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Abstract: Optimized Boolean Operations against
orthogonal Fixed Grids (FG) for 2-manifold construction in
quasi-meshless methods for Finite Element Analysis are
presented. A Piecewise Linear (PL) or Boundary
Representation (B-Rep) B is assumed to be the boundary of a
solid S ⊂  R3. On the other hand, R3 is partitioned into a 3-
dimensional array of cubic, uniform cells Ci,j,k . Cells Ci,j,k with
Ci,j,k ∩ S ≠Φ and Ci,j,k ∩ S ≠ Ci,j,k are particularly important for
FG applications. These are the cells Ci,j,k intersecting B, which
happen to be Neither Inside nor Outside (NIO) of B. The
boundary ∂(Ci,j,k ∩ S ) of Ci,j,k ∩ S  must be calculated from
∂Ci,j,k and B for a large number of cells Ci,j,k , which makes the
normal boolean operations unpractical . The article illustrates
with examples the immersion of B-Rep models in Fixed Grids,
visits the downstream results of the stress-strain calculations
using FG and explains how this approach is used in Product
Design Optimization.

Key words: meshless methods; geometric modelling;
orthogonal boolean operations; Fixed Grid, finite element
analysis.

Glossary

B A PL 2-manifold without border (a 2D object).
S S is the union of B and its interior, hence B = ∂S

(S is a 3D object).
F Face of B, F is PL .
Ci,j,k Cubic, i-th, j-th, k-th cell in the X, Y, and Z

directions respectively, with faces parallel to the
XY , XZ and YZ planes (Ci,j,k is a 3D object).

FG The collection of the Ci,j,k , with  i, j, k ∈  [1...N]
NIOi,j,k The portion of S confined to Ci,j,k, i.e.,  NIOi,j,k =

Ci,j,k ∩ S (a 3D object).
Bi,j,k The boundary of NIOi,j,k  , i.e., Bi,j,k = ∂ NIOi,j,k

(a 2D object).
H Face of Ci,j,k , H is PL , H ⊂⊂⊂⊂  ∂Ci,j,k .
L(λ) Parametric half-ray L(λ) = P0 + λ .v,  λ ≥ 0 .
Event λ Parameter value of half – ray L(λ). For

convenience, it has associated the point p=L(λ)
∈  R3 and the faces F or H such that p ∈  F or p ∈
H .

I, O, NIO Characteristic of a Ci,j,k cell, which is Inside,
Outside, or Neither Inside nor Outside,
respectively, of  S.

ΓΓΓΓH Planar closed counterclockwise oriented Jordan
curves lying on a face H ( H ⊂⊂⊂⊂  ∂Ci,j,k ).

H+
XZ  /

H-
XZ

Plane in cell Ci,j,k perpendicular to Y, with largest
/ smallest y coordinate.  H+

ZY , H-
ZY , H+

XY and
H-

XY are defined in analogous way.
genus,
genera

The number of through holes (singular, plural)
in S.

1- Introduction

This article discusses the construction of a valid Boundary
Representation for the part of a solid S confined to each cell
Ci,j,k, hence of ∂(Ci,j,k ∩ S), for cell arrangements containing
large numbers of cells. The algorithm exploits the convexity
of Ci,j,k, and a pre-condition on the size of Ci,j,k , which
precludes disconnected borders in ∂(Ci,j,k ∩ S). As a result,
the algorithm is not the repetition of a general Boolean
Intersection one.

Fixed Grid methods for Finite Element Analysis require the
immersion or representation of a Boundary Representation B
of the object to analyze, S, using a Fixed Grid or orthogonal
array of regular equally sized cells Ci,j,k . Each cell in the
array is labeled as being inside, outside or neither inside nor
outside (I, O, NIO respectively) of S. For NIO cells a certain
estimation of their volume inside / outside S is required in
order to set up structural, thermal, or other equations of
interest. This estimation is best served by calculating a
Boundary Representation of NIOi,j,k = Ci,j,k ∩ S. Traditional
methods using solid modelling boolean operations are
inconvenient in this domain, since the number of solid –
solid intersections is O( N 3 ) , where N is the number of cells
per X, Y, or Z axis of the Fixed Grid. Therefore, 2-manifold
construction techniques suited for orthogonally placed solids
(the cells) against flat faced polyhedra (the solid to analyze),
which accelerate the representation of an arbitrary solid by
using I, O and NIO cells are presented in this paper. The
algorithms and results of such techniques are presented,
along with applications of the representations obtained in
FEA scenarios. The implementation of the algorithms uses a
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paradigm with exact arithmetic through the CGAL
(Computational Geometry Algorithm Library).

2- Literature Review

Meshless methods for Finite Element Analysis are used as an
alternative to the subdivision of the solid S into elements of
varying size, position and orientation such as tetrahedra,
blocks, etc. (see [1,2]). In the Fixed Grid meshless method, the
subdivision of the solid S is substituted by a regular, anchored
subdivision of R3. Although the subdivision of R3 might be
irregular (e.g. using octrees), or be floating, it must be noticed
that a regular subdivision of R3 reduces the computational
intricacies of the algorithms and the special operations that are
to be expected when different cell sizes, positions and shapes
are present.

In the Fixed Grid method, the solid S is immersed in the Fixed
Grid FG = { Ci,j,k }. This implies that each cell Ci,j,k must be
classified respect to S as Inside (I), Outside (O) or Neither
Inside nor Outside (NIO). For FEA calculations NIO cells
require a full representation of the geometrical and topological
structure of each NIOi,j,k . If Boundary Representation is used,
the Bi,j,k =∂( Ci,j,k ∩ S ) is required. Boolean operations like
calculating Ci,j,k ∩ S are an elementary matter in current
geometric modelling. However, the number of repetitions
required by the immersion of S in FG (minimal order 106),
makes optimization compulsory.

The present work addresses the construction of topologically
and geometrically valid Boundary Representations (see [3]) for
the NIOi,j,k . The optimization proposed exploits the fact that
the Ci,j,k are convex, connected, and have a PL connected
boundary. Also, a small enough cell size for Ci,j,k is requested,
for guaranteeing the Bi,j,ks to have some connectedness
properties. More specifically, each Bi,j,k is not only connected
(i.e. consists of a single shell), but also each one of their
FACEs has connected border (i.e. is bounded by a single
LOOP).  The Bi,j,k , however, are not required to be convex.

The software presented in this article was programmed in C++,
on top of CGAL (Computational Geometry Algorithm Library
[5], [6]), using the exact arithmetic paradigm of CGAL. It pre-
processes Boundary representations of Objects and constraints
for a Fixed-based FEA solver ([1,2,7]).

In the literature reviewed, Structural Optimization (SO) is a
follow up on the application of both mesh-based and meshless
FEA methods ([8,9]). SO implies the change (usually thinning)
of the solid S as per iso-stress implicit surfaces ([10]) with
particular values. The Genetic Algorithms assume the
application of parameters for judging the individuals of the
specie to which S belongs . The topology of the resulting B-
Rep B is, however, capital in the manufacturing of S ([11]),
among other aspects. Therefore, the efficient construction of
topologically and geometrically correct B-Reps, both for S and
the Bi,j,k NIO elements is central to the development of FG
methods.  This is the rationale of the present article.
In section 3 the methodology for construction of B-Reps Bi,j,k
is explained, while section 4 presents results in the realm of
Fixed Grid FEA calculations. Section 5 concludes the article.

3- Methodology

The following discussion examines the required
preconditions for the proposed algorithm, some important
simplifications stemming from such preconditions, numerical
or software characteristics, and the use of the prescribed
algorithms.

(a) (b) (c)
Figure 1 : (a) Piece of B-Rep B and Cell, (b) Traces of B on

Cell, (c) Intersection of Cell and B-Rep B

3.1 – Pre-Conditions on Grid and B-Rep

Figure 1-(a) shows a solid set S and a particular cell Ci,j,k.
The first goal is to calculate each loop ΓΓΓΓH , i.e. the boundary
of the intersection of Bi,j,k with face H of Ci,j,k. All ΓΓΓΓH are
assumed to be connected ruling out the situation shown in
Figure 1-(b) , where the blue portion of the front-right face is
disconnected.  Figure 1-(c) displays the result Ci,j,k ∩ S for
this (forbidden) case.

(a)
(b)

Figure 2 : Undesirable situations (unconnected NIO Face
Boundaries) due to large cell size.

Likewise Figure 2 displays two undesirable cases. Figure 2-
(a) shows that the loop ΓΓΓΓH does not intersect the boundaries
∂H of some of the cell faces H. In the situation depicted in
Figure 2-(b) the ΓΓΓΓH loop is non-connected, as an internal hole
is present. The natural way to ensure the restrictions here
imposed is the reduction of the cell size to the point in which
such illegal conditions disappear.

3.2 – Events on Half - Rays

Given the orthogonal character of the Ci,j,k cells, a grid of half
– rays parallel to the principal directions X, Y, Z is set up.
Figure 3-a displays typical members of the families of half-
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rays, originating on regular grids of points on the main planes
XY, YZ, XZ  and given by the formulae  LZ(λ)=PXY + λ .w ,
LX(λ)=PZY + λ .u,  LY(λ)=PXZ + λ .v, respectively.  As an
example, in the v direction, each point p ∈  LY(λ) corresponds
to an event, that is noted by λ, the parameter at which P occurs
on LY(λ) . Later on, the events λ will be also related to non-
orthogonal half-rays.

Notice also that the regular pattern of the FG (see Figure 3),
allows for conducting the point-in-polytop inclusion test in a
per row form, in contrast with the per point approach in [4],
rendering a computational advantage.

The construction of each face of Bi,j,k parallel to the planes XY,
YZ, XZ, is conducted by an automaton (see Figure 3-b). In the
case of LZ( λ ) the automaton starts at λ=0 in the XZ in the
point LZ( 0 ) (without loss of generality) outside B, following
LY( λ ). When the automaton registers an intersection of the ray
with a face F of B, it will follow the events taking place on
faces o Ci,j,k parallel to the planes XY and YZ. These events
involve faces of type H and F. The automaton proceeds
building the loop on the faces H of Ci,j,k. When the original
event is found, the loop is closed, and a face of Bi,j,k of the type
H is completed.  The faces of the type B (non orthogonal) in
Bi,j,k are found by traversing the border of the 2-manifold
formed by the orthogonal (parallel to the main planes) faces of
Bi,j,k. The B-Rep may then be completed.

X

Y

Z LZ(λ)=
PXY+λ .w

LY(λ)=PXZ+λ .v
LX(λ)=PZY+λ .u

u
v

w

(a)

X

Y

LY(λ)=PXZ+λ .v

v n

(b).

Figure 3 : (a) Grid and Half-Ray notation. (b) Automaton
Iteration builds a face of Bi,j,k parallel to the plane YX.

Figure 4 shows the follow up that the method exerts on a half-
ray, originating in this case in the XZ plane. As the half-ray
crosses the space subdivision of the cells Ci,j,k (faces H), events
of the type λ* (grid events) are said to occur to it. As the half-
ray hits a face F of B, events of type λ (B-Rep events) are said
to occur. The point p = LZ(λ) and the faces (of types H or F)
that each event compromises are associated to it. As the half-
ray travels embedded on each face, the analytical form of Li(λ)
obviously changes.

3.3 – Half-Ray Transitions

The algorithm proposed below requires a complete inventory
of the possible events that could happen on a half – ray, in the

presence of a Fixed Grid FG, and a Boundary representation
B. Table 1 shows the possible transitions that a half - ray
may experience when its present status is OUTSIDE the B-
Rep.

X

Y

Z λ event, F face

λ* event, H face

B
B-Rep

Figure 4 : Grid and B-Rep Events

Dim. of
Simplex
whose
interior
is hit by
the half-
ray

Intersection
dimension

Figure

2 0 2-simplex 0-simplex

1 0 1-simplex 0-simplex

0 0
0-simplex

0-simplex

Table 1 : OUTSIDE – INSIDE Transitions.

Table 1 classifies the transition from OUTSIDE to INSIDE
(the opposite transition is symmetric), according to the
dimensionality of the simplex whose interior is hit by the
half-ray. The convention that the interior of a 0-simplex is
the simplex itself has being used.

Table 2 displays the OUTSIDE – OUTSIDE transition,
occurring when the half-ray has tangentially hit a 0-simplex,
while staying outside the B-Rep.
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Dim. of
Simplex
whose
interior is
hit by the
half-ray

Intersection
dimension

Figure

0 0 0-simplex 0-simplex

Table 2 : OUTSIDE – OUTSIDE Transition.

The OUTSIDE – OUTSIDE case is conceptually different
form the last one in Table 1. However, the calculations are the
same in both cases. The B B-Rep forms a solid angle in the
apex of the conic region (Figure 5), thus dividing a sphere in
two solid angles (internal, external). The decision as to whether
the half-ray enters or only touches the solid is the same as the
decision as to whether the half-ray intersection points with the
sphere lie on the same or different regions of the sphere. In
Figure 5-(b), left, both intersection points hit in the same
region (OUTSIDE). The half-ray, therefore, does not change
status. In Figure 5-(b), right, the intersection points fall in
different regions (OUTSIDE, INSIDE), producing an OUT-IN
(or IN-OUT) transition.

Table 3 displays all possible OUTSIDE – BORDER
transitions. Again, the transitions BORDER-OUTSIDE,
INSIDE – BORDER or BORDER - INSIDE, are similar.
These transitions produce a simplex of higher dimensionality
(1-simplex) as the normal cases in Table 1.

IN
Region

OUT
 Region

(a)

OUT-
OUT

B
B-Rep

OUT-
IN

(b)

Figure 5 : (a) Solid angle neigborhood of a vertex. (b)
Subdivision of the solid angle neigborhood.

Table 4 displays all possible BORDER – BORDER transitions.
To classify them, dimensionalities of the three simplexes
involved are recognised: (i) the simplex in which the half-ray is
initially embedded, (ii) the simplex hit by the half-ray in the
transition, and (iii) the terminal simplex of the half-ray
transition.  Strictly speaking, the transitions in Table 4 may
belong to INSIDE-INSIDE ones. However, for the purposes of
programming, it is more convenient to refer to them as
exceptions, and to set the algorithms to act as facing
exceptional situations.

Dim. of
Simplex
whose
interior is
hit by the
half-ray

Intersection
dimension

Figure

0 1 0-simplex

1-simplex

1 1 1-simplex

1-simplex

Table 3 : OUTSIDE – BORDER Transitions.

Dims. of
(i) Initial Embedding, (ii)
Entering Topology (iii)
Final Embedding:

Figure

2
1
2

1-simplex

2-simplex

2-simplex

2
0
1

2-simplex

0-simplex

1-simplex

1
0
2

1-simplex

0-simplex

2-simplex

1
0
1

1-simplex

0-simplex

1-simplex

Table 4 : BORDER - BORDER Transitions

3.4 – Face Construction for NIOi,j,k

The boundaries Bi,j,k are formed by two types of faces: (i) the
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ones lying on faces H of Ci,j,k , and (ii) the ones lying on faces
F of the B-Rep B.  Faces of type (i) are parallel to the
coordinate planes, and are calculated first, by the automaton.
The faces of type (ii) are then calculated to complement the
ones in (i), closing the manifold Bi,j,k .

OUTSIDE
(wait)

INSIDE
(form NIO

face)

λ* λ=λ1 λ/λ*

FACE
CLOSED

(done)

λ=λ1

Figure 6 : Automaton for building an orthogonal (H) face of a
Bi,j,k .

3.4.1 - Orthogonal Face Construction

The construction of type H faces follows the automaton
illustrated in Figure 6: the half-ray starts OUTSIDE of B.
While only events of the type λ* (Fixed Grid divisions) occur,
the half-ray stays outside of B. As the first transition of type λ
is found, an H face of the NIO cell has to be formed. The
automaton finds successive λ or λ* events, which determine
successive edges of the face under construction.

In the presence of the situation depicted in Figure 7 this
automaton would act as follows:  as the transition λ=λ1 (
OUTSIDE - INSIDE ) is recorded, the automaton starts
building a face normal to vector n, lying on plane ΠΠΠΠXY (in this
case), with counterclockwise sense (since we assume only
outer loops in the faces of Bi,j,k ). The automaton finds
successive λ events against faces Fi1, Fi2, Fi3, of the B-Rep or
λ* events against planes H+

XZ ,H-
XZ , H+

ZY , H-
ZY . When λ1 is

found again, the face is closed.

λ1 λ2

λ3
λ4

λ5

λ6
λ7

λ8

λ9λ*10

λ15

λ11 λ12λ13
λ14

n=w

Fi1 Fi2

 H+
YZ (halfspace

plane)

H+
XZ

Fi3

ΠΠΠΠXY=[ p , n ]
H-

YZ

H -XZ

X
Y

Z

Figure 7 : Events Determining a Face Boundary

3.4.2 - Non- Orthogonal Face Construction

Figure 8 displays a NIO cell, which is mainly filled up in the
upper part. The automaton (Figure 6) for the orthogonal faces
of Bi,j,k delivers faces in the form of sequences of events. For
instance F+

XY = [λ1 ,λ2 ,...,λ9 ] (Figure 7). These faces lie on
planes H+

XZ , H-
XZ , H+

ZY , H-
ZY , H+

XY  and H-
XY . However,

these faces do not close the 2-manifold Bi,j,k .

λ1 λ2 λ3 λ4
λ5

λ6λ7

λ8

λ9

λ iλ jλk

Figure 8 : Triangulation of Cell B-Rep outside the
orthogonal face F+

XY=[ λ1 , λ2 , λ3 , ..., λ9 ].

The portion corresponding to F = [λ1 ,λk ,λj , λi ,λ3 , λ2 ] is still
missing, and it is not a planar face (Figure 8). On the other
hand, the information of which of these faces are present is
retrieved from the B-Rep B. With this B-Rep information,
the sequence F is ( for this example ) divided into F1 = [λ1 ,
λk , λj, λ2 ] and F2 = [λj , λi , λ3 , λ2 ], which correspond to
planar, non-triangular faces. A triangulation then renders [λ1,
λk, λj ], [λ1, λj, λ2 ] ,[λj, λi, λ3 ] and [λj, λ3, λ2 ] as the non –
orthogonal faces.

λ1

λ2

λ3

λ4

λ5

λ6

λ1

λ5

λ6

λ2

λ3

λ4
Bi,j,k Bi,j,k+1

H +XY H -XY

Figure 9 : Borrowing of loops contained in orthogonal
between neighboring cells.

3.6.3 – Face Sharing between NIOi,j,k B-Reps.

Figure 9 shows that faces lying on planes H+
XZ , H-

XZ , H+
ZY ,

H-
ZY , H+

XY and H-
XY need to be calculated only once in

consecutive Bi,j,k B-Reps, since they are the inversion of
each other in neighboring Ci,j,k cells. Bi,j,k and Bi,j,k+1 share
the orthogonal faces H+

XY = [λ1, λ2, λ3, λ4, λ5, λ6 ] and H-
XY =

[λ6, λ5, λ4, λ3, λ2, λ1 ].

4- Results

Figure 10 shows the immersion of the Vertebra data set in
the Fixed Grid, using the methodology just presented. The B-
Rep input data set was produced in VRML format in the
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DigitLAB software ( [12,13] ), from a 3D slice contact
digitization of a cow vertebra.

The file was converted to OOF format, appropriate for the
CGAL library ([14,15]). All algorithms described here were
programmed on CGAL . The test of inclusion in solid angles (
Figure 5 ) is already implemented in CGAL. The arrows and
icons appearing in Figure 10 correspond to force and cinematic
constraints, respectively, specified on the vertebra.

Figure 10 : Immersion of the Vertebra Model in a Fixed Grid

Figure 11 presents the corresponding immersion of a piston
data set. Again, constraints such as force, pressure and position
were added. The linear system for the computational
mechanics problem was solved with the software X-BLUE (see
[1,2]). One of the resulting vector fields (deformation) is
displayed in Figure 12. The results of the X-BLUE solution of
the system were found to be equal to the ones produced by the
ANSYS FEA software. As this article refers to the geometric
and topological aspects of the modelling for FEA Meshless
Methods, the intricacies of the numerical solution and the
extrapolation of boundary conditions for the Fixed Grid
method may be found in [11,16].

Figure 11 : Immersion of the Piston Model in a Fixed Grid

5- Applications in Product Design and
Manufacturing

In [17, 18, 19, 20] the Computational Mechanics algorithms
(Fixed Grid for FEA), lack a geometrical counterpart for
building the immersion of S into the FG. This geometrical
counterpart is the main subject of this paper. In the present
section the application in Computational Mechanics of  this
immersion process is discussed.

Figure 12 : Result of Deformation in the Piston data set, as
calculated by the Fixed Grid method.

5.1 – Structural Optimization

Figure 13 shows a data flow diagram of the application of the
immersion algorithm just discussed, in the context of
Structural Optimization (presented in depth in sequel
publications). A valid Boundary Representation of a solid, in
triangular facet format is immersed in the Fixed Grid. In
particular, the NIO cells are built. The B-Rep is accompanied
by the kinematic and dynamic boundary conditions imposed
by the problem at hand. The shell immersion gives as a result
a set of equations of the type  A.x = B obtained by using the
X-BLUE software (see [1, 2, 7, 8]).  They are then solved
rendering the behavior of S (stress, strain, pressure,
temperature, velocity, etc.) under the prescribed loads or
constraints.

DONE ?
YESNO

Triangle
Geometry +
Constraints

solverImmersion
of S in FG

A.x=B system

Geometric
Optimization

Facetted
Geometry

TESTED
OPTIMIZED
DESIGN

FACETED
DATA
Constrained
Triangulation

Triangle Geometry
+ Constraints

•  Stress
•  Strain
•  Pressure
•  Term.
•  Fields

pose
Ax=B

X-BLUE

Figure 13 : Generic Optimized Analysis

Visualization and numerical evaluation steps allow the
designer to define whether the object stands the tests. In
negative case, or if a performance criterion is not yet
satisfied, an optimization module takes control.
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5.2 – Geometric Optimization

At the present time, the optimization step is performed as
explained in [17] and displayed in Figure 14: a numerical
performance criterion, fp( ) is proposed by the designer. This
grading function depends on the geometric features of the
current model (volume, weight, area, inertia, etc), and its
performance under working conditions, expressed by the scalar
fields (strain, stress, temperature, pressure, etc.). After an
individual Bi is examined with this criterion and found
unsatisfactory, a new individual, Bi+1, is generated. These
generated individuals are again immersed in the Fixed Grid,
analyzed (by X-BLUE or other FEA software) and evaluated
under the performance criterion. The procedure for generating
new objects varies. Some alternatives are: (i) small geometric
perturbations on Bi are introduced, such that the topology of Bi
is respected. The objects Bi and Bi+1 differ in that one of them
may be thinner than the other in particular neighborhoods.
However, topological properties (such as genera) are
conserved. (ii) topological perturbations are generated by lego-
like elementary changes. This is the case presented in [17]
where the authors use Genetic Algorithms. The topology of the
objects Bi and Bi+1 may differ significantly (for example, they
may have different genera). (iii) large geometrical
perturbations are generated leading to significant topological
changes. Although this approach traverses rapidly towards
optimization, it generates at each step large numbers of
topologically unfeasible objects, which must be detected and
corrected. Due to its algorithmic difficulty, it is still in
experimental stages. In any of (i), (ii) or (iii), steering from the
user is advisable.

Evaluate Performance
Function fp( )

[ B0 , S0 ]:
Geometric Model + Scalar
Fields (stress, strain, etc.)

YES: Stop
Search

NO

next Design by Perturbation

Bi: Current
Geometric Model

Ba :User Input

Bi+1: Current Geometric Model

fp(  Bi , Si ) above
required level?

Figure 14 - Geometric Optimization

The prediction of the behavior of a piece under working
conditions has applications, not only in the obvious realm of
product design, but also in the area of virtual and augmented
reality, as the differential equations solved correspond to the
modelling of the situation, under the laws of fluid mechanics,
chemistry, solid mechanics, thermodynamics, etc. If the
relevant differential equations can be solved for a certain
scenario, then the phenomenon might be displayed in Virtual
and Augmented Reality environments.

6- Conclusions

Geometric Modelling, Data Export and Import, and Meshing
occupy more than 98% of the resources used in Finite
Element Analysis. Numerical solution of the A.x=B linear
system, visualisation, etc. occupy the remaining 2%. The
actual numerical solution of the differential equations via
Linear or Non-Linear solvers appear to be possible only after
considerable struggle with the geometric aspects of FEA.
Therefore, any effort in lowering such problems would
positively impact the industrial practice. Immersion of B-
Reps into Fixed Grids collaborates in these efforts, because it
avoids the back-and-forth geometrical exchange, as the
immersion may be performed by simply clipping NIO
elements that are non-operative. On the other hand, since
NIO elements present properties proportional to the occupied
volume, the solving algorithm tolerates inaccuracies in the
geometrical representation. These considerations make
research on Fixed Grid methods attractive for the early stages
of industrial product design.

The aspects of geometric and topological modelling of
Boundary Representations of the NIOi,j,k portions of a solid S
immersed in a Fixed Grid FG are discussed, and their results
are presented in this paper. The operation of intersecting the
solid S with the cell Ci,j,k of the Fixed Grid and calculating its
B-Rep NIOi,j,k are accelerated by (i) assuming a small
enough cell size, which precludes unconnected boundaries
(in faces or loops) for the NIOi,j,k, (ii) taking advantage of the
convexity of the Ci,j,k cells, and (iii) assuming a uniform cell
size across the whole Fixed Grid. The programming was
aimed to extend the X-BLUE software (for meshless FEA)
developed in the CAD CAM CAE Laboratory at EAFIT
University. The initial B-Reps produced and quality-
controlled by using the DigitLAB software (Digitization Lab.
[12 , 13]), were developed in the same research unit.

Future improvements are planned by introducing Quadtree
methods in order to lower the number of Ci,j,k cells to be
generated. The advantage of lowering the time and space
complexity, however, must be enabled by a larger investment
in the difficulty of the algorithm.

Acknowledgements

This research was performed with the support of the
Colombian Council for Science and Technology
(Colciencias) and EAFIT University. Other contributors to
these results along its development are: the Fraunhofer
Institute for Computer Graphics (Drs. Rix, Sakas, Stork,
Darmstadt, Germany), the Max Planck Institute für
Informatik (Drs. Mehlhorn, Kettner, Saarbücken, Germany,
participants of the CGAL project), University of Vigo (Prof.
Xoan Leiceaga) and University of Sidney (Prof. Steven).
Special recognition is granted to Prof. Dr. Eng. Manuel
García and his assistants Luis M. Ruiz and Miguel Henao of
EAFIT University, for their contribution to the results
exhibited in Figure 12. Further expansion in the solution
modules of the X-BLUE software are the subject of cited
past and future publications.
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