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Preface

1. Research Engagement of Student Carlos Vanegas

It is my pleasure to provide a context to international readers of this document, on
what a graduation project is in EAFIT University, and on the Particular trajectory of Carlos
Vanegas’ work.

Carlos Vanegas is a student of the undergraduate program in Mathematical Engineer-
ing (Applied Mathematics) at EAFIT University, Medellı́n, Colombia, and has been a re-
search assistant under my supervision in the CAD/CAM/CAE Laboratory at EAFIT since
January 2004. During his years of work in my Laboratory, Carlos has participated in three
research projects, has been coauthor of four research papers that have been or will be
published in international conferences or journals, and has been twice awarded research
internships at universities abroad.

Carlos began his training in the CAD/CAD/CAM Laboratory during the first semes-
ter of 2004, while he was a laboratory teaching assistant formy course on CAD/CAM
Systems. During the second semesters of 2004 and 2005, Carlos improved and imple-
mented for large data sets our algorithm for curve and surface reconstruction from planar
point sets with stochastic noise. Such work was part of projects 1) Computation of 1- and
2-Manifolds PL-1 for CAGD, and 2) Surface reconstruction for CAD/CAM/CG.

Because of his distinguished performance in my laboratory,Carlos was awarded a
research internship at the University of Vigo, Vigo, Spain,from January to July, 2005.
He worked for the Design and Engineering Group (GED—Group de Enxẽneria e Desẽno)
under direct supervision of Prof. Dr. Eng. Xoan A. Leiceaga.His contribution was
defined to be the research and development of algorithms and software for application
of computational geometry to computer aided design, analysis and manufacturing of ship
hulls.

As a result of his especially good performance during his internship, Carlos Vane-
gas was once again awarded an invitation to work at GED, from February to July 2006,
under supervision of Prof. Leiceaga. His contribution was defined to be the design and
implementation of the dynamic model and visualization system to be used in a mobile
crane simulator. During this internship, as well as during his entire participation in my
Laboratory, Carlos Vanegas showed excellent working ethics, very good technical skills,
capability to work unsupervised and a smooth adaptation to the societal environment. His
supervisors in Vigo have let me know in both occasions of their satisfaction with Carlos’
performance and personal characteristics.

During the second semester of 2006, Carlos developed under my supervision a project
on detection of wear regions in cylindrical surfaces for thepolymer processing industry,
in which he designed and implemented a stochastic geometry application (CylWear). This
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viii PREFACE

software is currently under copyright registration process by EAFIT University, and ob-
tained outstanding evaluation by the Institute for Training and Research on Plastic and Rub-
ber, (Instituto de Capacitación e Investigacíon del Pĺastico y el Caucho—ICIPC, Medellı́n,
COLOMBIA).

2. Publications related to this Graduation Project

The results of the works in which Carlos has participated, have been included in the
following papers:

• Ruiz O, Vanegas C. Piecewise linear curve reconstruction from point clouds.
In I. Horvath, J. Duhovnik (Eds.), Proceedings of the TMCE 2006 Ljubljana,
Slovenia: Sixth International Symposium on Tools and Methods of Competitive
Engineering pp. 285–298.

• X. Leiceaga, O. Ruiz, C. Vanegas, M. Rodrı́guez, J. Prieto, E. Soto. Bi-Curve
And Multi-Patch Smoothing with Application to the ShipyardIndustry. Ac-
cepted for presentation at the ADM-INGEGRAF conference, tobe held in Peru-
gia, Italy, in June 2007.

• Ruiz O, Vanegas C, Statistical Assessment of Global and Local Cylinder Wear.
Accepted for presentation at the IEEE 5th International Conference on Industrial
Informatics, to be held in Vienna, Austria, in July 2007.

• Ruiz O, Vanegas C, Cadavid C. Principal Component and Voronoi Skeleton alter-
natives for curves reconstruction from noisy point sets. Accepted for publication
in the special issue on shape search, reconstruction and optimization of the Jour-
nal of Engineering Design.

3. Assistance to Conferences related to this Graduation Project

As a result of these achievements, Carlos has been awarded two travel grants by EAFIT
University: the first one to present our paper on Curve Reconstruction in Ljubljana, Slove-
nia, in April 2006, and the second one to present our paper on Curve and Surface Smooth-
ing for Naval applications in Perugia, Italy, in June 2007.

4. Hourly Intensity for a Graduation Project

The total time that an undergraduate student of Mathematical Engineering (Applied
Mathematics) is required to designate to the development and writing of his undergraduate
is 150 hours. During his work in my laboratory, and in the laboratory of Prof. Xoan
Leiceaga, Carlos has worked an average of 25 hours per week, 42 weeks per year, during
3 years (over 3100 hours in total). Based on this fact, I estimate that the total number of
hours that Carlos has carried out research activities directly related to the material included
in this work is roughly 1700 hours.

5. Grade Point Average

Carlos holds an overall undergraduate grade point average (GPA) of 4.7 in a 5.0 point
scale. It must be pointed out that, unlike relative grading systems, EAFIT University
uses an absolute grading scale. Under such a circumstance, afull score (5.0) can only
be achieved by a student with full score in every homework, exam, project and other grade
in a course. Therefore, a 5.0 grade is extremely uncommon.
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6. Graduate Study Perspectives

As usual in the CAD CAM CAE Laboratory at EAFIT, Carlos Vanegas wishes to be-
gin graduate studies immediately after obtaining his B.Sc.degree. In August 2006, Carlos
began his application process to the Doctoral Program in Computer Science at Purdue Uni-
versity, Indiana, USA. In February 2007, Carlos was offereda Graduate Assistantship to
begin his studies at Purdue in Fall 2007 (a top and competitive research University in USA).
According to the Dept. of Computer Science at Purdue, the Graduate Program in Com-
puter Science received over 640 applications for 20 slots (96.8% rejection probability), for
Fall 2006.

I must point out that Carlos had open doors at several world-class universities and re-
search institutions for his Doctoral track. I am glad about his choice for Purdue University.
I know that such a choice will be good for both parties involved.

Sincerely Yours,

———————————————–
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA





Introduction

An increasing number of industrial CAD CAM CAE applicationsdeal at a given stage
with geometric problems, for which solutions must be devised using elements of computa-
tional geometry. Computational geometry is the study of algorithms and data structures for
the solution of geometric problems and the manipulation of geometric entities. Stochastic
geometry is the mathematical discipline which studies mathematical models for random
geometric structures. This work is a compilation of computational geometry methods that
have been devised and implemented in the CAD CAM CAE Laboratory at EAFIT Uni-
versity (Medellin, COLOMBIA) and the Group of Engineering and Design at University
of Vigo (Vigo, SPAIN). Such methods are solutions proposed to three different geometric
problems, all of them originating in real CAD/CAM/CAE industrial applications: curve
reconstruction, assessment of cylindricity, and curve andsurface smoothing.

Subfields of computational geometry include combinatorialgeometry, stochastic ge-
ometry, and numerical geometry. Specific examples of each ofthese subfields can be found
within the methods presented in this work. For instance, thepoint set partitioning problem,
which is a step in the processing of the point set in both the curve reconstruction and cylin-
dricity assessment problems, belongs to the subfield of combinatorial geometry. Another
problem of this type is the Delaunay triangulation of a pointset, which is a step in the
deterministic method proposed to the curve reconstructionproblem.

Two of the problems attacked in this work (curve reconstruction and assessment of
cylindricity) deal with input data sets exhibiting a stochastic nature. Consequently, statis-
tical methods (including Principal Component Analysis -PCA), were used in the proposed
solutions for the problems. PCA aims to reduce the dimensionof data sets in order to sim-
plify further data processing. The dimension is reduced by eliminating those variables that
contribute the least to the variance of the data set. In the problem of curve reconstruction,
PCA is used by us to reduce the dimension of a local region of the point cloud from 3 to 1,
by identifying the direction in space in which the point set presents the greatest variance.
In the case of cylindricity assessment, PCA is used to determine the longitudinal axis of
the cylinder from a set of sampled points. The axis is used to calculate a transformation
that unwraps the point set in order to bring the point set to a space in which analysis of
cylinder wear is significantly easier.

The curve- and surface-smoothing problem presented here requires the manipula-
tion of B-spline curves and surfaces so that given continuity conditions can be achieved
throughout the union of several surfaces. For this purpose,the control points of such curves
and surfaces are modified following geometric criteria of continuity. The method proposed
to solve this problem represents an application of numerical geometry, since geometric
modeling by means of spline curves and surfaces is considered to lie in this field. The
problem of calculating new positions for control points so that tangent plane continuity is
achieved in a point common to four patches, belongs to the field of combinatorial geometry.
In this case, an heuristic approach is proposed. The convergence from the dynamic-system
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xii INTRODUCTION

point of view, of such heuristic algorithm is intuitively discussed in this document, but no
mathematical proof of convergence is provided, as it somehow falls outside of our intended
scope.

The reconstruction of a curve from a noisy, unorganized point sample of it, is one of
the most important problems in the reverse engineering of geometric models. To be solved
in this work, this problem requires the application of combinatorial geometry and spatial
statistics.

The assessment of cylindricity of nominally cylindrical objects from a sample taken
on the surface of the object is a relevant problem in metrology, since a large fraction of
mechanical parts are cylinders. In particular, in the injection of plastics and polymers, the
wear of the extrusion cylinder represents an important portion of power losses. Therefore,
its diagnostic is economically attractive for the parties involved. Applications of spatial
statistics and combinatorial geometry build up the solution proposed.

The smoothing of B-spline curves and surfaces is a frequent problem in the modeling
of ship hulls, since B-splines have been used extensively inthe past to define ship hull
geometry for design purposes. Due to the complex shape of some ship hulls, it is preferred
to use a collection of B-splines patches to model the hull rather than a single patch. Au-
tomatically achieving tangent plane continuity throughout the collection of patches is then
desirable for design purposes, since the manual repositioning of control points defining
the patches is tedious and unfeasible in most cases. Methodsof numerical geometry and
(heuristic) combinatorial geometry are used in the implementation of the automatic process
proposed here.
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CHAPTER 1

Principal Component and Voronoi Skeleton Alternatives
for Curve Reconstruction from noisy Point Sets

CONTEXT : The CAD CAM CAE Laboratory at EAFIT University, under my coordi-
nation, started the research of the application of a statistical method, Principal Component
Analysis (PCA), to geometrical scenarios in 2000. Through the years, several papers have
been written on this subject, progressing in the level of application and formalization of
PCA to Stochastic Geometry. This work has been founded by EAFIT University and the
Colombian Council of Research and Technology (COLCIENCIAS) in several research
projects. In addition, the German Service of Academic Exchange (Deutscher Akademis-
cher Austauschdienst - DAAD) has also founded my visiting research at the Max-Planck-
Institut fur Informatik at Universiẗat des Saarlandes in 2004, where further research on the
topic was carried out.

Carlos Vanegas, research assistant under my direction in the CAD CAM CAE Lab-
oratory, was able to program the application of the devised methods to large sets of data.
For such a purpose, theoretical contributions were needed,which appear in two papers:

• O. E. Ruiz, and C. A. Vanegas, “Piecewise linear curve reconstruction from point
clouds,” in Proc. 6th International Symposium series on Tools and Methods of
Competitive Engineering, Ljubljana, Slovenia, April 18-22, 2006, pp 285-298.

• Ruiz O, Vanegas C, Cadavid C, “Principal Component and Voronoi Skeleton
alternatives for curves reconstruction from noisy point sets,” To be published in
the special issue on shape search, reconstruction and optimization, of the Journal
of Engineering Design.

As co-authors of such publications, we give our permission for this material to appear
in this document. We are ready to provide any additional information on the subject, as
needed.

———————————————–
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA
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2 1. CURVE RECONSTRUCTION FROM NOISY POINT SETS

ABSTRACT. Surface reconstruction from noisy point samples must take into consideration
the stochastic nature of the sample. In other words, geometricalgorithms reconstructing the
surface or curve should not insist in following in a literal way each sampled point. Instead,
they must interpret the sample as a “point cloud” and try to build the surface as passing
through the best possible (in the statistical sense) geometric locus that represents the sam-
ple. This work presents two new methods to find a Piecewise Linear approximation from
a Nyquist-compliant stochastic sampling of a quasi-planarC1 curveC(u) : R → R3,
whose velocity vector never vanishes. One of the methods articulates in an entirely new
way Principal Component Analysis (statistical) and Voronoi-Delaunay (deterministic) ap-
proaches. It uses these two methods to calculate the best possible tape-shaped polygon
covering the planarised point set, and then approximates themanifold by the medial axis
of such a polygon. The other method applies Principal Component Analysis to find a direct
Piecewise Linear approximation ofC(u). A complexity comparison of these two methods
is presented along with a qualitative comparison with previously developed ones. It turns
out that the method solely based on Principal Component Analysis is simpler and more
robust for non self-intersecting curves. For self-intersecting curves the Voronoi-Delaunay
based Medial Axis approach is more robust, at the price of higher computational complex-
ity. An application is presented in Integration of meshes originated in range images of an
art piece. Such an application reaches the point of complete reconstruction of a unified
mesh.

1. Introduction

Reconstructing a curve or a surface from a point set is one of the most important prob-
lems in the reverse engineering of geometric models. In somecases curve reconstruction
plays an important role in the surface reconstruction problem [21]. It is the goal of this
paper to present two methods involving statistical (Principal Component Analysis -PCA)
and deterministic techniques (Voronoi-Delaunay) for reconstructing a set of curves from
noisy unorganised point sets. An application for surface reconstruction is presented, using
data sets resulting from objects captured by range images. The references examined indi-
cate that such a combination of methods has not been tried before for curve and surface
reconstruction, or for range image mesh integration.

Even though this work will concentrate on quasi-planar curves, the statistical methods
involved directly extend to arbitrary curves in3D. Two types of noisy unorganised point
sets have been considered. One of them results from samplingand adding statistical noise
to a set of mutually disjointregular parametric curves (i.e. whose first derivative vector
is continuous and never vanishes)Ci(u) in R3. The other point sample is originated in a
cluster of individual meshes from range images. The point samples are assumed to comply
with the Shannon or Nyquist criteria for digital sampling.

Problem Statement. Given a sampleS = {p0, . . . , pN} from an (unknown) set of
mutually disjoint regular (open or closed) quasi-planar parametric curvesCi(u) in R3 and
which may self-intersect, a PL (Piecewise Linear) estimation of eachCi(u) is to be found.
As seen later, without loss of generality we may assume thatC ⊂ R2.

The statistical methods which estimate the tangent to a curveCi(u) are not capable of
determining by themselves the correct sense of the±v tangent vector. For this reason we
require that the curve has certain continuity in the derivative and that in the neighbourhood
of each of its points it is well approximated by a straight line. That is,Ci(u) must be
C1-continuous and its velocity vector must never vanish (i.e.the curve must beregular).

In this paper the stated problem is solved and an applicationof its solution is pre-
sented, for integration of range image meshes. To integratea set of meshes of individual
range images, the set of meshes is sliced by parallel planes.Each sliceSk turns out to
be a coplanar set of pointsSk = {P0k

, P1k
, . . . , PNk

} with a strong statistical component
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stemming from the optical sampling error. The proposed algorithm finds a PL estimation
of the curveCk(u) that adequately fits the points in the noisy unorganised point setSk. The
Literature Review section illustrates that such an integration of individual range meshes is
still an open problem in several aspects. Section 5.1 discusses the application of PL curve
reconstruction in detail.

Another application of the proposed algorithms in integration of individual range
meshes arises when a particular slicek is missing or incomplete In the case of range imag-
ing, this occurs when a portion of the object is not captured by any of the images. In such
a case, point samples from levelsk − 1 andk + 1 are projected onto the insufficiently
sampled planek. The resulting cross section on planek must then be recovered from a
possibly noisy point set. This point set should be treated with statistical tools, and the
cross sections recovered should be the best fit to the planar point cloud contained in plane
k.

A variant of the first type of noisy point sets (used to illustrate the Voronoi-Delaunay
method) consists of a noisy sample of a self-intersecting planar parametric curve. Figure
1.1 shows a situation in which the local geometry of a planar slice (for example a Com-
puter Axial Tomography - CAT) added to the presence of stochastic noise renders a set of
points that look like the one in Figure 10(a). Clearly, less extreme situations may render an
“8”-like section in the presence of a high level of stochastic noise. In the case of a sample
of an “8”-like section two legal resulting PL approximations are equally likely: (a)two
separate circular polygons, and (b)onepolygon with a thin wasp waist. It is clear that near
the self-intersecting point any algorithm may be confused.A survey of reverse engineering
methods is presented in Varady, Martin and Cox [31], being evident the use of curve recon-
struction from point samples for generation of revolution or extrusion 2-manifolds. One
of such applications is presented by Lee [21]. This application is particularly important
in reverse engineering when the designer interactively tests the fitting of such surfaces to
specific portions of the point set.

FIGURE 1.1. 2-manifold sample which renders a non-manifold curve.

2. Literature Review

Several solutions are available for curve reconstruction from point sets without noise.
A survey on techniques for the case of closed, smooth, and uniformly sampled curves
can be found in Edelsbrunner [11]. Methods for non-uniformly sampled smooth curves,
and for uniformly sampled non-smooth curves are cited by Althauset al. [2]. Some TSP
(Travelling Salesman Problem) and tour improvement heuristics were used by Althaus and
Mehlhorn [3], and good experimental results were reported.In Amenta, Bern and Eppstein
[4] the PL approximation of aC2 curve sampled in a dense pattern proportional to its local
feature size (a modification of the Nyquist criterion) is discussed. Two graphs, thecrust
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andβ-skeletonare discussed, whose edge set exhaust the point sample. It should be noted
that the curve reconstructed by these algorithms passes through each of the sampled points,
and this type of solution is not adequate for the noisy point sets considered in the present
paper.

The methods proposed for the case of non self-intersecting unorganised noisy point
sets include spring energy minimization [12], implicit simplicial curves [29],α-shape
polygonal boundaries and medial axes [10], and moving leastsquares [21]. A review
of these methods along with their limitations can be found inLee [21]. Verbeeket al. [32]
approximate an open curve byk segments that are least squares approximations of point
subsets contained in Voronoi regions for sets of segment. Byincreasingk, better approxi-
mations to the curveC(u) are found until a fitting criterion is met. However, the segments
still need to be joined in a Hamiltonian graph, significantlyadding to the complexity of the
algorithm. The segments of the Hamiltonian graph may be larger than the segments found
in fitting the point set. This has the effect of producing a PL approximation that may be
deformed when compared with theC(u) curve.

[7] attack the problem of noisy point samples by computing a new point set having less
noise as than the initial point set. The actual PL approximation toC(u) is computed using
a crust algorithm (in this case the NN Crust by Dey and Kumar [9]). The new point set is
calculated as follows: for each sample pointp a thin rectangle is built with its main axis
normal to the curve tangent and covering a certain number of point samples. The centre of
such rectangle replacesp for the remaining of the algorithm run. The rectangle centres are
closer to theC(u) curve than the original sampled points. From all these rectangle centres
one keeps the most external ones. In this way, the point set ispruned while a supporting
width for crust algorithms is provided. At the end, a crust algorithm is called. In the
method discussed in our paper, a ballB(p, r) replaces the rectangle, and the centre of mass
of the points inside the ball is assumed to be onC(u). Also, the ball contains a point set
whose main trend is tangent toC(u) instead of normal to it. In our approach, no additional
crust algorithm is needed, since the PL approximation toC(u) is directly built using the
centre of mass of those points in the sample which are contained in the ball.

Wang, Pottmann and Liu [33] fit B-splines to a set of noisy point sets using curva-
ture - based squared distance minimization. For this reason, the minimization requires the
form of the equation (spline), and makes no attempt to attacknoisy point sets with self -
intersecting conditions. On the other hand, no discussion of the complexity of the algo-
rithm is provided in time or in computational space. We feel that keeping the objective as
a PL curve avoids the literal formulation of B-splines in thealgorithm. Also, our research
has as a goal the representation of non-manifold curve samples as PL non self-intersecting
curves (i.e., manifold topologies), which allow for the subsequent usage of the PL curves
in geometrical or topological constructs.

Kegl [19] and Kegl and Krzyzak [20] explore the recovery of a Principal Graph un-
derlying a 2D point sample (e.g. a character meant to by pen strokes). The authors set up
a numerical optimization algorithm that weights two competing criteria in the graph: (i)
should as closely as possible follow the many pixels in the stroke, and (ii) should not have
high curvature portions. An important feature for the application of this algorithm is that,
since a character is sought, the final P.L. approximation does not have to be a manifold.
Therefore, self-intersections are permitted (like in the “H” or “8” characters). In our case,
the final result of the reconstruction should be a set of disjoint non self-intersecting curves,
and therefore one must take care of higher requirements thanthe ones [20] and [19] met.
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Range Images and Point Set SurfacesBecause the algorithms proposed in this paper
are to be applied to the integration of range images, the authors consider that a review on
range images is worth as a motivation for the reader. Range imaging offers a manner of
digitizing the shape of three-dimensional objects. Because all opaque objects self occlude,
no single range image suffices to describe the entire object,making necessary the com-
bination of a collection of range images from diverse viewpoints into a single polygonal
mesh that completely describes the object. Turk and Levoy [30] create individual meshes
for the different range images and clip them against each other for integration. Unfortu-
nately, their integration method shows instabilities documented in [8]. [8] integrate range
images by creating a scalar field containing the minimal signed distancef(x, y, z) from
the point(x, y, z) to the object’s surface. Afterwards, a Marching Cubes algorithm creates
the B-Rep of the iso-surfacef(x, y, z) = 0. A shortcoming of this method is the fact that
the signed distance is calculated as a directional (insteadof a scalar) property, and there-
fore there is no guarantee that the scalar field correctly registers the signed distance from
a point to the surface. In Soucy and Laurendeau [28] the very high computational cost of
combining range image meshes after registration and surface meshing is discussed. In this
reference overlapping components of the meshes corresponding to different range images
must be identified, with a large computational cost, of the orderO(2N − 1) whereN is the
number of range images. This reference unrealistically assumes the accuracy of the range
data, as precision of the range data deteriorates in the periphery of each range image. In
Zhou, Liu and Li [34] a heuristic method for merging overlapping triangular meshes from
range images is discussed. This article does not prove the correctness of the method ex-
posed, which is based on the distance between triangles thatare considered as overlapping.
The less likely mesh is projected against the more likely one, based on a purely geometric
projection, giving rise to topological inconsistencies that are not dealt with rigorously.

For the direct treatment of the integrated point cloud from individual range images
Hoppe et al [18] use thek nearest point neighbours of a particular pointp in the cloud to
estimate the best local tangent plane. The plane is then usedto construct the signed distance
functionf(q) : R3 → R from pointq to such plane. A Marching Cubes algorithm is then
used to construct an approximation for the manifoldf(q) = 0. This reference does not
discuss the reconstruction of manifolds with border, nor the behaviour of the algorithm
in incorrectly smoothing sharp edges of the piece. Indeed, their examples show a strong
trend to filter out high frequencies. For these reasons, directly fitting surfaces to point sets
has been an open research field since 1992. As a consequence, there has been a steady
stream of publications in this direction. Ohtake et al [25] use spherical influence regions to
calculate most likely points on the surface and local normalvectors. For these authors and
others, however, a difficulty with direct reconstruction ofthe manifold from the integrated
point cloud remains in the fact that stitching together the local planes (triangles) gives rise
to non-manifold topologies. Adamson and Alexa [1] propose the computing of ellipsoidal
weighting functions per sample to represent an implicit surface using supporting regions
around each sample (Point Set Surfaces). It must be noted that such an approach does not
explicitly compute the Boundary Representation of the model. Instead, it lends itself for
visualization with ray casting.

The authors of the present article have found that the issuesarising in curve reconstruc-
tion and in a possible application of it to range mesh integration are still an open problem in
applied computational geometry. As seen from the literature review, curve reconstruction
of self-intersecting curves is also unsolved. In range images, a reliable algorithm for mesh
integration has not been proposed. Even in commercial systems [26] such an integration
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requires the user interaction for correcting self-intersecting portions, holes, etc., that are
left after the triangulation merges. Such facts have encouraged the authors to publish the
present paper.

Section 3 examines the adaptation of statistical methods tobe used in the present
problem. Section 4 discusses the concepts necessary to implement the algorithms and their
articulation in reaching the solution. Results for severaltypes of point sets including non-
smooth, self-intersecting, and non-uniform sets obtainedwith both methods are presented
in Section 5. Section 5.1 describes an interesting integration of one of the methods to sur-
face reconstruction from range images, and presents the results obtained for a real object.
Section 6 discusses the computational complexity of the implemented methods. Finally,
Section 7 draws the relevant conclusions, and proposes bases for future work.

3. Statistical Approach

The statistical approach for curve reconstruction from point samples has precursors in
Hastie and Stuetzle [17]. In this reference, the authors define Principal Curves as smooth
ones, which pass through the middle of, and are self-consistent with, a sampled cloud of
n-dimensional data with dispersion (relative to the unknowncurve) following a normal
distribution(µ, σ).

3.1. Principal Component Analysis (PCA).Although the following discussion deals
with noisy point sets inR2 andR3, it may be useful to know that the stochastic analy-
sis presented is applicable to samples inn dimensions (in fact, the Principal Component
Analysis method was developed for the treatment of samples in n-dimensional space, with
n >> 3).

Let S = {pi ∈ Rn : 1 6 i 6 m} be a set ofm sample points inRn . Without loss of
generality one may assume that

(1) µ1 = µ2 = .... = µn = 0

meaning that the expected value of then-dimensional distribution or thepi’s is the origin
of Rn. Let Σ be the covariance matrix of the sample, whereΣi,j is the covariance of the
ith against thejth component of thepi points.

One is interested in rotatingS with an orthogonal transformationR such that the new
setS′ = {qi ∈ Rn : 1 6 i 6 m} of transformed sample pointsqi = R ∗ pi presents
maximal dispersion in the direction of the first axis ofRn, the second maximal dispersion
in the direction of the second axis, and so on. For a3D point set that has a stochastic
linear trend, establishing the direction of maximal dispersion isequivalent to identifying
the direction vector of the line from which the sample was taken. For a3D point set with
an stochasticplanar trend, establishing the direction of minimal dispersion identifies the
normal vector of the plane from which the sample was taken.

Let Xp, Yp, Zp be the unit vectors pointing in the directions in whichS has the largest
(σx), second largest (σy) and smallest variance (σz), respectively. It may be shown that

(1) The pairs(±Xp, σx), (±Yp, σy), and (±Zp, σz) are eigenvector - eigenvalue
pairs of the matrixΣ:

Σ ∗ (±Xp) = σx ∗ (±Xp)

Σ ∗ (±Yp) = σy ∗ (±Yp)

Σ ∗ (±Zp) = σz ∗ (±Zp)(2)
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(2) ±Xp, ±Yp, ±Zp are mutually orthogonal:

(3) Xp • Yp = Xp • Zp = Zp • Yp = 0

(3) R ∗ [Xp, Yp, Zp, Op] = [Xw, Yw, Zw, Ow] and therefore:
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where[Xw, Yw, Zw, Ow] is the World Coordinate System or a fixed reference frame. With-
out loss of generality, one may assume thatXw = [1, 0, 0]T , Yw = [0, 1, 0]T , Zw =
[0, 0, 1]T , Ow = [0, 0, 0]T and therefore the right hand side of item (iii) above is a clipped
4 × 4 identity matrix. Because an eigenvector can always be normalized, it can also be
assumed that|Xp| = |Yp| = |Zp| = 1. Equation (4) results from the completion of the
identity matrix in item (iii) and its (trivial) inversion.

As a result,[Xp, Yp, Zp, Op] is easily found and constitutes a right handed coordinate
system. In particular,[Xp, Yp, Zp] is an orthogonal matrix. As desired, a parametric line
p(η) = Op + η ∗ Xp which passes through the centre of gravity of the point cloudS is
found by sorting and naming the eigenvector-eigenvalue pairs ofΣ so thatσx ≥ σy ≥ σz.

From Equations (2) and (4) it is clear that for quasi-planar data set, the eigenvector
Zp associated toσz is the estimation of the direction normal to the fitting plane, since
σz is by definition the direction of minimal dispersion of the (quasi-planar) set of points.
Conversely, for line data, the estimation of the direction vector of the line is the eigenvector
Xp, since it is associated to the eigenvalueσx representing the maximal dispersion.

3.2. Least Squares Fitting.Section 3.1 explained how the coordinate system
[Xp, Yp, Zp, Op] is calculated using PCA, by computing the eigenvector-eigenvalue pairs
(±Xp, σx), (±Yp, σy), and(±Zp, σz), of matrix Σ . Because geometric kernels do not
usually have routines for calculation ofn-dimensional eigenpairs, a method was devised
for the 3-dimensional case at hand. The method takes advantage of the fact that point sam-
ples from Coordinate Measurement Machines, Machine Tool stylos, CAT scans, etc., are
planar or quasi-planar. As a consequence, a very close estimation of the lowest dispersion
direction (the vectorZp normal to the plane) can be easily achieved. The point cloud pro-
jected on this plane loses one dimension and therefore the problem becomes 2-dimensional.
Therefore, a solution of the eigenpair problem in Equation (2) can be achieved as an ex-
tension of a Least Squares (LS) fitting. The LS method cannot be directly applied since it
is based on theimplicit equationy = mx + b , which has no solution ifm is the tangent of
±90o. A random rotation aroundz, followed by LS fitting and the corresponding counter
rotation of the point data set, avoids this problem and allows to express the 3D trend of the
point cloud in terms of aparametricequationp(η) = Op + η ∗ Xp.

In two dimensions, the LS method detects the trendm of a linear phenomenon. Since
the 3D problem at hand is projected into 2D space, findingm in 2D reduces to calculating
the projection of the 3D direction vectorXp of p(η) onto the best fitting plane for the point
set. Notice that the point set is not exactly planar because of the machine tool sampling
errors. Since Least Squares is just a PCA in two dimensions, in what follows, “PCA” and
“Least Squares” should be read as synonyms.
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3.3. Point Sample Partition. Regardless of the method employed to estimate a PL
approximation for the curves, it is capital to recognize thefact that the data set must be
partitioned into the data sets originated from the individual curvesCi(u). In order to
perform such a partition let us define an equivalence relation on the point setS, as follows.
If the sampling conditions are anisotropic and constant over R3, a pointp ∈ S is said to
“be the extended neighbour” of a pointq ∈ S , if and only if there exists a sequence of
points of the sampleS starting atp and ending atq such that no two consecutive points of
the sequence are farther apart by more than a fixed distanceǫ from each other. Letr(p, q)
be read as “p is an extended neighbour ofq”. Formally, two pointsp, q are Extended
Neighbours of each other, whenever there exists a sequence[q1, ..., qw] such that each
qi ∈ S, q1 = p, qw = q and |qi − qi+1| ≤ ǫ. The r( ) relation defined above is an
equivalence relation since it satisfies:

(1) r(Pi, Pi) (reflexive: a pointPi is extended neighbour of itself).
(2) r(Pi, Pj) ∧ r(Pj , Pk) → r(Pi, Pk) (transitive: ifPi andPj , andPj andPk are

extended neighbours,Pi andPk are so).
(3) r(Pi, Pj) → r(Pj , Pi) (symmetric: ifPi is extended neighbour ofPj thenPj is

extended neighbour ofPi).

This equivalence relationr( ) splits S into subsetsS1, S2, ... with the property that
r(Pi, Pj) holds (are extended neighbours) if and only ifPi andPj belong to the sameSk.
Properties (i), (ii) and (iii) of the relationr( ) imply that∪iSi = S andSi ∩Sj = φ, i 6= j.
EachSi of the partition happens to be the set of points sampled from the curveCi(u).
The partition of the setS by the equivalence relationr( ) is realized by using a standard
algorithm oftransitive closurewhich will not be discussed here.

4. Algorithms

Two algorithms for determining a PL approximation for quasi-planar 1-manifolds in
R3 are presented in this section, along with two figures that show partial results obtained
at the main steps of each one of them.

4.1. Data Pre-Processing.The point data must be pre-processed in the following
sequence: (i) Scaling: to guarantee that a standard bounding box of the setS is available
(PCA requires such a box). (ii) Partition: to divideS into subsets, each one containing the
points ofS corresponding to an individualCi(u) curve. (iii) Identification of Best Plane:
to find a statistical planeΠ fitting the quasi-planar point setS. (iv) Correction to Planar
Set: to projectS ontoΠ in order to have a perfectly planar point set. (iv) Transformation
to XY Plane: to use the algorithmic results in literature which deal with point sets in the
XY plane. Step (ii) is required since severalCi(u) curves may have been sampled and the
point set would represent several unrelated curves. In whatfollows, the notationCi(u) will
be changed toC(u) since the analysis is per curve. A post-processing step consisting in
reversing the transformations performed in the pre-process, is necessary in order to bring
the found solution back to the original space.

4.2. Curve Reconstruction with Least Squares.After the data pre-processing steps
mentioned in Section 4.1 take place, the Least-Squares-based algorithm takes as input a
quasi-planar setS, and returns a polyline that fits these points by performing the steps
discussed below and displayed in Figure 1.2.
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FIGURE 1.2. Curve Reconstruction with Principal Component.

4.2.1. Optimal Local Point Set Estimation.Given a noisy unorganised point set, re-
sulting from a stochastic sample with variance[σx, σy, σz] of a planar 1-manifoldC(u)
(possibly open) lying on planeΠ in R3, one is interested in estimating the tangent line
dC(u)/du|u=u∗ , at pointC(u∗) of the curveC(u). PCA and Least Squares are applied to
points of the sample which are contained inside a ballB(Ps, R), centred at a seed point
Ps and having radiusR. Two competing aspects must be compromised: (i) the ball should
be small enough so that data setS can be considered to fit a linear estimation of the local
tangent; (ii) the ball should be large enough so that the goodness of the linear estimation is
kept. To achieve (i) and (ii) an iterative search is conducted for a combination ofPs andR,
optimal for the linear fitting of local neighbourhoods ofS. The iterative search starts with
a ballB(p(0), r(0)) enclosing a setS(0) of points. Letǫ (p, r) be a function that associates
a least-square regression fitting error to the points insidea ball with centrep and radiusr.
It is desired to find the values ofp andr that minimizeǫ. Applying the PCA to the point
set, a measurement of the fitting error is found. In thek − th iteration a new value otr(k)
is proposed (r(k + 1)), which changes the size of the ballB(r(k + 1), p(k)). This ball, in
turn will enclose a different set of pointsS(k + 1), with new centre of gravityp(k + 1).
The fitting of a new straight line to the setS(k + 1) will render a new fitting error. The
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iterations stop when such an error has a local minimum. Thisad hocprocess was found to
have good convergence.

4.2.2. Piecewise Linear Reconstruction ofC(u). In the following discussion the term
B(p, r) will mean both the ball with radiusr centred atp, and the subset of the point sample
contained in such a ball. The context will define which meaning is intended. The algorithm
in Figure 1.2 performs an estimation of the linear trend of the points in the optimized ball
B(p, r). Such an estimation produces a parametric equation for a straight line in space
p(η) = Op + η ∗ v with |v| = 1, whereOp is the centre of gravity of the points inside
B(p, r), v is the linear trend of the line (also calledXp in section 3.1).Op is denoted
asCG(B(p, r)) in Figure 1.2. Such a point is stored directly in the linear estimation of
theC(u) curve. The ball for the next iteration is initially centred at Op + d ∗ v, whered
is the progression step of the algorithm and|v| = 1. SinceB(pi, ri) andB(pi+1, ri+1)
intersect, it is clear that each sampled point may be used in several balls, and therefore
in the estimation of successive tangents. Notice that the index i corresponds to already
optimised balls in evolving localities of the curveC(u) such that|pi+1−pi| ≈ d. In Figure
1.2 the need for determining whether+v or −v is the correct trend is omitted (recall that
PCA returns±v). This is easily done by ensuring thatvi •vi+1 > 0. The later requirement
is reasonable since the curveC(u) is assumed to be regular.

The algorithm will continue as long as there are enough available points of the setS
(see section 3.3) which fall inside a ball. Each point can be used in several balls, being
their number set by the user. In Figure 1.2 the marking of the multiply used points ofS is
omitted for the sake of clarity. When this algorithm terminates, the curveC(u) has been
piecewise linearly estimated.

A noisy point set generated from a range image Multi-Mesh sample is shown in figure
3(a), together with the balls used by the reconstruction algorithm. Figure 3(b) shows the
resulting reconstructed curve.

(a) Noisy Point Set from Range Image Multi-Mesh sam-
ple and Balls used in the reconstruction process.

(b) Reconstructed Curve.

FIGURE 1.3. PCA-based Reconstruction.
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FIGURE 1.4. Line Reconstruction through Delaunay-Voronoi Techniques.

4.3. Principal Curve via Delaunay Triangulation. The following discussion will
be illustrated using a planar 1-manifold with border (openC(u)). Later on, the concepts
explained will be applied on self-intersecting (i.e. non-manifold) planar curves.

For planar self-intersecting curves, PCA alone is not robust enough. Additional pro-
cessing is required since the points in the neighbourhood ofthe self-intersection are ex-
hausted for purposes of PCA estimation as the PL approximation crosses the first time
over the intersection neighbourhood. As the PL curve revisits the intersection neighbour-
hoods no points are available for identifying the trend of the curve, and the algorithm tends
to look for another point (i.e. curve) neighbourhood where to work, without really having
reproduced the intersection. The result is an incomplete curve stage, therefore missing the
self-intersection detail.

To deal with self-intersecting curves, it was decided to determine the tape-shaped poly-
gonTσ coveringS (definition below). Figure 1.4 displays the algorithm discussed next.

Definition. Tape-shaped PolygonTσ. Let C : R → R3 be a planar regular paramet-
ric curve, which may self-intersect. Without loss of generality let us assume thatC ⊂ R2.

Givenσ > 0 a real number, defineTσ = {p ∈ R2 : d(p,C) ≤ σ}. There existsσ0 >
0 such that if0 < σ ≤ σ0 then for everyp ∈ Tσ (i) the set of points{qp,1, ..., qp,rp

} ⊂ C
formed by those points whose distance top equalsd(p,C) is finite. Theqp,i points inC are
the ones which realise the distance fromp to C; (ii) the distance between any two points
in the set{qp,1, ..., qp,rp

} is less than2σ. Observe thatσ is dictated by the precision of the
measurement device which samplesC. We assume that the measurement device allows a
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precision ofσ ≤ σ0 and therefore thatS ⊂ Tσ. Note that theqp,i could be regarded as
the points to be sampled in the curveC in absence of sampling noise and that ifC is non
self-intersecting thenq is unique for eachp ∈ S.

For small enough values ofσ0 (Nyquist samples)Tσ resembles a tape region covering
the curveC. Let us defineQS = {q ∈ C : d(p, q) = d(p,C), for somep ∈ S}. Note that
if S has no statistical noise,QS = S andQS would be a noise-free Nyquist sample ofC.

4.4. Approximation of Tσ. Under the condition ofS being a Nyquist-compliant
sample, this article proposes an algorithm to approximate the tape-shaped polygonTσ.
The algorithm follows three steps:

(1) calculates the Delaunay Triangulation ofS, DT (S);
(2) then selects fromDT (S) small triangles;
(3) and finally, makesTσ the boundary of the union of the triangles selected in (ii).

In order to apply such a method, an estimation of what a “smalltriangle” is, should be
made precise. For this purpose the typical area and edge length of Delaunay triangles be-
longing toTσ need to be estimated. To do that, PCA is iteratively run on neighbourhoods
of the data set, thus determining the linep(η) = P0 + η ∗ v that best approximates the
tangent to theC(u) curve in that neighbourhood. The points ofS that produce such a fit
are contained inside a ballfD ∗ B(P0, R0) approximately centred on a local neighbour-
hood ofC(u). Delaunay triangles contained within a scaled version of this ball, namely
fD ∗ B(P0, R0) (with fD = 1.3 being an empirically chosen enlarging factor) might be
considered as “typical” of the ones formingTσ, rendering “typical area”̄A and “typical
edge length”̄l values.

One considers that a triangle is small if either of the following criteria ([14] and [16])
holds:

(1) Enclosure: Accept a Delaunay triangleDTi if it is contained within the local
PCA ball, that is, ifDTi ⊆ B(P0, R0) whereB(P0, R0) is the best local PCA
ball (see Figure 5(c)).

(2) Area and Edge Length: Accept a Delaunay triangleDTi if its Area or maximal
Edge Length are small. That is, ifArea(DTi) ≤ fA ∗ Ā or if Emax ≤ fl ∗ l̄,
respectively, for fixed constantsfA andfl.

We give an informal discussion for the correctness of the procedure to obtain an ap-
proximation ofTσ. The tests run gave a good performance in the filtering of Delaunay
triangles. An advantage of the implemented algorithm is that the application of PCA to the
local neighbourhoods of the point cloud allows the estimation of the sizes of the triangles
to be deleted and to be kept.

Let us suppose that, contrary to the assumption, a large triangle DTi = [vj , vk, vl]
belongs toTσ. Since it is a Delaunay triangle, its circumcircle containsno points ofS.
But sinceDTi is a large part ofTσ, a large portion ofTσ contains no sample points,
contradicting the fact thatS is a Nyquist sample. On the other hand, suppose that a small
triangleDTi = [vj , vk, vl] is not entirely contained inTσ. If DTi is completely outsideTσ,
then it creates a contradiction sinceS ⊂ Tσ . If vj , vk, vl are inTσ but the triangle joins
two approaching branches ofC, the sampleS is characteristic of a non-manifold situation
and thereforeDTi is part ofTσ.

For the sake of simplicityTσ will be denoted simply byT . An approximationof the
medial axis ofT , called here theskeleton of T, is the sought PL approximation of theC(u)
curve. Since the skeleton is a graph, it needs to be post-processed in order to extract from
it the PL approximation ofC(u).
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Figure 5(a) shows a data set from a planar non self-intersecting curve sampled stochas-
tically. This figure presents a data set which has been already resized, its best plane esti-
mated, and their points projected onto this plane, which produces a planar set. The Delau-
nay Triangulation of this point set is displayed in Figure 5(b).

4.4.1. Polygon Synthesis based on Filtered Delaunay Triangulation. The polygonL0

obtained after application of criteria (i) and (ii) is shownin Figure 5(d). Observe thatL0

has no holes for this example. In that figure light triangles are the accepted ones based on
the PCA criterion and dark triangles are the ones accepted based on area or edge length
criteria. The following relations hold among accepted Delaunay triangles and their edges
[22] :

(1) Each edge of an accepted Delaunay triangleDTi has one or two accepted trian-
gles incident to it.

(2) Edgesei,j in which Delaunay trianglesDTi andDTj are incident are internal to
the tape-shaped regionT .

(3) Edgesei in which only one Delaunay triangleDTi is incident form the boundary
∂T . They may be either in the outermost or in an internal loop.

4.5. Medial Axis VS. Principal Curve. Figure 5(d) presents the minimal polygon
T that covers the point setS. Its border∂T , built by filtering the original Delaunay Tri-
angulation, is coloured black in Figure 5(e). A very fine resample of the border∂T ) is
then performed, and a Delaunay triangulation for this new point set is calculated. This new
Delaunay triangulation also appears in Figure 5(e).

An approximation to themedial axisMA(T ) of T is a skeletonSK(T ), which is built
in the following manner ([15], [5], [24]):

(1) Construct the Voronoi DiagramV D(T ) and Delaunay TriangulationDT (T ) of
the vertices ofT (see Figure 5(e)).

(2) Keep fromDT (T ) only those Delaunay triangles contained inT . Call this set
DT (T ).

(3) Keep fromV D(T ) only those Voronoi edges which are finite and are dual to the
edges inDT (T ). Call this setV D(T ).

(4) If V D(T ) * T then re-sample∂T with a smaller interval and go to step (i)
above. Otherwise,V D(T ) is the sought skeleton ofT , SK(T ).

As it is evident from Figure 5(f), the skeletonSK(T ) of the polygonT is a PL ap-
proximation of the 1-manifoldC(u).

Notice that several resamples of∂T may be needed in order to converge toSK(T ).
Figure 5(e) shows one such resample. The boundary∂T of the S-shaped polygonT in
Figure 5(f) is sampled with a small enough interval. This tight sampling guarantees that the
portion of the Voronoi Diagram confined toT , SK(T ), is acceptable as an approximation
of MA(T ), the medial axis ofT .

5. Results

Section 5.1 illustrates three PCA curve reconstructions obtained for diverse point sets.
It also discusses the application of PCA-based curve reconstruction to surface reconstruc-
tion from range images. Section 5.2 illustrates the resultsobtained using the Delaunay
Triangulations methodology in dealing with the PL Approximation of planar 1-manifolds
without Border (closedC(u)).
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(a) Point Sample of Planar S-shapedC(u) Manifold. (b) Delaunay Triangulation of S-shaped Planar Point
Sample.

(c) Filtering of Delaunay Triangulation with PCA Balls.(d) Triangles Selected by Area and Length Criteria.

(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

FIGURE 1.5. Piecewise Linear Approximation of S-shapedC(u) by
Combined PCA and Voronoi-Delaunay Methods.
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(a) Near Self-Intersecting, Non-Uniform Point Cloud.

(b) Self-Intersecting Non-Uniform Point Cloud.

FIGURE 1.6. Curve reconstructions obtained for different point sets by
Least-Squares-based process.

5.1. Least Squares Fitting Results.The PCA-based algorithm was tested on sev-
eral noisy unorganised point sets, which include non-uniform, non-smooth, near self-
intersecting, and self-intersecting ones. Figures 6(a) and 6(b) present the results obtained
for two sets, each one having some of these features. Near self-intersecting, non-uniform
point clouds, as the one shown in Figure 6(a), can be adequately reconstructed by vary-
ing the length of the segments of the reconstructed polyline, considering the dispersion of
points contained in each ball. The radius optimization process, described in section 4.2.1,
turns out to be useful for this purpose.

In Figure 6(b) a point set sampling a self-intersecting curve C(u) is displayed. As
mentioned in Section 4.3, a PCA algorithm alone is not robustenough for reconstructing
self-intersecting point clouds. However, due to the randomness of the starting point of
the reconstruction mentioned in Section 4.2.1, certain runs can result in adequately recon-
structing the PL approximation ofC(u), while other runs will not. Because of this, the
skeleton method for curve reconstruction was considered.

Notice that criteria for identifying the ends ofopennoisy point sets are needed in
order tocorrectly reconstruct open curves. These criteria include the fact that when the
PCA algorithm finds an end of the curveC(u), the evolution to a next centre of the fitting
ballB(p, r) is possible only in one direction. This condition allows to discriminate samples
of open vs. closed curves. In the example discussed, (Aphrodite data set), however, all the
sampled curves are closed.
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5.1.1. Application to Surface Reconstruction from Range Images.Range imaging is
a technique for digitizing three-dimensional objects, given a set of range images. A range
image is a functionI × J → R3, 〈i, j〉 7→ Pij , whereI × J is the grid of pixels in the
range image, andPij = 〈xij , yij , zij〉 is the point in the surface of the optically sampled
object, captured by the pixel in position〈i, j〉 of the grid of pixels.

As no single range image suffices to describe the entire object, it is necessary to com-
bine a collection of range images (see Figs. 7(a) and 7(b)) into a single triangular mesh
that completely describes the object. The steps listed below were followed in order to gen-
erate such mesh from the individual pictures (considered already registered with respect to
each other): (i) Construction of the individual meshMi for each individual range imageRi

(Figs. 7(a) and 7(b)) ; (ii) slicing of the complete set of meshesMi, i = 1, 2, ... with a set
of parallel, equi-spaced planes, thus building planar samples of points; (iii) reconstruction
of a set of curves (contours) from the sampled points by usingthe algorithm discussed in
Section 4.2 (see contours in Figure 1.8); and (iv) use of an algorithm for surface recon-
struction from planar slices. In this case, the algorithm discussed in [27] was used. The
reconstruction of Aphrodite’s head is presented in order toillustrate the mesh integration
process. The range images used were a courtesy of FraunhoferInst. for Computer Graph-
ics, Darmstadt, Germany.

In step (ii), a set of parallel planes are defined, and the intersection between each plane
and the collection of shells recovered from the range imagesis calculated. A set of planar
samples of pointsS1, S2, . . . , Sk, . . . is generated by sampling the polylines resulting from
each intersection. Figure 3(a) shows one such coplanar sample Sk = {P0k

, . . . , PNk
} for

Aphrodite’s head model.
More than 100 levels (the number and separation dictated by the Nyquist criterion

applied in the axial direction) of slicing were obtained from sampling the collection of
meshes corresponding to Aphrodite’s sculpture head and neck, and the same number of
polylines were reconstructed from these sets (Figure 1.8).In spite of the large number of
range images available for Aphrodite’s sculpture, some of its regions were not covered by
any of these, and therefore several sets of points needed to be manually completed. Once
the sets were completed, none of the reconstructed polylines were edited. The surface
reconstructed from the integrated, stochastically recovered contours is shown in Figures
9(a) to 9(c). Figures 9(a) and 9(b) correspond to resamplingplanes which are not orthog-
onal, and to an unfinished reconstruction (there is still a border). Figure 9(c) represents
the integrated result for slicing planes parallel to planeXY . The final Aphrodite’s surface
reconstruction is shown in figure 9(d).

5.2. Medial-Axis, Delaunay Triangulation Results.Application of Medial Axis
or Delaunay Triangulation methods is justified when the sampled curveC(u) is self-
intersecting. For this reason, these methods were not tested with the Aphrodite data set, but
with planar self-intersecting Bezier curves sampled with stochastic noise. The discussion
of such tests follows.

5.2.1. Pre-processing to Transform intoXY Plane. As before, the point sample of
C(u) renders a quasi-planar point set. According to the discussion, an isotropic scaling
was applied to the point set, because PCA is sensitive to dimensional issues. PCA was
then applied to estimate the best planeΠ fit to the point set, and a modified Householder
transformation was used to project all points ontoΠ. In addition, a rigid transformation is
used to bring the (now perfectly) planar point set to theXY plane, following the process
described in section 4.1. Figure 10(a) shows the initial point set, along with a coordinate
frame attached to the planeΠ.
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(a) i − th Mesh from Front Range Imagei Aphrodite.

(b) k−th Mesh from Front Range Imagek Aphrodite.

FIGURE 1.7. Range Image Data Set. Courtesy from Fraunhofer Inst.
Computer Graphics, Darmstadt, Germany.

5.2.2. Delaunay-based Medial Axis Processing.The Delaunay Triangulation of the
point set projected ontoΠ and then transformed toXY is illustrated in Figure 10(b). In
the construction of the tape shaped polygonT , Delaunay Triangles included in PCA balls
are accepted ( Figure 10(c) ). The triangles not entirely included in PCA balls may still be
accepted based on the Edge Length or Area criteria (see Figure 10(d)). Notice thatT is a
connected 2-dimensional region with boundary∂T = L0∪L1∪...∪Lm in Figure 1.4. After
the regionT has been synthesized by consolidating Delaunay triangles chosen according to
the above criteria the border∂T must be determined. This step is a standard procedure in
Boundary Representation construction and is conducted according to the rules in section
4.4.1. The next goal is to identify the Medial Axis (MA) ofT . An exact calculation is
out of question because MA produces curved portions. However, if a resampleRT of T
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FIGURE 1.8. Aphrodite’s head contours recovered from planar samples
of points. Test data courtesy from Fraunhofer Inst. for Computer Graph-
ics, Darmstadt, Germany.

is fine enough, its medial axis may be approximated as the sequence of Voronoi Edges
of RT completely included inT . Theborder ∂T is resampled (see Figure 10(e)) and a
new Delaunay Triangulation is calculated. The Delaunay TriangulationDT (RT ) of RT
is purged to keep only those Delaunay Triangles internal toT . In this form, again,T is
re-triangulated, but this time with triangles whose circumscribed centre lie insideT . The
loci of such centres isSK(T ), the skeleton approximation for the medial axisMA(T ) of
T (see Figure 10(f)). As can be seen in Figure 10(f), it is possible that the re-triangulation
of T breaks this region into separate ones. This result is expected, since it indicates the
presence of self-intersections in the original set. The algorithm corrects them by splitting
the tape polygonT into annular sub-partsTi. Care must still be exercised, asSK(T )
may be outside of aTi region, as shown in Figure 10(f). This situation, however, is not
harmful since the skeletonsSKi do not intersect each other, and therefore serve as PL
approximations of the originalCi(u) curves.

Figure 1.11 shows comparative results for a self-intersecting curveC(u) (double “8”)
obtained using PCA (Figure 11(a)) and Voronoi-Delaunay (Figure 11(b) and Figure 11(c))
methods. Figure 11(a) shows that PCA alone processes the total point set but is not able
to solve the self-intersection issue. The Voronoi-Delaunay result in Figure11(b) solves the
self-intersection by generating several tangent closed curves. The Voronoi-Delaunay result
in Figure 11(c) generates a PL approximation with wasp waist.

6. Complexity Analysis

For this complexity analysis, worst-case scenarios will beconsidered. In the case of
the Delaunay Triangulation ofN points inR2 a complexity ofO(N2) is counted, instead
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(a) Integrated Aphrodite with border. Smooth Render.(b) Integrated Aphrodite with border. Wireframe.

(c) Integrated Aphrodite without Border. Wireframe.(d) Integrated Aphrodite without Border. Smooth
Render.

FIGURE 1.9. Results of Range Image Integration. Test data courtesy
from Fraunhofer Inst. for Computer Graphics, Darmstadt, Germany.

of O(N) reported in [6], due to the fact that no special data structure is assumed. An sketch
of the complexity analysis performed is presented in the following subsections. Since only
well known facts on the complexity of the Delaunay Triangulations and Graph Theory are
used, the reader is invited to consult the most basic literature on such topics.

Pre-processing. Point Sample Partition.Since in both cases (self-intersecting and
non self-intersecting curves) the closure operation needsto be performed, such a part is
omitted in the discussion. Instead, it is assumed that a pre-process to separate all possible
curve samples in the initial set is performed. Therefore, the following discussion is per
curve.

6.1. Alternative 1. Non Self-intersecting curve. PCA Analysis. The algorithm has
a worst-case complexity ofO(N2) in classifyingN points in at mostN balls. For each
ball, the cost of PCA in a constant dimensional space (2D or 3D) is O(N). Therefore,
a worst-case cost ofO(N3) is calculated. Figure 1.12 shows the execution times for the
point set Aphrodite in a computer Pentium IV, Processor Clock at 3.2GHz with 2GB RAM.
The curve presents an average complexity ofO(N1.55), which confirms that the expected
value of complexity is much better than the worst case scenario discussed above.
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(a) Point Sample of Planar Double-8C(u) Manifold. (b) Delaunay Triangulation of Planar Double-8 Point
Sample.

(c) Filtering of Delaunay Triangulation with PCA Balls.(d) Selected Triangles by Area and Length Criteria.

(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

FIGURE 1.10. Process of P.L. Approximation of Double-8 self-
intersectingC(u) by Combined PCA and Voronoi-Delaunay Methods.

6.2. Alternative 2. Self-intersecting curve. Delaunay Triangulation and Medial
Axis. The complexity analysis for the approximation of the skeleton of the tape polygon
T follows.

(1) Initial Delaunay Triangulation. First box in Figure 1.4. The number of triangles
is O(N). Cost:O(N2).

(2) First Purge Process (using only edge length and area criteria) in a set ofN trian-
gles. Part of second box in Figure 1.4. Cost:O(N).

(3) Determination of∂T = L0 ∪ L1 ∪ ..... from a set ofN triangles. Part of second
box in Figure 1.4. Cost:O(N2).

(4) Resampling of each edge of∂T in k points. Part of third box in Figure 1.4. Cost:
O(k.N).

(5) Second Delaunay Triangulation for a set ofk.N points, givingO(k.N) as the
number of triangles. Part of the third box in Figure 1.4. Cost: O(k2.N2).
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(a) PCA-based Algorithm. Result.(b) VD-based Algorithm. Multi-
Polygon Result.

(c) VD-based Algorithm. Single-
Polygon Result.

FIGURE 1.11. Final Results. PL Approximations of Double-8 self-
intersectingC(u) by PCA and Voronoi-Delaunay Methods.

FIGURE 1.12. Execution Time of Principal Component Analysis (time
vs. number of points).

(6) Second Purge Process, to see which ones ofk.N triangles fall insideT (T is
already known from step (iii)). In the worst case, one hasO(k.N) as the number
of vertices of the skeleton. Part of third box in Figure 1.4. Cost:O(N2).
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(7) Construction of the Skeleton Graph withO(k.N) vertices. The initial point sam-
ple for the self-intersection curve respects the Nyquist criterion (the level of sto-
chastic noise is smaller than half of the minimal geometric detail to be sampled).
Fourth box in Figure 1.4. Cost:O(k3.N3).

In conclusion, the whole process costsO(k3.N3) if the initial curve is self-intersecting,
with the construction of the final graph being the most expensive part.

7. Conclusions and Future Work

Two methods have been presented for obtaining the PL approximation of a collection
of planar regular curvesC(u) stochastically sampled. The Principal Component Anal-
ysis -PCA- method is useful for cases when the point set corresponds to a sample of
non self-intersecting curves. This method returned correctly reconstructed PL 1-manifolds
for non-trivial point sets (open, unorganised, noisy, non-uniform, non-smooth, near self-
intersecting).

A new application of the PCA method for surface reconstruction from Range Imaging
is also discussed, and results for a real model are presented. The integration method cor-
rectly merged together a set of meshes obtained from severalindividual range images, into
a single mesh. This approach of merging individual meshes from range pictures overcomes
some of the limitations present in common usage methods based on the direct meshing
from the integrated point cloud from the range pictures. Thedirect methods do not ren-
der a manifold topology even when the model sampled is a manifold. Our method always
renders a manifold provided that it works on a Nyquist sample.

The second method (Delaunay-based Medial Axis ) can be used when self-intersecting
curves have been sampled, and therefore when the PCA algorithm is not applicable. This
new method synthesizes theSK(T ) skeleton of the tape-shaped 2D region covering the
point setS. This skeleton is a 1-manifold for Nyquist samples of the curve. The existing
literature has not considered the reconstruction from samples of self-intersecting (or non-
manifold) curves.

Future Work.When the point sample of a self-intersecting curve has low quality, build-
ing a graph, which is the PL approximation of the curve, out ofthe medial axis of the tape
polygonT covering the curve needs improvement. In this case the graphrepresenting the
principal shape presents “hair”, (i.e. high frequency artifacts), that need to be eliminated.
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CHAPTER 2

Statistical Assessment of Global and Local Cylinder Wear

CONTEXT : A project to devise a method for the evaluation of wear regions in cylin-
drical surfaces was developed at the CAD CAM CAE Laboratory at EAFIT University.
The results of this method sought to provide sufficient statistical information about the de-
formation of cylinders used in the polymer processing industry, in order to help production
managers to make accurate decisions on the replacement of worn cylinders. The project
was financed by EAFIT University, and evaluated by the Institute for Training and Re-
search on Plastic and Rubber, (Instituto de Capacitación e Investigacíon del Pĺastico y el
Caucho - ICIPC, Medellı́n, COLOMBIA).

Carlos Vanegas, research assistant under my direction in the CAD CAM CAE Lab-
oratory, and myself devised and implemented this method in the period July-December
2006. The software produced (CylWear) is currently under copyright registration process.
Theoretical and implementation contributions of this workappear in the paper:

• Ruiz O, Vanegas C, “Statistical Assessment of Global and Local Cylinder Wear”,
Accepted for presentation at the IEEE 5th International Conference on Industrial
Informatics (INDIN07), to be held in Vienna, Austria, July 23-27, 2007.

As co-author of such a publication, I give my permission for this material to appear in
this document. I am ready to provide any additional information on the subject, as needed.

———————————————–
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA
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ABSTRACT. Assessment of cylindricity has been traditionally performed on the basis of
cylindrical crowns containing a set of points that are supposed to belong to a controlled
cylinder. As such, all sampled points must lie within a crown. In contrast, the present paper
analyzes the cylindricity for wear applications, in which astatistical trend is assessed,
rather than to assure that all points fall within a given tolerance. Principal Component
Analysis is used to identify the central axis of the sampled cylinder, allowing to find the
actual (expected value of the) radius and axis of the cylinder. Application ofk-cluster and
transitive closure algorithms allow to identify particularareas of the cylinder which are
specially deformed. For both, the local areas and the global cylinder, a quantile analysis
allows to numerically grade the degree of deformation of the cylinder. The algorithms
implemented are part of the CYLWEARc© system and used to assess local and global
wear cylinders.

1. Introduction

Regarding extrusion or injection cylinders there is an economic interest in quantifying
the degree of deformation away from a mathematical cylinder. The software processing
a point sample of the interior of a cylinder is expected to fulfill the following criteria: (i)
independence of the coordinate frame of the measurement, (ii) identification of the axis of
the cylinder, (iii) identification and quantification of local, high wear areas, (iv) automated
quantification of global wear.

The present article discusses a software that takes as inputa point cloud evenly sam-
pled on the interior wall of a cylinder and that is contained between two planes, approxi-
mately perpendicular to the cylinder axis. The point sampleis assumed to be evenly spread
in such an area, in such a manner that no part is over-sampled or under-sampled. No order
is assumed in the point cloud.

2. Literature Review

An important application in metrology is the evaluation of cylindricity, since a large
fraction of mechanical parts are cylinders. The evaluationof cylindricity is not simple,
because it requires a number of circularity traces to be taken at different horizontal sections
of the cylinder and must be combined with the straightness ofthe generators of the cylinder
[1].

In the evaluation of cylindricity the zone cylinder has become a standard for the quality
control community. The zone cylinder is the cylindrical crown contained between two co-
axial cylinders with minimum radial separation (width) andcontaining all the data points.
Determining the zone cylinder involves the calculation of the direction axis, and internal
and external radius.

Sampling nominally cylindrical objects usually involves an apparatus consisting of a
turntable, a probe, and the support of the probe. This measurement system involves three
different axes: the axis of rotation of the table, the axis ofthe cylindrical object and the axis
of the probe support [2]. In practice, these axes are not parallel, and accurate information
of the orientation of the cylinder is not available. Therefore, the direction axis must be
calculated.

A comparison of different methods for cylindricity evaluation is presented in [1]. An
approach using normal least squares was introduced, which minimizes the squares of the
perpendicular distances from the measured points to the axis of the cylinder. The author
also presents a method based on the development of the surface of the cylinder, in which
the surface is “flattened” using as reference the axis of the probe support. The flatness of
the surface is then obtained from the mean plane equation.
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Reference [2] presents a linear programming-based approach to estimate the minimum
zone cylinder enclosing a set of points. The linear programming problem is iteratively
solved in a 6-dimensional space generated by 6 parameters that define a hyperboloid asso-
ciated to the cylinder. The above-mentioned approach is therefore relevant to the evalua-
tion of overall cylinder deformation, but does not aim to solve the local wearing detection
problem. The efficiency and accuracy of this method was improved through a procedure
in which points that cannot provably define the solution are culled from the input point set
[3].

The problem of finding the minimum width cylinder containinga set of points is an
extension to three dimensions of the problem of finding the annulus of smallest width
containing a set of points in the plane. Several works have addressed the minimum width
annulus problem. Reference [4] proposes a fast algorithm that exploits the properties of
convex-hull and Voronoi diagrams. Reference [5] proposes ageneralized method for the
minimum width annulus in ad-dimensional space. Reference [6] addresses this problem
in 2-dimensions (disks) and 3-dimensions (balls). Their method for testing disk roundness
(mentioned below) is extended to the evaluation of balls by partitioning them into several
slices, each of which is evaluated as a disk.

Reference [7] also studies the problem of determining whether a manufactured cylin-
der is sufficiently round. They first introduce a procedure for testing roundness in disks, in
which set of probes are iteratively taken at uniform intervals directed at the origin, using
the finger probing model of [8]. The procedure stops when a decision is made on whether
the sample points can be covered by some “thin” annulus. The roundness testing proce-
dure is extended to cylinders by projecting the points on thesurface of the cylinder onto
the XY plane, and applying the “thin” annulus criterion to the projected points. Notice
that this method assumes that the sampled cylinder is resting on theXY plane and that its
orientation is known. As noted above, such an assumption is not always valid since the
axes of the measurement system (e.g. the axis of rotation of the cylinder) are unknown in
practice.

The problem of cylinder fitting is also addressed by [9, 10], as a part of their method
for detecting bore holes for Industrial Automation. They propose a sequential cylinder
parameter fitting in which the orientation of the axis is firstcalculated, followed by the
calculation of the radius and the position of the axis. A previous step in this bore detection
method consists in estimating the normal vector to the surface at each sampled point.

The first sub-quadratic solution to the minimum width cylindrical shell problem, based
on a linearization of such problem, is presented in [11]. Again, the problem addressed is
that of estimating the global deviation of a point set from a cylindrical shape, and does not
cover our aim of statistical assessment.

General comments to the reviewed literature are: (i) a dimensional quality control
problem is attacked, which poses the question of whether a workpiece must be rejected or
not, (ii) the determination of minimal enclosing and maximal enclosed cylinders, minimum
zone cylinder, etc. are sought, usually in cylinders which are placed in a particular position
of the space, (iii) in the item (i), data are interpreted in literal way, i.e. ignoring the trends
or statistical indicators of their quality. The approach undertaken in our work is to produce
a statistical diagnose of the cylindricity (see section 3.4), and therefore each data is taken
as inherently biased by several sources of noise. One can do so, since our work is aimed to
help the production manager to numerically evaluate the need to replace the cylinder when
(from his/her point of view) the wear or distortion in the cylinder reaches unacceptable
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values (see section 3.7). As a result, we do not use the typical deterministic geometry
algorithms of the literature. Instead, we apply stochasticgeometry to diagnose the data.

3. Methodology and Results

The diagnosis of cylinder wear is basically a treatment of anunordered point set,
collected on the internal wall of the sampled cylinder. The point set is measured in the
particular unknown (local) coordinate system of the reading instrument, different from the
World Coordinate System -WCS- of the shop floor. Although the points are collected on
a definite geometrical shape (a cylinder), the numerical values output by the measuring
device contain several stochastic components.

The processing of the point cloud (see Figure 2.1) is as follows:

(1) Assuming for the cylinder a Length/Diameter ratio larger than 5.0, a Principal
Component Analysis -PCA- is run. The PCA allows to identify the direction of
largest dispersion in the data, which is the direction of thecylinder axis. As a
by-product, the center and mean radius of the cylinder are also identified.

(2) A rigid geometric transformation is applied to the pointcloud to align the cylin-
der with theZ axis of the WCS.

(3) A Quantile Analysis is performed, which renders the histogram of frequencies
of radius deviations for the global point cloud.

(4) The cylindrical data is developed (unwrapped or flattened) ontoR2 (XY plane)
to perform a local analysis.

(5) A low pass filter is applied to the data, which eliminates the high frequencies of
the point cloud.

(6) A surface is reconstructed for the point data, using a lift of a Delaunay Triangu-
lation, to facilitate the visual identification of the high wear areas. At this time,
the data resembles a rectangular mountain region, whose heights correspond to
the areas (regions of(θ, h) values) with larger cylinder wear.

(7) Two alternative algorithms are applied to automatically identify such high wear
areas:k-cluster and Extended Neighborhood Analyses.

(8) Quantile and Mean-Median Analyses are performed on the local wear regions.
(9) All the results are given in the form of text files (for documentation and analysis)

and via graphic output (for the easy identification by the user).

3.1. Measured Data.Three sources of deviation of point data away of a perfect
cylinder are assumed: (i) a general wear, (ii) localized wear spots, and (iii) measurement
noise introduced by the scanner. The point set has an arbitrary orientation and position,
and it is necessary to determine the coordinate system in which it was collected by the
measuring devise. The nominal radius and length of the cylinder are assumed to be known.

3.2. Transformation of Measured Data to the World Coordinate System. The
purpose of this section is to rigidly transform measured data so that the calculated axis
of the cylinder is coincident with theZ axis of the WCS and its center is coincident with
the originO of the WCS. However, we know neither the axis of the cylinder, nor its effec-
tive radius and length. To determine such values is the purpose of the following section.

3.2.1. Principal Component Analysis.Let P ′ =
{

(x′, y′, z′) ∈ R3
}

be the set of
points sampled on the surface of a cylinderC (R,H,A,O), whereR, H, A, O are the
nominal radius, nominal length, axis and center of gravity of the cylinder, respectively. It
must be noticed that onlyR andH are known. The actual values of radius, height, axis,



3. METHODOLOGY AND RESULTS 29

Coordinate Frame of Cylinder 

Principal Component 

Analysis

Cylinder with axis =Z axis 

and centered at (0,0,0) 

Rigid Transformation to 

align cylinder with Z Axis.

Cylinder extended on 

the XY plane 

Non Rigid Transformation for 

Development (flattening) of Cylinder

Quantile 

Analysis

Smoothed transf. cylinder skin 

High freq. Filtering and 

Delaunay Triangulation

k-cluster  

Analysis

Worn Out Regions 

Extended neighbor  

Analysis

Mean-Median and  

Quantil Analysis

Mean-Median and 

Quantil Analysis

Histogram Analysis  

   of Global Wear 

(text and graphics) 

Mean - Median Analysis  

  of Worn Out Regions 

    (text and graphics) 

FIGURE 2.1. Cylindricity Diagnose with Point Cloud

and center must be determined fromP ′. By applying a Principal Component Analysis
-PCA- the trends in the collected data will be identified (see[12], [13]).

Let Σ be the (3 × 3) covariance matrix of the process

P ′ = {(x1, y1, z1) , . . . , (xn, yn, zn)} ,

with cij being the cross covariance of componentsi and j of the point set.Σ is semi-
positive definite, since it is symmetric with non-negative main diagonal. The eigenvalues
of Σ are non-negative real numbersλi. Then,Σ satisfies the equationΣ.V = V.Λ with
V a matrix whose columns are the (orthogonal) eigenvectors ofΣ, andΛ is a diagonal
matrix containing the eigenvalues ofΣ. Without sacrificing generality one may sort the
eigenvalues in decreasing order, sayλ1 ≥ λ2 ≥ λ3 ≥ 0, and write the eigenpairs of the
covariance matrix as:

Σ.V = Σ.
[

v1 v2 v3

]

=
[

v1 v2 v3

]

.





λ1 0 0
0 λ2 0
0 0 λ3





with λi being the variance of the data in the directionvi. It follows that v1 is the
direction of the dataP ′ in which maximal variance appears,v2 is the direction in which
the next decreasing variance appears, andv3 is the direction with lowest data variance in
P ′. For a Length/Diameter ratio larger than 5.0, it can be seen thatv1 ≡ A, i.e. the axis
of the cylinderA is the eigenvector associated with the largest eigenvalue or variance,λ1

(the direction with highest variance of the dataP ′). ThereforeΣ.A = λ1A. The triad
v1, v2, v3 is orthogonal, and we may enforce the conditionv1 × v2 = v3, forming a right
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handed canonical coordinate system. Notice that given the cylindrical symmetry of the
data, the second and third variances are almost the same. Except for numeric stochastic
errors:λ2 ≈ λ3.

3.2.2. Transformation to a standardized coordinate system.Once we know the axis
A = (Ax, Ay, Az) and the center of massO = (Ox, Oy, Oz) of the measured cylinder, we
must find out a4 × 4 rigid transformation

M =

[

R∗

3×3 T ∗

3×1

0 0 0 1

]

to move the point data in such a way that the axis of the cylinder is coincident with theZ
axis of the WCS, and its center of mass is coincident with the origin of the WCS.

(5)

[

R∗ T ∗

0 0 0 1

]

=

[

v2

0
v3

0
A
0

O
1

]

−1

OnceR∗ andT ∗ have been determined from (5), each point sampled can be trans-
formed with (6), so the data set looks like in Figures 2(a) and2(b).

(6)









x
y
z
1









=

[

R∗ T∗
0 0 0 1

]

.









x′

y′

z′

1









3.3. Mapping of Normalized Cylinder 3D data onto 2D. After a normalization has
been performed on the measured data, the axis of the cylindercoincides with theZ axis,
and its center of mass with the originO. The next step is to “unwrap” the point cylinder,
and to extend the point set on theXY plane. The function used to do so is not an isometry,
since the cylinder data is shrunk in order to fit into a rectangular basis of size1.0 × 1.0.
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FIGURE 2.2. Sampling of a cylinder surface with local damage

The point setP = {(x, y, z)} (which is the cylinder point sample with its axis
aligned with theZ axis of the World Coordinate System) is transformed into a new set
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FIGURE 2.3. Point set with noise, placed in general position in space.
Measured data in an experiment.

Q = {(xf , yf , zf )}, with the following characteristics: (i) thezf coordinate of each
point in Q is the deviation, for the corresponding point inP , away from the calculated
radius of the cylinder, (ii) the point setQ is organized as a functiong : R2 → R,
with zf = g(xf , yf ), (iii) the (x, y) pairs are included in a rectangular domain inR2.
This means, the cylinder has been unwrapped and extended on the XY plane (Figure
2.3). The unwrapping transformation for setP into Q is described in equation (7). It
maps each point(x, y, z) sampled on the surface of a cylinder into(xf , yf , zf ) with
(xf , yf ) ∈ [−0.5, 0.5] × [−0.5, 0.5].

xf =
arctan(x, y)

2π
−

1

2

yf =
1

2

(

z

max(|maxi zi|, |mini zi|)

)

(7)

zf = ‖(x, y)‖ − R

The reader may notice that in Figure 2.3 the intensity is not uniform. This is due to
the fact that a color coding is given to thezf coordinate. Consequently, regions with larger
deviation from the nominal radius (regions with higher wear) look lighter in the image.

3.4. Statistical Analysis.The points in Figure 2.3 have azf coordinate that repre-
sents the deviation with respect to the nominal cylinder radius. This deviation is due to
three causes: (i) a general wear of the cylinder, (ii) localized wear in specific regions of the
cylinder, and (iii) a stochastic noise resulting from the measurement process. The purpose
of this step is to measure the deviation of the data that is explained by each factor, i.e. how
much in the collected data are these components present. Figure 2.4 shows the histogram
of frequencies with respect tozf . The horizontal axis is divided into intervals of thezf

variable. The vertical values correspond to the number of points whose radial deviation
zf falls within each interval. In this histogram we can see in the range[−0.02, 0.02] an
approximately normal distribution with meanµ = 0. This distribution corresponds to the
sampling error of the instrument (factor (iii) above). Above a deviation of0.02 away from
the nominal radius we find the effects (i) and (ii) mentioned before. Thus, in the interval
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FIGURE 2.4. Histogram of the cylinder radius deviation.

[0.02, 0.07] one will find the cutting deviation to classify localized wear or damage in the
cylinder.

By using the frequency histogram of Figure 2.4, one is able toseparate the set of points
Q into points showing only overall wear vs. points showing overall and localized wear. In
the histogram, the cutting value isε = 0.02. This means, points whose radial deviation
is below0.02mm are considered to have overall wear. Points with radial deviation above
0.02mm are considered to present overall and localized wear. These points constitute the
setQε.

3.5. Cluster Analysis. The purpose of the cluster analysis applied to a set ofn points
in Rm is to identifyk groups (k being set by the user) in then points, such that in each
group the points are close to each other, and at the same time far away from the points in
other groups. In this manner, in the initial population,k clusters of neighboring points are
identified. Let the population be formed in this applicationby n points in the setQε. The
space of the points isRm = R3. Let each pointqi in Qε be noted as:

(xfi, yfi, zfi) = (Xi,1,Xi,2,Xi,3) ∈ Qε

The mean of thej-th variable(j = 1, 2, 3) in the l-th group is noted byX̄(l),j , for
l = 1, . . . , k. The distance of the pointqi to thel-th cluster is:

D(i,l) =





3
∑

j=1

(Xi,j − X̄(l)j)
2





1/2

The error of the partition is given by the summation of the distance of each point to
the cluster under which it is classified. The error of a partition P (n, k) of then points in
k clusters is noted by:

ε(P (n, k)) =
n

∑

i=1

[D(i,l(i))]
2

wherel(i) is the set under which thei-th point is classified, which is the one for which
the distanceD(i, l) is a minimum. It must be noticed that for each partition of thesetQε

there will exist a valueε(P (n, k)). The partition that makesε(P (n, k)) a minimum is our
k-mean partition.
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The method of thek-means is summarized as follows:

(1) Proposek initial pointsX̄(l).
(2) For each pointqi find out its corresponding clusterl(i) (for which the summation

of theD(i, l) is a minimum).
(3) RecalculateX̄(l) as the centroid of theqi points belonging to the clusterl(i).
(4) Repeat the steps 2 and 3 untill(i) remains constant for everyi between succes-

sive iterations. At this point,ε(P (n, k)) reaches a minimum.

In this manner the points migrate from one cluster to another, until the reduction of
ε(P (n, k)) is zero. After thel(i) are found with the previous algorithm, and as a visual-
ization aid, the convex hull of eachl(i) may be found and drawn. In the particular case
of the wear of the cylinders, such a visual post-processing helps in displaying the zones of
the cylinder whose wear is higher. The main inconvenience ofthek-means method is the
need of pre-establishingk, the number of clusters. For this reason an alternative method is
introduced next.

3.6. Partition Analysis. The setQε in (8) represents all the point data whose distance
to the axis of the cylinder is higher than the threshold. Notice that the proposed algorithm
seeks to eliminate the user interaction and to identify and bound the different deformation
regions. Therefore,Qε must be partitioned into the local zones that present a particular
wear of the cylinder. For such a purpose we define an equivalence relationR on Qε and
then we calculate a partitionΠ of Qε by R. Let R be the equivalence relation defined as:

(8) R(a, b) ⇔ ∃q1, q2, ..., qw((qi ∈ Qε, i = 1, ..., w)∧

(a = q1) ∧ (b = qw) ∧ (‖qi − qi+1‖ < δ))

This equivalence relation basically states that pointsa andb belonging toQε are equiv-
alent if and only if there exists a path of points starting ata and ending atb such that two
pointsqi andqi+1 of the path are not separated from each other by more than a distance
δ. In order to partitionQε in a partition of all points that are equivalent to each other, we
apply algorithm 1.

Figure 2.5 shows the results of the partition algorithm applied onQ = Q0.02. The
three resulting data sets are automatically classified by the algorithm, projected on theXY
plane, and the convex hull of the projection calculated and displayed on such a plane in
Figure 2.5.

Figures 2.6 and 2.7 present the different noise factors in the flattened data set. Figure
2.6 shows the unfiltered data set in the scaled dimensions of the cylinder, while figure
2.7 shows the filtered data set mapped back to the physical dimensions of the cylinder.
The localized damage in this data set has the shape of a mountain ridge (typical of a case
in which a foreign object slides inside the cylinder) accompanied by isolated peaks. The
highest deformation is present in a region centered in pointh = 500mm andθ = 60o. Also,
the wear located at[0o, 100] is the same as the one located at[360o, 100], since0o = 360o

because the cylinder wraps itself.

3.7. Diagnose Output.Three different outputs are produced from the process previ-
ously discussed: (i) graphical; (ii) histograms of frequency of radial deformation; and (iii)
output file. They are discussed next.
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Algorithm 1 Partitioning Algorithm to calculate neighborhoods of cylinder deformation

1: Π = []
2: while Qε do
3: p = first(Q)
4: queueto expand= {p}
5: Qε = Qε − {p}
6: partition = {}
7: while queueto expanddo
8: elementto expand= first(queueto expand)
9: partition = partition∪ {elementto expand}

10: queueto expand= queueto expand− {elementto expand}
11: for a such thatR(elementto expand, a) do
12: Qε = Qε − {a}
13: queueto expand= queueto expand∪ {a}
14: end for
15: end while
16: Π = [Π, partition]
17: end while
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FIGURE 2.5. Result of localized deformations found with partitionanalysis.

3.7.1. Graphical Output.The radial deformation is converted to a functionf : Θ ×
H → ∆R (the deviation of the radius form its nominal value, see Figure 2.6). Delaunay
triangulations and filtering are applied to display such a surface, as well as the regions of
f : Θ × H which represent a higher∆R. Colors green and blue mean lower deformation,
while colors yellow and red indicate higher deformation.

3.7.2. Histogram of Frequencies of Radial Deformation.A histogram results from
plotting the number of samplesni measured which fall into each range of radius deviation
(∆(Ri)) (Figure 2.4). Two clearly differentiated regions appear:(i) A normal distribution
of measurement errors, centered in0, containing negative values of∆R. Values of∆R
between[−σ,+σ] correspond to the measurement errors; and (ii) Values of∆R aboveσ
representing the deterministic trend of the data, which corresponds to the wear.
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FIGURE 2.6. Surface of Radius deformation with physical dimensions
(workpiece coordinate system)

FIGURE 2.7. Filtered, automatically-detected localized Wear Regions
(using Partition Analysis)

3.7.3. Output File. The output file contains two basic components: (i) the quantile in-
formation for theglobal deformationof the cylinder radius (∆R deviation from the nom-
inal radius); and (ii) the statistical information for eachone of thelocal areas of higher
wear. Global information corresponds to a text version of the histogram information dis-
cussed above. Local deformation includes for each area of large deformation the mean,
median, standard deviation, maximal deviation and position of the wear area(θ, h).

4. Conclusions and Further Work

This article has presented a software tool to diagnose the general and local wear of
a cylinder. No assumption is made on the orientation or position of the cylinder in the
space, or on the coordinate frame of the measuring devise. The software implemented is
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successful in identifying the position in space of the cylinder (in this case, five degrees
of freedom). These algorithms filter out high frequencies inthe data, fit a surface to the
resulting point cloud, and identify by two alternative methods the regions of largest local
wear. Several statistical reports (quantile and frequencyhistogram) are produced, which
also diagnose the cylinder in local spots as well as globally.

Future efforts include:

(1) Bringing the devised tools to the domain of dimensional quality control.
(2) Approaching the problem as a non linear minimization or optimization one.
(3) Using the findings in the previous item to diagnose other geometries different

from the cylindrical one (torus, spheres, partial cylinders, cones, etc.).
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CHAPTER 3

Bi-curve and Multi-patch Smoothing with Application to
the Shipyard Industry

CONTEXT : The CAD CAM CAE Laboratory at EAFIT University has kept through-
out the years cooperation agreements with research universities and institutions in Europe
including: Max-Planck-Institut fur Informatik at Universitt des Saarlandes, Saarbrcken,
Germany, Fraunhofer Inst. Graphische Datenverarbeitung,Darmstadt, Germany, and the
University of Vigo, Vigo, Spain. As a part of such agreements, students hold visiting re-
search assistant positions at the hosting institution for periods ranging from 6 to 12 months.

Carlos Vanegas has been twice invited by Prof. Xoan A. Leiceaga Baltar, director of
the Group of Graphic Engineering and Design (Grupo de Enxeera Grfica e Deseo) at the
University of Vigo, Vigo, Spain, to join his group as visiting research assistant. During
his first internship (January-July 2005) Carlos Vanegas participated in the development of
a CAD system for the design and manufacturing of ship hulls for the shipyard industry of
Galicia (Spain) and North of Portugal. The project was financed with INTERREG III-A
funding of the European Union. During his second internship, Carlos Vanegas participated
in the development of a crane simulator, and was responsiblefor the implementation of
the dynamic model, part of the spherical visualization system, and part of the interface
between the dynamic model and the user control module.

The method presented in this chapter was devised and implemented by Carlos Vanegas
with valuable suggestions from Engineers Manuel Rodriguezand Jose Prieto and consti-
tutes one of the tools included in the system for the naval industry. Contributions of this
work appear in the paper:

• X. Leiceaga, O. Ruiz, C. Vanegas, M. Rodrı́guez, J. Prieto, E. Soto, “Bi-Curve
And Multi-Patch Smoothing with Application to the ShipyardIndustry”, ac-
cepted for presentation in the ADM-INGEGRAF conference, tobe held in Peru-
gia, Italy, June 6-9, 2007.

The results of the crane simulator project, developed during his second internship, are
subject to confidentiality, and no publication on such results is possible at this time.

As co-authors of such a publication, we give our permission for this material to appear
in this document. We are ready to provide any additional information on the subject, as
needed.

———————————————–
Prof. Dr. Catedratico Xoan Leiceaga Baltar
leiceaga@uvigo.es, xleiceaga@aztecaingenieria.es
Head of the Graphic Engineering and Design Group
University of Vigo, Galicia, SPAIN

39



40 3. CURVE AND SURFACE SMOOTHING

.

———————————————–
Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA

———————————————————————————————————-

ABSTRACT. Algorithms are proposed and implemented in a commercial system which al-
low for theC1-continuity matching between adjacent B-spline curves and B-spline patches.
These algorithms only manipulate the positions of the controlpoints, therefore respecting
the constraint imposed by the sizes of the available commercialsteel plates. The applica-
tion of the algorithms respect the initial hull partition madeby the designers and therefore
the number and overall shape and position of the constitutivepatches remains unchanged.
Algorithms were designed and tested for smoothing the union of(a) two B-spline curves
sharing a common vertex, (b) two B-spline surfaces sharing a common border, and (c)
four B-spline surfaces sharing a common vertex. For this last case, an iterative heuristic
degree-of-freedom elimination algorithm was implemented. Very satisfactory results were
obtained with the application of the presented algorithms inshipyards in Spain.

1. Introduction and Literature Review

B-spline curves and surfaces have been used extensively in the past to define ship-
hull geometry for design purposes [11, 6]. The popularity ofB-spline for free-form sur-
face design lies in their useful characteristics, such as local support, the convex hull, and
variation-diminishing properties [2]. A discussion of B-spline curves and surfaces, and
their suitability for ship hull surface definition can be found in Rogers [10].

Applications of e.g. Computational Fluid Dynamics use single patch representations,
which solve the issue of smoothness by itself [8], but do not reflect that the manufacture and
assembly are performed with smaller standard plates, as produced in the steel mills. Also,
fitting the complex surface of a ship hull with a single B-spline patch may lead to either an
inaccurate representation, or a designer-unfriendly representation i.e. a single patch with a
high number of control points. On the other hand, since a single B-spline patch can only
represent surfaces of simple topological type, a surface ofarbitrary topological type (see
Figures 1(a) and 1(b)) must be defined as a set of B-spline patches [5]. The set of patches
must constitute a partition of the ship hull surface and mustalso maintain tangent plane
continuity (C1 continuity) across neighboring patches. EnforcingC1 continuity between
adjacent patches while at the same time fitting the patch network to the points (of the ship
hull surface in this case) is a challenging problem [5].

Loop [7] presents an algorithm for creating a smooth set of rectangular and triangular
spline surfaces, starting with an irregular mesh of polygonal flat faces. The algorithm takes
into consideration curvature parameters to decide the tiling or merging of patches. The
final result may have spline patches of sizes and shapes dictated by the curvature criteria.
Because of this characteristic, the algorithm is not suitable to be applied in the problem at
hand, in which one must respect the constraint posed by the predefined plates with which
the hull is to be constructed.

Ball [1] and Peters [9] derive continuity conditions for thesubdivision of surfaces. Ball
uses Fourier transform-based techniques to do so. Peters presents a method for verifying
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(a) Partition of a 2-genus 2-Manifold (double
donnut)

(b) Partition of Ship Bow

FIGURE 3.1. Non-rectangular Partition of 2-manifolds with Rectangu-
lar Patches

smoothness of subdivided B-spline surfaces generated using Doo-Sabin [4] and Catmull-
Clark [3] subdivision algorithms. In our case, subdivisionis not only unnecessary but also
not allowed, since the steel plates to manufacture the hull are pre-defined. Our goal is to
respect the collection of B-spline patches, and to slightlymodify their control points to
achieveC1 continuity among them.

Bardis [2] presents an algorithm forC1 continuity between adjacent patches which
requires the merging of all the knot vectors of the B-spline patches, the unification of the
order and of the number of vertices of the control polygons, and the use of arbitrarily se-
lected scalar functions calledbias. Hence, it was not compliant with our goal of smoothing
B-splines by modifying only their control points.

For the making of software for the shipbuilding industry no explicit algorithms for B-
spline curve and surface smoothing were found in the reviewed literature. It thus became
necessary to design and implement own algorithms for this task. It is the purpose of this pa-
per to present the designed algorithms for B-spline curve and surface smoothing, together
with the results obtained to smooth real ship B-spline surface patches. The paper is struc-
tured as follows: Section 2 presents a brief description of the ship hull surface modeling
process using B-spline curves and surfaces. Section 3 presents an algorithm for B-spline
curves smoothing. Section 4 presents two algorithms for B-spline surfaces smoothing: one
for two adjacent surfaces sharing a common border, and one for four surfaces incident to a
common vertex. Conclusions are presented in section 7.

2. Hull surface modeling using a set of B-spline surfaces

The computer modeling of a ship hull is performed, in our case, from the ship hull
lines. These lines are planar curves inR3 resulting from the intersection of the ship hull
surface against cross sections perpendicular to the axes ofthe ship coordinate system. The
modeling process is roughly as follows: (i) A set of B-splinecurves is manually fitted to
ship hull lines. Several rectangular regions on the ship hull surface result from this process,
as shown in figure 3.2. (ii) Rectangular B-spline patches aregenerated from the four B-
spline curves that enclose each of these regions. An initialmodel of the ship hull surface,
constituted by a network ofC0-continuous rectangular B-spline patches is thus obtained.
(iii) Each pair of adjacent patches is smoothed using the implementation of the algorithm
described in section 4.2.1. Every set of four patches sharing a common vertex is also
smoothed using the implementation of the algorithm described in section 4.2.2. The final
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result of the process is a set of rectangular B-spline patches whose union isC1-continuous,
and constitutes the final model of the ship hull surface (see Figure 3.10).

FIGURE 3.2. Set of B-spline curves interpolating the ship lines andlocal
C0 B-Spline patches

3. Methodology. Smoothing of B-spline curves in shared vertices

3.1. Condition for C1 continuity between B-Spline curves.Let P andQ be two B-
Spline curves inR3. LetSP = {p0, p1, . . . , pm} andSQ = {q0, q1, . . . , qn}, pi, qi ∈ R3,
be the sequences of control points ofP andQ, respectively. Ifpm = q0, i.e. P andQ are
C0-continuous atpm, thenP andQ are alsoC1-continuous atpm if pm−1, pm, andq1

are collinear, andpm lies betweenpm−1 andq1, i.e. if there existsλ ∈ (0, 1) ⊂ R such
that

(9) pm = q0 = (1 − λ) pm−1 + λq1

3.2. Algorithm for C1 continuity between curves. Giventwo separate B-Spline
curvesP andQ in R3 connected at a common endpointpm = q0 (see figure 3(a)), the
goal of a curve smoothing process is to determine new positions for the control points of
P andQ so that the two curves becomeC1-continuous atpm, i.e. the normalized direction
vectors ofP andQ at pm are equal. If the union of the curvesP andQ is required to be
smoothed at pointpm, andpm−1, pm andq1 are not collinear, at least one of these three
points must be moved in order to do so. Although infinite solutions to this problem exist
(there are infinite ways of arranging three points to lie in a same line), some of them are
more suitable for design and construction purposes. For instance, sometimes the shared
control point is desired to remain fixed (see figure 3(b)).

Suppose that we want to forcepm−1, pm, andq1 to lie in the same line, by mov-
ing pm−1 andq1 to new positionsp∗

m−1 andq∗

1, and leavingpm fixed. A way to cal-
culate p∗

m−1 and q∗

1 is as follows: LetL be the line passing throughpm−1 and q1,
and L∗ be the line passing throughpm and parallel toL. Let Πpm−1

and Πq
1

be the
planes with normal vector̂n and respective pivot pointspm−1 andq1, wheren̂ = (q1 −

pm−1)/(
∥

∥q1 − pm−1

∥

∥). It can be seen that possible values forp∗

m−1 andq∗

1 that satisfy
equation 9 are given byp∗

m−1 = Πpm−1
∩ L∗ andq∗

1 = Πq
1
∩ L∗.
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(a) B-Spline curves withC0 continuity at
pm = q0

(b) B-Spline curves withC1 continuity at
pm = q0

FIGURE 3.3. C1 Continuity between adjacent B-Spline curves by ad-
justingpm−1 andq1

3.2.1. Exception Treatment.Let λ∗ be the value ofλ at whichp∗

m−1 andq∗

1 satisfy
equation 9. Because the procedure described above does not ensure thatλ∗ ∈ (0, 1), an
additional step becomes necessary. Ifλ∗ /∈ (0, 1), thenpm does not lie betweenp∗

m−1 and
q∗

1. It is necessary to forcepm to lie betweenp∗

m−1 andq∗

1. Sincepm is required to remain
fixed, p∗

m−1 or q∗

1 should be moved again. To avoid an excessive change in the geometry
of the curves, the point to be moved will be the one that lies the closest topm.

Let d1 =
∥

∥pm − p∗

m−1

∥

∥ andd2 = ‖pm − q∗

1‖. If d1 ≤ d2, p∗

m−1 will be moved to
a final positionp∗∗

m−1 = pm +
(

pm − p∗

m−1

)

. If d1 > d2, q∗

1 will be moved to a final
positionq∗∗

1 = pm + (pm − q∗

1) (see Figures 4(a)- 4(c)).

(a) B-Spline curves
with C0 continuity at
pm = q0

(b) B-Spline curves af-
ter applying algorithm
without correction

(c) B-Spline curves be-
come C1-continuous at
pm = q0 after correction

FIGURE 3.4. Exception Treatment. Continuity between adjacent B-
Spline Curves

4. Methodology. Smoothing of B-Spline Surfaces in shared borders

4.1. Condition for C1 continuity between B-Spline surfaces.Let A be a B-Spline
surfaces andPA the array of control points ofA,
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PA =











pA
11 pA

12 . . . pA
1n

pA
21 pA

22 . . . pA
2n

...
...

. ..
...

pA
m1 pA

m2 . . . pA
mn











wherepA
ij ∈ R3.

Definition. Alignmentof PL curves.
Let E1 = [p11, p12, . . . , p1n], E2 = [p21, p22, . . . , p2n] andE3 = [p31, p32, . . . , p3n] be
three sequences of control points, wherepij ∈ R3. We say thatE1, E2 andE3 arealigned
if for all j = 1, 2, . . . , n, the pointsp1j , p2j andp3j are collinear exactly in that order, i.e.
satisfy equationp2j = (1 − λ) p1j + λp3j with λ ∈ (0, 1).

The boundary control point sequences forA areEA
1 =

[

pA
11, pA

12, . . . , pA
1n

]

, EA
2 =

[

pA
m1, pA

m2, . . . , pA
mn

]

, EA
3 =

[

pA
11, pA

21, . . . , pA
m1

]

andEA
4 =

[

pA
1n, pA

2n, . . . , pA
mn

]

. Let
B be another B-Spline surface. We say that the control points of the i-th border ofA are
equal to the control points of thej-th border ofB, if there existi, j ∈ {1, 2, 3, 4}, such
thatEA

i = EB
j or EA

i = E∗B
j , whereE∗B

j is the reverse-order vesion ofEB
j . A necessary

but not sufficient condition forA to beC0-continuous withB at thei-th border ofA and
thej-th border ofB is that the control points of these two borders be equal.

Let us also define a sequence of control pointsE
′A
i associated to each borderEA

i , for
i = 1, 2, 3, 4, as per figure 5(a).E

′A
1 =

[

pA
21, pA

22, . . . , pA
2n

]

,
E

′A
2 =

[

pA
m−1,1, pA

m−1,2, . . . , pA
m−1,n

]

, E
′A
3 =

[

pA
12, pA

22, . . . , pA
m2

]

and

E
′A
4 =

[

pA
1,n−1, pA

2,n−1, . . . , pA
m,n−1

]

.

(a) Sequences of control pointsE
′
A

i
associ-

ated to eachEA
i

, for i = 1, 2, 3, 4

(b) Control points governingC0 andC1 con-
tinuity

FIGURE 3.5. Sequences of control points inA

Let A beC0-continuous withB, at thei-th border ofA and thej-th border ofB. This
implies thatEA

i = EB
j or EA

i = E∗B
j . Unless otherwise stated, two surfaces ”beingC0-

continuous” means that they meet at borderi (in A) andj (in B). Also we assume WLOG
that EA

i = EB
j (the vertices are enumerated in identical order). The same observation

holds forC1 continuity. We say thatA is C1-continuous withB, if E
′A
i , EA

i , andE
′B
j are

aligned exactly in that order.

4.2. Algorithms for surface C1 continuity. Two different smoothing processes are
identified here. The basic surface-smoothing process consists in achievingC1 continuity
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between two surfaces at their common border, i.e. the borderat which the surfaces areC0-
continuous. A second process consists in achievingC1 continuity between four pairwise-
C0-continuous surfaces sharing a vertex, at their common borders.

4.2.1. C1 continuity between two surfaces at a common border.Given two separate
B-Spline surfacesA andB in R3, connected at a commonborder, EA

i = EB
j , thegoal of

a surface-smoothing process is to determine new positions for the control points ofA and
B so that the two surfaces becomeC1-continuous at their common border. The procedure
is to make collinear theE

′A
ik , EA

ik, E
′B
jk points fork = 1 . . . m, that is, to pairwise align the

control points at the seam between the two patches (m is the number of control points of
such borders).

FIGURE 3.6. C0,1-continuity betweenA andB at i-th border ofA, and
j-th border ofB

4.2.2. C1 continuity between four surfaces at common vertex.Let A, B, C, andD be
adjacent B-Spline surfaces, meeting at one vertex. The meeting borders among them are:
EA

i = EB
k , EB

l = EC
m, EC

n = ED
o , ED

p = EA
j . The common vertex isPA

i∗j∗ = PB
k∗l∗ =

PC
m∗n∗ = PD

o∗p∗ Subscripts take values between1 and4.
The arrangement of surfacesA, B, C, D, shown in figure 3.7 satisfies the previous

conditions, since the four surfaces are pairwise-C0-continuous and have a common control
point that belongs to all the borders at which the surfaces areC0-continuous.
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FIGURE 3.7. C0-continuous set of four adjacent B-Spline surfaces
meeting at a common point

Given four B-Spline surfacesA, B, C, andD in R3, satisfying conditions mentioned
above, thegoalof a surface-smoothing process is to determine new positions for the control
points ofA, B, C andD, so that the union of the four surfaces becomesC1-continuous.

Separately achieving pairwise-C1 continuity between the four B-Spline surfaces in-
cludes calculating correct modified positions of the controls points ofA, B, C andD.
However, such a process does not correctly calculate the positions for the common point
(P0) and its surrounding 8 vertices (P1, . . . , P8 in Figure 3.7)

Algorithm 2 calculates the modified positions ofP0, P1, . . . , P8 such thatC1 Con-
tinuity among the union ofA, B, C andD is achieved. This algorithm is based on the
fact that ifP0, P1, . . . , P8 lie on the same plane, and the elements in each of the following
sequencess1 = [P1, P2, P3], s2 = [P3, P4, P5], s3 = [P5, P6, P7], s4 = [P7, P8, P1], are
collinear exactly in that order, thenC1 Continuity is achieved at pointsP0, P1, . . . , P8. For
the sake of compactness in the article we omit the proof of convergence for algorithm 2.

Algorithm 2 C1 continuity between four surfaces

1: Identify values ofi, j, k, l, m, n, o, p
2: Pairwise-smooth surfacesA with B, B with C, C with D, D with A
3: Calculate best-fit planeΠ∗ for pointsP0, P1, . . . , P8

4: Project pointsP0, P1, . . . , P8 into Π∗

5: while P1, P3, P5, P7 do not convergedo
6: MoveP1 to makeP1, P2, P3 collinear (algorithm in section 3.2)
7: MoveP3 to makeP3, P4, P5 collinear
8: MoveP5 to makeP5, P6, P7 collinear
9: MoveP7 to makeP7, P8, P1 collinear

10: end while

The Figure 3.8 shows the dynamic non-linear system simulation of the state variables
P1, P3, P5 andP7. It illustrates that this algorithm iteratively modifies the positions of
P1, P3, P5 andP7 so that upon convergence the quadrilateral[P1, P3, P5, P7] contains the
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fixed pointsP2 in P1, P3, P4 in P3, P5 P6 in P5, P7 andP8 in P7, P1. It can be seen that
convergence is extremely fast (about 3 iterations) to the final positions.

FIGURE 3.8. State Space Non-Linear Dynamic System Simulation of
the 4-patch Smooting Algorithm

5. Results

A large number of adjacent B-spline curves were smoothed using the industrial im-
plementation of the algorithm described in section 3. Afterthe algorithm was applied, the
upper bound of the angular deviation between tangent vectors at the boundary of matched
curves was2.9 × 10−5 degrees (figure 9(a)).

Likewise, a large number of adjacent B-spline surfaces weresmoothed using the al-
gorithm described in section 4.2.1. The relative error between the normal vectors of both
surfaces along their common border remained below10−5 degrees (figure 9(b)). Figure
3.10 shows the final result of the 4-patch smoothing algorithm.

6. Conclusions

Industrially implemented algorithms for B-spline curve and surface smoothing were
discussed in this paper. The algorithms achieveC1 continuity between adjacent curves and
surfaces by modifying only the positions of their control points. The main advantages of
the presented algorithms are their simplicity, which results in their easy implementation
and modification, and the fact that properties of the curves and surfaces such as their or-
der and their poles remain unchanged. Several tests were made to the obtained smoothed
curves and surfaces, based on the tangent and normal vectorsof the B-spline at their com-
mon point or border. The relative error between the components of the tangent and normal
vectors was in all test cases below10−5 degrees.

Several real ship hull surfaces have been modeled at the Design and Engineering
Group (GED), Universidade de Vigo, following the discussedmethodology. One of these
models was presented in this paper.



48 3. CURVE AND SURFACE SMOOTHING

(a) Vectors tangent to two adjacent B-spline
curves, before and after being smoothed

(b) Vectors Normal to two adjacent sur-
faces, before and after being smoothed

FIGURE 3.9. Tangent and Normal vectors to B-spline curves and sur-
faces used forC1 continuity testing

FIGURE 3.10. Ship hull surface obtained through the procedure de-
scribed in section 2
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Conclusion

Solutions to three geometric problems arising in real industrial applications have been
presented in this work. Such solutions combine tools taken from different fields of compu-
tational geometry including combinatorial geometry, stochastic geometry, and numerical
geometry. The successful application of the implemented solutions to real problems in the
industries for which they were built is the most important contribution of this work.

Combination of stochastic and deterministic methods of computational geometry was
an interesting exercise during the development of the projects. In particular, the use of
Principal Component Analysis as a method to reduce the dimension of data sets proved
to be essential in the treatment of problems where input dataare generated from surface
sampling and/or in an unknown coordinate system. In the firstcase, PCA is used to detect
and eliminate the variance explained by the intrinsic noiseof sampling devices. In the
second case, PCA can be used to identify the direction of largest variance and for example
to assign a principal axis to a solid in the direction of its largest expansion.

Academic fields and topics that were studied during the development of these projects
include: (Discrete) Differential Geometry, Solid Geometric Modeling, Topological and
Geometrical Correctness of Manifolds, Spatial Statistics, Stochastic Computational Ge-
ometry, Heuristic Methods in Dynamic Equations, and Prevention of Degeneracies of con-
structions in Descriptive Geometry. Experience in the use of Programming Languages,
Application Programming Interfaces (APIs) of CAD Packages, and CAD packages was
acquired. Skills in algorithm design, mathematical formulation of problems and methods,
problem solving, literature reviewing, scientific rhetoric, paper writing, and oral presenta-
tions, have also been developed and/or strengthened throughout this work.

The valuable interaction with advisors, professors, and researchers at EAFIT Univer-
sity and Universities and Institutions abroad was essential in the successful development
of this work. It was of particular importance the contact with other cultures, values and
working environments.
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