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Introduction

Radial fans are light structures that have the task of displacing the most amount of air possible.
It is of big interest to operate such devices at the maximum angular speed possible to increase
the airflow. Most fans are restricted to a maximum angular speed in order to operate without
it auto-destructing. In many applications the use of a second fan is needed because a single fan

won’t provide enough airflow.

The improvement of the fans will spare the user in many cases of wasting design space placing
a second fan, reducing operational costs and add efficiency in some processes that require
concentrated airflow.

The biggest challenge of building light structures is obtaining the necessary structural strength
for it to perform safely. Due to the nature of radial fans, the most destructive force that they
undergo is the centripetal force. This force exhibits a quadratic growth as the angular speed

increases. This force will increase as well by adding any material to the rotor.

The problem of strengthening metallic sheet is generally a complex task that involves FEA
solutions. This work presents two methods developed to calculate the correct dimensioning
and positioning of beads in metallic sheet to reduce the stresses that a fan rotor experiences.
These methods heavily rely in CAD software and not CAE as modern methods do. The most
important features that are discussed are i) the manufacturability of the bead geometries and
ii) the effectiveness of the bead geometries to decrease the stress and deformation values in the
fan’s rotor. The methods are not restricted to this project and can be further used for other

mechanical parts.

In chapter 1 a literature review introduces all the necessary concepts and state of the art
necessary to understand fans and strengthening of metallic sheets. Chapter 2 explains the
different loads that the fan undergoes in real life and the assumptions made for the FE model.
Chapter 3 explains the correct setup in the software Patran to simulate the fan model. Later

chapter 4 explains the stresses and the deformations of the reference model.

Chapter 5 and 6 explain the new methods to add beads in the metallic sheet. Finally chapter 7

and 8 use optimization techniques to find optimal bead shapes (patterns) and cross sections.

xii



Abstract

One of the major problems associated to thin metallic structures is its lack of structural stiffness
and the complexity to reinforce such structures without adding weight. One common technique
used to increase the structural stiffness is called beading. The use of these stiffeners usually relies
on pre-established bead-patterns or computer-generated complicated geometries that sometimes

are not possible to manufacture or concur on high manufacturing prices.

This thesis will explain a robust approach to find bead geometries that: (i) are possible to
manufacture and (ii) reduce considerably the stress values and deformation of a mechanical
part. The most important characteristic of the work is to establish methodologies that don’t
require a very high expertise from the user on the geometric calculations that current authors

have established, but that have a high effectiveness as well.

The procedure for the work consists of an initial extensive literature review on light-weight
structures, mechanization and design of Beadings, radial fans and optimization techniques.
Using the geometry of a radial fan as a case study, the methodologies developed from the
investigation will be tested to find the effectiveness of them. The tests from the radial ventilator
will be carried on using valid FEM simulations to avoid high costs. All the results will be

tabulated and presented. The appropriate conclusions will be done

xiil



1 Literature Review

1.1 Radial Fans

There are several types of radial fans which are normally classified depending on their uses.
Overall, this type of fan can be classified as well by its blade geometry against its sense of
rotation. Figure 1.1 shows a sketch of the top view of the rotors of 3 different fan configurations.

From [1], it is known that the mechanical efficiencies of the different fans are as in equation 1.

M) < NMa) < Ne) (1)

Figure 1: Types of Fan Rotors depending of blade geometry. (a) Forward Curved Blades, (b)
Radial Blades, (c¢) Backward Curved Blades.

This work discusses the type (c¢) fan. This type of fan is known for its high efficiency, low
pressure, and high volumetric flow. It can handle particles in the air and its design relies

mainly on empirical formulas [2].

1.1.1 The Rotor’s Components

The rotor has 3 different components. i) A top ring, ii) blades and iii) a bottom ring. Empirical
data shows that rotors fail due to the blade components. The bottom ring and the top ring are
created by a generatrix, that runs along the y-axis in the CAD program. Fan manufacturers
commonly reference their fans by the top ring diameter followed by other specifications. This
project evaluates a “630” reference from the firma mdexx. The results can be later compared
with the fans from firms such as ebm-papst ! , Kice industries? and others that offer similar

references.

Thttp://www.ebmpapst.com/en/products/centrifugal-fans /backward-curved /backward . curved.php
http:/ /www.kice.com/Product-CentrifugalFans.html



2.1: Rotor’s top ring. 2.2: Rotor’s blades 2.3: Rotor’s bottom ring

Figure 2: Different components of the fan’s rotor.

1.2 Stiffening of metallic sheets

Often the functional design restrictions of thin-walled mechanical parts restrict the compliance

of material resistance, vibrations and deformation. For this reason, the metallic sheet must be

slightly modified in such a way that the function is not greatly affected, and the mechanical

part can still perform safely.

Emmrich [3] speaks of 4 different types of possible modifications, while Klein [4] describes 3

and Schwarz [5] speaks mainly about 2. The main ideas of the authors can be condensed in 5

categories:

ii.

iii.

1v.

Topological: Having a defined workspace or restricted space, it’s the ability to arrange
the metallic sheet’s material in different configurations. Moreover, it can be from simple

perforations to complicated contours.

Shape or Form: The metallic sheet form is no longer restricted to a space. This means it
can be freely deformed to take advantage of certain shapes that give metallic sheets special

characteristics.

Thickness variation: This technique is not widely use on metallic sheets, although it is very

common on other materials such as composites or plastic laminates.

Adding Stiffening Elements: The most common elements are Ribs, which are itself a struc-

ture of its own, and then welded to the metallic sheet.

. Material: The range of modifications that can be done with the material can be sometimes

overwhelming. The two governing factors to modify the material are costs and ease to

mechanize. This is a very strong topic today for composite materials.



(e) ®

Figure 3: Modifications for a metallic sheet. (a) Original sheet, (b) Topology, (c¢) Shape, (d)
Thickness, (e) Adding elements, (f) Material.

The most common approach to modify the metallic sheet of light-weight structures is called
fully-stressed design. This method chooses a combination of the possible modifications in
order to achieve an equal stress distribution in the metal sheet. This method is the most
common approach used by several authors to design light-weight structures [6]. This was further
developed for sheet metal by [5], [3] and [7]. The firms Altair, Tosca and Sachs-Engineering

have created their products on this principle as well.

1.3 Beads

The definition from Bead is “A groove on a metallic sheet, being the groove’s depth significantly
smaller than its length.” The width of the bead has aroused some questions since some authors
defend the use of large width values. Other authors defend the use of widths slightly larger than
the depth. There are two global aspects that define a bead: cross section and bead pattern.

There are four types of cross sections (see figure 4).The way a bead works is by displacing
material from the neutral fibers. Given this displacement, a term in the second moment of area
appears. This term grows in a quadratic way as the material is further from the neutral fibers.
Therefore the depth of the bead is an important factor. Figure 5 shows a schematic comparison
of a beaded and a flat cross section with similar widths. Using the parameters from this figure,
it is proven in equation 2 that the second moment of area is significantly larger in a beaded

cross sections [5].



(a) (b)
(© (d)

Figure 4: Four different types of cross sections: (a) box-shaped, (b) round-shaped, (¢) v-shaped
and (d) trapezoidal.

2b=w

4b >
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b 1

Figure 5: figure of a beaded cross section (left) and an unbeaded cross section (right).
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The first studies of beads was finding manufacturable geometries for the automotive industry.
Oehler [8] suggested the use of only round-shaped beads. An important contribution from this
work was the restriction that no axis should exist in the plate that would not collide with a
bead. Kiensle [9] studied the effect of the bead depth. He also found that box shaped beads

had the best stiffening effects. A 10% correction factor was proposed when calculating beads.

In 1971, Oehler and Draeger [10] measured the buckling effect of a circular plate with a singular
bead. They would find that the angle at which the bead was placed would determine its
effectiveness. It was also shown that a bad placed bead would decrease the stiffness from the

original plate (meaning that no beading is better as “bad” beading).

The next year Oehler and Weber would publish a catalog of bead patterns for specific load

cases [11]. In this work, the first non-straight beads were created. They were all created from

4



empirical data. This bead patterns would be then used in the industry for several years.

The first use of numerical methods to calculate beads was in 1984 by Wildmann [12]. It
was found that the predominant factor in beads was its pattern and not the cross section.
He compared the numerical simulations and real models and concluded that the simulations

correctly described the phenomenon. A correction factor between 10% and 15% was proposed.

Klein would show that bead patterns should follow the principal stress vector direction [13].
The cross section for this pattern was done by setting a high-temperature to the bead pattern.
Afterwards the iso-temperature curves around the pattern would be heighten respecting it’s

temperature value. This led sometimes to non-manufacturable geometries.

Herrmann proved that the use of small deformation models was enough to simulate beaded
plates in the elastic deformation interval (saving time on costly large deformations models)
[14]. In this work, a circular pattern was set in top of the plate, and after each iteration the

pattern was deformed by intuition.

In 2002 Schwarz [7] would recreate the work by Oechler in 1972 and create pre-established
bead patterns. His work would be called “Sickenatlas”, or bead-atlas. He used the software
Optistruct from the firma Altair Hyperworks®. Optistruct uses form vectors in each node. These
vectors are each a variable from a function. The goal from Optistruct is then to minimize this
function given the variables. When the program finds the function’s minimums, it gives the
user a picture that must be interpreted into geometric forms. The Sickenatlas was then Schwarz
interpretation of the results given by Optistruct. One of the most important findings from this
work was a revision of the FEM against real models with many load cases. Just like in [12], it
was probed that the FEM approach is valid.

In his doctorate dissertation [5], Schwarz would further improve his method from the Sickenatlas

and create an interpreter for the program Optistruct.

Emmrich in his doctorate dissertation [3] would develop a method to find bead patterns without
the “optimal” characteristic that other authors were looking after. This method was further

developed in a module for Tosca Structure * called Tosca.bead.

In the past years, the trend in beading investigation is in terms of manufacturability. Most
projects work with the Tosca software or Optistruct. An example for this is the work by
Kroenauer et al. [15].

3http://www.altairhyperworks.com /Product,19,0ptiStruct.aspx
4http://www.fe-design.de/toscabead.html



1.4 Optimization

An optimization problem [16] has the following statement as in equation 3. Where the vector
x = (21,...,%,): is the optimization variable, the function fy(z) : R* — R is the objective
function, the functions f;(xz) : R* — R, i = 1,...,m, are the (inequality) constraint functions,
and the constants by, ..., b,, are the limits, or bounds, for the constraints. A vector z* is called
optimal, or a solution of equation 3 if it has the smallest objective value among all vectors that
satisfy the constraints: for any z with fi(z) < by,..., fin(2) < by, we have fo(2) > f0(z*).

min (fo(z))
subject to fi(z) < (3)

There are several mathematical methods to solve the minimization problem. This project
focused on the use of response surfaces. This method finds a surface (hypersurface given the
case) S,(z) with at least C' continuity that accurately describes the objective function. That
means that S,(z) = fo(z). Since S, is once differentiable, it is possible to find a global minimum

of S,(z). This will then be the answer for the optimization problem.

The most common Response Surfaces have the form described in equation 4. Here a; : ¢ =
1,2,...,n + 1 are the polynomial constants, and are the values that give the approximation
to the objective function. The determination of these constants is the biggest challenge for
this optimization approach. Inherent from this method, there is an error e. This error has
two components: the first one is a natural error that has any measurement in an experiment
(hysteresis, human error, etc.) and a second one due to surface fitting from the data collected
(numerical error).These are too polynomials of degree n, and are usually first, second and third
degree polynomials. The degree of the polynomial is chosen depending of the experiment.

Sometimes this type of approach to solve the minimization problem may not be suitable.

SM(x) = a2 + apr' + .. F a2+ apa" e (4)

1.5 Design of experiments

One of the most important tasks of Design of Experiments is creating methods to determine
the values of the constants described in section 1.4 with accuracy and less data dependence.
Depending on the degree and number of variables of the approximation polynomial, different

methods are used.

Concerning Design of Experiments, the variables x; are referred as “factors”. These factors are
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then varied a certain amount of times, called “levels”. To better illustrate this, figure 6.1 shows

a 2 factors, 3 levels design. The gray square represents the design space. Every black point is

a measurement taken from the experiment. This method is further explained in [17].
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6.1: 32 factorial design.

X1

X4

6.2: 33 factorial design.

Figure 6: 3 levels factorial designs with 2 or 3 factors.

In order to reduce the amount of experiments required to find accurate ai values, there are two

common methods, the Box-Wilson Central Composite Design and the Box-Behnken Design.

These experiment designs are further explained in [18].

After choosing the experiments that are going to take place (z;), there is a system of linear

equations of dimension m x (n + 1), where m > (n+ 1).
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Here y; is the ith result from the experiment that describes the ith equation. Since X from

equation 5 may not be squared, the solution for a is found using the Moore-Penrose pseudoin-

verse. This solution is the same as a least square regression. Equation 6 is the pseudoinverse

equation.
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2 Loads and Restrictions that Undergoes the Fan’s Ro-
tor
The first step towards determining the appropriate finite element model is to know the interac-

tions of the mechanical part with its surroundings. Basically 3 types of forces affect the rotor:

centripetal (F.., figure 7.1), gravitational (F,, figure 7.2) , and drag (F,, figure 7.3).

-

7.1: Inertial forces due to rotation 7.2: Inertial forces due to gravity 7.3: Forces due to air pressure on
(Frot) (Fy) the blades (F),)

Figure 7: Forces that affect the fan’s rotor.

Due to the light-weight design, low air pressure and high rotational speeds, it is accurate to
say that F,., >> F,, F,,. For this reason, the only force taken into account in the simulations is
the centripetal one. The second assumption is that the rotor has its highest stress value when
it is running in its operation point. This means that it is running at a constant angular speed:
w = 25Hz.

With these assumptions, the load case can be simplified enough to create a static approximation.
Therefore the shaft-hub interaction is simulated so that the draft and gravitational forces have
no effect on it. This means that the model is restricted just enough to have a static-determined
Finite Element Analysis. These restrictions can be seen on figure 8.1 and figure 8.2. There are
combinations of restrictions that would give similar results. This one was chosen in order to

compare historical results from previous groups that did work on the same rotor.



8.1: Axial restriction of the rotor. 8.2: Radial restriction of the rotor.

Figure 8: Forces that affect the fan’s rotor.
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3 Setting up the Simulation in Patran\Nastran

The software Patran 2008 r1 from the firm MSC Software was used as pre\post processor. As
solver, the software Nastran 2008 r3b from the same firm was used. In order to run several files
in the solver, a Matlab script was created (append A). The following sub-sections explain the

correct configuration for Patran/Nastran in order to simulate the fan’s rotor.

3.1 Creating Patran database files and the nomenclature

After opening the Patran program, the first step is creating a new database file (.db extension).
The nomenclature used in this project was key to make the results easier to classify later. It
was as follows: (sub—project—name)_(reference—number)_(special-annotations).db. An example
would be: double-bead-topring_001_angle-60.db.

3.2 Importing the geometry

The files used for this project were from the Parasolid kernel, with the .xt extension. They were
created using SolidWorks 2009 r1. When clicking on the File—Import icon, the import dialog
pops up. After finding the desired .xt file, the dimensional units in which Patran imports the
file must be changed (the default units are inches). On figure 9 the 3 necessary steps to change

the units is shown. The blue square indicates the icon that needs to be clicked.

b Imont |
- T g fe g et fodd T |
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_iip S e e (e b LT LR TR
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: N 8 [riEo R il P L ST L e
BT R L B T LT DAL TEE R | : Farseoitd Do I|
AN Bl Ay e s T AR A P | e e e e ]
< L
Hezars e T Rl saie | Group Llags togton |
RAovel o, | Tomesbd Traeevll Tiae o) -- el I = mm_mm e e
| Model Unta... [1
Creat= Groups fom Layers |

Model Jnit Overnds
Mok Iolehienit
10000 Milmeters) ||

UK | Laicel J

Figure 9: Changing the import units of a Parasolid model to millimeters.
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3.3 Creating the mesh
3.3.1 Mesh size

Patran is able to create curvature sensible meshes. The only parameter necessary to vary is the
Global edge length. To measure a good mesh size, this parameter was lowered (a finer mesh)
until the Von Mises Stress value was constant. Using the graph in figure 10, it was determined
that the best Global Edge Length is 6 mm.
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Global Edge Length (mm)

Figure 10: Mesh size determination graph

3.3.2 Patran interface to create the mesh

When clicking on the “Elements” tab on the user interface, a menu will appear on the right
side of the screen. The inputs required on this menu are shown on figure 11. Notice that the

value on the “Global Edge Length” was set to 6, as calculated on section 3.3.1.

3.4 Creating the Loads and Boundary Conditions

From the description in section 2, there are 3 different parameters as input under the tab
“Loads/BCs” in the Patran interface.

3.4.1 Axial restriction of the hub

When the “Loads BCs” tab is clicked, a menu appears on the right side of the screen. The

correct configuration for the menu is:

1. Action: Create

12



Action: Create ™ Input List

| Solid 1
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Figure 11: Patran Elements interface configuration.

2. Object: Displacement

3. Type: Nodal

4. Option Standard

5. New Set Name: hub_y_sense (note :this is written by the user)
Afterwards, click on the “Input Data” icon and write: Translations <,0,>. Then click “ok”.
Finally click on the “Select Application Region.” icon. In order to be able to select surfaces,
click on the small icon enclosed by the small red rectangle on figure 12. Then click the inner

surface of the hub (the one shown on figure 8.1). A number will appear on the “Select Geometry

Entities” with the nomenclature “Solid 1.xx”, where “xx” is the surface number. Click on add.

To end the procedure, click on ok, and then on apply. The Load will be saved in Patran’s
database.

3.4.2 Radial restriction of the hub

When the “LoadsBCs” tab is clicked, a menu appears on the right side of the screen. The

correct configuration for the menu is:

1. Action: Create
2. Object: Displacement
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Figure 12: Geometry selection to restrict in axial direction

3. Type: Nodal

4. Option Standard

5. New Set Name: hub_xz_sense (note :this is written by the user)
Afterwards, click on the “Input Data” icon and write: Translations < 0,,0 >. Then click “ok”.
Finally click on the “Select Application Region.” icon. In figure 13 the region application menu

is shown. Click the edge selection tool, and then click on the lowest curve in the hub as in

figure 8.2. Finish the procedure as done with the axial restriction in the previous section.

Select. Qaometry
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Figure 13: Geometry selection to restrict in radial direction
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3.4.3 Centripetal force

To set up the centripetal forces exerted by the rotational speed, change the menu settings for
the “Loads/BCs” tab as follows:

1. Action: Create

2. Object: Inertial Load
3. Type: Element Uniform
4. Option Standard

5. New Set Name: rotational_speed (note :this is written by the user)

When this information is in the menu spaces, click on the "Input Data” icon. The input for

this menu is:

1. Trans Accel: (note: no input)
2. Rot Velocity: <, 25, >

3. Rot Accel : (note: no input)

Finally click “ok” and then “apply”. The rotational speed information will be saved in Patran’s
database.

3.5 Creating the material

The material used for this project has a Poisson Ratio of 0.3, an Elastic Modulus of 210 MPa
a density of 7850 kg per cubic meter and a Yield Strength of 235 MPa. After clicking the
Material tab, input the following information:

1. Action: Create
2. Object: Isotropic
3. Method: Manual Input

4. Material Name: steel

Click on the “Input Properties” icon and enter the following information:

15



1. Constitutive Model: Linear Elastic
2. Elastic Modulus: 210000

3. Poisson Ratio: 0.3

4. Density: 0.00000785

To finish, click on ok and then the “apply” button. This will save the material “steel” on the

database.

3.6 Rotor Properties

To assign the material properties to the rotor, click on the “Properties” tab. Then input the
following information:

1. Action: Create

2. Object: 3D

3. Type: Solid

4. Property Set Name: rotor_properties

Matsria Mame ]'m_ Iat Prozx Hams ﬁ
[Mater. Driettatior] I sting T
[Integration Network] | Ctring * |
[intearation Schera) | String ¥ |
[Cutput Lecatons] | Sty T
[Hoalnear Formulatipr{SOLA00Y 1 String ™ |

Figure 14: Input properties menu from the Properties tab.

Click Input Properties. Input the information in figure 14. Afterwards click on “ok” and finally

“apply”. Now Patran recognizes that the rotor is made out of “steel”.
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3.7 Creating the Load Case

Now it’s necessary to create a Load Case. Click on the “Load Ca” tab. Input the following

information:

1. Load Case Name: rotation

2. Type: Static
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Figure 15: Input menu for the Load Cases tab.

Click in the “Input Data” icon. The menu on figure 15 will pop up. Under “Select Individual
Loads/BCs” all the previously created loads are show. Click on each load. In a menu under
(Assigned Loads/BCs) each load will appear as it is clicked. Finish by clicking “ok” and then
“apply”. Now Patran saves in its database the simulation environment necessary to emulate

the rotor’s rotation.

3.8 Solving the Rotor’s Rotation

To solve the finite elements problem, click on the “Analysis” tab. There are two possibilities,

either do a batch run (simulate many models at a time) or run a single model.

3.8.1 Single model

To run a single model, set the following parameters:

1. Action: Analyze

17



2. Object: Entire Model

3. Method: Full Run

The Job Name is the same as the database name. Click on the “Subcase Select” icon. The
menu on figure 16 will pop up. On the upper list, click on the “rotation” line. The “rotation”
line will appear on the list below. Then click on the “Default” line in the lower list. The
“Default” line disappears. It is important that before clicking in “ok”, the lists in the menu
are the same as in figure 16. Finally click “apply”, and a DOS window appears. This can take
several minutes. When the DOS windows disappears, the simulation is finished.
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Figure 16: Subcase select menu for the analysis tab.

3.8.2 Batch run (several model run)

To be able to use the script from appendix A only one parameter needs to be changed. Setup

the parameters as follows:

1. Action: Analyze
2. Object: Entire Model

3. Method: Method: Analysis Deck (this is the only parameter changed)
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Do the same procedure with the “Subcase select” icon and click on apply. This time no DOS
windows pops up. This will create a .bdf file in the Scratch folder with the “Job Name” as
name. Run the Matlab script. A menu will pop up as in figure 17. Holding the “shift” key
click on all the files you want to calculate and finally click on “open”. The computer will begin
calculating all the simulations. This can take several hours.

The Matlab Command Window will indicate when it is finished with all the simulation files.
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Figure 17: Matlab batch run script menu.
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4 The Reference Model

The reference model is the model built from the technical sheets. The CAD model was built
with the welding seams specified by the technical sheets, and every detail was modeled without
any omission. Five different stress measuring positions were chosen given empirical data and

the need to compare results with the different techniques developed later in the project (see
figure 18).

\3

Figure 18: Stress measuring positions of the reference model.

On table 1 the stress results for the measuring points is given. The highest nodal displacement

was given in position 2 and is 0.680 mm.

Blade Pos. 1 | Blade Pos. 2 | Blade Pos. 3 | Blade Pos. 4 | Top Ring Pos. 5
186 166 136 136 161

Table 1: Von Mises stress values of the reference model at given measuring points (MPa).
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Figure 19: Von Mises stress distribution of the blade in the reference model.
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5 Beads in the Top Ring

The top ring is the second component of the rotor that undergoes the highest stress values.

Therefore adding beads to its geometry is of high interest.

5.1 Cross section and bead pattern

The bead pattern used in the top ring is a circular curve that runs along the top surface
of the ring (see figure 21). An important reason to make this bead pattern is its ease to
manufacture. The cross section of the bead is round-shaped. Figure 20 shows the parameters
that describe such shape. They were calculated after Lange [19], being Rgr = Tmm, h = Tmm
and R, = 4.4mm. The ring thickness t is equal to 3 mm from the technical sheets. These

parameter values are considered conservative, since other authors give more extreme values.

t

&

S

Figure 20: Cross section of round bead.

Figure 21: Bead pattern of top ring beads.

5.2 Variation of the bead pattern

Similar to the computer science algorithm “divide and conquer”, this method is used to vary

the bead pattern. The goal of this variation is to minimize the Von Mises stress in the top ring,
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or position 5 in figure 18.

5.2.1 Placing the first bead

The parameter varied from the bead pattern is the relative height of the circular curve to the
bottom ring. This is better seen on figure 22.1. The first step of the algorithm is to do 3
simulations. On figure 22.2, these 3 simulations are the darkest 3 circles marked as 1,2 and 3.
Between simulations 2 and 3, the Stress values are smaller as between 1 and 2. Therefore, a
fourth simulation is done between 2 and 3. Between simulations 4 and 3 the stress values are
smaller as between simulations 2 and 4. Finally, a fifth simulation is done between simulations
3 and 4. This is then the best place to construct the bead.

22.1: Bead pattern parameter for the first bead. 22.2: Simulations to place the first bead.

Figure 22: Placing of the first bead in the top ring.

5.2.2 Placing the second bead

Following the same algorithm as in section 5.2.1, the second bead is placed on the top ring.
This is better explained by figure 7.6. It is important to highlight that all the simulations are

done leaving the first bead in place.

5.3 Conclusions on placing beads on the top ring

After placing 2 beads on the top ring, a third bead had little or no effect in the stress values.
The “divide and conquer” approach improved the stress values significantly. The overall Von
Mises stress value improvement was of 17.2%. The top ring had an improvement of 21.1% and
the blade 11.4%. The variables from figure 22.1 and 23.1 have a value of:
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23.1: Bead pattern parameter for the second 23.2: Simulations to place the second bead.
bead.

Figure 23: Placing of the second bead in the top ring.

HSRI = 200mm HSR2 = 230mm

The rotor’s global stress goes under in a smaller percentage as in the ring. This means that
beading other places different from the top ring should improve local stress values as well as the
global stress. Table 2 show the stress results with beads on the top blades on specific points of
the rotors (see figure 18).

Blade Pos. 1 | Blade Pos. 2 | Blade Pos. 3 | Blade Pos. 4 | Top Ring Pos. 5
154 161 147 147 134

Table 2: Von Mises stress values after placing 2 beads on the top ring (MPa).
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Figure 24: Von Mises stress distribution on the top ring after being beaded.
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6 Beads in the Top Ring

After finding optimal Beads to manufacture in the top ring, beading the blade was also of

interest. The method was carried on having the beads in place in the top ring from section 5.

6.1 Cross section and bead pattern

The cross section of the bead used is the same as in section 5.1. The bead pattern is calculated
using spline curves on the surface of the bead surface. These splines have a predominant
direction. Baumert et al. [20] found that beads that were oriented in the sense as the generatrix

axis (vertical) had a positive effect on the stress values.

6.2 Placing of the first bead on the blade

The spline curve that lies on the bead has 3 knots (or spline points). Each node is restricted in
2 ways. The head of the spline is restricted a distance B, from the edge close to the generatrix.
It is also a distance of 32 mm from the top ring (to avoid collisions with the beads on the top

ring and to comply with specifications from Lange [19]).

The middle knot is a distance B,o from the same edge as B,;. In vertical direction, it is equally
spaced from the head and the tail of the spline. Finally, the tail of the spline is a distance B,3
and is measured like B,;. The tail is 32 mm apart from the bottom ring for the same reasons

the head is from the top ring.
The distances B,1, B,2 and B,3 vary 4 times. B,1, B., B,s = [30,50,70,90]. The possible

combination of bead patterns is 43, or 64. This variation of the spline’s knot positions will be
called from now on as “the snake algorithm”. This name is used since the movement of the

spline in the surface resembles the movement of a snake on a surface.

6.3 Results after placing the first bead on the blade

After simulating the 64 models with the different bead patterns, the best shape found was

when:
B,1 = 30mm B,s = 30mm B,3 = 30mm

From figure 26 it can be inferred that the stress distribution is more uniform in the blade’s
surface. Comparing the stress distribution from the unbeaded model (Figure 19) and the
beaded model (figure 26), it is clear that the stress in the edges of the blades diminishes as
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25.1: Parameters of the first bead pattern on the 25.2: Measuring positions of the first bead on
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Figure 25: Parameters and measuring positions for placing the first bead on the blade.

beads are added. This gives a hint on how the beadings work on the blade. The offset geometry
of the bead adds more Inertia to the blade, but this point also suffers a higher stress value,
since it is further away from the neutral fibers of the blade. It also indicates that the rotor is

closer to achieving a full-stressed design.

Figure 26: Von Mises stress distribution in the blade after adding one Bead.

The Von Mises stress values from the points in figure 25.2 can be seen in table 3. The highest
Von Mises stress value is 137 MPa in position 5.
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Figure 27: Von Mises stress distribution in the top ring after adding one bead.

Blade Pos. 1 | Blade Pos. 2 | Blade Pos. 3 | Blade Pos. 4 | Blade Pos. 5 | Top Ring Pos. 6
130 117 119 98 137 127

Table 3: Von Mises stress values after placing 1 bead on the blade.

6.4 Placing of the second bead on the blade

Using the same methodology for placing the first bead (section 6.2), a second bead was placed
on the blade. The variable names were changed to B, B2, Bjs. The edge from where the
variables are measured to the spline’s knots are changed as well. This time the reference edge
is the outermost edge of the blade when compared to the generatrix. This is better explained
by figure 28.1.

The bead pattern found previously is left in its place. A new set of 64 simulations is done with
the same variable values (30, 50, 70 and 90).

6.5 Results after placing the second bead on the blade

The best bead pattern found for the second bead was:
B = 30mm By = 50mm Bz = 30mm

The highest Von Mises stress value is 125 MPa. Different from the 1 bead model, the highest

stress place was position 1.

From figure 29 it can be seen that the top of the beads are the places with highest stress values

in the blade. This is a characteristic found from all the simulations that lowered the Von Mises
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28.1: Parameters of the second bead pattern on 28.2: Measuring positions of the second bead on
the blade the blade model.

Figure 28: Parameters and measuring positions for placing the second bead on the blade.

Blade P. 1 | Blade P. 2 | Blade P. 3 | Blade P. 4 | Blade P. 5 | Blade P. 6 | Top Ring P. 7
125 111 125 102 101 90 125

Table 4: Von Mises stress values after placing 2 beads on the blade.

stress. Another characteristic is that these stress values would have similar values in both

bead’s top.

6.6 Conclusion for the beads on the blades

When the first bead is placed, the stress values go under considerably. When the second one is
placed, the stress values aren’t greatly affected. This can be better seen comparing the spheres

diagrams of both beads.

A sphere diagram is a way to represent 4 dimensional information. In figure 31 there is 64
spheres. Each sphere represents a simulation from section 6.2, where the first bead pattern was
found. The color of the sphere represents the maximum stress value of the rotor. Figure 32
shows the maximum stress values for the placing of the second bead. It can be seen that after

placing the second bead many simulations have similar results as the best from the first bead.

The use of a second bead could be unnecessary when the design goal is to lower the maxi-
mum stress values. The analysis of the bead pattern with other goals such as deformation

minimization or modal analysis could find useful the use of a second bead.

Using the “snake algorithm” proved to be a good way to calculate the bead pattern to be
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Figure 30: Von Mises stress distribution in the top ring after adding two beads.

used on a metallic sheet. One of the biggest advantages of using this methodology is that it
relies mostly on the abilities of the user to create CAD software. Other methodologies rely on
the user’s computer programming capabilities and the difficult interaction between programs
different from the CAD and CAE software.
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Figure 31: Sphere diagram of 64 simulations to find the best bead pattern

model.
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Figure 32: Sphere diagram of 64 simulations to find the best bead pattern for the two-beaded

model.
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7 Optimization of Bead Patterns Using Design of Ex-

periments

On section 6, a trial and error approach was used. This type of approach is very time and
resource consuming. For that reason the implementation of a true optimization method was
interesting to do.

The optimization problem can be defined in 3 different ways. The first one finds the bead
shapes that minimizes the maximal Von Mises Stress in the entire model (equation 7 and 9).
The second one finds the bead shapes that minimizes the maximal nodal displacement in the

entire model (equation 8). The last one finds the stress in specific points (as in figure 25.2)

The function o, : R* — R is the maximum Von Mises Stress value of the entire rotor geom-
etry according to Patran’s GUI (the location of this point can change in the geometry). The
function d, : R* — R is the maximum displacement function of the entire model according to
Patran’s GUI (this point is always in the middle of the blade). The function o; : R* — R, for
1 = 1,2,...,p. This function is the Von Mises Stress value in specific points p on the rotor
according to figure 25.2. The functions o, ,d, and o; are also known as the observed phenomena
(experimental values). The vector & = [B,1, B2, Byo] in the case of the placement of the first
bead.

7.1 4 level 3 factors experiment design
This type of design was chosen for 3 reasons:

i The function that describes the bead patterns in the blades is unknown. 4 levels would

approximate accurately a cubic function and won’t affect smaller order polynomials.
ii The 3 factors would be the spline’s control points.

iii There is a very good statistical data from the previous sections.

Similar to equation 4, equations 10, 11 and 12 show the lineal, quadratic and cubic polynomials

for 3 variables. As explained in section 1.5, the challenge is to find the independent terms a;.
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SHx) = a1+ ayry + azry + agwz +e (10)

2 1 2 2 2
S:(x) = S, 4 asri2 + agx1x3 + a7r2T3 + agxy + agT; + aor; (11)
3 2 2 2 2 2
So(x) = Si4 anx1waxs + a12xiTy + a13T7x3 + 147175 + 415053
2 2 3 3 3 12
+a16x1x3 -+ A17T2T3 -+ 1874 —+ 19T -+ A20T5 ( )

7.1.1 Choosing which tests to run

The Box-Wilson Central Composite Design and the Box-Behnken Design are not good describ-
ing the 4 levels experiments. The approach by Koukouvinos et al. was used [21], where optimal
non-orthogonal designs were created using neural algorithms. Figure 33.1 shows for example a
20 run (simulations), 4 level, 3 factors design. A full factorial design would have all the dots in

the matrix black. Full factorial designs are further explained by Woll et. al. [22].

When the experiments are carried out, the lineal equation systems are built like in equations

10,11, 12 and the polynomials coefficients of the response surface are found as in equation 5.

7.1.2 Measuring the goodness of fit from the polynomials

One parameter that has been widely used to measure the quality of the polynomial fit is called
R squared (coefficient of determination or R?) [23]. Equation 13 shows the calculation of such
parameter for the Maximum Von Mises stress, when the hyper-surface S} is approximated. The

parameter ¢ is the number of runs used and depends on the experimental design used.

g S0 (@) = Sy (@)

2 (13)
5 (o0 (@) =00 (@)

R? is an adimensional number, that should have values between 0 and 1. When the value is

closest to 1, the approximation of the response surface is better. There is not a minimum value

that is good to ensure the correctness of the response surface, but values of 0.6 in this project

have given satisfying results.

The displacement function (d,) approximations had the highest coefficient of determination
(see figure 34.2). The smallest values were found when approximating the o, function. The o;
approximations had good R? values (see figures 34.1 and 34.4). There were no major differences
in the R? values between the second and third degree polynomials in all the approximations as

the number of runs increases (converged to equal values). The third degree polynomials had
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Figure 33: Different design of experiments in a 43 space according to Koukouvinos

low or negative R? values with low runs number, but at high run numbers they would have the
highest.

7.2 Results using 20 runs design

It is only interesting to show the approximations using the 20 runs experiment design, since
the goal of this chapter is to diminish the amount of simulations needed to determine the
optimum bead pattern in the blade. Figure 35 through figure 38 show the variations of vector
x = [B,1, Byg, By1] in the domain used on section 6. The colormap represent the value of the
hyper-surface S at used to approach the different Stress and Deformation functions at a point
x.
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Figure 34: Measuring the goodness of fit for different polynomials from measurement data in
the fan’s rotor.

7.2.1 Polynomials describing Maximum Stress Values in the Rotor

After finding the response surface approximations, the minimal values for each polynomial in
the domain of x were found. Table 5 shows the predicted optimum values and the value of the

components of x.

The Quadratic polynomial prediction was tested, and the Von Mises stress value is 137 MPa.
This means that the prediction was accurate, and matches the best result found in section 6.
This is the solution for equation 7. The best approximation is given by the cubic approach
with 64 runs with a R? value of 0.83 (see figure 35.4). There are weak similarities between the

approximations with 20 runs and the best approach.
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Polynomial Used | Predicted B,; | Predicted B, | Predicted B,3 | Predicted Max.
(mm) (mm) (mm) Stress(MPa)
Linear 30 30 30 143
Quadratic 47 30 35 135
Cubic 30 90 58 105

Table 5: Predicted minimum values for the o, function and the bead pattern parameters.
7.3 Polynomials describing Stress Values in positions 2 and 4

This approach is an example of solving the optimization problem in equation 9. In figure 25.2,
the positions 2 and 4 are shown. These are called “the middle of the blade” and “top of the
bead”. It is known by empirical data that the failing zone of the rotor is the middle of the

blade. Both points 2 and 4 go through the empirical failing area, and were chosen for this

reason.
Polynomial Used | Predicted B,; | Predicted B, | Predicted B,3 | Predicted Max.
(mm) (mm) (mm) Stress(MPa)
Linear 30 90 30 89
Quadratic 30 63 41 84
Cubic 88 39 30 62

Table 6: Predicted minimum values for the o5 function and the bead pattern parameters.

Polynomial Used | Predicted B,; | Predicted B, | Predicted B,3 | Predicted Max.
(mm) (mm) (mm) Stress(MPa)
Linear 30 30 30 109
Quadratic 30 30 30 108
Cubic 30 30 30 83

Table 7: Predicted minimum values for the o4 function and the bead pattern parameters.

When comparing the results of the Quadratic approximation in tables 6 and 7, the maximum
Von Mises stress values is 108 in the o4 function. The bead pattern is the same as in section

6.3. This is the bead pattern that solves the optimization problem stated in equation 9.

The best possible approaches were using cubic polynomials with 64 runs (figure 36.4 and 37.4).
The R? values was 0.99. When there is a comparison between the cubic approaches and the
quadratic approaches with only 20 runs, the similarity is evident. This makes the quadratic

approach reliable.

7.3.1 Polynomials describing Maximum Deformation Values

The polynomials that approach the deformation are the best behaving ones. This can be seen by

the likeness of figure 38.1 through figure 38.4. The predictions using the quadratic polynomial
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mation of o, with 20 runs. mation of o, using 64 runs (full
factorial design).

Figure 35: Linear, Quadratic and Cubic approximations of the o, function.

with 20 runs was 100% accurate when the verification was made.

Polynomial Used | Predicted B,; | Predicted B, | Predicted B,3 | Predicted Max. Disp
(mm) (mm) (mm) (mm)

Linear 30 30 30 0.352

Quadratic 30 45 30 0.348

Cubic 30 63 34 0.340

Table 8: Predicted minimum values for the d, function and the bead pattern parameters.

7.4 Conclusion of Creating Bead Patterns Using Design of Experi-

ments

The use of design of experiments to find bead patterns is a powerful tool that proved to be

accurate and time saving. The snake algorithm was improved using less than one third of the
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36.1: Linear polynomial approxi- 36.2: Quadratic polynomial ap-
mation of oy with 20 runs. proximation of o9 with 20 runs.

36.3: Cubic polynomial approxi- 36.4: Cubic polynomial approxi-
mation of oy with 20 runs. mation of o9 using 64 runs (full
factorial design).

Figure 36: Linear, Quadratic and Cubic approximations of the oy function.

time and resources. In the case of forecasting nodal displacement, the results are better than

using the actual snake algorithm.

Using response surfaces in a closed domain brings the possibility of finding several minimal
values. Therefore using design of experiments could be useful to find not only one bead pattern
that minimizes the stress values, but several. Then the user must choose which pattern is easier
to manufacture or if there are additional functionalities that give advantages of some patterns

over others (in the fan, some patterns might produce less turbulence as others).

From the color distribution in figure 39 and 40, it can be concluded that the full-stressed design
can be extended to nodal displacement as well. The concentration seen in the unbeaded model
can now be seen in two different places in the beaded model. It can be seen as well that
the highest displacement values in the beaded model tends to become equal in the horizontal

direction. The nodal displacement was lowered by 51%.

Comparing the distribution of the Von Mises stress on the beaded and unbeaded blade (figure
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37.1: Linear polynomial approxi- 37.2: Quadratic polynomial ap-
mation of o4 with 20 runs. proximation of o4 with 20 runs.

37.3: Cubic polynomial approxi- 37.4: Cubic polynomial approxi-
mation of o4 with 20 runs. mation of o4 using 64 runs (full
factorial design).

Figure 37: Linear, Quadratic and Cubic approximations of the o4 function.
41 and 42) there is no immediate difference. Looking closer, in the beaded blade both extreme
edges in the middle of the blade have the similar stress values, while the unbeaded blade has a

clear concentration on the inner edge. The highest stress value changed from the middle of the

blade to the lowest outer weld.
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38.1: Linear polynomial approxi- 38.2: Quadratic polynomial ap-
mation of d,, with 20 runs. proximation of d,- with 20 runs.

38.3: Cubic polynomial approxi- 38.4: Cubic polynomial approxi-
mation of d,. with 20 runs. mation of d,. using 64 runs (full fac-
torial design).

Figure 38: Linear, Quadratic and Cubic approximations of the d, function.

Figure 39: Optimized bead beaded blade with nodal displacement colormap.
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Figure 40: Unbead blade with nodal displacement colormap.

Figure 41: Back view of the unbeaded blade with Von Mises colormap.
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Figure 42: Back view of the optimized bead beaded blade with Von Mises colormap.
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8 Optimizing the Bead’s Cross Section

In the previous sections, the best bead contour was found. The parameters for the bead pattern
are taken from section 6. It is believed that the bead pattern is predominant from the bead cross
section. For this reason, the cross section optimization is done after finding and appropriate

bead pattern.

The cross section of the bead has different parameters. Any type of bead (rectangular, trian-

gular, circular, trapezoidal) can be described using the same parameters. They are:

1. w: Width of the bead

2. h: Depth of the bead

3. Rad: Forming Radius of the bead.
4. B: Forming angle of the bead.

5. t: Thickness of the metal sheet.

On figure 43 the parameters are shown. These parameters were varied with common values

found in literature [7], [24], [19]. These values are:
w= [16, 18,20, 22]mm; h = [7,9, 11]jmm; Rad = [3, 5]mm; = [45,60,75,90];

The parameter t is given previously by the technical sheets from the rotor.

w

Rad

Rad

Figure 43: Global parameters of a bead’s cross section.
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The use of different types of Beads is shown by [25]. He concludes that the box-shaped beads
(8 = 90 degrees) have the highest stiffening effect; although [26] briefly discusses the problems
inherent to metal sheet forming in right angles. Due to geometrical restrictions, some parameter

combinations are not possible to build.

Special attention was paid to the § angles of 60 and 90 degrees beads, because just like round-
shaped beads, these are the most common ones. Figure 44.1 through 44.4 show a cross section
of the top ring with the geometry of the bead. The only parameter changed between the models
was the 8 angle. The change is easy to see comparing the initial and the last figure, but the

transition in between is difficult to appreciate.

S

44.1: Generatrix of 8 = 45 model. 44.2: Generatrix of g = 60 model.
44.3: Generatrix of 8 = 75 model. 44.4: Generatrix of 8 = 90 model.

Figure 44: Top ring generatrix with varying g angle.

8.1 Stress concentration due to small Rad parameter values

Figure 45 and 46 share the same parameter values except the forming radius (Rad). It can
be clearly seen that even though Kugler [26] states that the Rad parameter can have a values

of 3 mm in the case of the fan’s rotor high stress concentrations are found. It is therefore
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recommendable to avoid small values in this instance. The 5 mm value was found to be a good
value. Larger values are difficult to build since it restricts the amount other parameters can

change.

Figure 46: Model with parameter Rad = 5 mm

8.2 Constant § =90 degree and Rad = 3 varying h and w

From the maximum stress values surface (figure 47.3) there are results that go against the
theory. The stress values are supposed to reduce as the bead is deeper. This behavior was
found to occur when the Rad parameter is too small. There are stress concentrations with this
value. The use of shallower beads are better. The use of 3 mm in this parameter proved to be

too small, and therefore it wasn’t further explored.

The values of deformation did behave accordingly to the theory (figure 47.1) and the stress
value in the middle of the blade too (47.2).
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Figure 47: Surfaces describing the Stress and Nodal Displacement behavior of g = 90 degree
and Rad = 3 models.

8.3 Constant 3 = 60 degree and Rad = 5 varying h and w

There are no stress or displacement values in some width and depth values (i.e. h =11, w = 16)
in the graphic because they are not geometrically possible to construct. The surfaces are not
completely lineal. The height is the dominant parameter, but it’s difficult to establish whether

the width plays a major role because the surfaces don’t have enough test points.

8.4 Constant § =90 degree and Rad = 5 varying h and w

On these models, the Rad and  parameters are constant and the width and depth vary. The
results have a linear behavior and there are no local minima. The bead depth is the dominant

parameter. These models had the most consistent behavior.
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Figure 48: Surfaces describing the Stress and Nodal Displacement behavior of § = 60 degree
and Rad = 5 models.

8.5 Influence of the § angle

On figure 50.1 it can be seen that the maximum displacement of the rotor gets lower as the
[ angle grows. Different from the displacement, the Stress values are not continuously falling
(see figure 50.2). There is a local minimum when 5 is equal to 60 degrees. This is the main

reason why there was more attention paid to the 60 and 90 degrees [ angles.

The nodal displacement between the 60 and 90 degrees models are slightly different, being
always lower the 90 degree model (see figure 51).

8.6 Conclusion for Bead Cross Section Optimization

The Best model found was the squared-shaped bead with the following parameters:
w = 22 mm; h = 11lmm; Rad = b5mm; # = 90 deg.
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Figure 49: Surfaces describing the Stress and Nodal Displacement behavior of § = 90 degree
and Rad = 5 models.

This decision is made because this model presented the lowest stress values and the lowest
nodal displacement value. The use of the 60 degree model with the same values of w, h and
Rad parameters could be a good possibility to manufacture since it had very similar values as

the 90 degree model. The advantage of the 60 degree model is that it is easier to manufacture.

The maximum displacement from this particular model was 0.299 mm. When comparing it
from the unmodified model, there is a difference of 0.381 mm, and an improvement of 66%.
The maximum Von Mises Stress value is 123 MPa. Comparing it from the unmodified model,
there is an improvement of 34%. The stress at the maximum displacement point is 57 MPa.

This place had the highest improvement, with a 66% change.

In figure 53 the stress distribution is shown. Different from section 6.5, the stress distribution
is not very even. This could indicate that the “snake algorithm” is dependant from the cross

section. In other words, the bead pattern and the cross section are dependant from each other.
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Figure 52: Displacement distribution colormap.
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Figure 53: Von Mises stress distribution colormap.

54.1: Final cross section of the blade. 54.2: Final cross section of the top ring.

Figure 54: Two renders of the cross sections of the optimized beads.
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Appendices

A Matlab script to run multiple .bdf files in series

clear all

close all

clc

tic;

%asking the user for the paths

[filename, pathname, filterindex] = uigetfile({'*.bdf‘,'BDF Patran File';
'x.dat', '"Patran File'},'MultiSelect','on');

if isempty (filename)
%$checking the files selected
disp('error: No valid or no file selected')
else
if isstr(filename)

%$if only a single file was selected
file_to_run=strcat (pathname, filename) ;
disp('Running file')
disp(file_to_run)
dos(file_to_run);
pause (5)
disp('finished")
disp('")
disp('")

else
%$if several files were selected
for i=l:size (filename, 2)
file_to_.run=strcat (pathname, filename{i}) ;
disp ('Running file')
disp(file_to_run)
dos(file_to_run);
pause (5)
disp('finished")
disp('")
disp('")
end
end
end
%$show the time the simulations took

toc

o4



