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Preface

1. Research Engagement of Student Carlos Vanegas

It is my pleasure to provide a context to international readé this document, on
what a graduation project is in EAFIT University, and on tlagtleular trajectory of Carlos
Vanegas’ work.

Carlos Vanegas is a student of the undergraduate progranathevhatical Engineer-
ing (Applied Mathematics) at EAFIT University, Medel| Colombia, and has been a re-
search assistant under my supervision in the CAD/CAM/CABdratory at EAFIT since
January 2004. During his years of work in my Laboratory, @aHas participated in three
research projects, has been coauthor of four researchsptpdrhave been or will be
published in international conferences or journals, arslldeen twice awarded research
internships at universities abroad.

Carlos began his training in the CAD/CAD/CAM Laboratory ithgy the first semes-
ter of 2004, while he was a laboratory teaching assistantmfprcourse on CAD/CAM
Systems. During the second semesters of 2004 and 2005,sGamwoved and imple-
mented for large data sets our algorithm for curve and senfaconstruction from planar
point sets with stochastic noise. Such work was part of ptej&) Computation of 1- and
2-Manifolds PL-1 for CAGD, and 2) Surface reconstruction@AD/CAM/CG.

Because of his distinguished performance in my laboraiGey/os was awarded a
research internship at the University of Vigo, Vigo, Spdiom January to July, 2005.
He worked for the Design and Engineering Group (GED—Groupriesieria e Desigo)
under direct supervision of Prof. Dr. Eng. Xoan A. Leiceaddis contribution was
defined to be the research and development of algorithms @ftwlase for application
of computational geometry to computer aided design, aisafysd manufacturing of ship
hulls.

As a result of his especially good performance during hisrimghip, Carlos Vane-
gas was once again awarded an invitation to work at GED, frebriary to July 2006,
under supervision of Prof. Leiceaga. His contribution waefretd to be the design and
implementation of the dynamic model and visualization eysto be used in a mobile
crane simulator. During this internship, as well as duriigydntire participation in my
Laboratory, Carlos Vanegas showed excellent working sthiery good technical skills,
capability to work unsupervised and a smooth adaptatiohg®bcietal environment. His
supervisors in Vigo have let me know in both occasions ofrtbaiisfaction with Carlos’
performance and personal characteristics.

During the second semester of 2006, Carlos developed undsupervision a project
on detection of wear regions in cylindrical surfaces for ploéymer processing industry,
in which he designed and implemented a stochastic geomgpfication (CylWear). This
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software is currently under copyright registration pracbg EAFIT University, and ob-
tained outstanding evaluation by the Institute for Tragramd Research on Plastic and Rub-
ber, (Instituto de Capacitami e Investigaéin del Pastico y el Caucho—ICIPC, Meddl,
COLOMBIA).

2. Publications related to this Graduation Project

The results of the works in which Carlos has participatestehzeen included in the
following papers:

e Ruiz O, Vanegas C. Piecewise linear curve reconstructiom fpoint clouds.
In I. Horvath, J. Duhovnik (Eds.), Proceedings of the TMCEB@Q jubljana,
Slovenia: Sixth International Symposium on Tools and Mdghof Competitive
Engineering pp. 285-298.

e X. Leiceaga, O. Ruiz, C. Vanegas, M. Ralrez, J. Prieto, E. Soto. Bi-Curve
And Multi-Patch Smoothing with Application to the Shipyakhadustry. Ac-
cepted for presentation at the ADM-INGEGRAF conferencéddneld in Peru-
gia, Italy, in June 2007.

e Ruiz O, Vanegas C, Statistical Assessment of Global andIl@ginder Wear.
Accepted for presentation at the IEEE 5th Internationalf€@mce on Industrial
Informatics, to be held in Vienna, Austria, in July 2007.

e Ruiz O, Vanegas C, Cadavid C. Principal Component and Voi®keleton alter-
natives for curves reconstruction from noisy point setscefated for publication
in the special issue on shape search, reconstruction aimdizgtion of the Jour-
nal of Engineering Design.

3. Assistance to Conferences related to this Graduation Pject

As aresult of these achievements, Carlos has been awardéditwel grants by EAFIT
University: the first one to present our paper on Curve Rdoaction in Ljubljana, Slove-
nia, in April 2006, and the second one to present our papemoweCind Surface Smooth-
ing for Naval applications in Perugia, Italy, in June 2007.

4. Hourly Intensity for a Graduation Project

The total time that an undergraduate student of Mathemdficgineering (Applied
Mathematics) is required to designate to the developmehwaiting of his undergraduate
is 150 hours. During his work in my laboratory, and in the katory of Prof. Xoan
Leiceaga, Carlos has worked an average of 25 hours per weekedks per year, during
3 years (over 3100 hours in total). Based on this fact, | egnthat the total number of
hours that Carlos has carried out research activitiesttjiredtated to the material included
in this work is roughly 1700 hours.

5. Grade Point Average

Carlos holds an overall undergraduate grade point avefaBa)of 4.7 in a 5.0 point
scale. It must be pointed out that, unlike relative gradiggtems, EAFIT University
uses an absolute grading scale. Under such a circumstarfigk saore (5.0) can only
be achieved by a student with full score in every homeworknexproject and other grade
in a course. Therefore, a 5.0 grade is extremely uncommon.
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6. Graduate Study Perspectives

As usual in the CAD CAM CAE Laboratory at EAFIT, Carlos Vanegeshes to be-
gin graduate studies immediately after obtaining his Bdggree. In August 2006, Carlos
began his application process to the Doctoral Program ingliben Science at Purdue Uni-
versity, Indiana, USA. In February 2007, Carlos was offexe@raduate Assistantship to
begin his studies at Purdue in Fall 2007 (a top and competigisearch University in USA).
According to the Dept. of Computer Science at Purdue, thel@te Program in Com-
puter Science received over 640 applications for 20 st rejection probability), for
Fall 2006.

| must point out that Carlos had open doors at several wddsisainiversities and re-
search institutions for his Doctoral track. | am glad abadstdhoice for Purdue University.
| know that such a choice will be good for both parties invdlve

Sincerely Yours,

Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA






Introduction

An increasing number of industrial CAD CAM CAE applicaticthsal at a given stage
with geometric problems, for which solutions must be devissing elements of computa-
tional geometry. Computational geometry is the study obalgms and data structures for
the solution of geometric problems and the manipulationeafrgetric entities. Stochastic
geometry is the mathematical discipline which studies ewatitical models for random
geometric structures. This work is a compilation of compatel geometry methods that
have been devised and implemented in the CAD CAM CAE Laboyaab EAFIT Uni-
versity (Medellin, COLOMBIA) and the Group of EngineeringdaDesign at University
of Vigo (Vigo, SPAIN). Such methods are solutions proposethtee different geometric
problems, all of them originating in real CAD/CAM/CAE indusl applications: curve
reconstruction, assessment of cylindricity, and curvesamtace smoothing.

Subfields of computational geometry include combinatg&dmetry, stochastic ge-
ometry, and numerical geometry. Specific examples of eattiest subfields can be found
within the methods presented in this work. For instancepthet set partitioning problem,
which is a step in the processing of the point set in both tineecteconstruction and cylin-
dricity assessment problems, belongs to the subfield of awtdyial geometry. Another
problem of this type is the Delaunay triangulation of a paet, which is a step in the
deterministic method proposed to the curve reconstrugtioblem.

Two of the problems attacked in this work (curve reconstomcand assessment of
cylindricity) deal with input data sets exhibiting a stostia nature. Consequently, statis-
tical methods (including Principal Component Analysis AAGvere used in the proposed
solutions for the problems. PCA aims to reduce the dimensfialata sets in order to sim-
plify further data processing. The dimension is reducedliyieating those variables that
contribute the least to the variance of the data set. In thkl@m of curve reconstruction,
PCA is used by us to reduce the dimension of a local regioneppttint cloud from 3 to 1,
by identifying the direction in space in which the point setgents the greatest variance.
In the case of cylindricity assessment, PCA is used to déterthe longitudinal axis of
the cylinder from a set of sampled points. The axis is usedkoutate a transformation
that unwraps the point set in order to bring the point set tpats in which analysis of
cylinder wear is significantly easier.

The curve- and surface-smoothing problem presented heréres the manipula-
tion of B-spline curves and surfaces so that given congneiinditions can be achieved
throughout the union of several surfaces. For this purgbse;ontrol points of such curves
and surfaces are modified following geometric criteria aftanity. The method proposed
to solve this problem represents an application of numegeametry, since geometric
modeling by means of spline curves and surfaces is considerge in this field. The
problem of calculating new positions for control points Batttangent plane continuity is
achieved in a point common to four patches, belongs to theedfedombinatorial geometry.
In this case, an heuristic approach is proposed. The cosweegrom the dynamic-system
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Xii INTRODUCTION

point of view, of such heuristic algorithm is intuitivelystiussed in this document, but no
mathematical proof of convergence is provided, as it somvdhalts outside of our intended
scope.

The reconstruction of a curve from a noisy, unorganizedtmample of it, is one of
the most important problems in the reverse engineeringainggric models. To be solved
in this work, this problem requires the application of conatorial geometry and spatial
statistics.

The assessment of cylindricity of nominally cylindricaljetts from a sample taken
on the surface of the object is a relevant problem in metgglsmce a large fraction of
mechanical parts are cylinders. In particular, in the itiggcof plastics and polymers, the
wear of the extrusion cylinder represents an importanigrodf power losses. Therefore,
its diagnostic is economically attractive for the partiegoived. Applications of spatial
statistics and combinatorial geometry build up the solufioposed.

The smoothing of B-spline curves and surfaces is a frequediem in the modeling
of ship hulls, since B-splines have been used extensivetiiarpast to define ship hull
geometry for design purposes. Due to the complex shape & ship hulls, it is preferred
to use a collection of B-splines patches to model the hufierathan a single patch. Au-
tomatically achieving tangent plane continuity throughthie collection of patches is then
desirable for design purposes, since the manual repasigjasf control points defining
the patches is tedious and unfeasible in most cases. Mettiagusnerical geometry and
(heuristic) combinatorial geometry are used in the impletaéon of the automatic process
proposed here.



Contents

Acknowledgements v
Preface vii

1. Research Engagement of Student Carlos Vanegas vii

2. Publications related to this Graduation Project viii

3. Assistance to Conferences related to this Graduatigedro viii

4. Hourly Intensity for a Graduation Project viii

5. Grade Point Average viii

6. Graduate Study Perspectives iX
Introduction Xi
List of Figures XV
Chapter 1. Principal Component and Voronoi Skeleton Aligves for Curve

Reconstruction from noisy Point Sets 1

1. Introduction 2

2. Literature Review 3

3. Statistical Approach 6

4. Algorithms 8

5. Results 13

6. Complexity Analysis 18

7. Conclusions and Future Work 22
Bibliography 23
Chapter 2. Statistical Assessment of Global and Local @glinwWear 25

1. Introduction 26

2. Literature Review 26

3. Methodology and Results 28

4. Conclusions and Further Work 35
Bibliography 37
Chapter 3. Bi-curve and Multi-patch Smoothing with Apptioa to the Shipyard

Industry 39

1. Introduction and Literature Review 40

2. Hull surface modeling using a set of B-spline surfaces 41

3. Methodology. Smoothing of B-spline curves in sharedivest 42

4. Methodology. Smoothing of B-Spline Surfaces in sharadiés 43

5. Results a7

6. Conclusions a7

Xiii



Xiv
Bibliography

Conclusion

CONTENTS

49
51



List of Figures

1.1 2-manifold sample which renders a non-manifold curve. 3
1.2 Curve Reconstruction with Principal Component. 9
1.3 PCA-based Reconstruction. 10
1.4 Line Reconstruction through Delaunay-Voronoi Techeg 11

1.5 Piecewise Linear Approximation of S-shap&tl) by Combined PCA and
Voronoi-Delaunay Methods. 14

1.6 Curve reconstructions obtained for different poins ¢Bt Least-Squares-based
process. 15

1.7 Range Image Data Set. Courtesy from Fraunhofer Inst. pQten Graphics,
Darmstadt, Germany. 17

1.8 Aphrodite’s head contours recovered from planar sasngi@oints. Test data
courtesy from Fraunhofer Inst. for Computer Graphics, Bsatit, Germany. 18

1.9 Results of Range Image Integration. Test data courtesy Fraunhofer Inst. for
Computer Graphics, Darmstadt, Germany. 19

1.10Process of P.L. Approximation of Double-8 self-intetingC'(u) by Combined
PCA and Voronoi-Delaunay Methods. 20

1.11Final Results. PL Approximations of Double-8 selinsectingC'(u) by PCA
and Voronoi-Delaunay Methods. 21

1.12Execution Time of Principal Component Analysis (tinse rumber of points). 21

2.1 Cylindricity Diagnose with Point Cloud 29
2.2 Sampling of a cylinder surface with local damage 30
2.3 Point set with noise, placed in general position in spAdeasured data in an

experiment. 31
2.4 Histogram of the cylinder radius deviation. 32
2.5 Result of localized deformations found with partitiorabysis. 34
2.6 Surface of Radius deformation with physical dimensigverkpiece coordinate

system) 35
2.7 Filtered, automatically-detected localized Wear Begi(using Partition

Analysis) 35
3.1 Non-rectangular Partition of 2-manifolds with Rectallag Patches 41

3.2 Set of B-spline curves interpolating the ship lines awadlC® B-Spline patches 42
3.3 C'! Continuity between adjacent B-Spline curves by adjusting; andq; 43

XV



Xvi LIST OF FIGURES

3.4 Exception Treatment. Continuity between adjacent Ba8iCurves 43
3.5 Sequences of control points4n 44
3.6 C%!-continuity betweem andB ati-th border ofA, andj-th border of B 45

3.7 C°-continuous set of four adjacent B-Spline surfaces meetirrgcommon point 46
3.8 State Space Non-Linear Dynamic System Simulation ofithatch Smooting

Algorithm a7
3.9 Tangent and Normal vectors to B-spline curves and sesfased foiC'*
continuity testing 48

3.10Ship hull surface obtained through the procedure dhestin section 2 48



CHAPTER 1

Principal Component and Voronoi Skeleton Alternatives
for Curve Reconstruction from noisy Point Sets

CONTEXT: The CAD CAM CAE Laboratory at EAFIT University, under my coor
nation, started the research of the application of a stalsnethod, Principal Component
Analysis (PCA), to geometrical scenarios in 2000. Throughytears, several papers have
been written on this subject, progressing in the level ofiappon and formalization of
PCA to Stochastic Geometry. This work has been founded bylEARiversity and the
Colombian Council of Research and Technology (COLCIENQIASseveral research
projects. In addition, the German Service of Academic Ergea(Deutscher Akademis-
cher Austauschdienst - DAAD) has also founded my visitirggeech at the Max-Planck-
Institut fur Informatik at Universit des Saarlandes in 2004, where further research on the
topic was carried out.

Carlos Vanegas, research assistant under my directiorei€&D CAM CAE Lab-
oratory, was able to program the application of the devisethous to large sets of data.
For such a purpose, theoretical contributions were neadsidh appear in two papers:

e O.E.Ruiz, and C. A. Vanegas, “Piecewise linear curve reicocson from point
clouds,” in Proc. 6th International Symposium series onl§emd Methods of
Competitive Engineering, Ljubljana, Slovenia, April 18;2006, pp 285-298.

e Ruiz O, Vanegas C, Cadavid C, “Principal Component and \ar&keleton
alternatives for curves reconstruction from noisy poins 360 be published in
the special issue on shape search, reconstruction andizgtiimm, of the Journal
of Engineering Design.

As co-authors of such publications, we give our permissmmtliis material to appear
in this document. We are ready to provide any additionalrmftion on the subject, as
needed.

Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA



2 1. CURVE RECONSTRUCTION FROM NOISY POINT SETS

ABSTRACT. Surface reconstruction from noisy point samples must takecionsideration
the stochastic nature of the sample. In other words, geonadgiocithms reconstructing the
surface or curve should not insist in following in a literayweach sampled point. Instead,
they must interpret the sample as a “point cloud” and try todotie surface as passing
through the best possible (in the statistical sense) geanhetus that represents the sam-
ple. This work presents two new methods to find a Piecewiseatiapproximation from
a Nyquist-compliant stochastic sampling of a quasi-plaftarcurve C(u) : R — R3,
whose velocity vector never vanishes. One of the methodsuéates in an entirely new
way Principal Component Analysis (statistical) and VoreBelaunay (deterministic) ap-
proaches. It uses these two methods to calculate the besblposgpe-shaped polygon
covering the planarised point set, and then approximatesiéefold by the medial axis
of such a polygon. The other method applies Principal Compaohealysis to find a direct
Piecewise Linear approximation 6f(u). A complexity comparison of these two methods
is presented along with a qualitative comparison with presiip developed ones. It turns
out that the method solely based on Principal Component Aisalysimpler and more
robust for non self-intersecting curves. For self-intetisgy curves the Voronoi-Delaunay
based Medial Axis approach is more robust, at the price ofdrighmputational complex-
ity. An application is presented in Integration of meshegiogted in range images of an
art piece. Such an application reaches the point of compéetenstruction of a unified
mesh.

1. Introduction

Reconstructing a curve or a surface from a point set is oneeaftost important prob-
lems in the reverse engineering of geometric models. In stases curve reconstruction
plays an important role in the surface reconstruction mobJ21]. It is the goal of this
paper to present two methods involving statistical (PgatiComponent Analysis -PCA)
and deterministic techniques (Voronoi-Delaunay) for restaucting a set of curves from
noisy unorganised point sets. An application for surfacemstruction is presented, using
data sets resulting from objects captured by range imadesréferences examined indi-
cate that such a combination of methods has not been triedeb&dfr curve and surface
reconstruction, or for range image mesh integration.

Even though this work will concentrate on quasi-planar earthe statistical methods
involved directly extend to arbitrary curves 3. Two types of noisy unorganised point
sets have been considered. One of them results from sangplthgdding statistical noise
to a set of mutually disjointegular parametric curves (i.e. whose first derivative vector
is continuous and never vanishés)u) in R®. The other point sample is originated in a
cluster of individual meshes from range images. The poimidas are assumed to comply
with the Shannon or Nyquist criteria for digital sampling.

Problem Statement. Given a sampleéS' = {py, ..., pn} from an (unknown) set of
mutually disjoint regular (open or closed) quasi-planaapeetric curve€;(u) in R* and
which may self-intersect, a PL (Piecewise Linear) estioratif eachC’; (u) is to be found.
As seen later, without loss of generality we may assumecthat R2.

The statistical methods which estimate the tangent to sectif:) are not capable of
determining by themselves the correct sense oftthéangent vector. For this reason we
require that the curve has certain continuity in the deixresdind that in the neighbourhood
of each of its points it is well approximated by a straighelinThat is,C;(u) must be
C'-continuous and its velocity vector must never vanish the.curve must beegular).

In this paper the stated problem is solved and an applicatidts solution is pre-
sented, for integration of range image meshes. To integratt of meshes of individual
range images, the set of meshes is sliced by parallel pladgash sliceS;. turns out to
be a coplanar set of point, = {F,,, Pi,,- ., Pn, } With a strong statistical component
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stemming from the optical sampling error. The proposedrélyn finds a PL estimation
of the curveC, (u) that adequately fits the points in the noisy unorganised geti$;,. The
Literature Review section illustrates that such an intigneof individual range meshes is
still an open problem in several aspects. Section 5.1 dissuthe application of PL curve
reconstruction in detail.

Another application of the proposed algorithms in inteigratof individual range
meshes arises when a particular skds missing or incomplete In the case of range imag-
ing, this occurs when a portion of the object is not captunedry of the images. In such
a case, point samples from levéls— 1 andk + 1 are projected onto the insufficiently
sampled plané. The resulting cross section on plakenust then be recovered from a
possibly noisy point set. This point set should be treatetth wfatistical tools, and the
cross sections recovered should be the best fit to the planargoud contained in plane
k.

A variant of the first type of noisy point sets (used to illastrthe Voronoi-Delaunay
method) consists of a noisy sample of a self-intersectiaggil parametric curve. Figure
1.1 shows a situation in which the local geometry of a platiae ¢for example a Com-
puter Axial Tomography - CAT) added to the presence of stsithaoise renders a set of
points that look like the one in Figure 10(a). Clearly, lessame situations may render an
“8"-like section in the presence of a high level of stochastiise. In the case of a sample
of an “8"-like section two legal resulting PL approximat®are equally likely: (ajwo
separate circular polygons, and ¢epolygon with a thin wasp waist. It is clear that near
the self-intersecting point any algorithm may be confugesdurvey of reverse engineering
methods is presented in Varady, Martin and Cox [31], beindest the use of curve recon-
struction from point samples for generation of revolutigregtrusion 2-manifolds. One
of such applications is presented by Lee [21]. This appbaoais particularly important
in reverse engineering when the designer interactivelg the fitting of such surfaces to
specific portions of the point set.

S

FIGURE 1.1. 2-manifold sample which renders a non-manifold curve.

2. Literature Review

Several solutions are available for curve reconstructiomfpoint sets without noise.
A survey on techniques for the case of closed, smooth, arfdrorfly sampled curves
can be found in Edelsbrunner [11]. Methods for non-unifgrsampled smooth curves,
and for uniformly sampled non-smooth curves are cited bhalset al.[2]. Some TSP
(Travelling Salesman Problem) and tour improvement hécsisvere used by Althaus and
Mehlhorn [3], and good experimental results were repofiedmenta, Bern and Eppstein
[4] the PL approximation of &2 curve sampled in a dense pattern proportional to its local
feature size (a modification of the Nyquist criterion) isadissed. Two graphs, tlegust
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andj-skeletorare discussed, whose edge set exhaust the point sampleuld ¢fe noted
that the curve reconstructed by these algorithms passaggineach of the sampled points,
and this type of solution is not adequate for the noisy patd sonsidered in the present
paper.

The methods proposed for the case of non self-intersectiogganised noisy point
sets include spring energy minimization [12], implicit g@ilicial curves [29], a-shape
polygonal boundaries and medial axes [10], and moving lsgsares [21]. A review
of these methods along with their limitations can be fountae [21]. Verbeelet al.[32]
approximate an open curve liysegments that are least squares approximations of point
subsets contained in Voronoi regions for sets of segmenin&gasings, better approxi-
mations to the curvé’(u) are found until a fitting criterion is met. However, the segitse
still need to be joined in a Hamiltonian graph, significamttiding to the complexity of the
algorithm. The segments of the Hamiltonian graph may bestattan the segments found
in fitting the point set. This has the effect of producing a Pbraximation that may be
deformed when compared with tiigw) curve.

[7] attack the problem of noisy point samples by computinga point set having less
noise as than the initial point set. The actual PL approxonab C(u) is computed using
a crust algorithm (in this case the NN Crust by Dey and Kumyr [Bhe new point set is
calculated as follows: for each sample pgir thin rectangle is built with its main axis
normal to the curve tangent and covering a certain numbeoiof pamples. The centre of
such rectangle replacedor the remaining of the algorithm run. The rectangle centne
closer to theC'(u) curve than the original sampled points. From all these ngféacentres
one keeps the most external ones. In this way, the point getiised while a supporting
width for crust algorithms is provided. At the end, a crugjoaithm is called. In the
method discussed in our paper, a Ba(, ) replaces the rectangle, and the centre of mass
of the points inside the ball is assumed to be(¥). Also, the ball contains a point set
whose main trend is tangent(«) instead of normal to it. In our approach, no additional
crust algorithm is needed, since the PL approximatio@'ta) is directly built using the
centre of mass of those points in the sample which are cadamthe ball.

Wang, Pottmann and Liu [33] fit B-splines to a set of noisy psets using curva-
ture - based squared distance minimization. For this redeemminimization requires the
form of the equation (spline), and makes no attempt to atteisy point sets with self -
intersecting conditions. On the other hand, no discussidheocomplexity of the algo-
rithm is provided in time or in computational space. We féelttkeeping the objective as
a PL curve avoids the literal formulation of B-splines in #igorithm. Also, our research
has as a goal the representation of non-manifold curve smagl PL non self-intersecting
curves (i.e., manifold topologies), which allow for the safjuent usage of the PL curves
in geometrical or topological constructs.

Kegl [19] and Kegl and Krzyzak [20] explore the recovery of inBipal Graph un-
derlying a 2D point sample (e.g. a character meant to by pekest). The authors set up
a numerical optimization algorithm that weights two conpgtcriteria in the graph: (i)
should as closely as possible follow the many pixels in thekst and (ii) should not have
high curvature portions. An important feature for the agygtiion of this algorithm is that,
since a character is sought, the final P.L. approximatiors em¢ have to be a manifold.
Therefore, self-intersections are permitted (like in th 6r “8” characters). In our case,
the final result of the reconstruction should be a set of glisjwn self-intersecting curves,
and therefore one must take care of higher requirementgtieaones [20] and [19] met.
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Range Images and Point Set SurfaceBecause the algorithms proposed in this paper
are to be applied to the integration of range images, theoaaittonsider that a review on
range images is worth as a motivation for the reader. Ranggiirg offers a manner of
digitizing the shape of three-dimensional objects. Beeallsopaque objects self occlude,
no single range image suffices to describe the entire objeaiting necessary the com-
bination of a collection of range images from diverse vieinpointo a single polygonal
mesh that completely describes the object. Turk and LevoydReate individual meshes
for the different range images and clip them against eacérdtr integration. Unfortu-
nately, their integration method shows instabilities doeated in [8]. [8] integrate range
images by creating a scalar field containing the minimal esigdistancef (z, y, z) from
the point(z, y, z) to the object’s surface. Afterwards, a Marching Cubes dlgorcreates
the B-Rep of the iso-surfacgx, y, z) = 0. A shortcoming of this method is the fact that
the signed distance is calculated as a directional (instéadscalar) property, and there-
fore there is no guarantee that the scalar field correctlgterg the signed distance from
a point to the surface. In Soucy and Laurendeau [28] the vigly tomputational cost of
combining range image meshes after registration and sunfeshing is discussed. In this
reference overlapping components of the meshes correspgpiaddifferent range images
must be identified, with a large computational cost, of tleo® (2V — 1) whereN is the
number of range images. This reference unrealisticallyrass the accuracy of the range
data, as precision of the range data deteriorates in thphgyi of each range image. In
Zhou, Liu and Li [34] a heuristic method for merging overlagptriangular meshes from
range images is discussed. This article does not prove thectoess of the method ex-
posed, which is based on the distance between trianglearthabnsidered as overlapping.
The less likely mesh is projected against the more likely, based on a purely geometric
projection, giving rise to topological inconsistencieatthre not dealt with rigorously.

For the direct treatment of the integrated point cloud frowhividual range images
Hoppe et al [18] use thk nearest point neighbours of a particular pgirit the cloud to
estimate the best local tangent plane. The plane is thertaisedstruct the signed distance
function f(q) : R* — R from pointq to such plane. A Marching Cubes algorithm is then
used to construct an approximation for the maniffld) = 0. This reference does not
discuss the reconstruction of manifolds with border, ner tehaviour of the algorithm
in incorrectly smoothing sharp edges of the piece. Inddesly examples show a strong
trend to filter out high frequencies. For these reasonsctijrétting surfaces to point sets
has been an open research field since 1992. As a consequegreehas been a steady
stream of publications in this direction. Ohtake et al [28¢ spherical influence regions to
calculate most likely points on the surface and local noweators. For these authors and
others, however, a difficulty with direct reconstructiortleé manifold from the integrated
point cloud remains in the fact that stitching together tieal planes (triangles) gives rise
to non-manifold topologies. Adamson and Alexa [1] propdeedomputing of ellipsoidal
weighting functions per sample to represent an implicifaswe using supporting regions
around each sample (Point Set Surfaces). It must be notedublaan approach does not
explicitly compute the Boundary Representation of the rhotiestead, it lends itself for
visualization with ray casting.

The authors of the present article have found that the issisag in curve reconstruc-
tion and in a possible application of it to range mesh intégnaare still an open problem in
applied computational geometry. As seen from the liteeataview, curve reconstruction
of self-intersecting curves is also unsolved. In range iesag reliable algorithm for mesh
integration has not been proposed. Even in commercial mgsf26] such an integration
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requires the user interaction for correcting self-intefisg portions, holes, etc., that are
left after the triangulation merges. Such facts have eragmd the authors to publish the
present paper.

Section 3 examines the adaptation of statistical methodsetased in the present
problem. Section 4 discusses the concepts necessary tenmapt the algorithms and their
articulation in reaching the solution. Results for severpes of point sets including non-
smooth, self-intersecting, and non-uniform sets obtaimigd both methods are presented
in Section 5. Section 5.1 describes an interesting integratf one of the methods to sur-
face reconstruction from range images, and presents thksebtained for a real object.
Section 6 discusses the computational complexity of thdadmpnted methods. Finally,
Section 7 draws the relevant conclusions, and proposes bafeiture work.

3. Statistical Approach

The statistical approach for curve reconstruction fronmpsamples has precursors in
Hastie and Stuetzle [17]. In this reference, the authorsiddtrincipal Curves as smooth
ones, which pass through the middle of, and are self-camistith, a sampled cloud of
n-dimensional data with dispersion (relative to the unknawnve) following a normal
distribution(y, o).

3.1. Principal Component Analysis (PCA). Although the following discussion deals
with noisy point sets ink? and R3, it may be useful to know that the stochastic analy-
sis presented is applicable to samplesidimensions (in fact, the Principal Component
Analysis method was developed for the treatment of samplesdimensional space, with
n >> 3).

LetS = {p; € R" : 1 < i < m} be a set oin sample points irk™ . Without loss of
generality one may assume that

(8] U1 =fpe = ... = iy =0

meaning that the expected value of thelimensional distribution or thg;’s is the origin
of R™. Let X be the covariance matrix of the sample, whEsg is the covariance of the
it" against thgi*» component of the, points.

One is interested in rotating with an orthogonal transformatiaR such that the new
setS’ = {¢; € R" : 1 < i < m} of transformed sample points = R * p; presents
maximal dispersion in the direction of the first axisi®f, the second maximal dispersion
in the direction of the second axis, and so on. F&7Tapoint set that has a stochastic
linear trend, establishing the direction of maximal dispersiondsivalent to identifying
the direction vector of the line from which the sample wastak-or a3 D point set with
an stochastiplanar trend, establishing the direction of minimal dispersioeritifies the
normal vector of the plane from which the sample was taken.

Let X,,, Y, Z, be the unit vectors pointing in the directions in whiglnas the largest
(o), second largesty,) and smallest variance (), respectively. It may be shown that

(1) The pairs(+X,,0,), (£Yp,0y), and(+Z,,0.) are eigenvector - eigenvalue
pairs of the matrix_:

Yx(£X,) = o5 (£X,)
Yx(£Y,) = oy, x(£Y))
(2) L (£2p) 0. x (£2p)
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(2) £X,, £Y,, £Z, are mutually orthogonal:

3) XpeY,=X,0Z,=27,0Y,=0
(3) R*[X,,Y,, Zy, 0] = [Xu, Y, Zw, O] and therefore:
F X7 0]
-1 YT 0
(4 R=|2r Yo 2 Oph
0 0 0 1 .
zZr 0
L Oy 1]

where[X,,, Y., Z.,, O, is the World Coordinate System or a fixed reference framehWit
out loss of generality, one may assume that = [1,0,0]7,Y, = [0,1,0]T,Z, =
[0,0,1]7,0, = [0,0,0]" and therefore the right hand side of item (iii) above is apigh

4 x 4 identity matrix. Because an eigenvector can always be noredk it can also be
assumed thatX, | = |Y,| = |Z,| = 1. Equation (4) results from the completion of the
identity matrix in item (iii) and its (trivial) inversion.

As aresult]X,,,Y,, Z,, O,] is easily found and constitutes a right handed coordinate
system. In particular,X,,Y,, Z,] is an orthogonal matrix. As desired, a parametric line
p(n) = O, + n * X,, which passes through the centre of gravity of the point clSud
found by sorting and naming the eigenvector-eigenvalues péd so thato, > o, > 0.

From Equations (2) and (4) it is clear that for quasi-plaraiadset, the eigenvector
Z, associated t@, is the estimation of the direction normal to the fitting plasace
o, is by definition the direction of minimal dispersion of theuési-planar) set of points.
Conversely, for line data, the estimation of the directienter of the line is the eigenvector
Xp, since it is associated to the eigenvatyerepresenting the maximal dispersion.

3.2. Least Squares Fitting. Section 3.1 explained how the coordinate system
[X,,Y,, Z,, 0,] is calculated using PCA, by computing the eigenvector+eigieie pairs
(£X,,04), (£Y,,0,), and(£Z,,0,), of matrix £ . Because geometric kernels do not
usually have routines for calculation afdimensional eigenpairs, a method was devised
for the 3-dimensional case at hand. The method takes adyaofdhe fact that point sam-
ples from Coordinate Measurement Machines, Machine Tgtdst CAT scans, etc., are
planar or quasi-planar. As a consequence, a very closeaggimof the lowest dispersion
direction (the vecto¥, normal to the plane) can be easily achieved. The point cload p
jected on this plane loses one dimension and therefore thxtgon becomes 2-dimensional.
Therefore, a solution of the eigenpair problem in Equat@®ncén be achieved as an ex-
tension of a Least Squares (LS) fitting. The LS method canadlitectly applied since it
is based on themplicit equationy = mx + b, which has no solution ifn is the tangent of
+90°. A random rotation around, followed by LS fitting and the corresponding counter
rotation of the point data set, avoids this problem and altmexpress the 3D trend of the
point cloud in terms of @arametricequatiorp(n) = O, + 1 * X,,.

In two dimensions, the LS method detects the trendf a linear phenomenon. Since
the 3D problem at hand is projected into 2D space, findinig 2D reduces to calculating
the projection of the 3D direction vectdf,, of p(n) onto the best fitting plane for the point
set. Notice that the point set is not exactly planar becafiseeomachine tool sampling
errors. Since Least Squares is just a PCA in two dimensianghat follows, “PCA’ and
“Least Squares” should be read as synonyms.
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3.3. Point Sample Partition. Regardless of the method employed to estimate a PL
approximation for the curves, it is capital to recognize féet that the data set must be
partitioned into the data sets originated from the indigidourvesC;(u). In order to
perform such a partition let us define an equivalence relatiothe point sef, as follows.

If the sampling conditions are anisotropic and constant @ a pointp € S is said to
“be the extended neighbour” of a poigte S , if and only if there exists a sequence of
points of the samplé& starting atp and ending ag such that no two consecutive points of
the sequence are farther apart by more than a fixed distéfnom each other. Let(p, )

be read asyp is an extended neighbour g@f. Formally, two pointsp, ¢ are Extended
Neighbours of each other, whenever there exists a sequence, ¢,,] such that each
¢ € S,q1 = p, qw = qand|q; — gi+1| < e. Ther( ) relation defined above is an
equivalence relation since it satisfies:

(1) (P, P,) (reflexive: a pointP; is extended neighbour of itself).

(2) r(P;, Pj) Nr(Pj, Py) — r(P;, Py) (transitive: if P, and P;, and P; and Py, are
extended neighbour$;, and P, are so).

(3) r(P;, P;) — r(P;, P;) (symmetric: if P; is extended neighbour d@?; thenP; is
extended neighbour a?;).

This equivalence relation( ) splits S into subsetsS, S, ... with the property that
r(P;, P;) holds (are extended neighbours) if and onlyjfand P; belong to the sam#,.
Properties (i), (i) and (iii) of the relation( ) imply thatu,S; = S andS;N.S; = ¢, # j.
Each.S; of the partition happens to be the set of points sampled fieencurveC;(u).
The partition of the sef by the equivalence relatior( ) is realized by using a standard
algorithm oftransitive closurevhich will not be discussed here.

4. Algorithms

Two algorithms for determining a PL approximation for qupksinar 1-manifolds in
R3 are presented in this section, along with two figures thatvgbartial results obtained
at the main steps of each one of them.

4.1. Data Pre-ProcessingThe point data must be pre-processed in the following
sequence: (i) Scaling: to guarantee that a standard boyibdix of the setS is available
(PCA requires such a box). (ii) Partition: to divideinto subsets, each one containing the
points of S corresponding to an individudl; (u) curve. (iii) Identification of Best Plane:
to find a statistical planél fitting the quasi-planar point sét. (iv) Correction to Planar
Set: to projectS ontoll in order to have a perfectly planar point set. (iv) Transfation
to XY Plane: to use the algorithmic results in literature whichldeth point sets in the
XY plane. Step (i) is required since sevefa(u) curves may have been sampled and the
point set would represent several unrelated curves. In fohiaivs, the notatiorC; (u) will
be changed t@’'(u) since the analysis is per curve. A post-processing stepstonsin
reversing the transformations performed in the pre-pmdesecessary in order to bring
the found solution back to the original space.

4.2. Curve Reconstruction with Least Squares After the data pre-processing steps
mentioned in Section 4.1 take place, the Least-Squaresdtzgorithm takes as input a
quasi-planar sef, and returns a polyline that fits these points by performing steps
discussed below and displayed in Figure 1.2.
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FIGURE 1.2. Curve Reconstruction with Principal Component.

4.2.1. Optimal Local Point Set EstimatiorGiven a noisy unorganised point set, re-
sulting from a stochastic sample with variarieg, o, 0.] of a planar 1-manifold”(u)
(possibly open) lying on plan8 in R3, one is interested in estimating the tangent line
dC(u)/du|y=y~, at pointC(u*) of the curveC'(u). PCA and Least Squares are applied to
points of the sample which are contained inside a BdlP;, R), centred at a seed point
P, and having radiug. Two competing aspects must be compromised: (i) the bailldho
be small enough so that data setan be considered to fit a linear estimation of the local
tangent; (ii) the ball should be large enough so that the gessiof the linear estimation is
kept. To achieve (i) and (ii) an iterative search is conddifbe a combination of’; and R,
optimal for the linear fitting of local neighbourhoods®f The iterative search starts with
aballB(p(0),r(0)) enclosing a se$(0) of points. Let (p, ) be a function that associates
a least-square regression fitting error to the points ingidall with centrep and radius-.

It is desired to find the values @fandr that minimizee. Applying the PCA to the point
set, a measurement of the fitting error is found. Inkhe th iteration a new value ot(k)
is proposed«(k + 1)), which changes the size of the b&[r(k + 1), p(k)). This ball, in
turn will enclose a different set of poin&(k + 1), with new centre of gravity(k + 1).
The fitting of a new straight line to the s8{k + 1) will render a new fitting error. The
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iterations stop when such an error has a local minimum. dthisocprocess was found to
have good convergence.

4.2.2. Piecewise Linear Reconstruction@{u). In the following discussion the term
B(p, r) willmean both the ball with radiuscentred ap, and the subset of the point sample
contained in such a ball. The context will define which megiigrintended. The algorithm
in Figure 1.2 performs an estimation of the linear trend efghints in the optimized ball
B(p,r). Such an estimation produces a parametric equation foraalstrline in space
p(n) = Op + 1 * v with |v| = 1, whereO,, is the centre of gravity of the points inside
B(p,r), v is the linear trend of the line (also callex, in section 3.1). 0, is denoted
asCG(B(p,r)) in Figure 1.2. Such a point is stored directly in the lineaimestion of
the C'(u) curve. The ball for the next iteration is initially centretd@, + d * v, whered
is the progression step of the algorithm dafl= 1. SinceB(p;,r;) and B(p;+1,7i+1)
intersect, it is clear that each sampled point may be usedveral balls, and therefore
in the estimation of successive tangents. Notice that tbexin corresponds to already
optimised balls in evolving localities of the cur@& ) such thatp; 1 —p;| =~ d. In Figure
1.2 the need for determining whethep or —uv is the correct trend is omitted (recall that
PCA returnstv). This is easily done by ensuring thate v; .1 > 0. The later requirement
is reasonable since the curg@gu) is assumed to be regular.

The algorithm will continue as long as there are enough abklpoints of the sef
(see section 3.3) which fall inside a ball. Each point can $edun several balls, being
their number set by the user. In Figure 1.2 the marking of th&iply used points ofS is
omitted for the sake of clarity. When this algorithm termégtthe curve’(u) has been
piecewise linearly estimated.

A noisy point set generated from a range image Multi-Meshais shown in figure
3(a), together with the balls used by the reconstructioorétymn. Figure 3(b) shows the
resulting reconstructed curve.

(a) Noisy Point Set from Range Image Multi-Mesh sam-
ple and Balls used in the reconstruction process.

(b) Reconstructed Curve.

FIGURE 1.3. PCA-based Reconstruction.



4. ALGORITHMS 11

Point Set
Delaunay

Triangulation
Delaunay
Triangles
Triangle
Filtering
Tape-shapedL={LO,L1,...Lm}

Polygon
Medial Axis

Approximation

Medial Axis

Graph
Graph

Post—process

PL Curve
Components

FIGURE 1.4. Line Reconstruction through Delaunay-Voronoi Teghes.

4.3. Principal Curve via Delaunay Triangulation. The following discussion will
be illustrated using a planar 1-manifold with border (ojg&f)). Later on, the concepts
explained will be applied on self-intersecting (i.e. noasifold) planar curves.

For planar self-intersecting curves, PCA alone is not robausugh. Additional pro-
cessing is required since the points in the neighbourhodtieokelf-intersection are ex-
hausted for purposes of PCA estimation as the PL approamatiosses the first time
over the intersection neighbourhood. As the PL curve revikie intersection neighbour-
hoods no points are available for identifying the trend ef¢irve, and the algorithm tends
to look for another point (i.e. curve) neighbourhood wherevork, without really having
reproduced the intersection. The result is an incompleteecstage, therefore missing the
self-intersection detail.

To deal with self-intersecting curves, it was decided teduatne the tape-shaped poly-
gonT, covering$S (definition below). Figure 1.4 displays the algorithm dissed next.

Definition. Tape-shaped PolygorT,,. Let C' : R — R? be a planar regular paramet-
ric curve, which may self-intersect. Without loss of gefigrdet us assume thaf' ¢ R2.

Giveno > 0 a real number, defin€, = {p € R? : d(p,C) < o}. There existeg >
0 such that ifd < o < oq then for everyp € T, (i) the set of pointg,1, ..., gp,r, } C C
formed by those points whose distance equalsi(p, C) is finite. Theg, ; points inC are
the ones which realise the distance frprto C; (ii) the distance between any two points
inthe set{g,.1, ..., gp,-, } is less tharRo. Observe that is dictated by the precision of the
measurement device which sampiésWe assume that the measurement device allows a
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precision ofc < ¢y and therefore that C T,,. Note that they, ; could be regarded as
the points to be sampled in the cur¢ein absence of sampling noise and thaf’iis non
self-intersecting then is unique for eachy € S.

For small enough values ef, (Nyquist samples],, resembles a tape region covering
the curveC. Let us defineQs = {q € C : d(p,q) = d(p, C),for somep € S}. Note that
if S has no statistical nois€)s = S and@ s would be a noise-free Nyquist sample@f

4.4, Approximation of T,. Under the condition of5 being a Nyquist-compliant
sample, this article proposes an algorithm to approximagetape-shaped polygdh,.
The algorithm follows three steps:

(1) calculates the Delaunay Triangulation®yfDT'(S);
(2) then selects fronT'(.S) small triangles;
(3) and finally, makeq, the boundary of the union of the triangles selected in (ii).

In order to apply such a method, an estimation of what a “smatigle” is, should be
made precise. For this purpose the typical area and edgthlehBelaunay triangles be-
longing toT,, need to be estimated. To do that, PCA is iteratively run oghtsurhoods
of the data set, thus determining the lipg)) = Py + n * v that best approximates the
tangent to the”'(u) curve in that neighbourhood. The points$that produce such a fit
are contained inside a bafl, «+ B(Fy, Ry) approximately centred on a local neighbour-
hood of C'(u). Delaunay triangles contained within a scaled version isf tlll, namely
fp * B(Py, Ry) (with fp = 1.3 being an empirically chosen enlarging factor) might be
considered as “typical” of the ones formifig, rendering “typical area’d and “typical
edge length values.

One considers that a triangle is small if either of the follayvcriteria ([14] and [16])
holds:

(1) Enclosure Accept a Delaunay triangl®T; if it is contained within the local
PCA ball, that is, ifDT; C B(Py, Ro) whereB(FPy, Ry) is the best local PCA
ball (see Figure 5(c)).

(2) Area and Edge Length Accept a Delaunay trianglBT; if its Area or maximal
Edge Length are small. That is, #rea(DT;) < fa* Aorif Eae < fi %1,
respectively, for fixed constanfs, and f;.

We give an informal discussion for the correctness of thegulare to obtain an ap-
proximation ofT,. The tests run gave a good performance in the filtering of ey
triangles. An advantage of the implemented algorithm isttheapplication of PCA to the
local neighbourhoods of the point cloud allows the estioratif the sizes of the triangles
to be deleted and to be kept.

Let us suppose that, contrary to the assumption, a largegtdeDT; = [v;, vk, vi]
belongs toT,,. Since it is a Delaunay triangle, its circumcircle contamspoints ofsS.
But since DT; is a large part off,, a large portion off, contains no sample points,
contradicting the fact thaf is a Nyquist sample. On the other hand, suppose that a small
triangle DT; = [v;, vk, v;] iS not entirely contained iff,,. If DT; is completely outsidé,,
then it creates a contradiction sinfeC 7, . If v;, vy, v; are inT, but the triangle joins
two approaching branches 6f, the samples is characteristic of a non-manifold situation
and thereforeDT; is part of 7.

For the sake of simplicit{,, will be denoted simply byi". An approximationof the
medial axis ofT’, called here thekeleton of Tis the sought PL approximation of tli&w)
curve. Since the skeleton is a graph, it needs to be posegsed in order to extract from
it the PL approximation o€ (u).
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Figure 5(a) shows a data set from a planar non self-inténgpeiirve sampled stochas-
tically. This figure presents a data set which has been alnesmized, its best plane esti-
mated, and their points projected onto this plane, whicldypeces a planar set. The Delau-
nay Triangulation of this point set is displayed in Figurb)5(

4.4.1. Polygon Synthesis based on Filtered Delaunay Triangutatibhe polygonL
obtained after application of criteria (i) and (i) is shownFigure 5(d). Observe thdt,
has no holes for this example. In that figure light trianglesthe accepted ones based on
the PCA criterion and dark triangles are the ones accepteedban area or edge length
criteria. The following relations hold among accepted Daky triangles and their edges
[22] :

(1) Each edge of an accepted Delaunay triardgfieé has one or two accepted trian-
gles incident to it.

(2) Edges:; ; in which Delaunay triangle®T; and DT; are incident are internal to
the tape-shaped regidn

(3) Edges:; in which only one Delaunay triangl@T; is incident form the boundary
0T. They may be either in the outermost or in an internal loop.

4.5. Medial Axis VS. Principal Curve. Figure 5(d) presents the minimal polygon
T that covers the point sét. Its borderdT’, built by filtering the original Delaunay Tri-
angulation, is coloured black in Figure 5(e). A very fine rapke of the bordepT) is
then performed, and a Delaunay triangulation for this neint®et is calculated. This new
Delaunay triangulation also appears in Figure 5(e).

An approximation to thenedial axisM A(T') of T is a skeletor§ K (T'), which is built
in the following manner ([15], [5], [24]):

(1) Construct the Voronoi Diagraii D(T") and Delaunay TriangulatioPT(T") of
the vertices ofl" (see Figure 5(e)).

(2) Keep fromDT(T) only those Delaunay triangles containedIin Call this set
DT(T).

(3) Keep fromV D(T') only those Voronoi edges which are finite and are dual to the

edges inDT(T). Call this sef D(T).

(4) If VD(T) ¢ T then re-sampléT with a smaller interval and go to step (i)
above. Otherwisd/ D(T') is the sought skeleton af, SK(T).

As it is evident from Figure 5(f), the skeleta#¥ (T") of the polygonT is a PL ap-
proximation of the 1-manifold’(u).

Notice that several resamples @I’ may be needed in order to convergeSta (7).
Figure 5(e) shows one such resample. The boundaryf the S-shaped polygdh' in
Figure 5(f) is sampled with a small enough interval. Thistisampling guarantees that the
portion of the Voronoi Diagram confined 0, SK (T), is acceptable as an approximation
of M A(T), the medial axis of".

5. Results

Section 5.1 illustrates three PCA curve reconstructionaiobd for diverse point sets.
It also discusses the application of PCA-based curve réxeani®on to surface reconstruc-
tion from range images. Section 5.2 illustrates the reslitsined using the Delaunay
Triangulations methodology in dealing with the PL Approzition of planar 1-manifolds
without Border (closed’(u)).



14 1. CURVE RECONSTRUCTION FROM NOISY POINT SETS

(a) Point Sample of Planar S-shap@¢u) Manifold. (b) Delaunay Triangulation of S-shaped Planar Point
Sample.
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(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

FIGURE 1.5. Piecewise Linear Approximation of S-shap@du) by
Combined PCA and Voronoi-Delaunay Methods.
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(b) Self-Intersecting Non-Uniform Point Cloud.

FIGURE 1.6. Curve reconstructions obtained for different poirts &g
Least-Squares-based process.

5.1. Least Squares Fitting ResultsThe PCA-based algorithm was tested on sev-
eral noisy unorganised point sets, which include non-unifonon-smooth, near self-
intersecting, and self-intersecting ones. Figures 6(d)&{h) present the results obtained
for two sets, each one having some of these features. Ndant@ekecting, non-uniform
point clouds, as the one shown in Figure 6(a), can be addguatmnstructed by vary-
ing the length of the segments of the reconstructed polytioesidering the dispersion of
points contained in each ball. The radius optimization pss¢described in section 4.2.1,
turns out to be useful for this purpose.

In Figure 6(b) a point set sampling a self-intersecting eur\(u) is displayed. As
mentioned in Section 4.3, a PCA algorithm alone is not robastugh for reconstructing
self-intersecting point clouds. However, due to the randess of the starting point of
the reconstruction mentioned in Section 4.2.1, certais nam result in adequately recon-
structing the PL approximation @f'(u), while other runs will not. Because of this, the
skeleton method for curve reconstruction was considered.

Notice that criteria for identifying the ends opennoisy point sets are needed in
order tocorrectly reconstruct open curves. These criteria include the fadtwien the
PCA algorithm finds an end of the cur¢§), the evolution to a next centre of the fitting
ball B(p, r) is possible only in one direction. This condition allows tealiminate samples
of open vs. closed curves. In the example discussed, (Ajibrddta set), however, all the
sampled curves are closed.
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5.1.1. Application to Surface Reconstruction from Range Imadrange imaging is
a technique for digitizing three-dimensional objectsegia set of range images. A range
image is a function x J — R3,(i,j) — P;;, wherel x J is the grid of pixels in the
range image, an®;; = (z;;, yij, zi;) iS the point in the surface of the optically sampled
object, captured by the pixel in positidi j) of the grid of pixels.

As no single range image suffices to describe the entire plijésnecessary to com-
bine a collection of range images (see Figs. 7(a) and 7(h))arsingle triangular mesh
that completely describes the object. The steps listecdhbetere followed in order to gen-
erate such mesh from the individual pictures (considenexhdy registered with respect to
each other): (i) Construction of the individual mekh for each individual range image;
(Figs. 7(a) and 7(b)) ; (ii) slicing of the complete set of mesA/;,i = 1,2, ... with a set
of parallel, equi-spaced planes, thus building planar $esnf points; (iii) reconstruction
of a set of curves (contours) from the sampled points by utiaglgorithm discussed in
Section 4.2 (see contours in Figure 1.8); and (iv) use of gardthm for surface recon-
struction from planar slices. In this case, the algorithstdssed in [27] was used. The
reconstruction of Aphrodite’s head is presented in ordéltustrate the mesh integration
process. The range images used were a courtesy of Frautinsifefor Computer Graph-
ics, Darmstadt, Germany.

In step (ii), a set of parallel planes are defined, and thedatgion between each plane
and the collection of shells recovered from the range imégeaslculated. A set of planar
samples of pointsy, Ss, ..., Sk, ... is generated by sampling the polylines resulting from
each intersection. Figure 3(a) shows one such coplanarsdnp= {F,,. .., Pn, } for
Aphrodite’s head model.

More than 100 levels (the number and separation dictatedé@yNiyquist criterion
applied in the axial direction) of slicing were obtainednfreampling the collection of
meshes corresponding to Aphrodite’s sculpture head ankl mec the same number of
polylines were reconstructed from these sets (Figure 1In8pite of the large number of
range images available for Aphrodite’s sculpture, somésafegions were not covered by
any of these, and therefore several sets of points needezintthually completed. Once
the sets were completed, none of the reconstructed padylvexe edited. The surface
reconstructed from the integrated, stochastically re@a/eontours is shown in Figures
9(a) to 9(c). Figures 9(a) and 9(b) correspond to resampliages which are not orthog-
onal, and to an unfinished reconstruction (there is still @&q. Figure 9(c) represents
the integrated result for slicing planes parallel to plahg. The final Aphrodite’s surface
reconstruction is shown in figure 9(d).

5.2. Medial-Axis, Delaunay Triangulation Results. Application of Medial Axis
or Delaunay Triangulation methods is justified when the dachpurveC(u) is self-
intersecting. For this reason, these methods were notitestte the Aphrodite data set, but
with planar self-intersecting Bezier curves sampled witltlsastic noise. The discussion
of such tests follows.

5.2.1. Pre-processing to Transform int& Y Plane. As before, the point sample of
C(u) renders a quasi-planar point set. According to the disonssin isotropic scaling
was applied to the point set, because PCA is sensitive tordiimeal issues. PCA was
then applied to estimate the best pldndit to the point set, and a modified Householder
transformation was used to project all points oftoln addition, a rigid transformation is
used to bring the (now perfectly) planar point set to }i¥ plane, following the process
described in section 4.1. Figure 10(a) shows the initiahpsét, along with a coordinate
frame attached to the plaihg
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(a) © — th Mesh from Front Range ImageAphrodite.

(b) k—th Mesh from Front Range ImageAphrodite.

FIGURE 1.7. Range Image Data Set. Courtesy from Fraunhofer Inst.
Computer Graphics, Darmstadt, Germany.

5.2.2. Delaunay-based Medial Axis Processirithe Delaunay Triangulation of the
point set projected ontll and then transformed t&Y is illustrated in Figure 10(b). In
the construction of the tape shaped polydarDelaunay Triangles included in PCA balls
are accepted ( Figure 10(c) ). The triangles not entirelyuthed in PCA balls may still be
accepted based on the Edge Length or Area criteria (seed-ig){d)). Notice thaf' is a
connected 2-dimensional region with bounday = LoUL,U...UL,, in Figure 1.4. After
the regiorl” has been synthesized by consolidating Delaunay trianptesen according to
the above criteria the bordéfl’ must be determined. This step is a standard procedure in
Boundary Representation construction and is conductear@iog to the rules in section
4.4.1. The next goal is to identify the Medial Axis (MA) @f. An exact calculation is
out of question because MA produces curved portions. Homvéve resampleRT of T
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7

FIGURE 1.8. Aphrodite’s head contours recovered from planar sesnpl
of points. Test data courtesy from Fraunhofer Inst. for CotepGraph-
ics, Darmstadt, Germany.

is fine enough, its medial axis may be approximated as theeseguof Voronoi Edges
of RT completely included irf". Theborder 9T is resampled (see Figure 10(e)) and a
new Delaunay Triangulation is calculated. The DelaunagigulationDT (RT) of RT

is purged to keep only those Delaunay Triangles interndl.tdn this form, again,T" is
re-triangulated, but this time with triangles whose cirsgnibed centre lie insidé. The
loci of such centres IS K (T), the skeleton approximation for the medial aki&A(T") of

T (see Figure 10(f)). As can be seen in Figure 10(f), it is geghat the re-triangulation
of T' breaks this region into separate ones. This result is eggestnce it indicates the
presence of self-intersections in the original set. Therdlgm corrects them by splitting
the tape polygorf’ into annular sub-part$;. Care must still be exercised, &9¢(T")
may be outside of &; region, as shown in Figure 10(f). This situation, howevemat
harmful since the skeleton$K; do not intersect each other, and therefore serve as PL
approximations of the original’; (u) curves.

Figure 1.11 shows comparative results for a self-intensgacurveC (u) (double “8”)
obtained using PCA (Figure 11(a)) and Voronoi-Delaunag\Fé 11(b) and Figure 11(c))
methods. Figure 11(a) shows that PCA alone processes tiguint set but is not able
to solve the self-intersection issue. The Voronoi-Delguesult in Figure11(b) solves the
self-intersection by generating several tangent closeesu The Voronoi-Delaunay result
in Figure 11(c) generates a PL approximation with wasp waist

6. Complexity Analysis

For this complexity analysis, worst-case scenarios wiltbesidered. In the case of
the Delaunay Triangulation @¥ points in R? a complexity ofO(NN?) is counted, instead
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D
(c) Integrated Aphrodite without Border. Wireframe(d) Integrated Aphrodite without Border. Smooth
Render.

FIGURE 1.9. Results of Range Image Integration. Test data courtesy
from Fraunhofer Inst. for Computer Graphics, Darmstadtntzey.

of O(N) reported in [6], due to the fact that no special data stredgiassumed. An sketch
of the complexity analysis performed is presented in thiefdhg subsections. Since only
well known facts on the complexity of the Delaunay Triandiolas and Graph Theory are
used, the reader is invited to consult the most basic lileeatn such topics.

Pre-processing. Point Sample Partition.Since in both cases (self-intersecting and
non self-intersecting curves) the closure operation nézde performed, such a part is
omitted in the discussion. Instead, it is assumed that gpeess to separate all possible
curve samples in the initial set is performed. Therefore,fallowing discussion is per
curve.

6.1. Alternative 1. Non Self-intersecting curve. PCA Analgis. The algorithm has
a worst-case complexity ad(/N?) in classifying N points in at mostV balls. For each
ball, the cost of PCA in a constant dimensional space (2D ori8@(N). Therefore,
a worst-case cost @d(N?) is calculated. Figure 1.12 shows the execution times for the
point set Aphrodite in a computer Pentium IV, Processor Cai.2GHz with 2GB RAM.
The curve presents an average complexit96fV 1-5°), which confirms that the expected
value of complexity is much better than the worst case sted@cussed above.
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(a) Point Sample of Planar Doublec8 ) Manifold. (b) Delaunay Triangulation of Planar Double-8 Point
Sample.
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(e) Tape Polygon and its Delaunay Triangulation. (f) Filtered DT and Skeleton.

FIGURE 1.10. Process of P.L. Approximation of Double-8 self-
intersectingC'(u) by Combined PCA and Voronoi-Delaunay Methods.

6.2. Alternative 2. Self-intersecting curve. Delaunay Trangulation and Medial
Axis. The complexity analysis for the approximation of the skatetf the tape polygon
T follows.

(1) Initial Delaunay Triangulation. First box in Figure 1. Bhe number of triangles
is O(N). Cost:O(N?).

(2) First Purge Process (using only edge length and aresiajiin a set ofV trian-
gles. Part of second box in Figure 1.4. Cdst:V).

(3) Determination ob7T = Lo U L U ..... from a set ofN triangles. Part of second
box in Figure 1.4. CostO(N?).

(4) Resampling of each edge@T’ in & points. Part of third box in Figure 1.4. Cost:
O(k.N).

(5) Second Delaunay Triangulation for a settolV points, givingO(k.N) as the
number of triangles. Part of the third box in Figure 1.4. C6xtk2.N?).
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FIGURE 1.11. Final Results. PL Approximations of Double-8 self-
intersectingC'(u) by PCA and Voronoi-Delaunay Methods.
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FIGURE 1.12. Execution Time of Principal Component Analysis (time
vs. number of points).

(6) Second Purge Process, to see which ongs &f triangles fall insidel” (T is
already known from step (iii)). In the worst case, one ©45.N) as the number
of vertices of the skeleton. Part of third box in Figure 1.4s€0(N?).
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(7) Construction of the Skeleton Graph witi{k. V') vertices. The initial point sam-
ple for the self-intersection curve respects the Nyquistigon (the level of sto-
chastic noise is smaller than half of the minimal geometei@i to be sampled).
Fourth box in Figure 1.4. Cos©(k3.N3).

In conclusion, the whole process co&t§:3. V3) if the initial curve is self-intersecting,
with the construction of the final graph being the most expensart.

7. Conclusions and Future Work

Two methods have been presented for obtaining the PL appadixin of a collection
of planar regular curve€’(u) stochastically sampled. The Principal Component Anal-
ysis -PCA- method is useful for cases when the point set spomds to a sample of
non self-intersecting curves. This method returned ctyreeconstructed PL 1-manifolds
for non-trivial point sets (open, unorganised, noisy, moiform, non-smooth, near self-
intersecting).

A new application of the PCA method for surface reconstarctiom Range Imaging
is also discussed, and results for a real model are presehiedintegration method cor-
rectly merged together a set of meshes obtained from sexdraildual range images, into
a single mesh. This approach of merging individual mestoes fange pictures overcomes
some of the limitations present in common usage methodslb@sé¢he direct meshing
from the integrated point cloud from the range pictures. @iect methods do not ren-
der a manifold topology even when the model sampled is a wiani©ur method always
renders a manifold provided that it works on a Nyquist sample

The second method (Delaunay-based Medial Axis ) can be used self-intersecting
curves have been sampled, and therefore when the PCA algastnot applicable. This
new method synthesizes t1%<(T") skeleton of the tape-shaped 2D region covering the
point setS. This skeleton is a 1-manifold for Nyquist samples of theveufThe existing
literature has not considered the reconstruction from $&srgf self-intersecting (or non-
manifold) curves.

Future Work.When the point sample of a self-intersecting curve has lovitgulauild-
ing a graph, which is the PL approximation of the curve, ouhefmedial axis of the tape
polygonT covering the curve needs improvement. In this case the gegplsenting the
principal shape presents “hair”, (i.e. high frequencyfacts), that need to be eliminated.
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CHAPTER 2

Statistical Assessment of Global and Local Cylinder Wear

CONTEXT: A project to devise a method for the evaluation of wear regiorcylin-
drical surfaces was developed at the CAD CAM CAE LaboratariZAaFIT University.
The results of this method sought to provide sufficient stigtl information about the de-
formation of cylinders used in the polymer processing itigug order to help production
managers to make accurate decisions on the replacementrofogkinders. The project
was financed by EAFIT University, and evaluated by the lastifor Training and Re-
search on Plastic and Rubber, (Instituto de Capaditaeilnvestigacin del Péastico y el
Caucho - ICIPC, Medéiih, COLOMBIA).

Carlos Vanegas, research assistant under my directioreiC&D CAM CAE Lab-
oratory, and myself devised and implemented this methodtiénperiod July-December
2006. The software produced (CylWear) is currently undeyaght registration process.
Theoretical and implementation contributions of this wappear in the paper:

e Ruiz O, Vanegas C, “Statistical Assessment of Global an@dLOglinder Wear”,
Accepted for presentation at the IEEE 5th Internationalf€@mce on Industrial
Informatics (INDINO7), to be held in Vienna, Austria, Julg-27, 2007.

As co-author of such a publication, | give my permission fas material to appear in
this document. | am ready to provide any additional infoiiorabn the subject, as needed.

Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA
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ABSTRACT. Assessment of cylindricity has been traditionally perfodnoa the basis of
cylindrical crowns containing a set of points that are sigggoto belong to a controlled
cylinder. As such, all sampled points must lie within a crowmcdntrast, the present paper
analyzes the cylindricity for wear applications, in whiclstatistical trend is assessed,
rather than to assure that all points fall within a given t@hee. Principal Component
Analysis is used to identify the central axis of the sampldihder, allowing to find the
actual (expected value of the) radius and axis of the cylinélgplication ofk-cluster and
transitive closure algorithms allow to identify particukreas of the cylinder which are
specially deformed. For both, the local areas and the glopider, a quantile analysis
allows to numerically grade the degree of deformation of thendgr. The algorithms
implemented are part of the CYLWEAR system and used to assess local and global
wear cylinders.

1. Introduction

Regarding extrusion or injection cylinders there is an eoois interest in quantifying
the degree of deformation away from a mathematical cylindée software processing
a point sample of the interior of a cylinder is expected tdilfuhe following criteria: (i)
independence of the coordinate frame of the measurem@idgfitification of the axis of
the cylinder, (iii) identification and quantification of lai; high wear areas, (iv) automated
guantification of global wear.

The present article discusses a software that takes asanmint cloud evenly sam-
pled on the interior wall of a cylinder and that is containetvien two planes, approxi-
mately perpendicular to the cylinder axis. The point sarg#ssumed to be evenly spread
in such an area, in such a manner that no part is over-sampletler-sampled. No order
is assumed in the point cloud.

2. Literature Review

An important application in metrology is the evaluation gfidricity, since a large
fraction of mechanical parts are cylinders. The evaluatiboylindricity is not simple,
because it requires a number of circularity traces to bettakdifferent horizontal sections
of the cylinder and must be combined with the straightnesiseofienerators of the cylinder
[1].

In the evaluation of cylindricity the zone cylinder has beeoa standard for the quality
control community. The zone cylinder is the cylindricalwrocontained between two co-
axial cylinders with minimum radial separation (width) ac@htaining all the data points.
Determining the zone cylinder involves the calculationhe# tlirection axis, and internal
and external radius.

Sampling nominally cylindrical objects usually involves apparatus consisting of a
turntable, a probe, and the support of the probe. This meamnt system involves three
different axes: the axis of rotation of the table, the axithefcylindrical object and the axis
of the probe support [2]. In practice, these axes are nollparand accurate information
of the orientation of the cylinder is not available. Therefathe direction axis must be
calculated.

A comparison of different methods for cylindricity evaliat is presented in [1]. An
approach using normal least squares was introduced, whitimires the squares of the
perpendicular distances from the measured points to treeadsthe cylinder. The author
also presents a method based on the development of theesoffttee cylinder, in which
the surface is “flattened” using as reference the axis of tbhbgsupport. The flatness of
the surface is then obtained from the mean plane equation.
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Reference [2] presents a linear programming-based agpto&stimate the minimum
zone cylinder enclosing a set of points. The linear programgmproblem is iteratively
solved in a 6-dimensional space generated by 6 parametaddfine a hyperboloid asso-
ciated to the cylinder. The above-mentioned approach retbe relevant to the evalua-
tion of overall cylinder deformation, but does not aim toveathe local wearing detection
problem. The efficiency and accuracy of this method was ingtdhrough a procedure
in which points that cannot provably define the solution arléed from the input point set
[3].

The problem of finding the minimum width cylinder containiaget of points is an
extension to three dimensions of the problem of finding theulrs of smallest width
containing a set of points in the plane. Several works hadeesded the minimum width
annulus problem. Reference [4] proposes a fast algorittahetkploits the properties of
convex-hull and Voronoi diagrams. Reference [5] proposgsreeralized method for the
minimum width annulus in @-dimensional space. Reference [6] addresses this problem
in 2-dimensions (disks) and 3-dimensions (balls). Theithoeé for testing disk roundness
(mentioned below) is extended to the evaluation of ballsdnyitioning them into several
slices, each of which is evaluated as a disk.

Reference [7] also studies the problem of determining wéretimanufactured cylin-
der is sufficiently round. They first introduce a procedumésting roundness in disks, in
which set of probes are iteratively taken at uniform inté&ndirected at the origin, using
the finger probing model of [8]. The procedure stops when é&ietis made on whether
the sample points can be covered by some “thin” annulus. @bedness testing proce-
dure is extended to cylinders by projecting the points onstiréace of the cylinder onto
the XY plane, and applying the “thin” annulus criterion to the prigd points. Notice
that this method assumes that the sampled cylinder is gestitheX'Y” plane and that its
orientation is known. As noted above, such an assumptiootislways valid since the
axes of the measurement system (e.g. the axis of rotatidreafylinder) are unknown in
practice.

The problem of cylinder fitting is also addressed by [9, 168]agart of their method
for detecting bore holes for Industrial Automation. Thepgose a sequential cylinder
parameter fitting in which the orientation of the axis is fitatculated, followed by the
calculation of the radius and the position of the axis. A fres step in this bore detection
method consists in estimating the normal vector to the saré each sampled point.

The first sub-quadratic solution to the minimum width cytiedl shell problem, based
on a linearization of such problem, is presented in [11]. iAgthe problem addressed is
that of estimating the global deviation of a point set fronykndrical shape, and does not
cover our aim of statistical assessment.

General comments to the reviewed literature are: (i) a dfioeal quality control
problem is attacked, which poses the question of whetherrkpiere must be rejected or
not, (ii) the determination of minimal enclosing and maxieraclosed cylinders, minimum
zone cylinder, etc. are sought, usually in cylinders whighmaced in a particular position
of the space, (iii) in the item (i), data are interpreted farkl way, i.e. ignoring the trends
or statistical indicators of their quality. The approaclleriaken in our work is to produce
a statistical diagnose of the cylindricity (see sectior),3a#d therefore each data is taken
as inherently biased by several sources of noise. One cam dmse our work is aimed to
help the production manager to numerically evaluate thd teeeplace the cylinder when
(from his/her point of view) the wear or distortion in the iogler reaches unacceptable
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values (see section 3.7). As a result, we do not use the tygétarministic geometry
algorithms of the literature. Instead, we apply stochagtiemetry to diagnose the data.

3. Methodology and Results

The diagnosis of cylinder wear is basically a treatment ouaardered point set,
collected on the internal wall of the sampled cylinder. Tloinpset is measured in the
particular unknown (local) coordinate system of the regdistrument, different from the
World Coordinate System -WCS- of the shop floor. Although thim{s are collected on
a definite geometrical shape (a cylinder), the numericalesbutput by the measuring
device contain several stochastic components.

The processing of the point cloud (see Figure 2.1) is asvislio

(1) Assuming for the cylinder a Length/Diameter ratio lartfean 5.0, a Principal
Component Analysis -PCA- is run. The PCA allows to identtg tlirection of
largest dispersion in the data, which is the direction ofdjlender axis. As a
by-product, the center and mean radius of the cylinder a@identified.

(2) Arigid geometric transformation is applied to the paildud to align the cylin-
der with theZ axis of the WCS.

(3) A Quantile Analysis is performed, which renders the dgsam of frequencies
of radius deviations for the global point cloud.

(4) The cylindrical data is developed (unwrapped or flatt@matoR? (XY plane)
to perform a local analysis.

(5) A low pass filter is applied to the data, which eliminates high frequencies of
the point cloud.

(6) A surface is reconstructed for the point data, usingtafif Delaunay Triangu-
lation, to facilitate the visual identification of the higrear areas. At this time,
the data resembles a rectangular mountain region, whoghtheiorrespond to
the areas (regions @#, 1) values) with larger cylinder wear.

(7) Two alternative algorithms are applied to automatjcalentify such high wear
areask-cluster and Extended Neighborhood Analyses.

(8) Quantile and Mean-Median Analyses are performed onate lwear regions.

(9) Allthe results are given in the form of text files (for docentation and analysis)
and via graphic output (for the easy identification by theuse

3.1. Measured Data.Three sources of deviation of point data away of a perfect
cylinder are assumed: (i) a general wear, (ii) localizedvepats, and (iii) measurement
noise introduced by the scanner. The point set has an agbdreentation and position,
and it is necessary to determine the coordinate system inhwihiwas collected by the
measuring devise. The nominal radius and length of thedgtiare assumed to be known.

3.2. Transformation of Measured Data to the World Coordinate System. The
purpose of this section is to rigidly transform measuredc dat that the calculated axis
of the cylinder is coincident with th& axis of the WCS and its center is coincident with
the originO of the WCS. However, we know neither the axis of the cylinder,its effec-
tive radius and length. To determine such values is the garpbthe following section.

3.2.1. Principal Component Analysidet P’ = {(«/,y,2') € R*} be the set of
points sampled on the surface of a cylindeéfR, H, A, O), whereR, H, A, O are the
nominal radius, nominal length, axis and center of gravitihe cylinder, respectively. It
must be noticed that onli® and H are known. The actual values of radius, height, axis,
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Principal Component
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\L Coordinate Frame of Cylinder

Rigid Transformation to
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Development (flattening) of Cylinder
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{ the XY plane
Quantile High freq. Filtering and
Analysis Delaunay Triangulation

Smoothed transf. cylinder skin

| |

k-cluster Extended neighbor
Analysis Analysis
¢ Worn Out Regions ¢
Mean-Median and Mean-Median and
Quantil Analysis Quantil Analysis
Histogram Analysis \L \L
of Global Wear Mean - Median Analysis
(text and graphics) of Worn Out Regions

(text and graphics)

FIGURE 2.1. Cylindricity Diagnose with Point Cloud

and center must be determined frdM. By applying a Principal Component Analysis
-PCA- the trends in the collected data will be identified (€8, [13]).
Let 3 be the 8 x 3) covariance matrix of the process

P/ = {(mlayhzl) P (xnvynazn)}»

with ¢;; being the cross covariance of componensnd j of the point set.X is semi-
positive definite, since it is symmetric with non-negativaimdiagonal. The eigenvalues
of ¥ are non-negative real numbexs Then,: satisfies the equation.V = V.A with

V' a matrix whose columns are the (orthogonal) eigenvectos, &nd A is a diagonal
matrix containing the eigenvalues Bf Without sacrificing generality one may sort the
eigenvalues in decreasing order, say> Ao > A3 > 0, and write the eigenpairs of the
covariance matrix as:

A0 0
XV = X [ V1 V2 Vs ] = [ V1 VU2 U3 ] . 0 )\2 0
0 0 X

with )\; being the variance of the data in the directign It follows thatv; is the
direction of the data”’ in which maximal variance appeans, is the direction in which
the next decreasing variance appears, @3 the direction with lowest data variance in
P’. For a Length/Diameter ratio larger than 5.0, it can be shatwt = A, i.e. the axis
of the cylinderA is the eigenvector associated with the largest eigenvalvar@ance )\,
(the direction with highest variance of the dd®d. ThereforeX. A = A\ A. The triad
v1, U2, v3 IS Orthogonal, and we may enforce the conditignx v, = v3, forming a right
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handed canonical coordinate system. Notice that given yhiedcical symmetry of the
data, the second and third variances are almost the sameptoc numeric stochastic
errors:\g =~ 3.

3.2.2. Transformation to a standardized coordinate systé&mce we know the axis
A= (A;, Ay, A,) and the center of mags = (O,, O,, O,) of the measured cylinder, we
must find out at x 4 rigid transformation

— R§><3 Tgxl
M= { 000 1
to move the point data in such a way that the axis of the cytilgleoincident with theZ
axis of the WCS, and its center of mass is coincident with tigiroof the WCS.

(5) R T* o Vo U3 A O -1
0 0O 11710 0 0 1
Once R* andT™ have been determined from (5), each point sampled can bg- tran

formed with (6), so the data set looks like in Figures 2(a) 2.

(6)

x/
_ Rx T y
1 000 1 || 4

N e R

1

3.3. Mapping of Normalized Cylinder 3D data onto 2D. After a normalization has
been performed on the measured data, the axis of the cylawiecides with theZ axis,
and its center of mass with the origin. The next step is to “unwrap” the point cylinder,
and to extend the point set on th&” plane. The function used to do so is not an isometry,
since the cylinder data is shrunk in order to fit into a rectdagbasis of sizé.0 x 1.0.

(a) Transformation of general (b) Detail of the point set with local
measured point set to bring  damage on cylinder surface
cylinder axis toZ axis

FIGURE 2.2. Sampling of a cylinder surface with local damage

The point setP = {(z,y,2)} (which is the cylinder point sample with its axis
aligned with theZ axis of the World Coordinate System) is transformed into & set
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¢ (radius deviation)

yr (scaled height)

FIGURE 2.3. Point set with noise, placed in general position in spac
Measured data in an experiment.

Q = {(zy,ys,2f)}, with the following characteristics: (i) the; coordinate of each
point in @ is the deviation, for the corresponding pointity away from the calculated
radius of the cylinder, (ii) the point s&p is organized as a function : R? — R,
with zp = g(z¢,yy), (i) the (z,y) pairs are included in a rectangular domainkip.
This means, the cylinder has been unwrapped and extendeldeaXit plane (Figure
2.3). The unwrapping transformation for setinto ) is described in equation (7). It
maps each poinfz,y, z) sampled on the surface of a cylinder intoy, yy, zy) with
(:(:f,yf) € [-0.5,0.5] x [-0.5,0.5].

arctan(z,y) 1
x = ——\d -
! 21 2
1 z
7 .-
) vi 2 (max(|maxizi|,|minizi|))
zp = =l =R

The reader may notice that in Figure 2.3 the intensity is mifoum. This is due to
the fact that a color coding is given to the coordinate. Consequently, regions with larger
deviation from the nominal radius (regions with higher wédaok lighter in the image.

3.4. Statistical Analysis. The points in Figure 2.3 haves coordinate that repre-
sents the deviation with respect to the nominal cylinderusdThis deviation is due to
three causes: (i) a general wear of the cylinder, (ii) Iaeadiwear in specific regions of the
cylinder, and (iii) a stochastic noise resulting from theasiwrement process. The purpose
of this step is to measure the deviation of the data that ik by each factor, i.e. how
much in the collected data are these components presentreR2gt shows the histogram
of frequencies with respect tgr. The horizontal axis is divided into intervals of the
variable. The vertical values correspond to the number aftpavhose radial deviation
z falls within each interval. In this histogram we can see i@ tange[—0.02, 0.02] an
approximately normal distribution with mean= 0. This distribution corresponds to the
sampling error of the instrument (factor (iii) above). Aleav deviation 0f).02 away from
the nominal radius we find the effects (i) and (ii) mentionedfobe. Thus, in the interval
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FIGURE 2.4. Histogram of the cylinder radius deviation.

[0.02,0.07] one will find the cutting deviation to classify localized wea damage in the
cylinder.

By using the frequency histogram of Figure 2.4, one is absep@rate the set of points
@ into points showing only overall wear vs. points showingralleand localized wear. In
the histogram, the cutting value és= 0.02. This means, points whose radial deviation
is below0.02mm are considered to have overall wear. Points with radiabtien above
0.02mm are considered to present overall and localized wearsel'peints constitute the
setq)..

3.5. Cluster Analysis. The purpose of the cluster analysis applied to a setmdints
in R™ is to identify £ groups £ being set by the user) in the points, such that in each
group the points are close to each other, and at the samedimagvhy from the points in
other groups. In this manner, in the initial populatiérglusters of neighboring points are
identified. Let the population be formed in this applicatiynn points in the sef).. The
space of the points B™ = R3. Let each point;; in Q. be noted as:

(@fi,ypir2fi) = (Xip, Xi2, Xi3) € Qe

The mean of the-th variable(j = 1,2, 3) in the-th group is noted byX ;) ;, for
l=1,...,k. The distance of the point to thel-th cluster is:

1/2
3 /

Dy = | D (Xij = Xay)?
j=1
The error of the partition is given by the summation of theatise of each point to
the cluster under which it is classified. The error of a partitP (n, k) of then points in
k clusters is noted by:

e(P(n,k)) =Y [Dgiaay)
i=1
wherel(i) is the set under which theth point is classified, which is the one for which
the distanceD(i, 1) is a minimum. It must be noticed that for each partition of $keQ).
there will exist a value (P (n, k)). The partition that makes( P(n, k)) a minimum is our
k-mean partition.
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The method of thé&-means is summarized as follows:

(1) Propose initial points X ;).

(2) For each poing; find out its corresponding clust&r) (for which the summation
of the D(4,1) is a minimum).

3) Recalculat@?(l) as the centroid of the; points belonging to the clustéfi).

(4) Repeat the steps 2 and 3 uifil) remains constant for eveiybetween succes-
sive iterations. At this poing(P(n, k)) reaches a minimum.

In this manner the points migrate from one cluster to anotietil the reduction of
e(P(n,k)) is zero. After the (i) are found with the previous algorithm, and as a visual-
ization aid, the convex hull of eadli) may be found and drawn. In the particular case
of the wear of the cylinders, such a visual post-processiigshin displaying the zones of
the cylinder whose wear is higher. The main inconveniendb@k-means method is the
need of pre-establishing the number of clusters. For this reason an alternative adath
introduced next.

3.6. Partition Analysis. The set). in (8) represents all the point data whose distance
to the axis of the cylinder is higher than the threshold. déothat the proposed algorithm
seeks to eliminate the user interaction and to identify anthd the different deformation
regions. Therefore(). must be partitioned into the local zones that present aqodaiti
wear of the cylinder. For such a purpose we define an equisalsgiationR on Q. and
then we calculate a partitidr of Q). by R. Let R be the equivalence relation defined as:

(8) R(a,b) © 3q1,q2, -, quw((@ € Qi = 1,...,w)A
(a=q) A (b= quw) AN(llgi — g1 <9))

This equivalence relation basically states that pairggadb belonging taQ). are equiv-
alent if and only if there exists a path of points starting aind ending ab such that two
pointsg; andg;,1 of the path are not separated from each other by more thareaciés
. In order to partition). in a partition of all points that are equivalent to each qther
apply algorithm 1.

Figure 2.5 shows the results of the partition algorithm egabbn @ = Qg.g2. The
three resulting data sets are automatically classified égldorithm, projected on th€Y
plane, and the convex hull of the projection calculated asglayed on such a plane in
Figure 2.5.

Figures 2.6 and 2.7 present the different noise factorsdril#ittened data set. Figure
2.6 shows the unfiltered data set in the scaled dimensionseofylinder, while figure
2.7 shows the filtered data set mapped back to the physicandiions of the cylinder.
The localized damage in this data set has the shape of a nioudige (typical of a case
in which a foreign object slides inside the cylinder) accamipd by isolated peaks. The
highest deformation is present in a region centered in go#at;00mm andd = 60°. Also,
the wear located §6°, 100] is the same as the one located3®0°, 100], since0® = 360°
because the cylinder wraps itself.

3.7. Diagnose Output. Three different outputs are produced from the processprevi
ously discussed: (i) graphical; (ii) histograms of freqeenf radial deformation; and (jii)
output file. They are discussed next.
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Algorithm 1 Partitioning Algorithm to calculate neighborhoods of ager deformation

1 I =

2: while Q. do

3 p=first(Q)

4:  queueto_expand= {p}

5  Qe=Q:—{p}

6: partition = {}

7. while queueto_expanddo

8: elementto_expand= first(queueto_expand
9: partition = partition U {elementto_expand
10: queueto_expand= queueto_expand— {elementto_expand
11: for a such thatR(elementto_expanda) do
12: Qe = Qe — {a}

13 gueueto_expand= queueto_expandJ {a}
14: end for

15.  end while
16: I = [TI, partition]
17: end while

0.5

zs (radius deviation)
o
o
o

0

s (scaled theta)

yy (scaled height) -0.5 -0.5

FIGURE 2.5. Result of localized deformations found with partiteomalysis.

3.7.1. Graphical Output. The radial deformation is converted to a functipn © x
H — AR (the deviation of the radius form its nominal value, see Fég16). Delaunay
triangulations and filtering are applied to display such dese, as well as the regions of
f : © x H which represent a highex k. Colors green and blue mean lower deformation,
while colors yellow and red indicate higher deformation.

3.7.2. Histogram of Frequencies of Radial Deformatiof. histogram results from
plotting the number of samples measured which fall into each range of radius deviation
(A (R;)) (Figure 2.4). Two clearly differentiated regions app&grA normal distribution
of measurement errors, centereddincontaining negative values d&f k. Values of AR
between—o, +0] correspond to the measurement errors; and (ii) Values Bfaboveo
representing the deterministic trend of the data, whichesmonds to the wear.
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FIGURE 2.6. Surface of Radius deformation with physical dimension
(workpiece coordinate system)

h (mm) 0 (deg)

FIGURE 2.7. Filtered, automatically-detected localized Wear iBesg)
(using Partition Analysis)

3.7.3. Output File. The output file contains two basic components: (i) the gleimt
formation for theglobal deformatiorof the cylinder radius4 R deviation from the nom-
inal radius); and (ii) the statistical information for eaghe of thelocal areas of higher
wear. Global information corresponds to a text version of theédgigam information dis-
cussed above. Local deformation includes for each area@é lkdeformation the mean,
median, standard deviation, maximal deviation and positicthe wear are&, h).

4. Conclusions and Further Work

This article has presented a software tool to diagnose thergeand local wear of
a cylinder. No assumption is made on the orientation or jposivf the cylinder in the
space, or on the coordinate frame of the measuring devise sdttware implemented is
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successful in identifying the position in space of the aydin (in this case, five degrees
of freedom). These algorithms filter out high frequenciethm data, fit a surface to the
resulting point cloud, and identify by two alternative madlk the regions of largest local
wear. Several statistical reports (quantile and frequédristpgram) are produced, which
also diagnose the cylinder in local spots as well as globally
Future efforts include:

(1) Bringing the devised tools to the domain of dimensionallify control.

(2) Approaching the problem as a non linear minimizationtiroization one.

(3) Using the findings in the previous item to diagnose otrengetries different

from the cylindrical one (torus, spheres, partial cyliredeones, etc.).
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CHAPTER 3

Bi-curve and Multi-patch Smoothing with Application to
the Shipyard Industry

CONTEXT: The CAD CAM CAE Laboratory at EAFIT University has kept thogu
out the years cooperation agreements with research umigsrand institutions in Europe
including: Max-Planck-Institut fur Informatik at Univatsdes Saarlandes, Saarbrcken,
Germany, Fraunhofer Inst. Graphische DatenverarbeitDagnstadt, Germany, and the
University of Vigo, Vigo, Spain. As a part of such agreemestadents hold visiting re-
search assistant positions at the hosting institutiondoiods ranging from 6 to 12 months.

Carlos Vanegas has been twice invited by Prof. Xoan A. Lgjadzaltar, director of
the Group of Graphic Engineering and Design (Grupo de Eax€gfica e Deseo) at the
University of Vigo, Vigo, Spain, to join his group as visitjimesearch assistant. During
his first internship (January-July 2005) Carlos Vanegasgipated in the development of
a CAD system for the design and manufacturing of ship hulistfe shipyard industry of
Galicia (Spain) and North of Portugal. The project was firahwith INTERREG I11-A
funding of the European Union. During his second internsBgrlos Vanegas participated
in the development of a crane simulator, and was responfblie implementation of
the dynamic model, part of the spherical visualization eystand part of the interface
between the dynamic model and the user control module.

The method presented in this chapter was devised and imptethby Carlos Vanegas
with valuable suggestions from Engineers Manuel Rodricarez Jose Prieto and consti-
tutes one of the tools included in the system for the navalstrg. Contributions of this
work appear in the paper:

e X. Leiceaga, O. Ruiz, C. Vanegas, M. Ragirez, J. Prieto, E. Soto, “Bi-Curve
And Multi-Patch Smoothing with Application to the Shipyahadustry”, ac-
cepted for presentation in the ADM-INGEGRAF conferencéyedneld in Peru-
gia, Italy, June 6-9, 2007.

The results of the crane simulator project, developed duria second internship, are
subject to confidentiality, and no publication on such rssiglpossible at this time.

As co-authors of such a publication, we give our permissioriis material to appear
in this document. We are ready to provide any additionalrmfttion on the subject, as
needed.

Prof. Dr. Catedratico Xoan Leiceaga Baltar
leiceaga@uvigo.es, xleiceaga@aztecaingenieria.es
Head of the Graphic Engineering and Design Group
University of Vigo, Galicia, SPAIN
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Prof. Oscar E. Ruiz
oruiz@eafit.edu.co
Coordinator CAD CAM CAE Laboratory
EAFIT University, Medellin, COLOMBIA

ABSTRACT. Algorithms are proposed and implemented in a commercial systeohwal-
low for theC'* -continuity matching between adjacent B-spline curves asgliBie patches.
These algorithms only manipulate the positions of the comoaits, therefore respecting
the constraint imposed by the sizes of the available commestgial plates. The applica-
tion of the algorithms respect the initial hull partition mdujethe designers and therefore
the number and overall shape and position of the constitptitehes remains unchanged.
Algorithms were designed and tested for smoothing the unida)afvo B-spline curves
sharing a common vertex, (b) two B-spline surfaces sharingnamaan border, and (c)
four B-spline surfaces sharing a common vertex. For this lase¢can iterative heuristic
degree-of-freedom elimination algorithm was implementedy gatisfactory results were
obtained with the application of the presented algorithnshipyards in Spain.

1. Introduction and Literature Review

B-spline curves and surfaces have been used extensivelheipast to define ship-
hull geometry for design purposes [11, 6]. The popularitBedpline for free-form sur-
face design lies in their useful characteristics, such eal lsupport, the convex hull, and
variation-diminishing properties [2]. A discussion of Blise curves and surfaces, and
their suitability for ship hull surface definition can be falin Rogers [10].

Applications of e.g. Computational Fluid Dynamics use Engatch representations,
which solve the issue of smoothness by itself [8], but do efdééct that the manufacture and
assembly are performed with smaller standard plates, asiped in the steel mills. Also,
fitting the complex surface of a ship hull with a single B-splpatch may lead to either an
inaccurate representation, or a designer-unfriendlyeissntation i.e. a single patch with a
high number of control points. On the other hand, since aeiBespline patch can only
represent surfaces of simple topological type, a surfacghifrary topological type (see
Figures 1(a) and 1(b)) must be defined as a set of B-splinéigs{8]. The set of patches
must constitute a partition of the ship hull surface and nalsb maintain tangent plane
continuity (C! continuity) across neighboring patches. Enforofiigcontinuity between
adjacent patches while at the same time fitting the patcharktte the points (of the ship
hull surface in this case) is a challenging problem [5].

Loop [7] presents an algorithm for creating a smooth setathregular and triangular
spline surfaces, starting with an irregular mesh of polyddiat faces. The algorithm takes
into consideration curvature parameters to decide thegtitir merging of patches. The
final result may have spline patches of sizes and shapesetidig the curvature criteria.
Because of this characteristic, the algorithm is not sigt&dbbe applied in the problem at
hand, in which one must respect the constraint posed by tdefined plates with which
the hull is to be constructed.

Ball [1] and Peters [9] derive continuity conditions for thebdivision of surfaces. Ball
uses Fourier transform-based techniques to do so. Petssnis a method for verifying
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(a) Partition of a 2-genus 2-Manifold (double (b) Partition of Ship Bow
donnut)

FIGURE 3.1. Non-rectangular Partition of 2-manifolds with Regfan
lar Patches

smoothness of subdivided B-spline surfaces generated n-Sabin [4] and Catmull-
Clark [3] subdivision algorithms. In our case, subdivisismot only unnecessary but also
not allowed, since the steel plates to manufacture the hellpee-defined. Our goal is to
respect the collection of B-spline patches, and to slighttydify their control points to
achieveC'! continuity among them.

Bardis [2] presents an algorithm f@¥! continuity between adjacent patches which
requires the merging of all the knot vectors of the B-splia&ches, the unification of the
order and of the number of vertices of the control polygonsl, the use of arbitrarily se-
lected scalar functions callddas Hence, it was not compliant with our goal of smoothing
B-splines by modifying only their control points.

For the making of software for the shipbuilding industry pléeit algorithms for B-
spline curve and surface smoothing were found in the revdditerature. It thus became
necessary to design and implement own algorithms for this fais the purpose of this pa-
per to present the designed algorithms for B-spline cureksamface smoothing, together
with the results obtained to smooth real ship B-spline serfaatches. The paper is struc-
tured as follows: Section 2 presents a brief descriptiornefship hull surface modeling
process using B-spline curves and surfaces. Section 3risese algorithm for B-spline
curves smoothing. Section 4 presents two algorithms foplBws surfaces smoothing: one
for two adjacent surfaces sharing a common border, and eriedpsurfaces incident to a
common vertex. Conclusions are presented in section 7.

2. Hull surface modeling using a set of B-spline surfaces

The computer modeling of a ship hull is performed, in our ¢c&sen the ship hull
lines. These lines are planar curvesR? resulting from the intersection of the ship hull
surface against cross sections perpendicular to the axhe ship coordinate system. The
modeling process is roughly as follows: (i) A set of B-splnmeves is manually fitted to
ship hull lines. Several rectangular regions on the shipsunface result from this process,
as shown in figure 3.2. (ii) Rectangular B-spline patchesgaererated from the four B-
spline curves that enclose each of these regions. An inittalel of the ship hull surface,
constituted by a network af°-continuous rectangular B-spline patches is thus obtained
(iiif) Each pair of adjacent patches is smoothed using thddmpntation of the algorithm
described in section 4.2.1. Every set of four patches spaicommon vertex is also
smoothed using the implementation of the algorithm desdrib section 4.2.2. The final
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result of the process is a set of rectangular B-spline pate@se union i€ -continuous,
and constitutes the final model of the ship hull surface (sgeré 3.10).

C"-continuous rectangular
B-spline patches

FIGURE 3.2. Set of B-spline curves interpolating the ship lineslanll
C° B-Spline patches

3. Methodology. Smoothing of B-spline curves in shared vertes

3.1. Condition for C'* continuity between B-Spline curves.Let P and@ be two B-
Spline curves i3 LetSp = {py,P1,-- -, P} aNdSo = {dy, Ay, - - -, 0, 1 P;s 0; € R3,
be the sequences of control pointsfdBnd(, respectively. Iip,, = q,, i.e. P and(Q are
CY-continuous ap,,,, then P andQ are alsoC'!-continuous ap,, if p,,_1, P,,,» andd;
are collinear, ang,,, lies betweerp,,_, andq,, i.e. if there exists\ € (0,1) C R such
that

9) P =0o = (1= A)P,,—1 + A0y

3.2. Algorithm for C! continuity between curves. Giventwo separate B-Spline
curvesP and@ in R® connected at a common endpop)t = d, (see figure 3(a)), the
goal of a curve smoothing process is to determine new positionthécontrol points of
P and(@ so that the two curves becorg-continuous ap,,, i.e. the normalized direction
vectors of P and@ atp,, are equal. If the union of the curvésand() is required to be
smoothed at poinp,,,, andp,,,_, p,,, andg, are not collinear, at least one of these three
points must be moved in order to do so. Although infinite Sohs to this problem exist
(there are infinite ways of arranging three points to lie irams line), some of them are
more suitable for design and construction purposes. Ftanos, sometimes the shared
control point is desired to remain fixed (see figure 3(b)).

Suppose that we want to forgg,_,, p,,, andq, to lie in the same line, by mov-
ing p,,,_; andg, to new positiong;, _, andq;, and leavingp,, fixed. A way to cal-
culatep;,_, andqj is as follows: LetL be the line passing through,,_, andq;,
and L* be the line passing through,, and parallel toL. LetIl, _ andIly be the
planes with normal vectat and respective pivot poin{s,,_, andq,, whereh = (g, —
Pm—1)/(||oy = P,_1]|)- It can be seen that possible valuesi9y_, andq; that satisfy
equation 9 are given by, ; =1I, ~ NL*andqj =1lg, NL*.
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” q/?

(a) B-Spline curves withC® continuity at (b) B-Spline curves withC! continuity at
Pm = qo0 Pm = q0

FIGURE 3.3. C' Continuity between adjacent B-Spline curves by ad-
justingp,,,—1 andq,

3.2.1. Exception TreatmentlLet A* be the value of\ at whichp} _, andq; satisfy
equation 9. Because the procedure described above doessuweghat\* € (0,1), an
additional step becomes necessar\*li¢ (0, 1), thenp,,, does not lie betweep?, _; and
g;. Itis necessary to forge,, to lie betweerp}, _; andqj. Sincep,, is required to remain
fixed, p,_; or i should be moved again. To avoid an excessive change in theejgo
of the curves, the point to be moved will be the one that liesctbsest tg,,, .

Letd, = ||p,, — P;._1|| @andds = ||p,, — aill. If d1 < da, p;,_; will be moved to
a final positionp}*_, = p,, + (pm — pjn_l). If di > da, g7 will be moved to a final
positiong;* = p,,, + (p,, — d;) (see Figures 4(a)- 4(c)).

(a) B-Spline curves (b) B-Spline curves af- (c) B-Spline curves be-
with C© continuity at ter applying algorithm come C'-continuous at
Pm = qo0 without correction pm = qo after correction

FIGURE 3.4. Exception Treatment. Continuity between adjacent B-
Spline Curves

4. Methodology. Smoothing of B-Spline Surfaces in shared bders

4.1. Condition for C'* continuity between B-Spline surfaces.Let A be a B-Spline
surfaces and“ the array of control points oA,
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ol bl Bl
pA P21 P2z - Pay
Pii P2 - Piha

wherep;} € R3.
Definition. Alignmentof PL curves.

Let By = [Py1,P12s- - -5 Pinls B2 = [P21:Pags - - -, Pay,] @NAE3 = [Pgq, P32, - - -, P3,] bE
three sequences of control points, wheyee R3. We say thatr,, E, andE arealigned

ifforall j =1,2,...,n, the point;, ;, p,; andps; are collinear exactly in that order, i.e.
satisfy equatiom,; = (1 — A) py; + Aps; with A € (0,1).

The boundary control point sequences fbare E{* = [p{},pt,...,ps], Fs' =
[p;?zl? p?ﬂv ) p:r‘m]* E?fl = [pflﬁ p2A17 R p;?@l] andEf = [pfn’ pglm L) pﬁ@n] Let

B be another B-Spline surface. We say that the control pointisesi-th border ofA are
equal to the control points of theth border of B, if there existi, j € {1,2,3,4}, such
thatE* = EP or Ef* = E;7, whereE; " is the reverse-order vesion &f°. A necessary
but not sufficient condition forl to be C°-continuous withB at thei-th border ofA and
the j-th border ofB is that the control points of these two borders be equal.

Let us also define a sequence of control poifitd associated to each bordgy, for
i =1,2,3,4, as per figure 5@)E* = [SH ST S
EéA = [pﬁb—ma pﬁ—mv cee pf}L—l,n]’ EéA = [pfw Py, p;?zZ] and
Eé,lA = [pﬁnflv p2A,n717 (R pf@,nfl]'

CP-continuity C-continuity
|
A A /
PMF\¢ P> 0 y
S e e S

1—{Lin

g | W
(a) Sequences of control poinS;A associ- (b) Control points governing'® andC! con-
ated to eactE{}, fori = 1,2,3,4 tinuity

FIGURE 3.5. Sequences of control pointsdn

Let A be C°-continuous withB, at thei-th border ofA and thej-th border ofB. This
implies thatE* = EP or E/* = E7P. Unless otherwise stated, two surfaces "beirfy
continuous” means that they meet at bordén A) andj (in B). Also we assume WLOG
that B/ = EJB (the vertices are enumerated in identical order). The sdwsergation
holds forC* continuity. We say that is C''-continuous with3, if E;4, B, andE” are
aligned exactly in that order.

4.2. Algorithms for surface C! continuity. Two different smoothing processes are
identified here. The basic surface-smoothing process stsrisi achieving®! continuity
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between two surfaces at their common border, i.e. the batdehich the surfaces are’-
continuous. A second process consists in achiegihgontinuity between four pairwise-
CP-continuous surfaces sharing a vertex, at their commonebosrd

4.2.1. C* continuity between two surfaces at a common bordsiien two separate
B-Spline surfaces! and B in R?, connected at a commdmorder, E;* = E7, thegoal of
a surface-smoothing process is to determine new positartsé control points ofA and
B so that the two surfaces becoifié-continuous at their common border. The procedure
is to make collinear thé&;!, £/}, E/F points fork = 1...m, that is, to pairwise align the
control points at the seam between the two patchess(the number of control points of
such borders).

A C°-continuous

C''-continuous

FIGURE 3.6. C%!-continuity betweem and B ati-th border ofA, and
j-th border of B

4.2.2. C* continuity between four surfaces at common vertest A, B, C, andD be
adjacent B-Spline surfaces, meeting at one vertex. Theimgelebrders among them are:
Ef = EP, EP = ES,, ES = EP, EP = E2. The common vertex i®,. = PF,. =
Pf.,.. = PR,. Subscripts take values betweeand4.

The arrangement of surfacels B, C, D, shown in figure 3.7 satisfies the previous
conditions, since the four surfaces are pairwigeeontinuous and have a common control
point that belongs to all the borders at which the surface§@+continuous.
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Ef = Bf

FIGURE 3.7. C%-continuous set of four adjacent B-Spline surfaces
meeting at a common point

Given four B-Spline surfaced, B, C, andD in R?, satisfying conditions mentioned
above, thegoal of a surface-smoothing process is to determine new positarihe control
points of A, B, C andD, so that the union of the four surfaces becomfiéscontinuous.

Separately achieving pairwigg! continuity between the four B-Spline surfaces in-
cludes calculating correct modified positions of the cdstmmints of A, B, C and D.
However, such a process does not correctly calculate thidqusfor the common point
(Pp) and its surrounding 8 vertice®(, ..., Ps in Figure 3.7)

Algorithm 2 calculates the modified positions Bf, Py, ..., Py such thatC' Con-
tinuity among the union oA, B, C' and D is achieved. This algorithm is based on the
fact thatif Py, Py, ..., Py lie on the same plane, and the elements in each of the folipwin
sequences; = [Pl,Pg,Pg,], Sg = [P37P4,P5], S3 = [P5,P6,P7], Sq4 = [P7,P8,P1], are
collinear exactly in that order, thefi' Continuity is achieved at poinf&,, Pi, ..., Ps. For
the sake of compactness in the article we omit the proof ofe@gence for algorithm 2.

Algorithm 2 C* continuity between four surfaces

. ldentify values ofi, 7, k, I, m, n, 0, p

: Pairwise-smooth surfaceswith B, B with C, C with D, D with A
: Calculate best-fit plang* for points Py, Py, ..., Ps

: Project pointsPy, P, ..., Ps into IT*

: while Py, P3, Ps, P; do not convergelo

Move P; to makeP;, P,, P collinear (algorithm in section 3.2)
Move P; to makePs, Py, Ps collinear

Move P5 to makePs, Ps, P; collinear

Move P; to makeP, Py, P; collinear

: end while

[

=
o

The Figure 3.8 shows the dynamic non-linear system sinaulatf the state variables
Py, P53, P; and P;. It illustrates that this algorithm iteratively modifiesetipositions of
Py, P;, P; and P; so that upon convergence the quadrilatgPal Ps, Ps, P;] contains the
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fixed pointsP;, in Py, P3, P, in P3, Ps Pg in Ps, P, andPg in P;, P;. It can be seen that
convergence is extremely fast (about 3 iterations) to tha finsitions.

PS5 !
(initial)

FIGURE 3.8. State Space Non-Linear Dynamic System Simulation of
the 4-patch Smooting Algorithm

5. Results

A large number of adjacent B-spline curves were smootheayusie industrial im-
plementation of the algorithm described in section 3. Afteralgorithm was applied, the
upper bound of the angular deviation between tangent \&atdhe boundary of matched
curves wa2.9 x 107° degrees (figure 9(a)).

Likewise, a large number of adjacent B-spline surfaces \wareothed using the al-
gorithm described in section 4.2.1. The relative error leetwthe normal vectors of both
surfaces along their common border remained below’ degrees (figure 9(b)). Figure
3.10 shows the final result of the 4-patch smoothing algarith

6. Conclusions

Industrially implemented algorithms for B-spline curvedasurface smoothing were
discussed in this paper. The algorithms achié¥eontinuity between adjacent curves and
surfaces by modifying only the positions of their controlmis. The main advantages of
the presented algorithms are their simplicity, which ressin their easy implementation
and modification, and the fact that properties of the curvessarfaces such as their or-
der and their poles remain unchanged. Several tests were todke obtained smoothed
curves and surfaces, based on the tangent and normal vettbesB-spline at their com-
mon point or border. The relative error between the compnafithe tangent and normal
vectors was in all test cases belo@ > degrees.

Several real ship hull surfaces have been modeled at thegDesid Engineering
Group (GED), Universidade de Vigo, following the discusssethodology. One of these
models was presented in this paper.
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(New)
\ QP_’_’H (Previous)
N Unmatched Normals

(Unchanged)

~ (Unchanged)
\ Pn=4,

'(\New)

Coincident Normals

(a) Vectors tangent to two adjacent B-spline (b) Vectors Normal to two adjacent sur-
curves, before and after being smoothed faces, before and after being smoothed

FIGURE 3.9. Tangent and Normal vectors to B-spline curves and sur-
faces used fo€! continuity testing

FIGURE 3.10. Ship hull surface obtained through the procedure de-
scribed in section 2
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Conclusion

Solutions to three geometric problems arising in real itviaisapplications have been
presented in this work. Such solutions combine tools takamn flifferent fields of compu-
tational geometry including combinatorial geometry, bastic geometry, and numerical
geometry. The successful application of the implementéadisas to real problems in the
industries for which they were built is the most importanmicibution of this work.

Combination of stochastic and deterministic methods offmatiational geometry was
an interesting exercise during the development of the ptajeln particular, the use of
Principal Component Analysis as a method to reduce the diiloerof data sets proved
to be essential in the treatment of problems where input al@aenerated from surface
sampling and/or in an unknown coordinate system. In thedase, PCA is used to detect
and eliminate the variance explained by the intrinsic nossampling devices. In the
second case, PCA can be used to identify the direction oé$argariance and for example
to assign a principal axis to a solid in the direction of itgkst expansion.

Academic fields and topics that were studied during the dgweént of these projects
include: (Discrete) Differential Geometry, Solid GeonetModeling, Topological and
Geometrical Correctness of Manifolds, Spatial Statist®t®chastic Computational Ge-
ometry, Heuristic Methods in Dynamic Equations, and Préwsarof Degeneracies of con-
structions in Descriptive Geometry. Experience in the usBrogramming Languages,
Application Programming Interfaces (APIs) of CAD Packagmsd CAD packages was
acquired. Skills in algorithm design, mathematical foratign of problems and methods,
problem solving, literature reviewing, scientific rhetqnpaper writing, and oral presenta-
tions, have also been developed and/or strengthened tiwatithis work.

The valuable interaction with advisors, professors, asdaechers at EAFIT Univer-
sity and Universities and Institutions abroad was esdentihe successful development
of this work. It was of particular importance the contacthwitther cultures, values and
working environments.
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