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Abstract
In the context of Industrie 4.0, it is necessary for several applications, to encode characteristics of a Boundary Representation
of a manifold M in an economical manner. Two related characterizations of closed B-Reps (and the solid they represent)
are (1) medial axis and (2) Reeb Graph. The medial axis of a solid region is a non-manifold mixture of 1-simplices and 2-
simplices and it is expensive to extract. Because of this reason, this manuscript concentrates in the work-flow necessary to
extract the Reeb Graph of the B-Rep. The extraction relies on (a) tests of geometric similarities among slices of M and (b)
characterization of the topological transitions in the slice sequence of M. The process roughly includes: (1) tilt of the B-Rep to
obtain an unambiguous representation of the level sets of M,(2) identification and classification of the topological transitions
that arise between consecutive level sets, (3) sample of Reeb graph vertices inside the material regions defined by the level sets,
(4) creation of Reeb graph edges based on the type of topological transition and the 2D similarity among material regions of
consecutive levels. Although the Reeb Graph is a topological construct, geometrical processing is central in its synthesis and
compliance with the Nyquist-Shannon sampling interval is crucial for its construction. Future work is needed on the extension
of our methodology to account for manifolds with internal voids or nested solids.

CCS Concepts
• Computing methodologies Ñ Computer graphics; Shape analysis; Volumetric models;

1. Introduction

The encoding of geometry and topology characteristics of a Bound-
ary Representation (B-Rep) in a computationally economical man-
ner is a useful process in several fields such as medical imaging,
computer graphics and computational mechanics [GSBW11]. Two
of the most commonly used characterizations of a closed man-
ifold are (1) medial axis and (2) Reeb Graph. The Reeb Graph
in particular is used in the analysis of large data sets, such as:
the efficient classification and segmentation of large point clouds
[WYLL21], mesh segmentation oriented towards topological opti-
mization [MG21], CAD model segmentation [HR20, SJ17], shape
similarity and matching [MBH12] and data abstraction from large
data sets [NBPF11]. For a detailed description of applications of
Reeb Graphs in computer graphics see [BGSF08].

The goal of this manuscript is to introduce the necessary steps to
synthetize the Reeb Graph from the Boundary Representation of
a closed manifold M. The proposed methodology relies on (a)
the identification of the critical points of the slice-driven Morse
function defined on M and (b) the synthesis of connectivity be-
tween critical points based on tests of geometric similarities be-
tween slices of M and the type of topological transitions.

The Medial Axis of a compact 3D region Ω Ă R3 is defined as the
set of all points p P Ω such that the closest point in the boundary
BΩ is not unique. The medial axis is a non-manifold mixture of 1-
simplices and 2-simplices. The extraction of the medial axis of a
closed manifold is computationally expensive and therefore unsuit-
able for applications that require real time interaction.

The Reeb Graph [Ree46] is a way to encode the topological char-
acteristics of a closed manifold in an efficient manner. The Reeb
graph depends on the characteristics of the level sets determined by
a slicing-driven function on a closed manifold M. Slicing a closed
2- or 3-manifold mesh is to compute level sets of a height function
f : M Ñ R with f px,y,zq “ z. The preimage f ´1 of such function
at a point c is known as a level set of f .

The topological characteristics of manifold M are determined by
the critical points of the function f defined on M. To avoid ambi-
guity in the level sets, the height function f defined on M must be
a Morse function. A Morse function is characterized by its critical
points. A critical point of f is a point p P M such that its tangent
gradient ∇M f ppq is zero. A critical point is degenerate if its tan-
gent Hessian matrix HM f ppq is degenerate, that is, if its matrix
determinant is zero.
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Morse Function: Let M be a closed and oriented 2- or 3-manifold
without inner cavities embedded in R3, and consider a twice differ-
entiable function f : M Ñ R. The function f is a Morse function if
all critical points of f are non-degenerate:

@p P M : ∇M f ppq “ 0 Ñ detpHM f ppqq ‰ 0 (1)

Given a Morse function f defined on manifold M, it is then possi-
ble to define the Reeb Graph of f , denoted as Rp f q.

Reeb Graph: Let f : M Ñ R be continuous and call a compo-
nent of a level set a contour. Two points p,q P M are equivalent
if they belong to the same connected component of f ´1

pcq with
c “ f ppq “ f pqq. The Reeb Graph of f , Rp f q “ X„, is the quo-
tient space defined by this equivalence relation.

There is a continuous map ψ : M Ñ Rp f q. Point u P Rp f q is a
node if ψ

´1
puq contains a critical point, that is, if u is the image of

a critical point of f under ψ.

The rest of the manuscript is structured as follows: Section 2
presents the literature review regarding the Reeb Graph extraction
on manifolds, Section 3 presents our proposed methodology, Sec-
tion 4 shows the application of the proposed methodology to exam-
ple data sets and Section 5 concludes the manuscript.

2. Literature Review

Two of the most commonly used characterizations of a closed man-
ifold are (1) medial axis and (2) Reeb Graph. The calculation of the
medial axis of a 3D region is a computationally expensive prob-
lem [dMPF09, RG03], making it unsuitable for applications that
require real time interaction. The Reeb Graph was introduced to
graphics applications by Shinagawa et al. [SK91].

Available methods for the extraction of Reeb Graph can be classi-
fied according to the choice of the Morse function f : M Ñ R that
encodes the topological information of the manifold [Bia04]. Some
functions used include the height function [MPRSC˚20,BGSF08],
the geodesic distance from a seed vertex [HZP14] and distance
from center of mass [BMM˚03]. The height function approach im-
poses the lowest computational cost of all three options but requires
an adequate definition of the slicing that defines the function f . The
main advantage of such a function is the independence from trans-
lations and uniform scaling. However, the height function is not in-
dependent from rotations. The approaches based on distance from
barycenter and geodesic distance from a seed vertex impose greater
computational cost than the height function method [BMM˚03],
but with the advantage of independence with respect to rotations.

Given a slicing-driven height function, available methods differ on
how to find the connectivity of the Reeb Graph. Standard meth-
ods rely solely on proximity between level sets and handle classi-
fication, such as the ones in [SK91, HWW10]. Other authors have
proposed to use heat-based mesh segmentation [HZP14] or trian-
gular mesh collapse [HWW10] to link together the nodes of the
Reeb Graph. Sweep algorithms are also used to find the connec-
tivity of the Reeb Graph, such as the one in [CMEH˚04]. Some
authors have explored the 2D shape similarity analysis between the
polygonal regions denoted by a connected component of a level set
as a filter to establish connectivity between slices [RC01,RCG˚05]

in the surface reconstruction context. The proximity-only solutions
are unreliable to produce correct results in complex topological
transitions [SK91]. The addition of a shape similarity filter in-
creases the reliability of the connectivity extraction by ensuring
the correctness of each ancestor-descendant relationship between
level sets. Other approaches, such as the one in [SSJ11], are heav-
ily dependant on the mesh representation of the manifold, entail-
ing problems regarding the mesh density and the computational
cost of mesh segmentation. Other works have focused on the def-
inition and extraction of discrete Reeb Graphs on voxelized do-
mains [BB18] or the reduction of the topological complexity of the
extracted graphs [DSMP16].

The Reeb Graph is able to adequately reflect the topological struc-
ture only of manifolds with no inner voids. When inner voids are
present, the Reeb Graph fails to univocally capture the topological
structure of the manifold [SJ15,EHP08]. The reason for this is that
the Reeb Graph is sensible only to topological changes that affect
the number of connected components in the level set (i.e. in the
cross section). The introduction of inner contours does not change
the number of connected components in a level set.

2.1. Conclusion of Literature Review

Reeb Graph extraction methods can be classified according to the
nature of the function f :MÑR that encodes the topological char-
acteristics of the manifold. The most commonly used function is the
height function. It allows for easy implementation and low compu-
tational cost at the setback of being dependant on the orientation of
the manifold in 3D space.

The synthesis of the edges of the Reeb Graph is also approached
using different methods. Proximity-only solutions are unreliable
for automatic extraction of the edges and other approaches entail
high computational costs. Some authors have explored 2D shape
similarity as an additional filter to improve reliability of level set
connectivity in other contexts such as surface reconstruction. The
Reeb Graph is limited to 2-manifolds or 3-manifolds without inner
cavities, since it is only sensible to topological changes that affect
the number of connected components.

To encode 3D shape, the medial axis computation is extremely ex-
pensive if directly addressed. On the other hand, the Reeb Graph
by itself presents the aforementioned limitations. Because of this
reason, this manuscript presents the first steps in supplementing
the Reeb Graph with geometrical information, thus allowing in the
future a reasonable encoding of 3D shape with inner voids charac-
teristics.

3. Methodology

We propose a methodology to extract the Reeb Graph of a given
Boundary Representation of a 2- or 3-manifold without inner cavi-
ties M embedded in R3. Our algorithm can be summarized in the
following steps:

1. Level set extraction: Tilt of the B-Rep to obtain an unambiguous
representation of the level sets of M.

2. Nodes definition: Sampling of the material regions denoted by
the obtained level sets of M to obtain the nodes of the Reeb
Graph.
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3. Edges definition: Synthesis of the connectivity (edges) of the
Reeb Graph according to the criteria of shape similarity and the
type of topological transition.

3.1. Level sets extraction

Given a Boundary Representation of a 2- or 3-manifold without
inner cavities M embedded in R3 (Fig. 1), a height function f :
M Ñ R is defined on the manifold driven by a planar slicing with
a set of planar surfaces Π parallel to the x´y plane. The orientation
of the manifold M in R3 must be one in which the function induced
by the planar slicing is a Morse function (see Eq. 1). The fact that
the function f defined on M is Morse ensures the unambiguity of
the level sets of M retrieved from such a mapping.

A level set Πc : f ´1
pcq defined by the preimage of the Morse func-

tion f can contain one or more contours (connected components).
For example, in Fig. 1, the level set Πci has one contour and the
level set Πc j has two contours. The contour population between
level sets evolve as a result of changes in the cross-section compo-
sition of M.

The distance between the slices is subjected to compliance with the
Nyquist-Shannon principle in all directions. The technician must
decide which level of geometric detail d is to be captured. The sam-
pling distance should be less than d{2 (in all directions). Therefore,
there is no universal sampling rate. For example, if the designer
wants to preserve very close cavities as separate ones, the sampling
distance (in all directions) must be set up as half of the minimal
separation among holes, or less

Figure 1: Definition of Morse function f : M Ñ R on M. Level
sets are obtained by the preimage of f .

3.2. Nodes definition

A set P of material points is obtained by sampling each polygonal
region denoted by the contours of each level set. Each point p P

P represents a polygonal region (connected component) inscribed
within one or more contours. As stated before (see Section 1), the
vertices V of the Reeb graph Rp f q “ pV,Eq are the points in P such
that they are critical points (i.e. they belong to a critical level set).

(a) Creation: add 0-handle (b) Annihilation: add 2-handle

(c) Union: add 1-handle (d) Separation: add 1-handle

Figure 2: Effect of Morse operators (handles) on the contour pop-
ulation between level sets Πi and Πi`1.

3.3. Edges definition

Before establishing a connectivity between the nodes of the Reeb
Graph, the topological changes in the level set sequence must be
identified and classified. A set of Morse operators known as han-
dles govern the evolution of the contour population. Each handle
represents a topological change in the manifold M and a change
in the number of contours (connected components) between level
sets. The application of handle operators can be classified as fol-
lows (Fig. 2): (a) a 0-handle creates a new contour from the empty
set, (b) a 2-handle annihilates a contour and (c) a 1-handle either
separates a contour into two different contours or unites two con-
tours into a single contour.

The occurrence of handles in the level set sequence dictates
whether a level set is critical or not. A level set is critical if there is a
change in the contour population with respect to the previous or the
next level set in the sequence. Fig. 3 shows the critical level sets in
the sequence for manifold M and the type of handle operator that
acts upon the level set sequence in each step.

Figure 3: Critical level sets on manifold M with handles.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.



Pareja-Corcho et al. / Synthesis of Reeb Graph

Figure 4: Connectivity between level sets to synthetize Reeb graph
Rp f q “ pV,Eq.

Even though the slicing provides the vertices of the Reeb graph,
the connectivity of the Reeb graph does not unequivocally follows
from the slicing. We propose an heuristic to find the edges E of
Reeb graph Rp f q “ pV,Eq by following the level set sequence and
connecting two vertices in neighboring level sets according to (a)
the handle operator that acts on the contour population between the
neighboring level sets and (b) shape similarity between polygonal
regions. In this heuristic, the non-critical level sets are necessary to
synthetize the connectivity of the Reeb graph.

For example, in Fig. 4, to obtain the connectivity between vertices
v5 and v8 it is necessary to take into account noncritical points p6
and p7 (edges e5´6,e6´7,e7´8). Each edge is labeled with a han-
dle operation according to the contour population evolution. Edges
e3´5 and e4´5 are 1-handle edges since they connect a level set
with two contours (represented by vertices v3 and v4) with a level
set with only one contour (represented by vertex v5).

Once all vertices and edges are obtained, the Reeb graph Rp f q for
a Morse function f : M Ñ R encodes the characteristics of the
Boundary Representation of the manifold M, as seen in Fig. 5.

Figure 5: Reeb graph Rp f q for the example manifold M.

4. Results

Figure 6 shows the Reeb Graph synthetized for two example data
sets. Figures 6a and 6b shows the Reeb Graph for the hands dataset.
Figures 6c and 6d shows the Reeb Graph for the elephant dataset.
In both examples the synthetized Reeb Graph correctly captures the
topological transitions that occur through the Boundary Represen-
tation. Notice that, since our methodology is geometrically-driven,
the Reeb graph resembles the geometry of the manifold M.

Even though there is not a preferred way of drawing the Reeb
Graph (connections between nodes could take any shape), the fact
that the connections resemble the geometry of the manifold M is
useful towards the use of the Reeb Graph for the computation of
the medial axis of the manifold M.

5. Conclusions

This manuscript presents a workflow for the synthesis of a Reeb
Graph encoding for a solid region in R3 denoted by its Bound-
ary Representation M. The Reeb Graph for M is a well known
topological entity. However, its geometrical realization presents
challenges and variations. Our approach starts with the rotation
of M to obtain a Morse function f : M Ñ R on the manifold,
with f px,y,zq “ z for point px,y,zq in M. Morse-compliance guar-
antees that level sets of f unambiguously determine the material
regions of M on each slice. The nodes of the Reeb Graph (non-
degenerate critical points of f ) are detected by registering the topo-
logical changes (i.e. classifying the Morse handles) in the level sets
of a Nyquist-Shannon equispaced slicing of M. The Reeb Graph
admits several edges for each pair of nodes. Detection and per-
slice-tracing of these edges is achieved by using the handle clas-
sification and 2D shape similarity among level sets.

This geometry-driven methodology correctly synthesizes the Reeb
Graph of the example B-Reps. It results in Reeb Graph representa-
tions faithful to the geometrical characteristics of M, and not only
to its topological features. Future work is needed in: (a) the ex-
tension of the methodology to obtain a topological representation
of manifolds in R3 with inner cavities and (b) trying to achieve
independence of the slicing with respect to the orientation of the
manifold in R3.
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(a) Reeb Graph on hands dataset.
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(b) Reeb Graph on hands dataset.
Viewpoint 2.

(c) Reeb Graph on elephant
dataset. Viewpoint 1.

(d) Reeb Graph on elephant dataset.
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Figure 6: Synthesis of the Reeb Graph representation on example manifolds.
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