a list ofsverticesandsedgesplus two vol-
umes. Now, assuming also that the majority of vertices has a closed boundary, we can
also remove the labels from the sphere map. Whenever needed, we can reconstruct the
full sphere map on the fly, or even better, we can specialize the most likely operations
to work more efficiently on these specialized sphere maps to gain performance.

6 Implementation

The sphere maps and the SNC data structure with the extended kernel for the infimaxi-
mal box are fully implemented in CGAL2 [11] with all algorithms described above. We
also support the standard CGAL kernels but restricted to bounded polyhedra.

The above description breaks the algorithms down to the level of point location (for
location of the candidate vertices in the input polyhedra), ray shooting (for assembling
volumes in the synthesis step), and intersection finding among the geometric primi-
tives. The current implementation uses inefficient but simple and complete implemen-
tations for these substeps. It supports the construction of Nef polyhedra from manifold
solids [18], boolean operations (union, intersection, complement, difference, symmet-
ric difference), topological operations (interior, closure, boundary, regularization), ro-
tations by rational rotation matrices (arbitrary rotation angles are approximated up to a
specified tolerance [7]). Our implementation is exact. We follow the exact computation
paradigm to guarantee correctness; floating point filtering is used for efficiency.

The implementation of the sphere map data structure and its algorithms has about
9000 lines of code, and the implementation of the SNC structure with its algorithms
and the visualization graphics code in OpenGL has about 15000 lines of code. Clearly,
the implementation re-uses parts of CGAL; in particular the geometry, the floating point
filters, and some data structures.

1 For example, bounded depth of construction or interval arithmetic that may report that the
accuracy is not sufficient for a certain operation.

2 <http://www.cgal.org>
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A bound on the necessary arithmetic precision of the geometric predicates and con-
structions is of interest in geometric algorithms. Of course, Nef-polyhedra can be used
in cascaded constructions that lead to unbounded coordinate growth. However, we can
summarize here that the algebraic degree is less than ten in the vertex coordinates for all
predicates and constructions. The computations of the highest degree are in the plane
sweep algorithm on the local sphere map with predicates expressed in terms of the
three-dimensional geometry.

We support the construction of a Nef polyhedron from a manifold solid defined
on vertices. Nef polyhedra are also naturally defined on plane equations and combined
with CGAL ’s flexibility one can realize schemes where coordinate growth is handled
favorably with planes as defining geometry [12].

7 Comparison to Extant Work

Data structures for solids and algorithms for boolean operations on geometric mod-
els are among the fundamental problems in solid modeling, computer aided design,
and computational geometry [16, 20, 25, 15, 12]. In their seminal work, Nef and, later,
Bieri and Nef [23, 6] developed the theory of Nef polyhedra. Dobrindt, Mehlhorn, and
Yvinec [10] consider Nef polyhedra in three-space and give anO((n+ m+ s) log(n+
m)) algorithm for intersecting a general Nef polyhedron with a convex one; herenandm
are the sizes of the input polyhedra ands is the size of the output. The idea of the sphere
map is introduced in their paper (under the name local graph). They do not discuss im-
plementation details. Seel [27, 28] gives a detailed study of planar Nef polyhedra; his
implementation is available in CGAL.

Other approaches to non-manifold geometric modeling are due to Rossignac and
O’Connor [24], Weiler [31], Karasick [17], Gursoz, Choi, and Prinz [13], and For-
tune [12]. Rossignac and O’Connor describe modeling by so-calledselective geometric
complexes. The underlying geometry is based on algebraic varieties. The correspond-
ing point sets are stored in selective cellular complexes. Each cell is described by its
underlying extent and a subset of cells of the complex that build its boundary. The
non-manifold situations that occur are modeled via the incidence links between cells
of different dimension. The incidence structure of the cellular complex is stored in a
hierarchical but otherwise unordered way. No implementation details are given.

Weiler’s radial-edge data structure [31] and Karasick’s star-edge boundary repre-
sentation are centered around the non-manifold situation at edges. Both present ideas
about how to incorporate the topological knowledge of non-manifold situations at ver-
tices; their solutions are, however, not complete. Cursoz, Choi and Prinz [13] extend
the ideas of Weiler and Karasick and center the design of their non-manifold modeling
structure around vertices. They introduce a cellular complex that subdivides space and
that models the topological neighborhood of vertices. The topology is described by a
spatial subdivision of an arbitrarily small neighborhood of the vertex. Their approach
gives thereby a complete description of the topological neighborhood of a vertex.

Fortune’s approach centers around plane equations and uses symbolic perturbation
of the planes’ distances to the origin to eliminate non-manifold situations and lower-
dimensional faces. Here, a 2-manifold representation is sufficient. The perturbed poly-
hedron still contains the degeneracies, now in the form of zero-volume solids, zero-
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length edges, etc. Depending on the application, special post-processing of the poly-
hedron might be necessary, for example, to avoid meshing a zero-volume solid. Post-
processing was not discussed in the paper and it is not clear how expensive it would
be. The direction of perturbation, i.e., towards or away from the origin, can be used to
model open and closed boundaries of facets.

We improve the structure of Gursoz et al. with respect to storage requirements and
provide a more concrete description with respect to the work of Dobrindt et al. as well
as a first implementation. Our structure provides maximal topological information and
is centered around the local view of vertices of Nef polyhedra. We detect and handle all
degenerate situations explicitly, which is a must given the generality of our modeling
space. The clever structure of our algorithms helps to avoid the combinatorial explosion
of special case handling. We use exact arithmetic to achieve correctness and robustness,
combined with floating point filters based on interval arithmetic, to achieve speed.

That we can quite naturally handle all degeneracies, including non-manifold struc-
tures, as well as unbounded objects and produce always the correct mathematical result
differentiates us from other approaches. Previous approaches using exact arithmetic [1–
3, 12, 19] work in a less general modeling space, some unable to handle non-manifold
objects and none able to handle unbounded objects.

8 Conclusion and Future Directions

We achieved our goal of a complete, exact, and correct implementation of boolean oper-
ations on a very general class of polyhedra in space. The next step towards practicability
is the implementation of faster algorithms for point location, ray shooting, intersec-
tion finding, and the specialized compact representation of sphere maps for manifold
vertices. Useful extensions with applications in exact motion planning are Minkowski
sums and the subdivision of the solid into simpler shapes, e.g., a trapezoidal or convex
decomposition in space.

For ease of exposition, we restricted the discussion to boolean flags. Larger label
sets can be treated analogously.

Nef complexes are defined by planes. We plan to extend the data structure and al-
gorithms to complexes defined by curved surfaces [24, 15].
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