
,>1

"/ J Syst Eng (1995)5:48-59
@ 1995 Springer-Verlag London Limited "ournalo'

Systems
Engineering

Specification for a Process Planning Enatiling Platform

V. Hetem, K. Carr, M. Lucenti, O. Ruiz, X. Zhu, P.M. Perreira and S.c.-Y. Lu
Department oí Mechanical and Industrial Engineering, University oí Illinois at Urbana-Champaign, Urbana, IL 61801,USA

'-

The objective of this research is the specification o/
an enabling platform for process planning system
development. This work was done under a contract
issued by Computer Aided Manufacturing-Inter-
national to the University of Illinois. An analysis
framework is developed that integrates inter-related
process planning activities by transforming inputs
and controls through mechanisms into outputs. An
object-oriented approach is used to define the object
model and thereby facilitate the configuration of a
process planning system by providing standardised
data objects and fundamentallibrary routines. The
proposed software structure is layered with specific
modules designed to support integration and data
exchange. The development domain is machining
and includes part understanding, process selection
and ordering, equipment specification, setup and
operation planning, manufacturability analysis, and
plan evaluation and documentation.

Lt
Keywords: Enabling platform; Process planning;
Specification

1. Introduction

Computer-Aided Process Planning (CAPP) is a
critical link between Computer-Aided Design
(CAD) and Computer-Aided Manufacturing
(CAM). In spite of roughly three decades of research
in this area, success in the development of a viable
process planning system has been elusive. The need
for enhanced process planning abilities is emphasised
by the developments in concurrent product and
process design, and design for manufacturability.

Received 19 Augusl 1993

Correspondence and offprint requesls lo: V. Hetem, Department
oí Manuíacturing, Bradley University, Peoria, IL 61625, USA

To address the multi-perspective problem-solving
approach required of the overall task of process
planning, most researchers have typically addressed
arbitarily decomposed sub-problems within process
planning. For example, a great deal of work has
been done in feature extraction defined over specific
geometry domains (rotational parts, prismatic parts,
etc.), and process domains (turning, three-axis
machining, etc.). Because researchers have typically
focused only on a particular aspect of process
planning, there has been very little integration of
efforts within this field. Due to the vast diversity
of application domains in sub-problems contained
within the area of process planning, it is very
unlikely that a process planning system addressing
all needs will be developed in the near future.
However, a step towards the achievement of an
integrated and flexible process planning system is
the development of an enabling platform for process
planning.

An enabling platform is a software environment
which bridge s the gap between the support provided
by an operating system and that required by
specialised software applications. A Process Plan-
ning Enabling Platform (PPEP), much like an expert
system shell, would provide its users with a base
level of functional support. The user then needs to
add only the domain specific information (Le.
procedural knowledge, declarative knowledge, and
relevant informational data). Thus, the software
shell will enhance CAPP firstIy by significantIy
increasing the flexibility with which a process planner
can approach a problem, and secondly by allowing
for integration between the various software.

The tasks within the process planning domain are
industry or facility specific. This model allows
planners from different process planning domains
to specify a system to suit their requirements. The
PPEP supports these differing requirements by

l'

Specification for a Process Planning Enabling Platform

facilitating configuration of process planning systems
through standardised data objects and library rou-
tines. The system will have to process geometric
information, data, and knowledge, and will therefore
address the following needs:

. Standard data objects and extensibility of this
set

. The developmentof procedures

. The developmentof associationrelationships

. A researchand developmentenvironment

. Integration of data and knowledgeprocessing
technologies

2. PPEP Development

<- 2.1. Functional Specification

. J'"
'........

Process planning is well defined, but we concur
with Eshel [1] that it is essential first to characterise
process planning. Therefore, we propose the follow-
ing parameters for the specification of a process
planning system:

. Process domain which characterises the set of

processes or technologies considered by the
process planning system. Within a particular
technology (such as machining), a system might
consider only a sub-set of processes that are
possible (such as turning).

. Part domain which characterises the geometries,
materials and other characteristics of the parts.
Though the part domain is limited by the process
domain, process planning systems often only
consider a subset of geometries producible by
the processes in the process domain (such as
axis-symmetric machined parts).

. Activity domain which characterises the activities,
such as degree of automation, size of production
facility and maturity of technology involved.

. Specificity which refers to the constraints with
respect to a specific production faciltiy. A feasible
process plan assumes access to unconstrained
resources. A realisable process plan is one which
can be executed with a given set of resources
(Le. a particular facility).

. Resolution which refers to the level of detail,
such as low levels as in variant systems (details
common to a class of parts) , and high levels
as in generative systems (details specific to a
particular part).

. Determinacy which refers to the level of flexibility
of the process plans. A process plan can be either

49

a specific sequence of operations (deterministic),
or flexible based on a precedence relationship
between operations.

2.2. Domain Specification

The determination of the activity domain of a
process planning system is not only related to what
kinds of problems should be addressed, but also
how the system should be set up. Eary and Johnson
[2] compiled a list of activities for process planning
which can be summarised as follows:

. Determine basic manufacturing processes.

. Determine the order of operations to manufacture
a parto

. Determinetoolingand gauging.

. Determinethe equipment.

. Determinenecessarypart revisionsoriginatedby
manufacturabilityanalysis.

. Examinefunctioningof toolingand equipment.

. Estimationdurationand cost of operations.

. Determinenecessarypart changesoriginatedby
time and cost analysis.

This list of process planning activities is considered
in the development of the PPEP with the following
qualifiers:

. It was compiled before the emergence of com-
puter-aided manufacturing.

. Activities such as part understanding and inspec-
tion planning are implied.

. The sequen tial structure is not always feasible.

. It is based on the output required of a process
plan.

The PPEP is based on an activity- or task-oriented
view of process planning, resulting in the following
six inter-related groups of activities [3]:

. Part understanding, which involves a description
of a part in terms of patterns of basic geometric
entities (surfaces, edges and vertices) that are of
manufacturing relevance (features), as well as
the non-geometric specifications and tolerances.

. Process selection and ordering, which is respon-
sible for making associations between processes
and the extÍ-acted features, as well as any partial
ordering of these processes.

. Machine-tool selection, which identifies machine-
tools from an available set based on the previous
process selection.

. Setup planning, which is based on the feasible
set of candidate processes and machine tools for

50

each feature, by refining this feasible space into
groups of operations that can be machined in a
single setup, as well as orientation and location
schemes.

. Operation planning, which is the detailed planning
of each operation, considering setup, tooling,
operations parameters, and cut paths (machine
tool programs).

. Evaluations and documentation, which is the
evaluation (simulation) of the consolidated plan
elements, and configuration control establish-
ment.

Each of these activities is further decomposed
into tasks which in tum are decomposed into sub-
tasks, see reference [3] for details. What is evident
is that a relatively large domain of process planning
can be decomposed as per the activities mentioned
above. The precise mechanisms for any activity or
task might differ with domain, however similarities
indicate that at some level of abstraction, general
modelling tools can be utilised. The topic of
this paper is therefore the identification of these
modeling tools and their organisation into a system
that provides the developer of a process planning
system a level of support that enables configuration
and customising. This system is what we call a
Process Planning Enabling Platform.

2.3. Activity Specification

To develop and analyse the data flow and the
relationships among the different activities, system
analysis diagrams are used to illustrate the inputs,
controls, uses, and mechanisms, to produce an
output [3]. Discussion on mechanisms have been
purposely avoided (in spite of recognising the
interdependency of the input requirements and the
mechanisms used to perform an activity) because
they constitute the how rather than the what of
process planning and are beyond the scope of the
intended development platform. The system is
described in terms of cascading activities (Fig. 1),
but each activity can be further developed where
necessary into secondary hierarchies of tasks and
sub-tasks etc. (Fig. 2).

2.4. Software Specification

The PPEP software system [4] will support process
planning development through application specific
modules not provided by an operating system. The
data exchange between the PPEP software modulus
will be based on interfacing standards such as

"
V. Hetem et al.

Product Data Exchange Specification (PDES) [5],
and Application Interface Specification (AIS) [6].
The following categories of support will be required
of the PPEP:

. Geometric reasoning library. A repertoire of
routines to perform various geometric manipu-
lations and tests which are often required by the
activities in process planning.

. Plan management system. This system will allow
for variant process planning by extracting, com-
paring, and facilitating modifications of existing
process plans.

. Plan consistency maintenance library. A library
of routines which allow segments of plans to be
pieced together so that consistency between
segments is maintained or inconsistencies are
pointed out amI/or resolved.

. Plan space configuration. A utility to allow the
application developer to configure the domain
over which the planning is to be done. This
domain might involve the processes to be con-
sidered, the body of knowledge to be used, the
machines to be considered, and other such
application-specific definitions.

. Empirical modelling facilties. A great deal of
data are obtained from the shop floor. This
module essentially contains a set of routines to
identify relationships between variables, possibly
perform some amount of inference on the vast
quantity of data, and develop qualitative associ-
ations between variables.

. Operator interface and documentation facilities.

. Simulation and modelling facilities. These facilities
provide the user with various simulation and
modelling capabilities, such as process simulation
(to observe the values of the process variables
and outputs), graphical simulations (for
visualisations), economic estimations, dynamic
modelling, and other such facilities.

. Graphs, editing, file management. This set of
utilities allows the user conveniences that might
not be available in standard operating systems.

..J

2.5. System Specification

The mHItitude of relationships between tasks within
process planning and the resulting inter-dependenc-
ies have been identified in Section 2.2. Conse-

quently, the specification of the PPEP focuses on
the support required to perform these tasks, and
the control structure needed to integrate these tasks,
such as the basic system components of data objects,
utilities, and support libraries and routines.

,.
Specification for a Process Planning Enabling Platform

al
'C
j!j
'C
O

g
'fa
.tI
E
""

8' .g
Q. as
:J E

!!!
e
Q)
E

!!! .J!!
e W

g .g

I!! !J

8 .9
el Q)

.[i

I!! !!!

o e
:;:¡ 'g
1! ..

8 e8
e
.g

LotS

,'"
\;"~,

Feedback
lrom
Evaluation
and
Document
Generation

CI
e
'Q.
Je
~e
o J

't! "§~eO a..

CI
e
'c
e
al
a:

e Q)o...
.~ J

~5
.~ eO a..

Q)
E E
1! .~
b!e
ea..

.g 6.
B'¡¡¡

.3¿:

Q)

JI
Cla..

.[6.
E'¡¡¡
a¿:

51

..
e
Q)
E
.J!!
W
el
e
'0.
E
.!!!
O
Q)
:o
as

~

~
ü:
Q)

i

Group 01Operation and Machine Tool
and Orientation 01 the Workpiece lor
Each Set-Up

Sets 01Location and Clamping Points

Fixtures lor Each Set-Up

'E

Q)1'!!

¡~
.<:a..

b!g
e'~
.2 al

~i
..Ja:

E
Q) 1'!!

¡~
~~
CI.g
.S as
Q.N
E=
as asü~

Fig. 1. Activity: setup planning.

2.6. Data Object Specification

. 7'" '

\ "

The PPEP was developed using an object-oriented

approach. These data detinitions inc1ude the struc-

ture of the data objects and a specitication of the

various operations which can be performed on the

objects.The dataobjectstypewithin the PPEP
are; fundamental, part, re source, process, plan, and
domain.

2.6.1. Fundamental Data Objects

Each object c1ass is recursively sub-divided into
smaller data components until the level of the
fundamental data objects. For example, aplanar
face consists of some type of face identitier, the

detinition of the associated plane, aplane is
identitier, a point on the plane, and a vector which
is perpendicular to the plan.

The following are the most common data types:
Boolean, Integer, Real, String, Vector3, Point3,
Matrix3, Vector4, Point4, and Matrix4. Fundamen-

tal data types inc1ude a number of generic container
c1asses, such as MinMax, List, Set, Bag, and Group.

2.6.2. Part Data Objects

These data objects contain the information per-
taining to the part. Process planning typically
incorpora tes features, consequentIy the PPEP is
able to maintain a feature-based description of the
parto Since features are an abstract concept with
different meanings in different domains, PPEP
provides the process planner with a methodology
by which features can be detined. The part data
objects in PPEP are shown in a Type-Of-Hierarchy
in Fig. 3.

2.6.3. Resource Data Objects

The resource domain consists of both the physical
resources and informational resources which are

available to the process planner. Some examples of
physical resources inc1ude machines tools, cutting

CJ$.9 o < é(é(
- <?

N
!

<DÓ q iñ ¡;:
q Ó Ó ó

i
O O o
d. d. d. d. d. d. d.

e:. !a. !a. !a. !a. !a. !a. !a.

,,, , ft.,

ize (SYS-I-QS) (SP-Q-01)

(PU-Q-01)
Set- Up

(PU-Q-02) Planning (SP-Q-02)
(PS0-Q-04)

(MTS-O-01)

(EDG-Q-OS)
(SP-Q-03)

10P-Q-07} (SP)
Feedbackfrom
Operation

q N <? .. iñ <D
anning q q q q q

a. a. a. a. a. a.
!a. !a. !a. !a. !a. !a.

52

I
~

........

ó
~
~

SYS-I-<>1)
PU-Q-01 \

MTS-O-Of
PSO-0-04'
EDG-o-08

(C1 P..n-n 7\

Operation
Grouping (OG-o-o1) Operation Group on

a Machina Tool

.
(00)

....
9
:E
eL
~

(FSD-Q-02) or (FSR-o-<>2)

L....-

4 Orientation
Planning

(ORP)

N
9
:E
eL
~

Fig. 2. Task: setup scheme planning.

tools, and fixtures. Informational resource includes
lists of predetermined process plans. An example
of a data object of the resource Machine Tool
follows, as well as the Type-of-Hierarchy diagram
in Fig. 4 depicting the resources structure:

Definition: a machine tool is a device that creates
relative motion between a tool (or
processing entity) and the parto It
establishes the coordinate system that is
the bases for the orientation between
the machine tool, the work holding
device (fixture), and the parto

Object: machine tool

Attributes: type:

facility:

(e.g. mill, drill, cmm,
. . .)
(e.g. fabrication, heat
treatment, assembly,
. . .)
(e.g. fms #1234, transfer
line #4321, group xyz
.. .)
(e.g. hole making, cut
off, contour milling, . . .)

cell:

process
association:

configuration: (e.g. axis type
movement type
travel
resolution
positioning acuracy
repeatability clamp)
(e.g. degrees of freedom
simultaneous axis control

interpolation types
volumetric accuracy)

fixture set: (e.g. cube 800-wide x
800-deep x SOO-high
vice ISO-gap
chuck 3-jaw 2S0-
diameter)
(e.g. holder code: (e.g.
PCLNR 1616H 12-M)
insert code: (e.g. TNMM
16 03 04 SIP»
(e.g. pallet shuttling, chip
remover coolant, . . .)

format detail: (e.g. N3G2X +3.3Z
+ 3.313 .3K3 .3T2M2)
(e.g. GE-8M)

capability:

tool set:

options:

post
processor:

V. Helem el al.

....

~
eL
~

(ORP-Q-011;jSP-<;<>1)
(SCP-Q-01)

f'a:
Q.

.;:)

Specification for a Process Planning Enabling Platform

Part Data -Type Of HeirarchyKEY:
DataObjectName.
(lnherited paramelers)
Attributel
ete. Entity

() I

Compo~entEntity

(j I
I

Feature
()
Strlng* name;
Feature* componenlOf;
Set* parameterSet; (ParameterSpec)
Set* datumSchemeSet; (DatwnSpec)
Set* orientingSet; (OrientingSpec)
Set* connectivitySet; (CormectivitySpec)
Set* gdtToleranceSet; (GdtToleranceSpcc)
Set* surfaceFinishSet; (SurfaceFmishSpcc)

I

[enumeration list]

(type of object in Set*

or List*)

Orientin~Entity
()

M;IeIEntity I
()
ENTITY* partEntity;

......

I
SimpleFeature
(name. ComponDllOf, paramelerSet.

datumSchemeSet. orienlíngSet.
connectivitySet. gdtToleranceSet.
suifaceFinishSet)

Set* componentSet; (ModelEntitySpcc)

I
CompoundFeature
(name. ComponDllOf, parameterSet.

datun&hemeSet. orienlíngSet.
connectivitySet. gdtToleranceSet.
suifaceFinishSet)

Set* componentSet; (ComponentEntitySpcc)

Specification
()
Strlng* name;

I

Orie~tingSpec
(name)
OriehtingTypes orientType;

[parallel, coplanar, ete.]
List* entities;

(OrientirigEntitySpcc)

Orienting* orientObject;

. I
Datum
()
ENTITY* createdDatum;

I

ParameterSpec
(name)
DimensionTypes type;

[angle. radius, ete.]
Dimension dimDefinition;EntitySpec

(name)
EntityTypes entType; .

[componentEntity. orientingEntity]

Entity* entityObject;
I

Componen'tEntitySpec OrientingEJtitySpec
(name) (name)
ComponentEntityTypes comEntType; OrientingEntityTypes oriEntType;

[feature.modelEntity) [modelEntity.danun]
ComponentEntity* comEntObject; OrientingEntitY.*oriEnlObject;

I I
I I . I I

FeatureSpec ModelEnntySpec DatumSpec
(name) (name) (name)
FeatureTypes featureType; ModelEntityTypesmodEntType; DatúmTypes type;

[simple,compound] [face. edge, vertex] [axis.planeoete.]
Feature* featureObject; ModelEntity* modEnlObject; Datum*danunObject;

Strlng* templateName; I
I I

F~eSpec lli~Spec
(name. modEnffype. modEntObject) (name. modEnffype. modEntObject)
FaceConnectivitySpcc*derivation; EdgeConnectivitySpec*derivation;
List* geomelrieReslrietions; List* geomelrieReslrictions;

(FaceReslrictions) (EdgeReslrietions)
[fla!,eylindrical, ete.] [straightEdge,eircularEdge, ete.]

-

53

Part
()
Strlng* partName;
int partId;

Strlng* ñmetionalDescription;
SolidModel* solidModel;

FeatureSpcc* featureBasedDescription;
Par!* componentOf;
Par!* rawMaterial;

MaterialSpcc* materlalSpec;
MassPrÓperties* massPropenies;
Matrix4* coordinateSystem;
MinMax* overallSizes;
Units* units;

Strlng* scale;
Set* toleranceDefaults;

(gdtToleranceSpcc)
Set* tolerances; (gdtToleranceSpcc)
Strlng* elassificationCodeNumber,
Strlng* revisionMark;
Strlng* designaN ame;
Strlng* designaNoles;
Date* designDate;
List* revision; (Strlng*)
Strlng* aUlhorization;
Strlng* manufacturingNotes;
Strlng* manufacturerSupplier;
int lotSize;

Measme* partPrice;
Cost* productionCost;

I

ConnectivitySpec
(name)
ConnectivityTypes connType;

[defming. neighboring]
List* entities; (ModelEntitySpcc)
ModelEntitySpcc* defmedTopology;

I

SurfaceFinishSpec
(name)
FaceSpcc* faceEntity;
SurfaceFinish surFmObject;

I

GdtToleranceSpec
(name)
GdtToleranceTypesgdtType;

[flatness, parallelism, ete.]
List* attities; (OrientingEntitySpec)
GdtTolerance*gdtTolObject;

I

MaterialSpec
(name)
intid;
Strlng* condition;
Slring* description;

1
VertexSpec
(name. modEnffype. modEntObject)
VertexCormectivitySpcc* derivation;
List* geomelrieReslrietions;

(VertexReslrietions)
(supporting, nonSupporting, ete.]

Fig.3. Part data Type-Of-Hierarchy.

54

r
Profile
(defaull,fealuru)
ProfilcTypcs typc;

[surfllCC,linC]
CURVE* trucProfilcDcf;
Mcasurc* tolValuc;
TolDislributionTypcs tolDislribution;

[bilateral, unilateral]
Boolcan a11Around;

List* cxtcntLimits; (POINT)
DatwnSpcc* primaryDanun;
DatwnSpcc* sccondaryDatum;
DatumSpcc* tertiaryDatum;

FoÍm
(defaull.fealuru)
Mcasurc* tolValuc;

'1 CyliAdricity
(default.featuru. toWalue)

Circ~larity
(defaull.featuru. toWalue)
~
Flatness
(default,features. toWalue)
List* unitTolValuc; (Mcasurc*)

StraightAessOfFeatureOfSize
(defaull.featuru. toWalue)
List* unitTolValuc; (Mcasurc*)
MatcrialCondition matCond;
RcfcrcnccModifiCl' refMod;

To1ZoncShapc shapc;

StraightAessOfSurface
(default.featuru. toWalue)
List* unitTolValuc; (Mcasurc*)
Vector3* mcasurcDirection;

AngleBetween
(List*. ParameterSpec*.

Dimension*)
ParamctCl'Spcc* valuc;
Dimension* distAlongRotVector;

DistariceBetween
(List*.ParameterSpec*.

Vedor3*)
ParamctCl'Spec* valuc;

Vector3* direction;

Part Dan. . Type Of Heirarchy

GdtTolerance
()
Boolcan dcfault;

List* fcaT; (FcaturcSpcc*l
Runout
(defaull.featuru)
RunoutTypcs typc;

[total. cin:ular]
Mcasurc* tolVa1uc;
DatumSpcc* axisDanunl;
DatumSpcc* axisDatum2;
DatumSpcc* surfaccDatum;
PriorityTypcs datumPriority;

[axis, surfacc]

OrieJtation
(default.features)
McaSurc* tolValuc;
DatumSpcc* datum;
MátcrialCondition matCond;
RcfcrcnccModifiCl' refMod;

Parallelism
(default.features. datum.

marCand. rejMod)

To1ZoncShapc shapc;

Perpendicularity
(defaull.fealuru. datum,

marCand. rejMod)
Mcasurc* maxTolValuc;

To1ZoncShapc shapc;
Mcasurc* projection Valuc;
Vector3* projectionDirection;

Angu\arity
(default,features. datum,

marCond. refMod)
Mcasurc* maxTolValuc;

Mcasurc* anglcValuc;

V. Hetem et al.

(continue)

SurfaceFinish
()
Boolcan dcfault;

List* fcaturcList; (FcatureSpcc)
McasurcmcntTypcs mcasTypc;

[arithmaticAvcragc. RMS)
Mcasurc* valuc;

I
Concentricity
(defaull. fealuru)
Mcasurc* tolValuc;
DatumSpcc* datum;
RcfcrcnccModifiCl' refMod;

I
Position
(default.features)
DatumSpcc* primaryDanun;
Materia1Condition priDatMatCond;
DatwnSpcc* sccondaryDanun;
Materia1Condition sccDatMatCond;

DatumSpcc* tertiaryDanun;
MatcrialCondition tcrDatMatCond;

Mcasurc* projectionValuc;
Vector3* projectionDirection;

)'

PositionTol
(default,featuru.

primaryDatum. priDatMatCond.
secondaryDatum. secDatMatCond.
tertiaryDatum. terDatMatCond.
projectionValue, projectionDirection)

Mcasurc* tolValuc;
MatcrialCondition matCond;
RcfcrcnccModifiCl' refMod;

CompositePosTol
(default.featuru.

primaryDatum. priDatMatCond.
secondaryDatum, secDatMatCond.
tertiaryDatum. terDatMatCond.
projectionValue. projectionDirection)

Mcasurc* globalTolValuc;
MatcrialCondition globalMatCond;
RcfcrcnccModifiCl' globalRcfMod;
Mcasurc* localTolValuc;
Materia1Condition loca1MatCond;
RcfcrcnccModifiCl' 1oca1RcfMod;

MassProperties
()
RotationalAxisrotAxis;

[X. Y,Z]
Mcasure* volume;
Mcasurc* dcnsity;
Point3* ccntcrOfMass;
Mcasurc* incrtiaX;
Mcasurc* incrtiaY;
Mcasurc* incrtiaZ;

PerPendicular
(List*)

Fig. 3. Part data Type-Of-Hierarchy (continued).

ParaIlel
(List*)

Orienting
(List*)
List* fcaturcList; (FcaturcSpcc*)

C ,1 'dOlDCl ent
(List*)

-.. 'tOf r--:-CenterPolD Concentnc
(List*) (Lisr*)

CenteAxisOf
r-

Colinear
(List*) (List*)

r:--Coaxlal
Coplanar(List*) (List*)

KEY:
DataObjectName
(lnheritedparameters)
Attributel
cte.

[enwneration list]

(type of objcct in Set* or List*)

"!'J
~.
fa
~(1)'"
o
~
....
(")
(1)
'"

I

Axis
(Cost, code, id)

AxisTypes type; [linear, rotary]

MovementTypes movementType;

[continuous, incremental]

Measure* travel;

Measure* resolution;

Measure* positionAccuracy;

real repeatability;

Boolean elampOnOff;

~
'O
(1)

6
';"
::I:
(;.
....'"....
(")
::r

';<:

I
Table
(Cost, code, id)

TableTypes type;

[rotary, inelinable]

Measure* eapaeityWeight;

Measure* eapaeityLength;

Measure* eapaeityWidth;

Measure* eapaeityHeight;

Measure* eapaeityDiameter;

SccuringTypes type;

[slot, hole, cte.]

I
Insert
(Cost, code, id)

String* grade;

String* coating;

Tool
(Cost, code, id)

ToolTypes type;

[endMill, ete.]

String* material;

,~, , .f"tt,

Resources - Type Of Heirarchy
Resource
()
Cost*cost;

I
I I

EquipmentResource CapabilityResource

(C~st)* (Cost) I
Stnng code; I I
int id; Process Operator

I (Cost) (Cost)
ProcessTypeprocessType; String*name;

[drilling,milling, ete.] int socialSeeurityNÚIn;
Set* associatedFeature; (PeatureSpec) String*skillLevel;
Set* associatedToleranee; (GdtToleraneeSpec)cte.

I
MachineTool
(Cost, code, id)

MaehineToolTypes type;
[lathe, mill, grinder, cte.]

String* facility;
String* cell;
Set* processAssociation;- (Process)
Configuration * configuration;
List* fixture; (Pixture)
List* toal; (Tool)
List* parameter; (ParameterSpec)
String* formatDetail;
int postProcessor;

T
TooIChanger
(Cost, code, id)
TooIChangerTypes type;

[automatie, manual]
int eapaeityNwnber;
Measure* eapaeityWeight;
Measure* eapaeityDiameter;
Measure* eapaeityLength;
SelectionTypes selection;

[sequential, random]
Measure* toolChangeTime;

I
Spindle
(Cost, code, id)

String* taper;

String* pullStud;

Measure* power;

int speedMax;

int speedMin;

Boolean orientationControl;

Boolean constantVelocity;

Boolean coolant'Through;

Configuration
(Generic)
List* axes; (Axis)
ToolChanger* toolChanger;
PartChanger* partChanger;
Table* table;
Set* spindle; [Spindle)
int degreesOfFreedom;
int NwnOfSimultaneousAxes;

interpolationTypes type;
[linear, circular, ete.]

Measure* volwnetrieAccuraey;

I
Fixture
(Cost, code, id)
SolidModel* [¡xtureModel;

Set* eomponentSet; (PixtureElement)
PixturingSeheme* [¡xtureLayout;

r
PartChanger
(Cost, code, id)
PartChangerTypes type;

[robotie, pallet, cte.]
Measure* eapaeityWeight;

.Measure* eapaeityLength;
Measure* eapaeityHeight;
Measure* eapaeityWidth;
SelectionTypes selection;

[sequential, random]
Measure* partChangeTime;

FixtireElement
(Cost, code, id)
ElementTypes elementType;

[standard, base, mount, ete.]
SolidModel* model;

Set* datwn; (DatwnSpee)
String* supplier;
Set* parameters; (PararneterSpec)

I
Gauge
(Cost, code, id)

Holaer
(Cost, code, id)
Measure* shankSize;

ClampTypes type;
[pin, topClamp, ete.]

~"(")
~
g
o';:s
~
...
;:,

~
(")

~
::E
;:,
;:s
;:s

~.
~
;:,
g:
~.
~
S,

<::>

~

..

VIVI

56

2.6.4. Process Plan Data Objects

These data objects document the process plan. A
process plan is a plaIl for manufacturing a product,
which includes a sequential set of operations and
the related methods, equipment, material, and
information. The plan is in the form of a routing
comprising a group of setups, which consists of a
group of operations comprising a group of tasks. A
setup is an efficient grouping of operations on one
machine and one fixture. An operation is a process
element done at a single setup or work station. A
task is the smallest element in an operation, such
as a single tool to part engagement. The Type-Of-
Hierarchy for the plan data objects are shown in
Fig.5.

2.6.5. Domain Specific Data Objects

This type of data was included to emphasise that
the user of the PPEP has the ability to modify or
define any additional data objects which may be
required to perform process planning in a particular
manufacturing domain.

2.7. Utilities

2.7.1. Build-Time Utilities

The supervisory system will allow the user to
configure the system to perform in a particular
process planning domain. The following support
will be provided by the build-time utilities:

Activity specification

. Activitystructure (activity/task/sub-task
specification)

. l/O data object specification

. Mechanism association (inference engine, object
code, etc.)

. Control data linking (rule-base, data-base, etc.)

. Intra-activity connectivity

. Aspect definition

. Run-time characteristics

. Help/explanation specification

. Run-time data logging specification
Connectivity/system structural specifications

. Associationof l/O slots of activity/task/sub-task

. Relationship specification (direction, method,
messagedefinition)

. Definitionof run-timecharacteristics(e.g. over-
write, supervisor permission required, change
only if different, etc.)

V. Hetem et al.

System 1/0 specification

. System input location specification

. Creation of system input data objects

. System output location definition

. Data-object definition

. Function definitions

. Editing (rule-base, connectivity, activity/task/sub-
task)

2.7.2. Run-Time Utilities

The run-time utilities will allow the process planner
to use the configured system to develop process
plans. The following functional support will be
provided by the run-time utilities:

. Manual data object creation/editing (create

objects and modify exisiting objects) ~.
. Importing data-object files (retrieve object data

from persistent storage)
. Data object, control-data, and mechanism inspec-

tion
. Selective execution of activities/tasks/sub-tasks

(select which activities to perform and in what
order those activities are executed)

. Trace specification(provide information concern-
ing how a result was generated)

. Run-time explanations (explanations of the vari-
ous activities being performed)

. Activity, task, sub-task status checking
(information concerning the status of a process
being performed)

. What-if analysis(specifyalternatives in temporary
mode)

. Output specification(dumping of output, persist-
ently storing objects, and saving plans) ""

2.8. Support Libraries and Routines

2.8.1. Libraries

Topology and geometry are processed by the
geometric reasoning libraries. Topology classes
include; body, lump, shell, sub-shell, face, loop,
co-edge, vertex, wire. Geometry classes include;
point, curve, straight, ellipse, intcurve, pcurve,
surface, plane, cone, sphere, torus, spline, trans-
formo The geometric reasoning library is a structured
set of routines and procedures, which supports two
types of activities:

. Queries about a particular configuration of the
world whose results are booleans.

~
y

Specificatian far a Pracess Planning Enabling Platfarm

ProcessPlan -Typeoe Heirarchy
ProcessPlan
()
intid;
String* creator;
String* creationDate;
List* approvaIs; (String*)
SolidModel* part;
int partRevision;
List* replacements; (String*)
MFGAnaIysis* mfgAnaIysis;
Route* route;
Units* units;
SolidModel* rawMateriaI;

int production Volume;

<~

MFGAnalysis
()
List* simillation: (Simulation)
List* evaIuation; (EvaIuation)
Metries* metries;

Evaluation
()
List* input; (ParameterSpec)
List* oUIpUt; (ParameterSpec)
String*evaIuationModel;
Slring*evaIuationResults;

ir
"'""---

Simulation
()
List* input; (ParameterSpec)
List* output; (ParameterSpec)
String*simulationModel;
String*simulationResults:

Metrics
()
Measure*leadTune;
Cost* cost;
Measure*risk:
ete....

Route
()
Set* seheduleGroup; (Schedule)
String* mfgBillOfMateria1s:
SolidModel* rawMateria1;

Set* setUpGroup; (SetUp)
RouteTypes routeType:

[series, parallel, cte.]

SetUp
()
IntermediateModel*partModelStatus;
MachineTooI* machineTooI:

Ste*operationGroup: (~on)
Transformation* partOrientation:
Fixture* fixtureDesign;
Transformation* fix~entation;
FixtureScheme* fixturingScheme;

Schedule
()
int batchld;
String* startDate:
String* ducDate:
int quantity;

Operation
()
SetUp* setUp;
String* description:
Set* taskGroup; (Task)
List* featuIeSAssociation; (FeatureSpec)
List* toleranceAssociation: (GdtToleranceSpec)
IntermediateModel* partModelStatus:
List* toal; (TooI)
List* guages; (Guage)
String* neProgram;
String* qualityPlan:
String* operatorInstruction:
Measure* estimatedTuneStandard:

String* operatorGrade;

Task
()
List* parameter: (ParameterSpec)
List* geoMod: (GeometricModification)
List* nonGeoMod; (nonGeometrieModifieation)
TaskInstruction* taskInstruction;

TaskInstruction
()
List* machineSetting; (MachineSetting)
String* magazineLoading:
String* offsetLoading;
String* fixtureLoading;
String* partLoading;
String* neProgram;
String * operatorInstructions;
String* qualityPlan:

MachineSetting
()
String*name: "

Measure* vaIue;

Fig. 5, Plan Type-Of-Hierarchy.

57

KEY:
DataObjectName
(Inheritedparameters)
Attributel
ete.

[enumeration list)

(type of obJect in Set* or List*)

FixturingScheme
()
LocationScheme*locating;
ClampingScheme* elamping;

LocationScheme
()
Set* surfaces;

{FixturingSurface}

ClampingScheme
()
Set* surfaces;

{FixturingSurface}

FixturingSurface
()
FACE* face;

List* position: (ContaetPoint)
ContactTypes contactType;

[point, line, ete.)

ContactPoint
()
Point3* position;
Vector3* direction:
Measure* force:

IntermediateModel
()
SolidModel*modelStatus;
Set* performedOperation:

(Operation)
Set* performedTask: (Task)

GeometricModification
()
List* operands; (SolidModel)
BooleanOperations operator;

~ongeometricModification
()
List* modifDescription; (String)

58

. Constructive routines that build objects which
represent operations or concepts on the existing
world, for example, projection of objects on other
objects, ray tracing, convex hull construction,
intersections.

The library is conceived to provide geometric
objects (as extensions to standard programming
entities), which are accompanied by operations
which modify and administer them, find and test
for relations among them, etc. To provide this set
of objects and the functionalities among them,
several layers of software are added on top of the
standard utilities that a solid modelling package
offers. The usual set of utilities that a geometric
solid modelling package offers covers mainly boolean
and constructive operations, based on a represen-
tation scheme, for example Boundary Represen-
tation (B-rep) of solids, Constructive Solid
Geometry (CSG), etc. In general, the front end to
the user includes manipulation of the objects in the
world, but there is no interface provided which
allows the testing of relationships between localised
parts of the objects present, or to construct or
manipulate the intermediate objects. In this sense,
the geometric reasoning library is designed to allow
access to the capabilities of the available software
while at the same time providing functionality by
an added layer of routines.

In the world there are topological objects such
as vertices, edges, co-edges, faces, shells, bodies,
etc., and geometrical objects such as points, planes,
straights, curves, and mathematical entities such as
matrices, homogeneous transformations, vectors,
etc. A library of geometrical objects could also
provide the manipulation of them, plus queries and
constructions. Manipulations of objects are mostIy
done by using a set of linear transformations which
represent shearings, translations, rotations, scalings,
etc. In general, these operations are provided by a
standard solid modeller, whereas another set of
functions is rarely supplied, such as:

. Intersections of non-solid objeCts

. Intersection of objects with different dimensional-
ity (e.g. edge versus face)

. Projections of objects on other objects (e.g.
projection of faces on shells in some direction)

. Tests for co-linearity, parallelism, perpendicu-
larity, etc.,

. Distances between objects following different
criteria, etc.

Some examples of routines provided in the
geometric reasoning module along with their func-
tionality are:

V. Hetem et al.

. parallel(face,plane) ~ boolean

. parallel (face, curve) ~ boolean

. colinear (curve, edge) ~ boolean

. contained (curve, face) ~ boolean

. contained (curve, plane ~ boolean

. coincide (curve, curve) ~ boolean

. contained (vertex, face) ~ boolean

. contained (vertex, plane) ~ boolean

. project (curve, plane, direction)~ curve

. project (curve, face, direction) ~ {edge}

. project (point, shell,direction)~ {point}

. distance (point, curve) ~ real X vector

. distance (curve, curve) ~ real X vector

. intersection (face, face) ~ {edge}U{fa-
ce}
. intersection (edge, edge)
t}U{ edge}

. mLpLperLpUn (curve, plane~ plane

. (makes plane perpendicular to plane, containing
a curve)

. mLpLbisecLpLpl (plane, pla~ plane
(makes the plane which bisects angle between
two planes)

. mUace_pLpls (plane, {plane}~ face
(makes the face which is the convex intersection
of {plane}, defined on aplane)

In the preceding examples, the functionality of a
routine depends on its arguments rather than its
name. Functionality can involve the projection of
a curve onto a face which is a set of edges, or the
intersection of two faces could be a set of edges if
they are not co-planar, but if they are co-planar it
could be a set of (non-connected) faces as in the
intersection of two glove-shaped polygons. The fact
that the functionality of a routine depends on its
arguments rather than its name makes it desirable
to use object-oriented programming and an overload
of functions.

The library is being implemented in C+ +, in
such a way that the user program has access to the
high levellibrary routines, as well as the objects in
the world, which are administered by a solid
modelling package.

~ {poin-
.."

2.8.2. Routines

The definition of support routines is divided into
low-Ievel geometric queries and constructions which
work on top of the AIS interface to the solid
modeller and include all AIS routines, and the
routines which are more specific to process planning.
A set of functionally described examples follow:

'ffspecificatian far a Pracess Planning Enabling Platfarm

,.
. Axis-symmetry: analyse any object and determine

if the object has one or more axes of symmetry.
. Monotonicity:determine if an axis-symmetric

object is monotonic and the direction of monoton-
icity.

. Polyhedral: determine if all of the object faces
are strictIy planar.

. Convex hull: generate the convex hull from the
solid model of an object.

. Coincidence: determine whether a pair of topo-
logical, datum, or feature entities are coincident
to one another.

. Tolerancecategorisation:determine tolerance
characteristics - smallest, type, etc.

. Datum relationships: determine precedence
relationships between data of an object.

. Fixture location scheme and part accessibility:
determine suitability of a pre-defined location
scheme and the accessibility of non-fixturing
surfaces.

. Boxing algorithms: determine the smallest box
which completely contains an object.

. Amount of material removed: determine the
amount of material removed in order to manufac-
ture a feature.

. Process-feature association: formulate a process-
feature association given a setof features and a
database containing the process capabilities of a
manufacturing facility.

~

(,"'

3. Conclusion

r
.....

The Enabling Platform is a significant step towards
the development of computer-aided process planning

59

systems. A layered software structure has been
developed and the modules which will have to be
incorporated have been identified. The specification
of data objects has been initiated, and the hier-
archical representation scheme has been used for
product data. The geometric and topological rep-
resentation of the object will be based on the AIS
standard. A methodology for defining features so
that a more abstract representation of the object is
available for later phases of process planning has
also been developed. Feasibility work has been
completed in the development of the overall organis-
ation of the software modules. This initial specifi-
cation can be expanded to include the experience
gained during system development and maintenance.

References

1. Eshel G. Automatic generation of process outlines for
forming and machining processes. PhD dissertation,
Purdue University, W. Lafayette, IN, 1986

2. Eary DF, Johnson JE. Process engineering for manu-
facturing. Prentice-Hall, Englewood Cliffs, NJ, 1962

3. Ferreira PM, Lu SC-Y, Xhu X. A conceptual model
for process planning. Preliminary report to CAM-I,
1250 E. Copeland Road, Arlington, Texas, August
1989

4. Ferreira PM, Lu SC-Y, Carr K, Hetem V, Lucenti
M, Ruiz O, Zhu X. Specification for a manufacturing
planning enabling platform. Final report to CAM-I,
1250 E. Copeland Road, Arlington, Texas, March
1992

5. Product data exchange specification. Manufacturing
Technology Committee/Project (ISO TC184/SC4/
WG3/Pll), Document 4.1.3.2.1 (working paper),
ChairmanlLeader Greg A. Paul, e/o General Dynam-
ics, Box 748, MZ 6480, Fort Worth, TX 76101, January
1991

6. Integrity Systems. Application Interface Specification
(AIS) formalization. Final report, R-88-GMP-02, 2265
Manzana Way, San Diego, CA 92139, May 1990

