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Abstract: In Computer Aided Geometric 
Design the fitting of surfaces to massive 
series of data points has many applications, 
ranging from medicine to 
aerophotogrametry.  However, even the 
mathematical meaning of fitting a surface to 
a set of points is dependent on functional 
considerations, and not only on the 
geometric properties of the point set. Also, 
characteristics of some parts of the data set 
must be interpreted as stochastic in nature, 
while others must be taken as literal and 
therefore they become constraints of the 
surface. For these reasons, among others, 
automated surface fitting alone does not 
produce results usable at industrial level.  
At the same time, it does not take advantage 
of sampling patterns, particular shapes of 
the cross sections, functionally different 
regions within the object, etc.  The latest 
literature reviews show the need for utilities 
to process point data sets that must be 
asynchronous, (applicable at any time and 
upon any region of the point set). 
Addressing this need, this article reports 
new tools developed within DigitLAB, a 
language that allows topological traversal, 
retrieval and statistical modifications to the 
data, and surface fitting. They can handle 
arbitrary topology, as case studies in 
medicine, mathematics, landscaping, etc. 
discussed here demonstrate.  

Résumé: Dans la Conception Aidée par 
Ordinateur (CAO) l’ajustement de surfaces 
a séries massives de points en 3D a 
beaucoup d’applications, dès la médecine à 
l’aerophotogramétrie. Toutefois, la seule 

definition mathématique de cet ajustement  
dépend de considérations fonctionnelles et 
ne pas seulement de la géométrie de la série 
de points. En plus, quelques caractéristiques 
des données doivent être interprétées 
comme aléatoires, en tant que d’autres 
doivent être pris littéralement et donc, elles 
contraignent la surface.  Par ces raisons 
l’ajustement automatique des surfaces n’est 
pas prêt pour l’emploi industriel. Au même 
temps, l’ajustement automatique ne profite 
pas des schèmas de capture des points, des 
formes particulières des sections traverses, 
des regions fonctionnellement differents sur 
l’object, etc. Les dernières revisions de 
litterature montrent une besoin d’utilitaires 
qui permettent de transformer les donées 
d’une manière asincronique (applicable en 
n’importe quel temps ou sur quelle portion 
de la série de points). Cet article rapporte 
les nouvelles utilitaires développés en 
DigitLAB, qui permettent la recuperation, le 
traitement statistique des données et 
l’ajustement de la surface. Ces utilitaires 
sont capables de récuperer des topologies 
arbitraires, comme le montren les cas 
étudiés en médecine, mathématiques ou 
modelage du terrain. 

1. Introduction. The general problem of 
surface reconstruction from point clouds is 
not one of computational geometry only (to 
infer shape from data), but one of statistics 
and data processing, to ensure diagnostics 
and a minimum quality of the data input to 
the geometric algorithms.  Collateral tools 
help to take advantage from special 
characteristics or patterns of the 



 

digitization. Patterned (planar or grid) 3D 
digitizations are common in industrial, 
medical, and artistic applications.  With the 
introduction of stereolithography and rapid 
prototyping, the treatment of patterned 
planar digitizations has drawn renewed 
interest from the engineering community. 
However, the attempt for fully automated 
topology recovery from planar data have 
encountered problems, mainly related to the 
determination of the cross sections of the 
object on one level and the relation between 
sections in neighboring levels. This 
publication reports a computer environment, 
DigitLAB, that improves the results of [12] 
in processing the data and inferring shape. It 
exploits the advantages of planar 3D 
digitizations for surface reconstruction, 
being able to deal with non trivial 
topologies. As side benefit, it allows 
application of the tools developed on mesh 
integration from range images. Therefore, it 
covers planar and grid (from optical 
sampling) patterned 3D point data. 

This article is organized as follows: Section 
2 surveys the relevant literature. Section 3 
discusses the geometric tools devised along 
with examples. Section 4 presents 
additional case studies with objects of 
diverse topology and geometry. Section 5 
concludes the paper. 

2. Literature Review and Background. 
Fig. 1 shows a conceptual classification of 
steps for surface reconstruction from point 
data. The main tasks are data capture, 
topology recovery, and continuity 
enforcement (smoothing). This paper refers 
to Topology Recovery as the process to 
identify and formally represent 
neighborhood information in the data set. 

Data Acquisition: Data acquisition implies 
the steps of object fixturing, equipment 
calibration and data collection and 
correction (following the calibrated 

parameters), to produce the cloud of (x,y,z) 
coordinates. A short summary rather than a 
complete survey of sampling methods is 
included here. The interested audience is 
invited to read [17] for deeper insight. 
Acquisition hardware may work by contact 
or remotely. Contact measurement is based 
on the position of the kinematic joints that 
hold a probe touching the object.  In 
metrology centers (Coord. Measurement 
Systems - CMS) the computer commanded 
position of these joints produces predefined 
trajectories of the probe tip. Trajectories 
have mostly 3 degrees of freedom (X-Y-Z 
table), and therefore recondite features are 
not reachable in this case.  When more dofs 
are present, the probe is able to reach 
creases and holes, at the penalty of manual 
measurement.  In CMS the digitization is 
generally realized in planar patterns, while 
articulated arms hardly achieve this 
systematic pattern. It is claimed and 
illustrated here that approximate planar 
samples can be obtained with pre-
processing tools ([14, 12]) if other 
characteristics of the digitization (density, 
homogeneity, etc) are present. 

Remote methods may be optical, acoustic o 
magnetic, depending on which physical 
phenomena they rely upon. For example, 
range imaging records a depth field in grid 
patterns corresponding to pixel arrays. 
Computer axial tomography builds planar 
slices of raster data (x rays) based on 
absorption properties of the scanned object 
([16, 10]). Interferometer methods record 
dark regions on the object, which are ones 
of iso-distances (levels) measured on the 
ray direction.   

Independently of the physical hardware 
used, this investigation concerns methods 
producing patterned samplings (planar, grid, 
or quasi-planar). The reason for this focus is 
the availability of neighborhood 



 

information implicitly present on pattern 
sampled data. 

Topology Recovery: Notice that B-Rep 
models in half wing edge format ([8]) 
cannot directly apply for surface 

reconstruction since they are watertight 
closed. In general, an extended B-Rep 
structure must be devised to record absence 
of surface on some parts, or existence of 
borders of the recognized surface or partial 
mask (possibly with holes).  Authors [17,9] 

report the difficulty in completing or 
inferring lost or hidden regions of the 
surface. The present article assumes that in 
topology recovery such regions should not 
be inferred. Rather, algorithms should only 
recover the portion of the object actually 
witnessed, leaving to other tools with 
different reasoning the artificial completion 
of surface portions. Hollow, partial objects 
with holes (for example a carnival mask) 
are cases in which no completion should be 
made.  Therefore, inferring portions of the 
object not sampled is beyond the scope of 
this article. 

For cases where shell closure is a goal, 
Alpha Shapes ([4]) and Marching Cubes 
([7]) are used as part of larger procedures 
[6, 5, 9]. As a coarse summary, Alpha 
Shapes establish sets of points closer to 
each other than a parameter α .  When α = 
0, the alpha shapes are exactly the original 
set of points. When α = ∞, the alpha shapes 
are the convex hull of the given point set. 
User-selected ranges of intermediate α 
values recover the connectivity of the point 
set in the form of a simplicial complex 
formed by 0, 1, 2 and 3 simplexes.  In [6] it 
is discussed that although the output of this 
stage is a topologically correct mesh, 
geometrical degeneracies (for example 
dangling edges) may be present, and the 
collection of simplexes is post - processed 
in order to leave only 2-simplexes with an 
acceptable geometry. Marching Cubes ([7]) 
algorithm builds a closed facetted surface 
that approaches an implicit surface in R3( 
f(p) = 0 ), where the function f() may be 
inferred from the digitization samples (as in 
[9]).  

Regarding the carrier geometries of the 
shells, this investigation uses very simple 
geometries such as 3 and 4 - vertex facets.. 
The last ones are of course not flat in 
general, but are easily subdivided into 
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triangles. These primitives have been found 
sufficient to recover a correct topology.  

Surface Smoothing: Once a topologically 
correct shell is attained, applications may 
require a level of continuity (typically C1 or 
C2) on the surface built. For this purpose, 
several attempts on parametric surfacing are 
present in literature. One of the best 
fundamented is the one by Grimm ([5]). It 
starts with a topologically correct C0 
continuous shell, and covers it with vertex, 
edge and face charts in order to obtain a 
complete mapping between the C0 shell and 
a manifold M.  This mapping enables to 
define a chart-depending parameterization 
that produces a C2 continuous surface. In 
Fig 1, Enforcement of Connectivity / 
Geometry Constraints refers to the re-
calculation of vertices whose incidence 
degree is too high or faces with too many 
sides. Additionally, vertex re-calculation is 
used to restore planarity to faces with the 
correct incidence degree ([1, 3]).  The result 
is a topological atlas that offers correct 
conditions on the vertices, edges and faces 
for chart construction. Chart construction 
results in the coverage of the manifold 
surface with overlapping patches in the 
parametric space, which help to ensure C2 
continuity of generalized B-spline surfaces. 
In [6] Alpha Shapes are used as input to 
Grimm’s method, along with a corrected set 

of points, calculated as the least deviated 
from the sampling of the physical object.  

Mentioned in the literature [6, 17], and from 
our own experience, it appears that a 
considerable effort may be spent in ensuring 
C1 or C2 continuity in selected regions of 
the object where only C0 continuity exists.  
Sharp “character” edges are present in 
objects (for example car bodies), and only 
their detection already presents formidable 
difficulties. On the other hand, in the 
surveyed literature the smoothing by 
parametric quadrilateral patches in which 
two of their vertices coincide (which means 
triangular regions) is not explicitly 
informed. This aspect is important, since 
geometrical coincidence leads to 
degeneracies in tangent vectors at these 
positions. The treatment of these 
degeneracies is obviously of capital 
importance for continuity enforcement.   

From the survey presented, it is clear that 
industrial usage of digitization tools 
requires foremost topological correctness 
.We show that it can be achieved with 
simpler approaches, accompanied by 
collateral tools that allow to see, evaluate, 
subdivide, selectively retrieve and prepare 
the data for the application of the surfacing 
algorithms. The later are only one step 
(vital, but not even the last one) of a large 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Quasi-planar digitization of 
femur (head portion). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Random, sparse digitization of 
femur. 
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set of operations required to produce an 
industrially useful CAGD surface. The 
rationale behind DigitLAB is to provide the 
tools to treat the data, along with the ones to 
surface it.  As such, we conform ourselves 
with very simple geometries (triangles and 
4 vertex facets), with a strong focus on 
topology correctness, and data treatment, 
within a comfortable environment.  

3. Geometric Reasoning Tools. In this 
section each tool devised will be presented 
along with its application example. 

3.1 Point Set Partition: A first step in 
treating a digitization that supposedly 
follows a planar pattern is to identify it and / 
or correct it to ensure such a characteristic. 
Among others implemented, the following 
instruction addresses such a need: 
pocket = pocketing  (  
 point_list,   /*IN: point cloud */ 
 normal_vec,   /*IN: common normal */ 
 plane_separation, /*IN: distance between  
      sampling planes */ 
 dist_tolerance,  /*IN: sampling tolerance*/ 
  ): 

this instruction is issued after the user 
identifies a normal vector (nearly) common 
to all digitization planes, via statistics tools.  
pocketing() classifies points from a 
unordered set into pockets. If the 
digitization has good quality one may trust 
each pocket to define its own normal vector 
(via least squares fit). Otherwise one may 
impose a common normal vector. Next, 
each point has to be projected against 
several close planes. In some cases a point 
can be projected onto two or more 
consecutive planes (each level “borrows” 
points from neighboring ones).  This option 
is useful when a digitization is too sparse, 
and so, information from neighboring 
sections must be consulted to “complete” a 
section. Obviously in this case the quality of 
the original digitization is very dubious, and 
the modified one will have fuzzy 

characteristics that must be addressed (see 
filter tools ahead). The result of pocketing() 
is a list, sorted by level, of point subsets. 
Each subset corresponds to the points 
recorded (or projected) on a sampling plane 
and it is still disordered.  

Figs. 2 and 3 show digitizations of a femur. 
They are quasi-planar and random 
respectively. The first one presents an 
inherent normal vector, while in the random 
one the user defines what the virtual 
digitization planes would be.  Depending on 
the call parameters, points nearby each 
plane are replaced by their projections on 
such plane. dist_tolerance of 50% would 
produce no points shared by levels. Less 
than 50% would leave points claimed by no 
plane. Above 50% points are borrowed 
among planes. 

3.2 Recovery of cross sections: The next 
step after the partition into planar sections is 
to recover each cross section of the object, 
cut by a sampling plane. In previous work, 
the authors recovered convex or star (non-
null kernel) sections by angular sort about a 
pivot point [11]. At this time, there exist no 
restrictions on the cross section. DigitLAB 
recovers disconnected sets of general 
polygons with holes. Mathematically, one 
starts with a disordered set of coplanar 
points Si belonging to level i. Conceptually, 
Si is first partitioned into the different 
subsets Sij (still disordered) that make each 
polygon j in the section: 

}S,...,S,S,S{ = Niiiii 321Σ , 

ikij SS = ∩Φ  for all j≠k  , ij

Nj

1ji S =S
=

=
∪      (1) 

where each Sij contains the points that form 
a chain of close neighbohrs. That is, the 
ones belonging to a closed contour. 

Each subset Sij is then ordered into a list Lij 
which is the closed contour representing 
such a cut of the object. Notice that the Lij’s 



 

satisfy also equation (1).  Although the 
conceptual steps (partition + ordering) are 
different they are implemented at once in 
the following algorithm. 
contour_set   rebuild_section  (  
 set_of_points S, // IN. Point set in the level 
 real   δ  // IN. max. neighbor dist. 

) 
{ 
1 section =  [] ; 
2 while ( S )  
3 { 
4  contour = closest_chain( S, δ  ); 
5  S = S – contour; 
6 } 
7 section = section +{ contour }; 
7 return ( section ); 
} 
 
contour closest_chain(  

set_of_points S,  // IN / OUT. Point set 
in the level 
real   δ    // IN. Characteristic 
distance of Digitization 

) 
{ 
1 seed = first( S ); 
2 seed_neighbors = []; 
3 while (seed) 
4  { 
5 seed_neighbors = seed_neighbors  + {seed}; 
6 next= closest( seed, (S–{ seed,pred(seed)})); 
7  if ( next ) 
8  {  
9   d = distance( seed , next ); 
10   if ( d < δ ) 
11 seed_neighbors=[ seed_neighbors  

12       next ] ; 
13   else 
14    next = NULL; 
15  } 
16  seed = next ; 
17 } 
18 return( seed_neighbors ); 
} 

The algorithm displayed is intended only 
for illustration purposes, since many details 
are not addressed. However, it shows that a 
fundamental assumption is the compliance 
of the digitization with the condition that δ 
< ½ δdetail (Nyquist criteria), where δ is the 
effective sampling interval and δdetail is the 
dimension of the smallest object feature that 
the designer wants to model. Unless such a 
condition is met, from principles of digital 
sampling no algorithm will be able to 
ensure adherence to the object geometry or 
topology. Fig. 5 shows the results of 
applying DigitLAB algorithms for shape 
recovery for a human yaw from a Computer 
Axial Tomography (Fig. 4). The yaw 
presents sections that not only have no 
kernel, but also are disconnected. The 
algorithm succeeds in recovering the 
disjoint  contours. For the sake of space 
savings no intermediate steps are shown. 

3.3 Section Filtering and Resampling: 
Filtering and resampling performed on each 

 
Fig. 4: CAT section of human yaw. 

 

 
 

 
Fig. 5: Final DigitLAB model from a CAT 

of human yaw. 
 



 

section must be done after ordering the 
point set (contour recovery). The main 
reasons to apply these tools to the contour 
loops are: (i) later stages require similar 
number of vertices in all loops (ii) the 
vertex interval must be stable within each 
loop, (iii) rough contours, caused by 
deficient digitization conditions and/or 
treatment tools (“borrowing” points 
between levels) must be smoothed.  

Fig 6 shows the effect produced by point 
projection and point borrowing between 
contours.  The section shown was initially 
sparsely populated, leading to problems in 
boundary recovery. With point borrowing 
and projection he level certainly becomes 

more populated, at the obvious price of 
“fuzziness” in the definition of the 
boundary.  Filtering helps to lower the 
“teeth” effect, although it must be applied 
with care, since it rounds sharp edges that 
may be actually part of the object, and 
shrinks the sections when applied 
repeatedly or when the filtering window is 
too large. A typical instruction performing 
this task looks like: 

smooth_polys = build_resample( polys, N, filter ) 

where N specifies the number of points in 
the filter window, and filter specifies that 
the resample is of filter type. Other types 
are: by distance, by number of points, etc.  

3.4 Interlevel Surfacing: After the sections 
of the object (cut by the sampling planes) 
are recovered, a sequential automatic 
surfacing operation follows, linking 
consecutive cutting planes (Fig. 7). For two 
sets of M and N contours in two 
consecutive levels the questions that must 
be solved are: (i) find the set of pairs in the 
relation l(a,b), meaning “a,b are contours, 
with a ∈ leveli, b ∈ leveli+1, and a and b are 
consecutive cuts of a topological cylinder or 
tree“. (ii) given that l(a,b) holds, contours a 
and b must be lofted by a bijective function 
f(): a → b.  f() which is the skin of the loft 

 

 
Fig. 6: Effect on contour filtering on a 

rough point sequence. 
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Fig. 7: Pairs (a,b) and (a,c) of the lofting 
between contours in levels i and i+1  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: DigitLAB lofting for “tunnel” 
data set. 



 

operation. (iii) if there are pairs (a,b) y (a,c) 
satisfying l(), find a strategy for b and c to 
share contour a. (iv) given a contour a that 
appears in no pair (a,b), generate a 
triangulation that covers it. a is a dead end 
and must be closed. 

Although these are (relaxed) mathematical 
definitions, it is clear that these problems 
are under-specified. Aspect (i) requires 
geometric reasoning algorithms that 
determine whether, for the sampling 
performed, there are reasons to believe that 
contour a of level i participates in the pairs 
(a,b), (a,c), ...etc, with b, c in level i+1.  To 
satisfy (ii) one counts with infinitely many 
f() bijections from a to b. This is indeed the 
cause for the lofting operation to be ill-
defined in CAD packages. In DigitLAB one 
is interested in one map that renders 4-
vertex facets (3-vertex facets render f() non-
bijective) with shape factors acceptable for 
Finite Element Analysis. For aspect (iii) 
Fig. 7 suggests the need for allowing pairs 
(a,b) and (a,c) and  shows that heuristics are 
needed so the two loftings share the contour 
a.  Aspect (iv) is a standard problem with 
many solutions found in Computational 
Geometry literature. 

The figures presented display results in 
solving these questions for levels in which 
all contours in both levels are external. Fig. 
8 shows a data set (called “tunnels”) 
presenting bifurcated loftings.  

4. Additional Topologies and Study 
Cases. 
Topological Trifoil: Fig. 9 displays the 
results of DigitLAB applied to a data set 
called “tri-foil”. The algorithms discussed 
are able to recover the topology of self-
trespassing donuts with no difficulty.  
Notice that this object is not homeomorphic 
to either spheres or torii.  

Range Images: In processing range images 
a first step is the synthesis of incomplete 
and non-connected masks from each image.  
As mentioned before, a data structure has 
been devised by the author in collaboration 
with Fraunhofer IGD (Darmstadt, Germany) 
to accommodate such relaxation from the 
traditional half wing edge. However, a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: DigitLAB result for the topological 

tri-foil. 

 
Fig. 10: Integration of Range Masks from 

several range pictures using DigitLAB. 



 

fundamental obstacle remains in the 
integration of different images to complete 
the object shell as much as possible with the 
images recorded [9, 15, 2].   DigitLAB has 
provided a contribution to the solution of 
this problem by applying the following 
sequence of operations to the reunion (un-
processed) of individual masks: (a) planar 
resampling, (b) contour recovery, and (c) 
filtering.  Operation (a) produces a virtual 
digitization of the whole object with fuzzy 
regions where masks overlap. Operation (b) 
recovers the contours as if these fuzzy 
regions were produced by “point 
borrowing”. Lastly, operation (c) smooths 
the jagged contours, therefore averaging the 
overlapping portions. Thereafter, normal 
inter-level lofting follows. This strategy is 
far from perfection because many statistical 
issues remain. However, it is presented here 
as an unexpected bonus when using 
DigitLAB. Results are displayed in Fig. 10, 
which shows the masks integration. The 

empty spaces are places where the range 
pictures have dark regions; no presence of 
the object is detected by the camera. 
Therefore, the integration algorithm has no 
data for those neighborhoods.  

Aerophotogrametric Landscaping: The 
geometric kernel from DigitLAB has been 
used to recover the topography of 
mountains sampled by pictures from a 
flying plane, and whose data is patterned in 
iso-altitude levels. Observe in Fig. 11 that 
this topology represents a simple case 
compared to the ones just discussed, but it 
shows of the applicability of the algorithms 
assembled. The processing was performed 
for AeroEstudios, a company specialized in 
aerophotogrametry and landscaping 
operations (see [13] and acknowledgment 
section). 

4. Conclusions. The material presented 
shows that there is a particular advantage in 
devising algorithms for pre - processing of 
the point set, as well as for specific surface 
recovery.  Since all known algorithms fail 
when the data set is not properly sampled, 
these tools become mandatory in working in 
industrial environments.  Moreover, they 
are justified by the next stages of this 
activity, such as the fitting of selectively 
smooth patches.  In those cases a suite of 
geometric diagnostic and reasoning tools 
would be as important as in topological 
recovery.  However, before arriving to the 
issue of surface smoothing, topological 
correction needs to be perfected. Future 
work by the author focus on the 
completeness of section recovery, in order 
to deal with empty inner spaces in the solid. 
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Fig. 11: Mountain topography recovery 
from aerophotogrametric data. Below: 
recovered contours. Above: Inter-level 

surfacing. 
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