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Abstract Surface reconstruction from cross cuts usu-

ally requires curve reconstruction from planar noisy

point samples. The output curves must form a pos-

sibly disconnected 1-manifold for the surface recon-

struction to proceed. This article describes an im-

plemented algorithm for the reconstruction of planar

curves (1-manifolds) out of noisy point samples of a

self-intersecting or nearly self-intersecting planar curve

C. C : [a, b] ⊂ R → R2 is self-intersecting if

C(u) = C(v), u 6= v, u, v ∈ (a, b) (C(u) is

the self-intersection point). We consider only transver-

sal self-intersections, i.e. those for which the tangents

of the intersecting branches at the intersection point

do not coincide (C ′(u) 6= C ′(v)). In the presence

of noise, curves which self-intersect cannot be distin-

guished from curves which near self-intersect. Exist-

ing algorithms for curve reconstruction out of either

noisy point samples or pixel data, do not produce a

(possibly disconnected) Piecewise Linear 1-manifold

approaching the whole point sample. The algorithm

implemented in this work uses Principal Component

Analysis (PCA) with elliptic support regions near the

self-intersections. The algorithm was successful in re-

covering contours out of noisy slice samples of a sur-
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face. As a test for the correctness of the obtained curves

in the slice levels, they were input to an algorithm of

surface reconstruction, leading to a reconstructed sur-

face which reproduces the topological and geometrical

properties of the original object. The algorithm robustly

reacts not only to statistical non-correlation at the self-

intersections (non-manifold neighborhoods) but also to

occasional high noise at the non-self-intersecting (1-

manifold) neighborhoods.

Keywords self-intersecting Curve Reconstruction ·
Elliptic support region · Principal Component Analy-

sis · Noisy Samples

Glossary

PL: Piecewise Linear.

C: Planar open or closed, possibly self-intersecting or

nearly self -intersecting, curve.

S = {p0, p1, ..., pn}: An unorganized noisy point

sample of C.

ε: Stochastic component of the point sample.

B(p, r): The disk of radius r centered at point p.

L(λ) = p+ λ ∗ v̂: Parametric form of the straight line

passing through p, directed by the unit vector v̂ with

signed distance parameter λ.

f1 , f2: Focii of an ellipse in R2.

E(f1, f2, α): Ellipse
{
p ∈ R2 : d (p, f1) + d (p, f2) = 2α

}
.
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ρX,Y : Linear regression correlation coefficient be-

tween variables Y and X .

[ρ, p, v̂] = pca(SE): Principal Component Analysis of

the point set SE , rendering as a result the linear

trend L(λ) = p+ λ ∗ v̂ with correlation coefficient

ρ.

Q: Queue whose elements are pairs [p, v] formed by a

vector v anchored at point p.

PL Curve Set = {c1, c2, ..., cm}: Set of PL pair-

wise disjoint curves c1, c2, ..., cm.

1 Introduction

This paper discusses the implementation and results of

an algorithm to reconstruct Piecewise Linear (PL) ap-

proximations for a possibly self-intersecting or nearly

self-intersecting planar curve C sampled with a noisy

point set.

ByC we mean a functionC : [a, b] ⊂ R→ R2 that

is continuously differentiable and regular (i.e. C ′(u) 6=
0 for all u ∈ [a, b]).C will be said to be self-intersecting

if there is a finite set {u1, ..., un} ⊂ (a, b) such that

for each i there is a j 6= i such that C(ui) = C(uj)

(the C(ui)s are the self-intersection points). We con-

sider only transversal self-intersections, i.e. those for

which the tangents of the intersecting branches at the

intersection point do not coincide (C ′(ui) 6= C ′(uj)).

The cross cuts of a surface might be self-

intersecting contours as shown in Figure 1. Figure 2(a)

shows a non-transversal self-intersection with a sam-

ple. An ε-near self-intersecting curve is one for which

there exists a point sample with noise ε being iden-

tical to the ε sample of some self-intersecting curve.

In the rest of the article we will simply refer to these

as nearly self-intersecting curves (omitting the ε). The

cross section of an object might have a configuration

as in the upper or lower parts of Figure 2(b). A typical

noise sample of such cross sections is the set of points

S = {p0, p1, ..., pn} with pi ∈ R2 as in Figure 2(c).

Notice that the curves might have any of the forms in

Figure 2(b) or be actually self-intersecting as in Figure

2(d), and the point sample still looks as in Figure 2(c).
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(c) View 3.

Fig. 1 Cut of the Hyperbolic paraboloid z = x2 − y2 with the
plane z = 0 forms contours which self-intersect at the saddle
point (0, 0, 0).

Notice that for curves as in Figure 2(d) there is no

Nyquist-compliant sample, since the local characteris-

tic dimension δ is zero.

C(ui) = C(uj) 

C´(ui) = C´(uj) 

 

(a) Self-Intersection and
Self-tangency.

(b) Possible Cross Sec-
tions.

(c) Point Sample of the
Cross Sections.

(d) PL Approximation
(non-manifold) of the
Cross Sections.

Fig. 2 Ambiguous Noise Sample of Near self-intersecting
Curves.

The input to the algorithm implemented in this

work is presented in Figure 2(c). Either of the re-

sults in Figure 2(b) is acceptable for our algorithm, as

a legal 1-manifold. Such contours may then be pro-
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cessed for surface reconstruction as in [RCG+05] to

get an approximation of a closed surface. This pro-

cess is also conducted in the present work. Figure 2(d)

shows a PL approximation of C, although it is ob-

viously non-acceptable because it is a non-manifold.

However, reaching it is an important achievement for

any curve reconstruction algorithm, and can be easily

corrected to obtain either situation in Figure 2(b).

The sample of the curve C in Figure 2(c) must

respect the Nyquist or Shannon ([Nyq28],[Nyq02],

[Sha49], [Sha98]) criterion for digital sampling to be

able to retain the topology of C. This means that the

effective sampling interval δ = δn + ε (nominal plus

stochastic components) must be smaller than half of

the minimal detail that the sampling is supposed to pre-

serve.

1.1 1-Manifolds in R2

M is a 1-manifold in R2 if for each point p ∈ M

there exists a δ > 0, such that M ∩ B(p, δ) is home-

omorphic to the real interval (0, 1). M is said to be

a 1-manifold with border if for each point p ∈ M

there is a δ > 0, such that M ∩ B(p, δ) is homeo-

morphic to either of the real intervals (0, 1) or [0, 1).

A set of mutually disjoint closed non-self-intersecting

curves is a 1-manifold. A set of mutually disjoint non-

self-intersecting curves with at least one of them open

is a 1-manifold with border. Informally, a small neigh-

borhood of a point at which a curve ceases to be a 1-

manifold looks like three or more semi- arcs emanat-

ing from the point. For example, in Figure 2(d), a small

neighborhood of the non-manifold point looks like four

semi-arcs emanating from the point.

1.2 PL Reconstruction of Self-intersecting Curves

Sampled with Noise

An nth order PL approximation of a curve C out

of a noisy sample of it is a polygonal curve P =

[q0, q1, . . . , qn] which resembles the original curve C

up to its n-th derivative. A by-product of the process

producing P is a parameterization of the contour so re-

covered, which is fundamental in downstream applica-

tions, such as surface reconstruction from cross cuts.

In P the concept of a sequence is central. Many al-

gorithms for curve reconstruction fail to establish such

a sequence when they approach the self-intersections

of C, exactly because the concept of order is destroyed

at such neighborhoods. Our algorithm is able to find

the sequence of points forming P , even at the self-

intersections. A post-processing is then used to break

down P into manifold components.

In the present article the authors attack the problem

of self-intersecting or nearly self-intersecting curves

(which in the presence of noise are undistinguishable)

by using a mutating elliptic support region for the

PCA calculation. Informally speaking, near the self-

intersections the support region for PCA becomes an

ellipse, and far away it is circular. This variation makes

the algorithm more robust when facing low correlation

coefficients at the intersections.

This article is organized as follows: Section 2

presents a taxonomy of the existing approaches ad-

dressing the problem, including previous algorithms

developed by the authors. Section 3 proposes improve-

ments to existing algorithms to take into consideration

self-intersecting curves, along with the necessary math-

ematical facts supporting such algorithms. Section 4

addresses the application of the methodology to non

trivial topological cases and presents the results of sur-

face reconstruction from planar slice samples. Section

5 concludes the article and discusses possible future

work directions.

2 Literature Review

The reconstruction of a curveC out of a noiseless point

sample is addressed by relatively abundant literature,

relying mostly on graph synthesis techniques. How-

ever, since we are interested in Design and Manufactur-

ing applications we must address noisy point samples.

The strategies for the reconstruction of C mainly

found in the reviewed literature are: (1) Medial Axis
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calculation, (2) Scalar Field calculation, with (2.1) Ra-

dial Basis functions, (2.2) Differential Equations (e.g.

Level sets), (3) Statistical estimation by Principal Com-

ponent Analysis, including (3.1) Noising / De-noising

of the point set, (3.2) Straight Segment Synthesis, (3.3)

Parametric Curve synthesis (Bezier, Spline, Nurbs), (4)

Probabilistic estimation of Topological properties, (5)

Probabilistic estimation of Geometrical properties.

Techniques transversal to many of the approaches

mentioned above are: (a) minimization techniques, (b)

graph theory, (c) probabilistic and statistical estimation,

(d) Delaunay-Voronoi-based methods.

In the reviewed literature, the vast majority of

the articles do not address the issue of (nearly) self-

intersecting curve reconstruction out of point samples.

The two references reporting such advance do not ex-

plain how their methods effectively deal with such a

feature.

In the consulted literature there is a general absence

of formal analysis for the computational complexity of

the proposed algorithms. When present, such a discus-

sion only addresses average cases and central time ex-

penses, ignoring the space complexity of the collateral

data structures and the time spent in building them.

2.1 Medial Axis

[Kég99] and [KK02] explore the recovery of a Princi-

pal Graph underlying a 2D point sample (e.g. a charac-

ter meant to by pen strokes). The authors set up a nu-

merical optimization algorithm that balances two com-

peting criteria: (i) the inclusion in the graph of as many

pixels as possible of the ones present in the stroke,

and (ii) the minimization of the medial axis curvature.

Since this algorithms aims at character recognition, its

final result is not required to be a 1-manifold. There-

fore, self-intersections are permitted (like in the “H” or

“8” characters). In our case, the final result of the recon-

struction must be a set of disjoint non-self-intersecting

curves, and therefore one must meet higher require-

ments than the ones met by [KK02] and [Kég99]. The

algorithm implemented in [Kég99] and [KK02] finds

an approximation to the medial axis of the black pixel

region. The complexity of their algorithm is estimated

by the authors in O(N), where N is the number of

black pixels in the image. This estimation must be care-

fully interpreted since it only takes into account a part

of the process. For example, only finding a medial axis

approximation has a minimal complexity of O(N2). In

addition, the proposed strategy requires collateral data

structures whose time and memory expenses signifi-

cantly increase the cost of the whole process of curve

reconstruction.

[TZCO09] discusses the synthesis of the skeleton

of a 2-manifold sampled with oriented points. An ori-

ented point contains the (x, y, z) coordinates and the

vector normal to the surface at such point. The man-

ifold is constructed with cylindrical branches meeting

at joint neighborhoods. The point sample might be in-

complete, according to the authors. The point sample is

partitioned in quasi-planar sections. Each point subset

of the partition must look like the section of a cylin-

der, according to the basic assumptions on the mani-

fold being sampled. Each cross section of the cylinder

has a statistical center. The sequence of such centers

contributes to the skeleton. At the joints, there are no

such skeletons. At such regions several processes are

applied to obtain a line-like structure: smoothing, thin-

ning, re-centering, joint collapsing and re-distribution

of point samples. This process requires intensive user

control. Notice that the skeleton is not a manifold in

general. Therefore, the proposed algorithm is not re-

quired to neutralize the non-manifold neighborhoods.

The authors do not discuss the complexity of their al-

gorithm.

2.2 Scalar Fields

2.2.1 Radial Basis Functions

[PMG04] presents a method to establish a likelihood

map or scalar function in R2 around a noisy point sam-

ple. The scalar function records a high value for (x, y)

if it is close to a sampled 2D curve C. After a like-
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lihood map is calculated (similar to Figure 3(b)), a PL

approximation is initialized in the form of a topological

circle on R2, and then allowed to drift to settle on the

highest values of the likelihood map. The paper does

not discuss self-intersecting curve point samples, dis-

connected curves, initial size or position of the circle,

or computational complexity of the method.

[KZ04] presents a definition of an implicit sur-

face over a noisy point cloud using weighted least

squares based on a geometric proximity graph. Self-

intersections are not addressed. In this reference, com-

puting a Close Pair Shortest Paths (CPSP) table among

N points in R3 is reported to consume O(N) comput-

ing time and O(N) storage space. Such predictions do

not count the time in building the collateral (breath-

first, depth-first) data structures. No accounting is de-

voted to the administration of collateral data structures

or pre-processing time.

2.2.2 Fitting of y = f(x)

[AK03] fits polynomials h(x) to a series of points

{(x1, y1), (x2, y2), ..., (xm, ym)} such that h(xi) ∈
[yi − δ, yi + δ]. Important limitations of this reference

are: (1) the majority of applications in applied compu-

tational geometry deal with curves in R2 which are not

the graphs of functions. For example, a closed contour

in R2 cannot be expressed as y = h(x). (2) No appli-

cations are given in the article. (3) The authors do not

discuss the complexity and scope of their solution.

2.2.3 Reconstruction by Differential Equations and

Level Sets

Consider a noisy point set S in R2 sampled on a reg-

ular curve C. There is abundant literature that seeks to

recover an approximation to C as a solution of a differ-

ential equation stated on a domain Ω which contains

S. The goal of such methods is to synthesize an im-

plicit function f : R2 → R, solution of a differential

equation, and the sought curve C is the implicit curve

f(x, y) = 0.

From the reviewed literature ([OF00], [OS88],

[kZOMK00], [ZOF01], [LZJ+05]) we may conclude

the following: (a) The definition of the Ω region cov-

ering the set S is already an open problem. However,

a convenient informal definition of Ω would be the

tape-shaped polygon covering S (see Figure 3). (b) To

solve the differential equation it is essential to draw

geometric information from the point sample itself.

For example, Level Set methods require a vector field

v : R2 → R2 normal or tangent to C at every point to

be able to reconstruct C. As an effect, self-intersecting

curves cannot be recovered in this manner, since in

such curves the tangent / normal fields are undefined at

the self-intersections. (c) Whichever solution f : R2 →
R can be found by solving differential equations, it

must be kept in mind that any curve C recovered as

an iso-level set of f will be a closed one. This implies

that open curves C cannot be recovered by differen-

tial equation methods, unless additional manipulations

on the domain Ω (not reported yet) are introduced. (d)

Once a function f has been estimated by solving the

differential equation, the value k representing the iso-

curve f(x, y) = k that approaches C must be guessed

(Figure 3(c)), and such an iso-curve might not be a 1-

manifold. (e) f(x, y) = k might contain disconnected

curves even ifC was originally connected. (f) The com-

putationally obtained solution to a differential equation

f is a function whose domain is a grid of points. Pass-

ing from f to iso-curves f(x, y) = k clearly requires

an additional process ([Blo94],[BF95],[Blo88]). For all

these reasons, finding f as a solution to a differential

equation still needs a significant effort before it can be

considered as a reliable tool for building 1-manifolds

out of the point set S.

2.3 Statistically Based Methods

2.3.1 Noising / De-noising of Point Set

[CFG+05] attack the problem of fitting PL curves to

noisy point samples by computing a sequence of new

point sets having less noise than the initial point set
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(a) Point Sample of the
Self-intersecting Curve.

(b) Iso-curves of the so-
lution to the Differential
Equation.

(c) Loci of f(p) ≈ 0. Dark
color represents a 2D re-
gion, not a curve.

Fig. 3 Curve Reconstruction with Differential Equations
([RVC07], [UR08]).

and less points. This is done by searching thin rectan-

gles normal to the local curve tangent for sample points

and by driving the sample to the expected value of the

curve. When the point set is sufficiently thin, the actual

PL approximation to C is computed using a crust al-

gorithm (in this case the NN Crust by [DK99]). The

algorithm is guaranteed to converge if a sufficiently

good point sample of C is available. We must point out

that such a sample does not exist for self-intersecting

curves, as the Nyquist criterion cannot be met. This al-

gorithm is misled when the curve gets close to itself

because the thinning of the point set about the likely

curve locus has two or more attractors. [CFG+05] dis-

cusses the probabilities of the obtained curve being

homeomorphic to the original one. They neither dis-

cuss computational complexity nor present application

examples.

[MD07] presents an algorithm that takes a noise-

free sample of a non-self-intersecting curve in R2. The

algorithm adds noise in the point sample, in the direc-

tion perpendicular to the originally sampled curve. The

algorithm eliminates the noise by replacing the points

falling in a circle by the center-point of a segment join-

ing the most extreme points inside the circle. After

the noise is removed, the point set is fed to a Relative

Neighborhood Graph, derived from the Delaunay trian-

gulation. Shortcomings of this approach are: (1) Noise

is added to a point set that is originally noise-free. (2)

The original point set is filtered, with high frequencies

removed. (3) The noise removal pre-processing costs

O(N3) computation time. (4) The article presents re-

sults for the enlargement of the point set but it does not

do so for the curve reconstruction itself. (5) The article

does not discuss complexity at any point.

2.3.2 Synthesis of Straight Segments

[Lee00] presents a least-squares algorithm to approx-

imate a set of unorganized points with a simple 3D

curve without self-intersections. This algorithm uses an

Euclidean Minimum Spanning Tree (EMST). The algo-

rithm performs thinning on the point cloud before cal-

culating its PL approximation. No discussion of com-

putational complexity is presented.

[VVK01] presents a PL approximation of a planar

curve C whose sample S has noise. A set of straight

segments is accommodated on the region defined by the

sample, with each segment being locally tangent to C.

A second part of the algorithm defines an order on the

straight segments and threads the tail of one with the

head of the next one. This approach cannot define how

a self-intersecting curve is handled, since no straight

segment and no tail, head or next segment can be de-

fined at the self-intersection, due to the lack of corre-

lation in the local point set. No discussion of computa-

tional complexity is presented.

2.3.3 Synthesis of Parametric Curves

[WPL06] fit B-Splines to a set of noisy point sets

using curvature-based squared distance minimization.

The control points qi of a Spline curve P (t) =∑M
i=1Bi(t) ∗ qi are set such that the summation of

square distances between P (t) and the point sample

is minimized (Square Distance Minimization, SDM).

Limitations of this algorithm are: (1) It specifically ex-

cludes self-intersecting curves. (2) A (time or space)

complexity discussion is absent, (3) Both, the sampled

curve and the recovered curve are required to be twice



7

differentiable. (4) Calculation of the distance from a

point to a parametric curve is expensive since the lat-

ter normally has parametric degree larger or equal than

three. This makes the SDM an expensive method.

[LYW05] presents an algorithm which seeks to fit

B-Spline curves to a set of noisy points in R2 on which

a Euclidean Minimal Spanning Tree (EMST) is calcu-

lated. The algorithm uses a band shaped support re-

gion to collect point subsets whose Principal Compo-

nent Analysis trend determine the local tangents to the

sought B-Spline curve. The authors claim that the al-

gorithm handles sharp features and self-intersections

of the curves. However, no clear algorithm is given to

handle such situations. A fundamental flaw of such an

algorithm is that a point sample of a 2D curves does

not in general have the topology of a tree since cycles

exist naturally in such sets. In addition, the algorithm

uses a significant amount of heuristic constants that are

not discussed in the paper and whose set values are not

specified. The B-Splines are naturally smooth in spite

of the fact that the point set is sampled from a non-

smooth 2D curve. The paper does not discuss the com-

putational complexity of the algorithm.

2.4 Probability of Topological Properties of the Curve

[NSW08] proposes (without actual implementation or

tests on data) an algorithm to probabilistically estimate

topological properties of a manifold out of a noisy sam-

ple of it. [NSW08] specifically avoids the estimation of

topological properties in the case of self-intersections.

In this reference there is no comment on the computa-

tional expenses of the proposed algorithm.

2.5 Probability of Geometrical Properties of the Curve

In [ULVH06] the local neighborhood of 3D curves in

the space is sampled with noise σ and sampling den-

sity ρ. A local coordinate frame is associated with each

neighborhood and the point sample is used to diag-

nose the curvature κ and torsion τ of the 3D curve.

The angle between the actual tangent vector and the

PCA-estimated tangent vector is found and plotted as

a function of the radius r of the PCA support region.

The value of the deviation angle varies with respect to

the local curvature κ, noise σ, sampling density ρ and

support region radius r. The article does not give a self-

tunning algorithm (the radius is given as an absolute

number), making the results unusable when the scale

of the point set changes. The article does not discuss

the computational complexity of the algorithm.

2.6 Conclusion of Literature Review

The reviewed literature presents some salient features:

(1) Implicit function calculations require large com-

putational expenses. (2) Medial Axes methods pro-

duce inherently non- manifold constructs. (3) Curve

synthesis as solution of Differential Equations is not

adequate for the reasons given in section 2.2.3. (4)

The fitting of higher degree parametric curves (Bezier,

Spline, Nurbs) requires non-linear minimizations at ev-

ery stage of the construction, which implies large com-

putation costs.

We conclude that an explicit form of C, in Piece-

wise Linear form, is cheaper to determine and is ac-

ceptable for subsequent applications (in contrast with

implicit forms). To find an explicit PL form of C we

implement a method which is sensitive to the proxim-

ity of the self-intersection. In such a locality the point

set to be fed to a PCA algorithm is the one included

in ellipses rather than in disks. As it will be shown,

such a variant allows the overcoming of the intersec-

tion neighborhood in a more robust manner.

Our ellipse-PCA algorithm will be tested on slice

samples of C2 2-manifolds. As shown in Figure 1,

this is one of the many possible scenarios where

self-intersecting or nearly self-intersecting curves are

present. As such cases are compounded by noise

(present in all industrial sensors), we consider that ef-

forts in this area are useful for the computer-aided de-

sign and manufacturing communities.
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3 Methodology

The algorithm implemented in this article is based on

statistical approximation of the local tangent of a curve

C sampled with a noisy point set. The algorithms based

on Principal Component Analysis do not perform well

in curve self-intersection regions because the linear

trend is lost there. To avoid this effect, we used a di-

rectional (elliptic) support region for the PCA algo-

rithm. The ellipse becomes sharper as the linear trend

of the point sample degenerates (for example at self-

intersections). The elliptical support region has major

axis in the direction of the last reliable vector tangent

to the curve. This region excludes point samples in the

direction perpendicular to such a tangent, thus ignor-

ing the confusing trends at the self-intersection. In this

manner the algorithm overcomes self-intersection re-

gions and continues with the PL approximation of C.

Figures 4a-c display an intuitive functioning of the

algorithm implemented, applied to the point sample

of an open, self-intersecting curve C (Figure 4-a). To

simplify the drawing, the point sample is suppressed

from some figures, showing only the pursued PL ap-

proximation for C. Figure 4(a) shows that the algo-

rithm starts in the neighborhood t0, with the direc-

tion v0, with a circular PCA-support region. The lo-

cal approximation travels following the neighborhoods

t4, ..., t9, ..., t73 (subscripts only indicate a supposed

number of iteration). At the self-intersection, the PCA-

support region becomes elliptical, so the algorithm is

capable of crossing this zone, whose correlation co-

efficient ρ is fundamentally low if a circular support

region had been used. The algorithm proceeds until it

reaches t73, where it finds a dead end, meaning that a

connected subset of C has been found. The algorithm

then revisits t0 with direction −v0, rendering the se-

quence t0, ..., t74, ..., t87, ..., t96 (Figure 4(b)).

The post-processing part of the algorithm is fully

known in computational geometry: it merges the PL

approximations [t0, ..., t73] and [t0, ..., t96] into L =

[t73, ..., t0, ..., t96], and then splits the self-intersecting

PL curves determined by L as per the decisions in Fig-

ure 4(d), resulting in the 1-manifolds in Figures 4(e)

or 4(f). Either, right or left splitting produces topologi-

cally correct and geometrically different results. Since

the (noisy, self-intersecting) sample does not allow for

a canonical choice of either splitting (left or right) such

a decision in the post-processing stage is one of mere

convention.

(a) Disk and ellipse sup-
port sets.

(b) PL curve fragments.

(c) Non-Manifold PL
curve.

(d) Left and right turning
disambiguations.

(e) Result of right turn dis-
ambiguation.

(f) Result of left turn dis-
ambiguation.

Fig. 4 Execution of ellipse-based PCA algorithm.

3.1 Measure of Goodness-of-fit for Principal

Component Analysis

If a curve C has local curvature radius r and is point-

sampled, there are upper and lower bounds in the length

of a linear segment ab which statistically approaches

C at the point C(u). If ab is too long, the segment

will not correctly approach the curve C at C(u). If ab

is too small, only few sample points will be available

to fit the segment ab. In both cases, goodness-of-fit of

the linear approximation is degraded. If C is planar,

the Principal Component Analysis may be evaluated

by using the linear regression correlation coefficient

ρ = cov(X,Y )
σXσY

= E((X−µX)(Y−µY ))
σXσY

with ρ ∈ [−1, 1].

|ρ| ≈ 1.0 and |ρ| ≈ 0.0 are associated with good and
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(a) Disk support region.
Low correlation coefficient
ρ2. Unclear tendency.

(b) Ellipse support re-
gion. High correlation
coefficient ρ2. Clear
tendency.

(c) Mutation of disks into
ellipses to enclose the sup-
port point sets for PCA.

|

 

v 

f1 

f2 p 

α

β 
d / 2

v⊥ 

(d) Ellipse foci and axes.

Fig. 5 Points and ellipses in a self-intersection region.

Fig. 6 Dependency of Correlation Coefficients with slope m.

poor linear correlation, respectively. Caution must be

exercised because linear regression parameters (m, b in

y = mx + b) are dependent on the particular coor-

dinate system. Figure 3 shows that for the same level

of noise the correlation coefficient ρ2 between x and y

varies as m does. If we wish to compare linearity of

point sets using the ρ2 values we should first achieve a

fixed m (for example m = 1) by rotating the point set

and only then calculate its ρ2 value. In this manner we

compare m-constant ρ2 values of different point sets.

On the other hand, an advantage of using the correla-

tion coefficient to grade the linear regression is that the

ρ2 value is bounded (ρ2 ≤ 1). Our approach is to use

the linear regression with its correlation coefficient by

following these steps: (a) Calculate a tentative linear

trend y = m0.x+ b0 for the local point set. (b) Rotate

the local point set to get a slope of 45◦ (m ≈ 1). (c)

Calculate ρ with the standard linear regression formu-

las. (d) Rotate back the measured m if needed. A num-

ber of iterations (limited to 10) is used to improve the

value ρ by varying the shape of the ellipse enclosing the

local point set. In this manner, we use the advantages

of 2D linear regressions and neutralize its dependence

on m. This heuristic worked correctly, as discussed in

the Results section.

3.2 Circular vs. Elliptical Support Regions

Previous algorithms for curve reconstruction avoid ad-

dressing the topic of self-intersecting curves due to

the effect shown in figure 5(a). At the self-intersection

neighborhood, the identification of the local tangent

becomes difficult and the curve reconstruction goes

astray. This happens because the PCA analysis applied

to an star-shaped point set will render lines in any di-

rection of theR2 plane, accompanied of the correlation

coefficient ρ being very low.

The algorithm reported in this article detects such

low correlation regions and varies the shape of the sup-

port region for the PCA from round to elliptic (see Fig-

ure 5(b)), thus incrementing the correlation coefficient

ρ. In our algorithm, ellipticity increases together with

least square fitting error. The elliptic region has the ma-

jor axis in the direction of the last reliable curve tangent

v identified in the previous iteration (Figure 5(d)). This

support region has the advantage of ignoring distract-

ing points by having a tight span in the the v⊥ direc-

tion, orthogonal to v. The ellipse is defined as the locus

of points p such that |p − f1| + |p − f2| = 2α. Our

algorithm sets α = 5 ∗ δ, where δ is the effective sam-

pling interval of the device. This value is set to approx-

imately include 10 sampled points in each local Princi-

pal Component Analysis. Such a heuristic has worked

in a stable manner in our implementations. Therefore α

is a known value that is fixed in the algorithm.
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f2  

d → 2α   

f1  

(a) Flat Ellipse (d→ 2α).

|

 

f1 = f2 = 0 

α = R 
d = 0 

(b) Disk (d = 0).
|

 

d

2α

0 1
ρ 2  

(c) d as function of ρ.

Fig. 7 Heuristic rule which increases d (i.e. flattening the ellipse,
d→ 2α) as the correlation coefficient deteriorates (ρ→ 0).

3.3 Heuristic to overcome intersection places

In general, an ellipse in R2 can be specified by the

position of its foci f1 and f2 (Figure 5(d)) and the

length of its major semi-axis α as E (f1, f2, α) ={
p ∈ R2 : |p− f1|+ |p− f2| = 2α

}
. In any ellipse, if

d is the distance between the focii, then β2 = α2 −(
d
2

)2
.

Our claim is that in a well defined curve point sam-

ple a PCA circular support region would work fine. If

the point set deteriorates, the support region must be-

come an ellipse. If the linear correlation of the point set

is poor (ρ2 = 0), we would like to have a strongly ellip-

tical support region (large d, Figure 7(a)). If the linear

correlation is good (ρ2 = 1) a circular disk (d = 0, Fig-

ure 7(b)) would provide a convenient support region.

We propose a decreasing function d = 2α(1 − ρ2),

as in Figure 7(c). Therefore, d ranges between 0 (good

PCA correlation) and 2α (poor PCA correlation).

3.4 Reconstruction Algorithm

The implemented algorithm takes a point set as in Fig-

ure 4(a) and returns a set of PL curve fragments as in

Figure 4(b). This result is the fundamental one, because

joining the PL fragments of C in PL Curve Set in a

manifold manner is a standard procedure.

The algorithm is based on the heuristic proposed in

section 3.3, which gradually mutates a circular into an

elliptical support region for the Principal Component

Analysis. A simplified version of it is presented as Al-

gorithm 1.

The algorithm contains three nested WHILE itera-

tions. The invariant of the WHILE in line 8 is that a set

of PL curve fragments (PL Curve Set) has been syn-

thesized and that there exist neighborhoods of unused

points which have not been considered yet (Q 6= ∅).
The invariant of the WHILE in line 12 is that a local

PL fragment (local C) is being threaded as long as a

well defined tangent is identified along it. The invariant

of the innermost WHILE (line 18) indicates that in a

particular neighborhood, a PCA based on circular sup-

port regions has produced a low ρ indicator. Therefore,

the support region is gradually flattened until either ρ

surpasses a threshold or a specified number of trials is

reached. In the first case, the algorithm proceeds to the

next (in the direction of v) neighborhood. In the second

case, the algorithm recognizes the fact that no clear tan-

gent has been identified and declares the local curve as

finished. This WHILE iteration implements the heuris-

tic discussed in section 3.3.

The elements of the queue Q (line 5) have the form

[p, v] where p is a point near C and v is a (unit) vector

tangent to C near p. Notice that−v is also tangent to C

at p. Each element of Q indicates a place and direction

for traversing the sample S for the recovery of a portion

of C. If the queue Q is empty, the algorithm finishes.

The built-in function [ρ, p, v] = pca(S) is used in or-

der to perform the Principal Component Analysis of the

point set S giving as a result the trend v, the center of

mass p, and the correlation coefficient ρ.

The algorithm builds each curve fragment or lo-

cal curve local C as long as there is a clearly com-

putable vector tangent to C at each point p. If the

tangent is clear, a circular-supported PCA calculation

is enough (lines 15,16) to determine it. Otherwise, an

ellipse-supported PCA is attempted (lines 18-24). If

the ellipse-based PCA manages to overcome the self-

intersection, the algorithm continues (lines 26,27) com-
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Algorithm 1 PCA-based reconstruction algorithm us-
ing ellipses.

1: Comment: S is the sample of C with noise.
2: Comment: r is set to the sampling noise plus sam-

pling distance.
3: Let p be any point in S such that S ∩ B(p, r)

presents a correlation coefficient ρ ≈ 1.
4: [ρ, pt, vt] = pca(S ∩B(p, r))
5: Q = queue([pt, vt])
6: Q = add(Q, [pt,−vt])
7: PL Curve Set = [ ]
8: while Q 6= ∅ do
9: [p, v] = discharge(Q)

10: local Cu = [ ]
11: clear tangent=TRUE
12: while clear tangent do
13: local C = [local C , p]
14: pt = p+ λ ∗ v
15: local S = S ∩B(pt, r)
16: [ρ, pt, vt] = pca(local S)
17: Num Trials = 1
18: while (Num Trials < Max Trials) and

(ρ < Lower Bound) do
19: d = 2α(1− ρ2)
20: f1, f2 = pt ± d

2 ∗ v̂
21: local S = S ∩ E(f1, f2, α)
22: [ρ, pt, vt] = pca(local S)
23: Num Trials = Num Trials+ 1
24: end while
25: if (Num Trials < Max Trials) then
26: v = vt
27: p = pt
28: else
29: clear tangent = FALSE
30: Let p be an unused point in S whose neigh-

bor point set inside a disk B(p, r) has ρ ≈
1.

31: if p is found then
32: [ρ, pt, vt] = pca(S ∩B(p, r))
33: Q = add(Q, [pt, vt])
34: Q = add(Q, [pt,−vt])
35: end if
36: end if
37: end while
38: PL Curve Set = [PL Curve Set, local C]
39: end while
40: Comment: PL Curve Set is the set of PL frag-

ments approximating C

pleting the curve fragment local C. If the elliptic sup-

port regions at both extremes of local C lead the PCA

to fail identifying a clear tangent vector, the algorithm

stops processing the current fragment local C (line

29). In this situation, the algorithm seeks unused neigh-

borhoods of the point set that may originate another

fragment local C when taken as seed in later iterations

(line 30). If such neighborhoods are found, they are in-

put in the queue Q (lines 32-34).

(a) One self-intersection.

(b) Four self-intersections.

(c) Detail of self-intersection.

Fig. 8 Ellipse-PCA Processing Self-intersecting Curves

3.5 Complexity of the Algorithm

Let us assume that the number of points in the sample is

N . In Algorithm 1, either one of lines 21 or 22 contains

instructions whose worst case cost isO(N). Since such
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instructions are inside threefold nested WHILE loops

whose worst case complexity is O(N) each, we con-

clude that the worst case complexity for such an algo-

rithm is O(N4). It is important to observe that in our

approach no additional memory or time resources are

spent in building or maintaining collateral data struc-

tures or in pre-processing the data.

In this regard, the literature reviewed is uniformly

incomplete in that run-time complexities are given

without reporting resources devoted to (a) collateral

data space and (b) pre-processing. Since our evaluation

O(N4) is a worst-case estimate and specifically rules

out the need of expenses (a) and (b) above, it is not

comparable with other evaluations which concentrate

on expected cases and neglect to take into account the

expenses caused by (a) and (b) (see section Literature

Review and its Conclusions).

Integration of PL Fragments.
This part of the algorithm is well known in compu-

tational geometry and it is not dominant in terms of

complexity, as compared with Algorithm 1. The state-

ment of this post-processing is as follows. Given an un-

ordered set of PL curve fragments PL Curve Set =

{c1, c2, ..., cm} that approximate the point set S (Fig-

ure 4(b)), two steps are required: (1) the joining of ci
and cj when their endpoints are closer than a distance

δs (Figure 4(c)), and (2) the splitting of the paths re-

sulting from (1) to avoid self-intersections, by using the

decision criteria in Figure 4(d). The final result appears

in Figures 4(e) and 4(f). The processes (i) and (ii) con-

sidered together have complexity O(N2).

4 Results

Figure 8 shows the functioning of the proposed algo-

rithm, applied to a closed curve with self-intersections.

It can be seen that the circular support regions (|f1 −
f2| → 0) at manifold neighborhoods become flattened

ellipses (|f1 − f2| → 2α) at non-manifold neighbor-

hoods.

Outliers (points sampled with unusually large sam-

pling noise) do not participate in the execution. The

algorithm is robust in this sense, since it flattens the

ellipse as a response to the inclusion of such outliers

in the PCA. As a result, such points are expeditiously

ignored. The whole algorithm stops when most of the

points (near 100%) have been considered in at least one

ellipse or disk. The tests run provide strong evidence

that this stopping criterion does not affect the efficacy

of the algorithm.

(a) Example
of doubly-
noised input
point set.

 

(b) Result of ellipse-based
PCA. PL Curves are not 1-
manifolds.

 

(c) 1-manifoldness condi-
tion after post-processing
of self-intersecting PL
curves.

Fig. 9 Hand data set. Noisy point set (a) along with its process-
ing (b) and post-processing into a disconnected 1-manifold (c).

In surface reconstruction from slice samples it is

not uncommon to have one or more (usually non-

consecutive) missing slice samples. In such a case, it

is appealing to replace the missing slice sample i by

the projection of the point data from slices i − 1 and

i + 1 onto the plane corresponding to it. An example

of such a projected point set is depicted in Figure 9(a).

It must be pointed out that such a point set presents the

additional difficulty of having noise stemming from the

point projection, besides the basic sampling noise. Fig-

ure 9(b) presents the result of the application of Algo-

rithm 1 to such a point set.
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(a) Detail 2. Self-
intersecting PL Curve.

(b) Detail 2. Broken Self-
Intersection.

Fig. 10 Detail of broken self-intersection of Figure 9.

A standard algorithm for separation of non-

manifold curves into manifold ones produces the sepa-

rated contours (Jordan curves in R2) in Figure 9(c).

Figures 10(a) and 10(b) present a zoom on particu-

lar details of Figures 9(b) and 9(c), respectively. Figure

10(a) presents a neighborhood of self-intersecting PL

curves obtained with Algorithm 1. Such neighborhood

with the self-intersection removed is shown in Figure

10(b). Additional results of self-intersecting cross cuts

of the Hand data set are displayed in Figure 11.

 

Fig. 11 Additional Examples of Self-intersecting contours in the
Hand data set.

Algorithm 1 was tested on the Hand data set, made

of slice noisy point samples of an object. The result

of applying Algorithm 1 to all slices of such a data

set is displayed in Figure 12(a). The slices containing

self-intersections are the darker ones. The PL contours

belonging to the slices were then fed to well known

algorithms ([RCG+05] or [Gei93]) to reconstruct the

surface. Figure 12(b) presents the surface for the Hand

point set including the whole set of cross sections.

(a) PL contour approxima-
tion results.

(b) Complete model.

Fig. 12 Algorithm results for the Hand data set. Rendered sur-
faces.

4.1 Data Set 2. Pelvis

To illustrate here the robustness of the proposed

method, a near self-intersecting contour set was ex-

tracted from the Pelvis data set (Figure 13) and added

with noise levels [1δn, 2δn, 3δn, 4δn, 5δn, 6δn] (δn is

the nominal sampling interval). The algorithm was then

run using such point sets (see Figure 14). The ellipse

sequences of our algorithm are displayed in the left

column, while the recovered contours (before splitting)

appear in the right column.

Notice that the algorithm is able to fit one PL

curve the whole point set at once for noise levels

[1δn, ..., 4δn], showing similar performance for such

cases. For noise levels 5δn or 6δn the algorithm fits sev-

eral PL curves to the point set, which must be integrated

as in Figures 4(b) and 4(c). Such actions are discussed

in the section “Integration of PL Fragments.”.
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(a) Recovered cross sections.

(b) Reconstructed surface.

Fig. 13 Reconstructed Contours and Surfaces for the Pelvis data
set.

4.2 Data Set 3. Skull

The Skull data set consists of 64 slices. Each slice con-

tains nested and/or disconnected contours. Some lev-

els have contours which are nearly self-intersecting, as

seen in Figure15. A particular slice of such a data set

contains a contour as the one shown in Figure 15(a).

Figures 15(b), 15(c) and 15(d) show point samples of

the contour with sampling noise of 1δ, 3δ and 6δ, re-

spectively. It is evident that the point samples, even for

low noise, reflect a near-self-intersecting curve. Like-

wise, since the mentioned contours contain very fine

geometric detail, the frequency content of them is quite

high. As a consequence of the Nyquist principle, the

minimal sampling distance needed to recover such con-

tours is also very small (half of the size of the smallest

geometric feature to be captured). This circumstance

immediately reflects on the tightness of the sample,

noise and the progression of the ellipse evolution, being

(a) Ellipse sequence.
Noise=1δ.

(b) Contours before split-
ting. Noise=1δ.

(c) Ellipse sequence.
Noise=2δ.

(d) Contours before split-
ting. Noise=2δ.

(e) Ellipse sequence.
Noise=3δ.

(f) Contours before split-
ting. Noise=3δ.

(g) Ellipse sequence.
Noise=4δ.

(h) Contours before split-
ting. Noise=4δ.

(i) Ellipse sequence.
Noise=5δ.

(j) Incomplete Contours.
Noise=5δ.

(k) Ellipse sequence.
Noise=6δ.

(l) Incomplete Contours.
Noise=6δ.

Fig. 14 Algorithm Performance. Slice data from Pelvis data set.

all of them very different as compared with the Pelvis

data set.

The algorithm 1 is run using the data sets of Fig-

ures 15(b), 15(c) and 15(d). The evolution of the ellipse

algorithm for each noise level is displayed in Figures

16(a), 16(c) and 16(e), respectively. The inherent diffi-
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(a) A Contour on a Slice. (b) Sample with noise 1δ.

(c) Sample with noise 3δ. (d) Sample with noise 6δ.

Fig. 15 Noisy samples of a contour in the Skull data set.

culty in the contour processed produces a much tighter

sequence of ellipses than the ones recorded in Figure

14 (Pelvis data set) . Figures 16(b), 16(d) and 16(f) il-

lustrate the result of the execution of Algorithm 1. The

results of the recovery of individual PL approximations

of C from the random noisy point sets are satisfactory

for the noise levels 1δ and 3δ but fail for noise level 6δ.

Notice that the individual PL curves are not exactly

manifolds because they are self-intersecting. Moreover,

they are still fragmented. Therefore, the individual PL

curves are still to be appended together as in Figures

4(b) and 4(c), and as discussed in section “Integration

of PL Fragments”. Next, the self-intersecting PL curves

must be split at the self-intersections as shown in Figure

4(d).

Figure 17(a) displays the Skull contour set as ob-

tained by the iterated application of the algorithm

discussed in the present article. Then, a surface re-

construction algorithm from parallel planar contours

([RCG+05] or [Gei93]) was executed rendering the

surface shown in Figure 17(b).

(a) Marching Ellipses.
Noise 1δ
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(b) PL approximation.
Noise 1δ.

(c) Marching Ellipses.
Noise 3δ
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(d) PL approximation.
Noise 3δ.

(e) Marching Ellipses.
Noise 6δ
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(f) PL approximation.
Noise 6δ.

Fig. 16 Results. Skull data set.

5 Conclusions and Future Work

This article has presented an algorithm (together with

its testing scenario) for the reconstruction of a planar

curve C out of a noisy sample of it. The algorithm has

the following characteristics: (1) It constructs a Piece-

wise Linear approximation ofC. (2) It is able to recover

self-intersecting or near self-intersecting curves render-

ing a decomposition of them into disjoint 1-manifolds.

(3) It performs local Principal Component Analysis us-

ing support regions whose form mutates from circu-

lar disks, in neighborhoods where there are no self-
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(a) Recovered Contours. (b) Triangled Skull.

Fig. 17 Contours and reconstructed surface for the Skull data set.

intersections, to flat ellipses near the self-intersections.

(4) It does not require collateral data structures or pre-

processing, and its worst-case complexity is O(N4)

where N is the number of points sampled on C.

We consider this worst case complexity as non-

comparable with the complexity reported by some au-

thors addressing the same problem, since they estimate

expected cases and fail to account for the computing

time and space spent in the collateral data structures

and pre-processing present in their algorithms. It must

be pointed out that the vast majority of the literature

reviewed does not address computational expenses of

their proposed algorithms.

Future work in the topic of curve reconstruction in-

cludes the reconstruction of non-planar curves, and the

lowering of complexity of reconstruction with implicit

forms of higher degree (Spline, Bezier, NURBs).
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