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Glossary

Metric space: A metric space is a set endowed with a concept of distance

among its elements (see definition 2).

Topological space: A topological space is a set X together with a collection

of subsets, called open sets, such that X and ∅ are open, and arbitrary

unions and finite intersections of open sets are open (see definition 21).

n-manifold: An n-manifold is a Hausdorff, 2nd-countable topological space

where the neighborhood of each point is homeomorphic to Rn (see

definition 43).

n-manifold with boundary: An n-manifold with boundary is a Hausdorff,

2nd-countable topological space so that each point has a neighborhood

homeomorphic to either Rn or to the closed upper half-space Rn
+ =

{(x1, . . . , xn) ∈ Rn : xn ≥ 0} (see definition 44).

Simplex: A simplex is a subset of Rn which is the convex hull of a set of

affine independent points in Rn (see definition 48).

Simplicial complex: A simplicial complex in Rn is a collection of simplices

in Rn satisfying that any pair either miss each other or intersect along

xi
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a set which is a face of each simplex in the pair (see definition 55).

Polyhedron: A polyhedron is a subset of Rn which is the underlying set of

some simplicial complex in Rn (see definition 62).

Nef polyhedron: A Nef polyhedron is a subset of Rn which can be obtained

from a finite sequence of set operations performed on a finite collection

of half-spaces (see definition 72).

Local adjoined pyramid P x: Let x ∈ Rn and P ⊂ Rn a Nef polyhedron.

Then the local adjoined pyramid P x to P in x is the Nef polyhedron

obtained by taking the union of all rays starting at x and passing

through some point in P sufficiently close to x (see definition 76).

Face (of a Nef Polyhedron) : A face of a Nef polyhedron P ⊂ Rn is a

maximal set of points of Rn (not necessarily in P ) having the same

local adjoined pyramid (see definition 77).

F(P ): Notation for the set of all faces of a given Nef polyhedron P .

Vertex (of a Nef Polyhedron): A vertex of a Nef polyhedron P is a face

of P consisting of one point.

Edge, Facet, Volume (of a Nef Polyhedron): A face of a Nef Polyhe-

dron is termed an edge, a facet or a volume if its dimension is 1, 2 or

3, respectively.

Boundary face (of a Nef Polyhedron) : A face of a Nef polyhedron P ⊂
Rn is said to be a boundary face if its dimension is strictly smaller than

n.
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Lower dimensional face: Synonym for boundary face.

2-skeleton face: A boundary face of a Nef Polyhedron in R3.

Sphere map: A sphere map is a 2D Nef polyhedron embedded on the sur-

face of a sphere, used to represent a local adjoined pyramid P x (see

section 2.6.2).

Svertex, Sedge, Sface: These are abbreviations for a vertex, an edge and

a facet of a Nef polyhedron embedded in a sphere.

SNC structure: A SNC structure is the computational representation of

a 3D Nef polyhedron (see section 2.6.3). The term SNC stands for

“Selective Nef Complex”.

Point location: A point location is a query over a Nef polyhedron P ⊂ R3

performed in order to determine the face of P a given point is in (see

section 2.6.5).

Ray shooting: A ray shooting is a query over a Nef polyhedron P ⊂ R3

performed in order to determine the first boundary face hit by a ray

(see section 2.6.4).

Segment intersection: A segment intersection test is a query over a Nef

polyhedron P ⊂ R3 performed in order to determine the set of edges

and facets of P which are intersected by a line segment.

PLRSSI: Short for “point location, ray shooting and segment intersection”.
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Binary set operations: The binary set operations correspond to the set

operations of union (A ∪ B), intersection (A ∩ B), difference (A \ B)

and symmetric difference (A 	 B).

Spatial subdivision: A spatial subdivision is a partition of the space into

cells.

Kd-tree : A kd-tree is the k-dimensional version of a binary search tree

used to represent a subdivision of Rk using hyper-planes which are

orthogonal to the coordinate axes.

Naive method: The naive method refers to an implementation of the PLRSSI

queries which only makes use of naive or brute force algorithms.

Kd-tree method: The kd-tree method refers to an implementation of the

PLRSSI queries which makes use of kd-trees in order to improve their

runtime performance.



Chapter 1

Introduction

The object of study of this project are 3D Nef polyhedra. Such objects rep-

resent planar partitions of the space based on a mathematical concept that

allows them to naturally deal with unbounded regions and non-manifold situ-

ations, which are normally not present on common computer based modeling

tools. Nef polyhedra are closed under topological and Boolean operations,

characteristic that also overcomes the domain of normal computer modeling

tools.

The implementation of 3D Nef polyhedra has been developed at the Max-

Planck-Institut für Informatik, Saarbrücken Germany, over the Computa-

tional Geometry Algorithms Library (CGAL). During its development, the

effort was focused on three main concerns: the completeness, exactness and

efficiency of the algorithms. Currently, the issues of completeness and exact-

ness of the algorithms have been successfully addressed, and it is the aim of

this project to address the issue of efficiency.

Since no optimizations have been applied in the implementation of the

1



2 CHAPTER 1. INTRODUCTION

point location, ray shooting and segment intersection processes over 3D Nef

polyhedra, which are vital for the computation of Boolean operations, their

performance become the first target of optimization. By implementing an

especially suited kd-tree for 3D Nef polyhedra, the runtime performance of

such operations will be improved.

Generic programming and literate programming [Knu84] were the metho-

dologies that guided the development of this project. The literate program-

ming philosophy emphasize on a documentation process that focuses on the

direct transmission to other human beings of the ideas and concepts applied

during the software development process, rather than in a code centered de-

velopment. In the other hand, the generic programming paradigm looks for

designing generic algorithms and data structures which can be parameterized

by the types of objects and operations they use, leading to highly reusable

software implementations.

The student Miguel Granados has been working at the CAD/CAM/CAE

Laboratory at the EAFIT University, leaded by the Prof. Dr. Oscar Ruiz,

since 2000. In 2002, he was granted a six month fellowship at the Max-

Planck-Institut für Informatik, Germany, on the Algorithms and Complexity

group leaded by the Prof. Dr. Kurt Mehlhorn. There, he worked on the

implementation of the 3D Nef polyhedra package under the supervision of

the Dr. Lutz Kettner, coordinator of the Software Systems research area.

In 2003, he granted a second fellowship for developing his undergrad thesis

project in the optimization of Boolean operations over 3D Nef polyhedra,

work that was continued at the EAFIT University until the moment under

the supervision of the Prof. Dr. Oscar Ruiz.



Chapter 2

Conceptual Basis

2.1 Metric spaces

Definition 1 (Metric) Let X be an non-empty set. A metric on X is a

function d :X×X →R which satisfies the following conditions for each pair

x, y ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇔ x = y

3. d(x, y) = d(y, x) (symmetry).

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

The number d(x, y) is called the distance between x and y.

Definition 2 (Metric space) A metric space consists of a pair (X, d) where

X is a non-empty set and d is a metric for X. Whenever it makes no con-

fusion, a metric space (X, d) is denoted by its underlying set X.

3



4 CHAPTER 2. CONCEPTUAL BASIS

Usually, an element x ∈ X is referred as a point of the metric space

(X, d).

The examples presented below show that a metric can be defined for any

non-empty set, regardless whether its elements are numbers or any other kind

of objects.

1. Let X be an arbitrary non-empty set, and d a function defined by

d(x, y) =







0 if x = y

1 if x 6= y

This definition yields to the metric space (X, d) since d satisfies the

conditions of a metric. The metric d is called the discrete metric on X.

2. Let n ≥ 1 be an integer, and let Rn = {(x1, x2, . . . , xn) : xi ∈ R}. The

function

d(x, y) =
√

|x1 − y1|2 + |x2 − y2|2 + · · ·+ |xn − yn|2

defines a metric for Rn.

R0 is defined as a set {O} with a single element.

3. Let X = {f : [0, 1] → R : f is a continuous function}. The function

d(f(x), g(x)) = max(f(x), g(x)) for x ∈ [0, 1], defines a metric on X.

4. Let X = {a, b, c, d, e, f}, and d a function defined by the following

table:
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d(x, y) a b c d e f

a 0 3 2 3 4 4

b 3 0 1 1 3 1

c 2 1 0 1 4 2

d 3 1 1 0 3 1

e 4 3 4 3 0 2

f 4 1 2 1 2 0

It can be verified that the function d : X → Z+ defines a metric on X

since it satisfies the three conditions of a metric.

Definition 3 (Open ball) Let (X, d) a metric space. Let x0 ∈ X and r >

0. The open ball with center x0 and radius r is the subset of X defined by

Br(x0) = {x : d(x, x0) < r}.

In the latter example, the open ball B4(a) is the set {a, b, c, d} which

include all the points at distance from a strictly smaller than 4, and the

open ball B1(b) is the single point b.

Definition 4 (Open set) Given a metric space X, a set G ⊂ X is said to

be open if for each x ∈ G there exists a rx > 0 such that Brx
(x) ⊂ G.

Given a metric space X, the following predicates regarding open sets are

satisfied:

1. The empty set ∅ and the full space X are open sets.

2. The union of an arbitrary collection of open sets in X is open.
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3. The intersection of a finite collection of open sets in X is open.

Definition 5 (Interior) Let be X a metric space, and let A ⊂ X. A point

x ∈ A is called an interior point of A if

(∃r > 0)(Br(x) ⊂ A).

The interior of A, denoted by Int(A), is the set defined by all the interior

points of A.

The basic properties of the interior operation are the following:

1. Int(A) ⊂ A.

2. Int(A) is an open set.

3. A is an open set ⇔ A = Int(A).

4. Int(A) =
⋃

i Gi, where Gi ⊂ A and Gi is open, i.e. Int(A) is the largest

open subset of A.

For example, the interior of the half-open interval [0, 1) ⊂ R is the open

interval (0, 1).

Definition 6 (Limit point) Let X be a metric space and A ⊂ X. A point

x ∈ X is called a limit point of A if

(∀r > 0)(∃w ∈ Br(x))(w ∈ A ∧ w 6= x))

For example, the limit points of the interval [−1, 0) ⊂ R are all the points

in the interval and 0. As another example, the set {1/n : n ∈ N} ⊂ R has

0 as a limit point, and it is not in the set. Furthermore, 0 is its only limit

point.
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Definition 7 (Closed set) Let X be a metric space. A set F ⊂ X is said

to be a closed set if it contains each one of its limits points.

For example, the interval [−1, 0) ⊂ R is not a closed set since it does not

contain the limit point 0.

As another example, let X be a non-empty set, and x ∈ X. Under the

discrete metric, the closed ball Br[x] = {x} when r < 1, and Br[x] = X

when r ≥ 1.

Definition 8 (Closed ball) Let (X, d) be a metric space, x0 ∈ X and r >

0. The closed ball Br[x0] with center x0 and radius r is defined by

Br[x0] = {x : d(x, x0) ≤ r}.

Given a metric space X, the following predicates regarding closed sets

are satisfied:

1. The empty set ∅ and the full space X are closed sets.

2. F ⊂ X is closed ⇔ F ′ is open.

3. The intersection of an arbitrary collection of closed sets in X is closed.

4. The union of a finite collection of closed sets in X is closed.

Definition 9 (Closure) Let X be a metric space and A ⊂ X. The closure

of A, denoted by Cl(A) or Ā, is defined as the union of A and the set of all

its limit points.

The basic properties of the closure operation are the following:
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1. A ⊂ Cl(A).

2. Cl(A) is a closed set.

3. A is a closed set ⇔ A = Cl(A).

4. Cl(A) =
⋂

i Fi, where A ⊂ Fi and Fi is closed, i.e. Cl(A) is the smallest

closed superset of A.

For example, the closure of the half-open interval [0, 1) ⊂ R is [0, 1], the

closure of the set [0, 1) ∪ (1, 2) ∪ (2, 3] ⊂ R is the closed interval [0, 3], and

the closure of the set of rational numbers is the reals, i.e. Q̄ = R.

Definition 10 (Boundary) Let X be a metric space and A ⊂ X. A point

x ∈ A is called a boundary point of A if

(∀r > 0)(Br(x) ∩ A 6= ∅ ∧ Br(x) ∩ A′ 6= ∅)

The boundary of A, denoted by Bd(A), is the set of all of its boundary points.

The boundary operation has the following properties:

1. Bd(A) = Cl(A) ∩ Cl(A′).

2. Bd(A) is a closed set.

3. A is closed ⇔ Bd(A) ⊂ A.

4. Int(A) ∩ Bd(A) = ∅.

5. X = Int(A) ∪ Bd(A) ∪ Int(A′), and these sets are pairwise disjoint.
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(a) A (b) Int(A) (c) Cl(A) (d) Bd(A)

Figure 2.1: Example of the interior, closure and boundary of a set A ⊂ R2

In figure 2.1, a subset A of R2 is depicted together with its corresponding

interior, closure and boundary. There, heavy lines and shadowed regions

denote points belonging to A and dashed lines and white regions denote sets

of points not belonging to A.

As another example, let A be a half-closed line segment in the plane.

There, Bd(A) = Cl(A) and Int(A) = ∅.

Definition 11 (Convergence) Let (X, d) be a metric space, and let

{xn} = {x1, x2, . . . , xn, . . .}

be a sequence of points in X. The sequence {xn} is convergent if

1. (∃x ∈ X)(∀ε > 0)(∃n0 ∈ Z+)(n ≥ n0 ⇒ d(xn, x) < ε) or equivalently,

2. (∃x ∈ X)(∀ε > 0)(∃n0 ∈ Z+)(n ≥ n0 ⇒ xn ∈ Bε(x)).

The point x is called the limit of the sequence {xn} and it is denoted by

lim xn = x.

If a sequence has a limit point it is unique. This justifies the last sentence

in the previous definition.
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Definition 12 (Continuous mapping) Let (X, dx) and (Y, dy) be metric

spaces and f :X→Y . f is said to be continuous at a point x0 ∈ X if either

1. (∀ε > 0)(∃δ > 0)(∀x ∈ X)(dX(x, x0) < δ ⇒ dY (f(x), f(x0)) < ε), or

equivalently

2. (∀ε > 0)(∃δ > 0)(∀x ∈ X)(f(Bδ(x0)) ⊂ Bε(f(x0))).

The mapping f :X →Y is said to be continuous if it is continuous at every

point of X.

2.2 Euclidean space

Definition 13 (Addition and scalar multiplication in Rn) The addition

and scalar multiplication are defined by

x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

αx = (αx1, αx2, . . . , αxn).

for each x, y ∈ Rn, and α ∈ R.

It is easy to see that the addition and the scalar multiplication satisfy the

following properties:

1. x + y = y + x

2. x + (y + z) = (x + y) + z

3. There is an element O in Rn such that x + O = x for each x ∈ Rn.

4. For each x ∈ Rn there exists an element −x such that x + (−x) = O.
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5. α(x + y) = αx + αy

6. (α + β)x = αx + βx

7. (αβ)x = α(βx)

8. 1 · x = x

Definition 14 (Euclidean norm) Let x = (x1, x2, . . . , xn) ∈ Rn. The Eu-

clidean norm on Rn, denoted by ‖x‖, is defined by

‖x‖ =
√

|x1|2 + |x2|2 + · · ·+ |xn|2

Definition 15 (Euclidean distance) Let x, y ∈ Rn. The Euclidean dis-

tance between x and y is defined as ‖x − y‖.

Definition 16 (n-dimensional Euclidean space) Let be n a positive in-

teger. Rn normed with the Euclidean norm is called the n-dimensional Eu-

clidean space.

Definition 17 (Subspace of Rn) . Let S ⊂ Rn be non-empty. S is said

to be a subspace of Rn if it is closed under addition and scalar multiplication.

More precisely, the following two conditions hold:

1. u, v ∈ S ⇒ u + v ∈ S

2. λ ∈ R, u ∈ S ⇒ λu ∈ S

Conditions 1 and 2 guarantee that addition and scalar multiplication re-

strict as internal operations of S. It can be verified that S together with

addition and multiplication by scalar satisfies the same eight properties ad-

dition and scalar multiplication satisfy in Rn.
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Definition 18 (Affine subspace of Rn) Let S ⊂ Rn. S is said to be an

affine subspace of Rn if for some fixed element s0 ∈ S (and therefore for any)

the set {s − s0 : s ∈ S} is a subspace of Rn.

Definition 19 (Dimension of a affine subspace of Rn) Let S ⊂ Rn be

an affine subspace. The dimension of S, denoted by dim(S), is defined as the

dimension of the subspace {s − s0 : s ∈ S} for any s0 ∈ S.

Remember that the dimension of a subspace of Rn is the number of ele-

ments in any of its bases.

2.3 Point-set topology

Definition 20 (Topology) Let X be a non-empty set. A collection T of

subsets of X is called a topology if it satisfies the following three conditions:

1. ∅ ∈ T and X ∈ T .

2. The union of an arbitrary collection of sets in T is also in T , or equiv-

alently, if {Ui : i ∈ I} is a collection such that Ui ∈ T for each i ∈ I,

then (∪i∈IUi) ∈ T .

3. The intersection of a finite collection of sets in T is also in T , or

equivalently if {Ui : i ∈ I} is a collection such that Ui ∈ T for each

i ∈ I, then (∩i∈IUi) ∈ T .

Definition 21 (Topological space) Let X be a non-empty set, and T a

topology for X. The pair (X, T ) is called a topological space.
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An element x of a topological space X is usually referred as a point of

X. Whenever it makes no confusion, a topological space (X, T ) is denoted

by its underlying set X.

Definition 22 (Open set in a topological space) Let (X, T ) be a topo-

logical space. A set U ∈ T is called an open set.

Definition 23 (Closed set in a topological space) Let X be a topolog-

ical space. A set A ⊂ X whose complement A′ is open is called a closed

set.

Closed sets have the following properties:

1. ∅ and X are closed sets.

2. The intersection of closed sets in X is closed.

3. Any finite union of closed sets in X is closed.

For example, let X be the set

X = {a, b, c},

and let

T = {∅, X, {a}, {b}, {a, b}}.

It can be verified that T is a topology on X.

The elements ∅ and X of T are mutually complementary and both are

open sets. The complements of the open sets {a}, {b}, {a, b} are {b, c},
{a, c}, {c} respectively. By definition, these are closed sets of X.

The following two definitions serve as examples of topological spaces.
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Definition 24 (Usual topology of a metric space) Let X be a metric

space, and let T be the collection of all subsets of X which are open sets in

the sense of metric spaces. The set T defines a topology on X and it is called

the usual topology on X.

For example, the usual topology on the n-dimensional Euclidean space is

given by the sets which are open according to the Euclidean distance.

Definition 25 (Discrete topology) Let X be a non-empty set, and let T
be the collection of all subsets of X. The collection T is a topology and it is

called the discrete topology on X, and the topological space (X, T ) is called

a discrete space.

For example, let X be a non-empty, and let

d(x, y) =







0 if x = y

1 if x 6= y

be a metric for X. This metric space induces a discrete topology on X. In

contrast, the collection {∅, X} also defines a topology on X.

Definition 26 (Relative subspace) Let (X, TX) be a topological space, and

let Y ⊂ X be a non-empty set. The relative topology TY on Y is defined by

TY = {G = Y ∩ U : U ∈ TX}.

The topological space (Y, TY ) is called a subspace of X.

For example, suppose the topological space [0, 1] defined as a subspace of

R. In this space, the interval [0, 1
2
) is an open set.



2.3. POINT-SET TOPOLOGY 15

Definition 27 (Homeomorphism) Let (X, TX), (Y, TY ) be topological spaces,

and let f : X→Y . f is called an open mapping if

(∀G ∈ TX)(f(G) ∈ TY ),

and f is called a continuous mapping if

(∀H ∈ TY )(f−1(H) ∈ TX).

The mapping f is called a homeomorphism if

1. f is a bijection,

2. f is an open mapping and

3. f is a continuous mapping.

or equivalently

1. f is a bijection,

2’. f is a continuous mapping and

3’. f−1 is a continuous mapping.

A function f of a set A is defined by f(A) = {y : ∃x ∈ A with f(x) = y}.
The inverse function f−1(A) is defined by f−1(A) = {x ∈ B : f(x) ∈ A}.

Definition 28 (Homeomorphic) Let X, Y be topological spaces. X and Y

are said to be homeomorphic if there exists a homeomorphism from X to Y .

Definition 29 (Topological property) Let X be a topological space. Any

property of X is said to be a topological property if it is possessed by every

Y homeomorphic to X.
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For example, if X is compact and Y is homeomorphic to X, then Y is

compact as well. The properties of being connected or Hausdorff are also

examples of topological properties. Those properties will be defined later in

this section.

Definition 30 (Closure in topological spaces) Let X be a topological space,

and A ⊂ X. The closure of A, denoted by Cl(A) or Ā, is defined by

Cl(A) =
⋂

i Gi, where A ⊂ Gi and Gi is a closed set of X.

Definition 31 (Interior in topological spaces) Let X be a topological space,

and A ⊂ X. The interior of A, denoted by Int(A), is the open set defined

by Int(A) =
⋃

i Gi, where Gi ⊂ A and Gi is an open set of X. Any point

x ∈ Int(A) is called an interior point of A.

Definition 32 (Boundary in topological spaces) Let X be a topological

space, and A ⊂ X. The boundary of A, denoted by Bd(A), is the closed

set defined by Bd(A) = Cl(A) ∩ Cl(A′). Any point x ∈ Bd(A) is called a

boundary point of A.

In figure 2.1, the interior, closure and boundary of a subset of R2 under

its usual topology as a metric space are displayed.

Definition 33 (Open cover) Let X be a topological space. A collection

{Gi : Gi is an open set of X}

is called an open cover if
⋃

i

Gi = X
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For example, the set {(0, 1/n) : n ∈ Z+} is an open cover for the interval

(0, 1) as a subspace of R.

Definition 34 (Subcover) Let C be an open cover of X. A sub-collection

S ⊂ C is called a subcover if it is also an open cover.

Definition 35 (Compact space) Let X be a topological space. X is called

a compact space if every open cover of X has a finite subcover.

Roughly speaking, a compact space X is a topological space for which any

collection of open subsets of X whose union is X has a finite sub-collection

whose union is also X.

For instance, every closed interval of the real line is compact. This fact

is known as the Heine-Borel theorem. Furthermore, a subset X ⊂ Rn is

compact if and only if it is closed and bounded.

Definition 36 (Neighborhood of a point) Let X be a topological space,

and x ∈ X. Any open set U ⊂ X containing x is called a neighborhood of

the point x.

Definition 37 (Open base) Let X be a topological space. An open base

for X is a collection of open sets such that every open set of X can be ex-

pressed as the union of sets in this collection. Equivalently, an open base is

a collection of open sets of X such that for every open set G containing a

point x there exists a set U in the open base such that x ∈ U and U ⊂ G.

The sets in an open base are referred as basic open sets. The fact that B
is an open base for a topological space X is expressed by saying that X is
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generated by B. For example, in a metric space the set of all open balls is an

open base for the space.

Definition 38 (Second countable space) Let X be a topological space.

X is a second countable space if it has a countable open base.

For example, the real line R has a countable open base given by the set

of all open intervals (a, b) with rational end points.

Definition 39 (Hausdorff space) A Hausdorff (or T2-space) is a topolog-

ical space in which each pair of distinct points have disjoint neighborhoods.

The set X = {a, b, c} with the topology T = {∅, {a}, {b}, {a, b}, X} is an

example of a topological space which is not Hausdorff since the points a and

c have no disjoint neighborhoods.

All metric spaces with the usual topology constitute examples of topo-

logical spaces which are Hausdorff.

Definition 40 (Connected space) A connected space is a topological space

which cannot be expressed as the union of two disjoint non-empty open sets.

For instance, every interval in R as a subspace of R and the n-dimensional

Euclidean space are examples of connected spaces.

Definition 41 (Connected subspace) A connected subspace of X is a

subspace of X which is itself connected.

Definition 42 (Component) Let X be a topological space. A component

of X is a connected subspace which is not properly contained in any other

connected subspace of X.
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For instance, every connected space has a single component which is

the space itself. In the other hand, in every discrete space each point is a

component.

As an example, let Y denote the subspace [−1, 0) ∪ (0, 1] of R. The sub-

space Y is not connected, and the sets [−1, 0) and (0, 1] are its components.

Definition 43 (n-manifold) Let n ≥ 0 be an integer. An n-manifold (or

manifold of dimension n) is a second-countable Hausdorff topological space

where each point has a neighborhood homeomorphic to Rn.

Definition 44 (n-manifold with boundary) Let n ≥ 0 be an integer. An

n-manifold with boundary is a second-countable Hausdorff topological space

where each point has a neighborhood homeomorphic to either Rn or to the

closed upper half-space Rn
+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0} (by convention

R0
+ = R0). The set of all points in an n-manifold with boundary M , having a

neighborhood homeomorphic to the closed upper half-space Rn
+ is well defined

and it is called the boundary of M . It is usually denoted by ∂M .

Figure 2.2 shows examples of closed upper half-spaces of dimension 1 and

2.

It is easy to see that the boundary of a n-manifold with boundary is an

(n − 1)-manifold without boundary. Notice that an n-manifold is just an

n-manifold with boundary whose boundary is empty.

Definition 45 (Open manifold) An open manifold is a non-compact ma-

nifold without boundary.

Definition 46 (Closed manifold) A closed manifold is a compact mani-

fold without boundary.
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Figure 2.2: Examples closed upper half-spaces

The following topological spaces are examples of manifolds:

1. Any countable discrete topological space is a 0-manifold.

2. Let n ≥ 1 be an integer. The subspace of Rn

Sn−1 = {x ∈ Rn : ‖x‖ = 1}

is an (n − 1)-manifold.

3. Let n ≥ 1 be an integer. The subspace of Rn

Bn = {x ∈ Rn : ‖x‖ ≤ 1}

is an n-manifold with boundary. It can be seen that ∂Bn = Sn−1.

4. Let n ≥ 1 be an integer. The subspace of Rn

Hn−1 = {x ∈ Rn : ‖x‖ = 1 and x1 ≥ 0}
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is an (n − 1)-manifold with boundary. It can be seen that

∂Hn−1 = {x ∈ Rn : ‖x‖ = 1 and x1 = 0},

and that this subspace is homeomorphic to Sn−2.

5. Let n ≥ 2 be an integer. The subspace of Rn

Qn−1 = {x = (x1, . . . , xn) ∈ Rn : ‖x‖ = 1, x1 ≥ 0 and x2 ≥ 0}

is an (n − 1)-manifold with boundary. It is easy to see that

∂Qn−1 = {x = (x1, . . . , xn) ∈ Rn : ‖x‖ = 1 and x1 · x2 = 0)}.

6. Let a1 = (1, 0, 0), a2 = (0, 1, 0) and a3 = (0, 0, 1). The subspace of R3

T = {λ1a1 + λ2a2 + λ3a3 : λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 1}

is a 2-manifold with boundary. It can be seen that

∂T = {λ1a1 + λ2a2 + λ3a3 :λ1, λ2, λ3 ≥ 0 and

λ1 + λ2 + λ3 = 1 and λ1 · λ2 · λ3 = 0}.

2.4 PL-category (Piecewise-linear category)

In order to define the building blocks of PL-objects (piecewise-linear objects)

the following technical condition is required.

Definition 47 (Affine independence) Let A = {a0, a1, . . . , an} be a set

of n + 1 points in RN . A is said to be affine independent or geometrically

independent if it does not exist a affine hyperplane of dimension n − 1 con-

taining all the points in A.
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a0

(a) 0-simplex

a0 a1

(b) 1-simplex

a0 a1

a2

(c) 2-simplex

a0 a1

a2

a3

(d) 3-simplex

Figure 2.3: Examples of simplices in R3

Definition 48 (Simplex) Let A = {a0, . . . , an} be a set of affine indepen-

dent points in RN . The n-dimensional geometric simplex or n-simplex σ

spanned by A is the set of all points x ∈ RN such that

x =
n∑

i=0

λiai, where
n∑

i=0

λi = 1

and λi ≥ 0 for i ∈ {0, . . . , n}. The set of reals λi are called the barycentric

coordinates of x.

The simplex σ spanned by {a0, . . . , an} it is denoted by σ = 〈{a0, . . . , an}〉.

As displayed on figure 2.3, 0-simplices are points, 1-simplices are seg-

ments, 2-simplices are triangular regions and 3-simplices are solid tetrahedra.

Every simplex σ in RN satisfies the following properties:

1. σ is a convex set.

2. σ is a compact set in RN , i.e. the line segment in RN connecting any

pair of points of σ lies in σ.

3. There is one and only one affine independent set of points in RN span-

ning σ.
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Definition 49 (Vertex) Let σ be a n-simplex in RN . The points a0, a1, . . . , an

spanning σ are called the vertices of σ.

Definition 50 (Face) Let σ be a n-simplex in RN spanned by {a0, a1, . . . , an}.
Any simplex spanned by a subset of {a0, a1, . . . , an} is called a face of σ.

For example, let σ = 〈{a0, a1, a2}〉 be a 2-simplex in some RN . The

faces of σ are σ itself, the 1-simplices 〈{a0, a1}〉, 〈{a1, a2}〉, 〈{a0, a2}〉 and

the 0-simplices 〈{a0}〉, 〈{a1}〉, 〈{a2}〉.

Definition 51 (Proper face) Let σ be a n-simplex in RN . The faces of σ

other than σ itself are called the proper faces of σ.

Definition 52 (Boundary of a simplex) Let σ be a n-simplex in RN . The

boundary of σ, denoted by Bd(σ), is the union of all the proper faces of σ.

Definition 53 (Interior of a simplex) Let σ be a n-simplex in RN . The

interior of σ, denoted by Int(σ), is the set defined by Int(σ) = σ − Bd(σ).

The set Int(σ) is called an open simplex.

Definition 54 (Properly joined) Two simplices σ1, σ2 are properly joined

in RN if either σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 is a (not necessarily proper) face of

both.

Figure 2.4 shows examples of properly and not properly joined simplices in

R2. In figure 2.4(a), the 2-simplices 〈{a1, a4, a3}〉 and 〈{a3, a4, a5}〉 intersect

each other in the 1-simplex 〈{a3, a4}〉 which is a face of both. The simplices

〈{a1, a4, a3}〉 and 〈{a0, a1}〉 intersect each other in the 0-simplex 〈{a0}〉 which
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b4 b8

b7
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(b) Not properly joined

Figure 2.4: Examples of properly and not properly joined simplices in R2

is also a face of both. Therefore, this set of simplices is pairwise properly

joined.

On the other hand, figure 2.4(b) displays a set of simplices which is

not pairwise properly joined. For instance, the 2-simplices 〈{b1, b5, b3}〉 and

〈{b6, b8, b4}〉 intersect each other in the 1-simplex 〈{b4, b5}〉, which is not a

face of any of them. Also, 〈{b1, b5, b3}〉 intersects 〈{b0, b2}〉 in 〈{b2}〉, which

is not a face of either simplex. Finally, 〈{b7}〉 intersects (and it is actually

contained in) 〈{b6, b4, b8}〉 but it is not a face of the latter.

Definition 55 (Simplicial complex in RN) A simplicial complex K in

RN is a finite collection of simplices in RN such that:

1. Every face of an element in K is itself in K.

2. The elements in K are pairwise properly joined.

Definition 56 (Dimension of a simplicial complex) Let K be a simpli-

cial complex in RN . The dimension of K is the largest positive integer r such

that K has an r-simplex.
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Figure 2.5: Star and link of a vertex v of a simplicial complex K

Definition 57 (Subcomplex) Let K be a simplicial complex in RN . A

subcomplex of K is a subset of K which is also a simplicial complex.

Definition 58 (p-skeleton) Let K be a simplicial complex in RN . The p-

skeleton of K, denoted by K(p), is the subcomplex of K formed by all the

simplices in K of dimension at most p. The points in K (0) are called the

vertices of K.

Definition 59 (Star) Let K be a simplicial complex in RN . If v is a vertex

of K, the star of v in K, denoted by St(v), is the union of the interior of the

simplices in K that have v as a vertex. The closure of St(v) as a subset of

RN , denoted by St(v), is called the closed star of v in K.

Definition 60 (Link) Let K be a simplicial complex in RN , and v a vertex

of K. The set St(v) − St(v), denoted by Lk(v), is called the link of v in K.

In figure 2.5, a simplicial complex K in R2 is displayed, where the star

and link for a vertex v of K are marked.
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Definition 61 (Underlying space or polytope) Let K be a simplicial com-

plex in RN . The point set union of the simplices of K, denoted by |K|, to-

gether with its usual topology as a subspace of RN , is called the underlying

space or polytope of K.

The underlying space |K| of a simplicial complex K in RN has the fol-

lowing properties:

1. |K| is a closed and bounded subset of RN , and so |K| is a compact

space.

2. Each point of |K| lies in the interior of exactly one simplex of K.

Definition 62 (Polyhedron) A subset of RN is called a polyhedron if it

is the polytope of some simplicial complex in RN .

Definition 63 (Triangulation) Let X be a topological space. If there exists

a simplicial complex K in some RN such that |K| is homeomorphic to X,

then X is called a triangulable space. A pair (K, h), where K is a simplicial

complex some RN and h : |K| → X is a homeomorphism, is said to be a

triangulation of X.

In order to define the notions of orientation of a simplex and oriented

simplex the following concepts are required.

Definition 64 (Symmetric group) Let Jn+1 denote the set formed by the

integers {0, . . . , n}. A permutation of Jn+1 is a bijection from Jn+1 onto

itself. The set of all permutations of Jn+1 is a group under the operation of

composition. This group is called the symmetric group in n + 1 symbols and
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it is denoted by Sn+1. A transposition is an element of Sn+1 which is not the

identity map but restricts to the identity map in some subset of Jn+1 having

n − 1 elements.

There are two facts about symmetric groups which will be useful in defin-

ing the notion of orientation:

1. Any element in a symmetric group can be factored (in a non-unique

way) as a product of transpositions.

2. The parity of the number of factors in any two factorizations in trans-

positions of a fixed element in a symmetric group is the same.

Let σ = 〈{a0, . . . , an}〉 be an n-simplex in RN . Consider the set

{(as(0), . . . , as(n)) : s ∈ Sn+1}.

Two elements (as1(0), . . . , as1(n)), (as2(0), . . . , as2(n)) are declared equivalent if

s1 ◦ s−1
2 factors in an even number of transpositions. This is an equivalence

relation which determines exactly two equivalence classes. The equivalence

class of (as(0), . . . , as(n)) will be denoted by

〈as(0) . . . as(n)〉.

It is immediate from the definition that 〈ai0 . . . ain〉 = 〈aj0 . . . ajn
〉 if and

only if any sequence of transpositions taking (ai0 , . . . , ain) to (aj0, . . . , ajn
)

has an even number of factors.

Definition 65 (Oriented n-simplex) Let σ = 〈{a0, . . . , an}〉 be an n-simplex

in RN . Any of the two equivalence classes defined above is called an orien-

tation of σ. An oriented n-simplex is a simplex with a choice of one of
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the two possible orientations of it. The oriented simplex σ together with the

orientation 〈ai0 . . . ain〉 will be simply denoted by 〈ai0 . . . ain〉.
Let σ1, σ2 be two oriented simplicial complexes in RN . The equation σ1 =

−σ2 means that they are equal as unoriented simplices, but carry different

orientations.

For example, let σ = 〈{a0, a1, a2}〉 be a 2-simplex (see figure 2.3(c)). The

oriented simplices 〈a0a1a2〉, 〈a1a2a0〉, 〈a2a0a1〉 are equivalent and denote one

orientation of σ, and the oriented simplices 〈a0a2a1〉, 〈a1a0a2〉, 〈a2a1a0〉 are

also equivalent and represent the other orientation of σ.

Definition 66 (Induced orientation) Let σ be the oriented n-simplex

〈a0, . . . , an〉 and let τ be the boundary (n − 1)-simplex 〈{a0, . . . , âi, . . . , an}〉,
where ˆ means deletion of the symbol under it. The oriented (n− 1)-simplex

(−1)i〈a0 . . . âi . . . an〉

is said to carry the orientation induced by σ.

For example, given the oriented simplex σ = 〈abc〉, the induced orienta-

tion of σ on its (n − 1)-simplices are 〈ab〉, 〈bc〉 and 〈ca〉.

Definition 67 (Coherent orientation) Let σ1, σ2 be oriented n-simplices

in RN such that σ1 ∩ σ2 is an (n− 1)-simplex that is face of each of them. It

is said that σ1, σ2 are coherently oriented if they induce opposite orientations

on their common (n − 1)-simplex.

The most general kind of PL-objects amenable to the notion of an orien-

tation are the pseudomanifolds.
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Definition 68 (n-pseudomanifold) An n-pseudomanifold is a simplicial

complex K with the following properties:

1. Each simplex in K is a face of some n-simplex in K.

2. Each (n − 1)-simplex in K is face of exactly two n-simplices in K.

3. Given a pair σ1, σ2 of n-simplices in K, there exists a sequence of n-

simplices beginning at σ1 and ending at σ2 such that any two successive

terms of the sequence have a common (n − 1)-face.

Note that by relaxing the second condition in the definition of an n-

pseudomanifold, by allowing an (n−1)-simplex in K to be face of exactly one

or exactly two n-simplices in K, a notion of n-pseudomanifold with boundary

is obtained.

The relationship between n-manifolds (topological spaces) and n-pseudo-

manifolds (simplicial complexes) is stated as follows: If X is a triangulable

n-manifold then each triangulation K of X is an n-pseudomanifold.

For example, the simplicial complex K in R2 displayed on figure 2.6(a) is

not a 1-pseudomanifold since the 0-simplices 〈{a5}〉, 〈{a8}〉 are face of three

1-simplices in K. In figure 2.6(b), the polytope some simplicial complex

K is displayed, which is a triangulation of the torus. Therefore, K is a

2-pseudomanifold.

Definition 69 (Orientable n-pseudomanifold) Let K be an n-pseudo-

manifold. If there is a way to orient each n-simplex in K such that any two

n-simplices having nonempty intersection in K are coherently oriented, K is

said to be orientable. In this case an orientation of K is a particular choice

of orientations for the n-simplices in K which is pairwise coherently oriented.
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Figure 2.6: Examples of pseudomanifolds and non-pseudomanifolds

Examples of non-orientable simplicial complexes are the triangulations of

the Möbius band (see figure 2.7). It an be seen that it is not possible to orient

the simplices in such a way they are pairwise coherently oriented.

Definition 70 (Orientable triangulation) Let X be an n-manifold, and

K an n-pseudomanifold corresponding to a triangulation for X. The triangu-

lation K is said to be an orientable triangulation of X if K is an orientable

a0 a1

a2a5

a4 a3

Figure 2.7: Example of a non-orientable 2-pseudomanifold in R3
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(a) 2-manifold S2

a2

a3

a0a1

(b) A triangulation of

the 2-manifold S2 in

R3

Figure 2.8: Example of a triangulation of the orientable triangulable n-

manifold S2

n-pseudomanifold.

For instance, manifolds of dimension up to three are always triangulable.

Definition 71 (Orientable and oriented triangulable n-manifold) Let

X be a triangulable n-manifold. X is said to be orientable if some (and there-

fore any) triangulation K of X is orientable. Orienting X means specifying

a triangulation K of X, together with an orientation.

Examples of orientable 2-manifolds realized in R3 are the unitary sphere

S2 = {x ∈ R3 : ||x|| = 1} (see figure 2.8) and the torus T = {(x, y, z) :

a2 − z2 = (
√

x2 + y2 − A)2}. An example of a non-orientable 2-manifold is

the Möbius band.
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2.5 Theory of Nef Polyhedra

The concept of Nef Polyhedra was introduced by Walter Nef in 1978 in

his book Beiträge zur Theorie der Polyeder mit Anwendungen in der Com-

putergraphik [Nef78]1, and was later made available to the English speaking

scientific world by H. Bieri in his paper Nef Polyhedra. A Brief Introduc-

tion[Bie95].

2.5.1 Nef Polyhedron

Definition 72 (Nef Polyhedron) A Nef Polyhedron in dimension d is a

set of points P ⊆ Rd which can be obtained by a finite sequence of complement

and intersection set operations over linear half-spaces.

The class of Nef Polyhedra in Rd is closed over the set operations of

complement and intersection. Nef polyhedra are closed as well under the

operations of union, difference and symmetric difference since they can be

defined by means of complement and intersection set operations. The class

of Nef Polyhedra in Rd is also closed under the topological operations of

interior, closure, boundary and regularization.

Figure 2.9 shows an example of a Nef polyehedron in R2. Unfilled points

and dashed lines denote sets of points that do not belong to the Nef polyhe-

dron.

As for every Nef polyhedra, the one displayed in figure 2.9 can be con-

structed by means of intersection and complement operations over closed or

1Free translation: Contributions to the Theory of the Polyhedra with Applications in

Computer Graphics
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Figure 2.9: Example of a Nef polyhedron on R2

open half-spaces. Remember that the operations of union and difference are

also allowed since they can be defined by means of intersection and comple-

ment operations.

The construction of the Nef polyhedron in the example is going to be

described in a top-bottom approach, starting from the final Nef polyhedron

and then going backwards on the sequence of operations until one gets to the

half-planes that one could start with.

The figure describes a facet f1 with a dangling edge e6 incident to p4. The

facet f1 also has a hole e5. This configuration can be obtained by performing

an union operation between f1 and e6, and then obtaining the difference

between the result and e5. Note that f1, e5, e6 are also Nef polyhedra by

themselves.

As every convex set, f1 can be obtained by intersecting a set of half-

spaces, four in this case, each one having as its affine space the supporting

line of one of the edges bounding f1, i.e. the lines passing through e1, e2, e3, e4.
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Figure 2.10: Two examples of pyramids with apex 0 in the plane

The edge e6 is a convex set as well, obtainable by first intersecting two

closed half-spaces which share the same affine space, leading to the sup-

porting line of e6. Such supporting line is intersected with two other closed

half-spaces whose affine space pass through one endpoint of e6 perpendicular

to its supporting line and containing in their interior the other endpoint of

e6. The edge e5 can be obtained in a similar way as e6.

From its constructive definition, it follows that Nef Polyhedra can be

empty, unbounded, and not regular in the topological sense. They can also

hold open and closed sets.

2.5.2 Pyramids

Definition 73 (Cone with apex 0) A set of points Q ⊆ Rd is called a

cone with apex 0 if Q = λQ for λ > 0.

Definition 74 (Cone) A set of points Q ⊆ Rd is called a cone if there is

a point x ∈ Rd such that Q − x is a cone with apex 0. The point x is then
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Figure 2.11: An example of a cone in R3 which is not a pyramid

called the apex of Q.

Definition 75 (Pyramid) A set of points Q ⊆ Rd is called a pyramid if Q

is a cone and it is also a Nef Polyhedron.

Definition 76 (Local adjoined pyramid) Given a Nef Polyhedron P ⊆
Rd and a point x ∈ Rd, there is a neighborhood U0(x) around x such that the

pyramid P x := x + R+((P ∩ U(x)) − x) is the same for every neighborhood

U(x) ⊆ U0(x). P x is called the local adjoined pyramid to P in x.

Examples of pyramids are shown in figure 2.10. The example on the figure

2.11 shows a cone following the definition 73. However, this cone is not a

Nef polyhedron since there is not a way to construct a smooth surface from

a finite sequence of set operations over half-spaces. Consequently this object

does not fall in the definition of pyramid.
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The concept of local adjoined pyramid is very important for the theoret-

ical basis of Nef Polyhedra since it stores the local properties of P around x,

allowing the definition of face of a Nef Polyhedron.

2.5.3 Faces

Intuitively, two points belong to the same face when their neighborhoods

(i.e. their local adjoined pyramids) are equivalent. The set of faces of a Nef

Polyhedron is obtained by grouping all points with equivalent neighborhood.

Definition 77 (Face) Given a Nef Polyhedron P ⊆ Rd, define the equiva-

lence relation x ∼ y if and only if P x = P y. The equivalence classes of the

relation ∼ define the faces of P .

On a Nef Polyhedron P ⊆ Rd, the set of faces F(P ) satisfies the following

properties:

1. The number faces are finite, and there is always at least one.

2. The faces are pairwise disjoint and their union is equal to Rd.

3. Every face on F(P ) is not empty and relatively open.

4. For every face f of F(P ) either f ⊆ P or f ∩ P = ∅.

5. Every face on F(P ) is a Nef Polyhedron.

Faces are named differently depending on the dimensionality of the asso-

ciated set of points. That is, faces of dimension 0 are called vertices, faces

of dimension 1 are called edges, 2 dimensional faces are called facets and 3
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dimensional faces are called volumes. For example, in figure 2.9 there are

eight vertices, six edges and two facets.

Definition 78 (Dimension of a face) The dimension of a face dim(f) co-

rresponds to the dimension of the affine space dim(aff(f)).

2.5.4 Incidence

Definition 79 (Incidence) Let P ⊆ Rd be a Nef Polyhedron. It can be

seen that for each pair of faces f1, f2 ∈ F(P ) either the intersection between

f1 and f2 is empty or f1 belongs to the closure of f2. In the latter case it is

said that f1 is incident to f2.

The incidence relationship defines a partial order ≺ over F(P ) where

f1 ≺ f2 if and only if f1 is incident to f2.

For example in the two dimensional space, vertices are incident both to

edges and facets, and edges are incident to facets. In figure 2.9, the vertex

p8 is incident to the edge e6 and to the facet f0. The vertex p2 is incident to

the edges e1, e2, and the facets f0, f1.

The definition of incidence is very important for the implementation of

the Nef Polyhedron. In 1988, Nef and Bieri have showed that it is sufficient to

store the local adjoined pyramids of the minimum elements on the incidence

relation ≺, in order to have a complete representation of a Nef Polyhedron.

This representation is referenced as the Reduced Wüzsburg Structure[BN88].

As an example of the concept, in figure 2.12(a) the set of points belonging

to a 2D Nef polyhedron is shown. The local adjoined pyramids of the faces

of the polyhedron are shown in the figure 2.12(b). Finally, as it is illustrated



38 CHAPTER 2. CONCEPTUAL BASIS

in the figure 2.12(c), the location of the vertices and their local adjoined

pyramids, i.e. the Reduced Würzburg Structure, carries enough information

to infer the set of points belonging to the original Nef polyhedron.

2.6 Implementation of Nef Polyhedra in 3D

An implementation of Nef Polyhedra for the 3-dimensional space is cur-

rently being developed for the Computational Geometry Algorithms Library

(CGAL)2 at the Max-Planck-Institut für Informatik3, Saarbrücken, Ger-

many. The most relevant topics regarding its implementation will be pre-

sented in the following sections.

In this implementation the following convention is used for naming the

faces, according to their dimension:

1. 0-dimensional faces are called vertices,

2. 1-dimensional faces are named edges,

3. 2-dimensional faces are called facets and

4. 3-dimensional or full-dimensional faces are named volumes.

In the following sections we describe the structures defined for the imple-

mentation of the 3D Nef Polyhedron package. The concept of infimaximal box

is introduced in order to couple with the unboundedness of the faces. Sphe-

rical maps are used for representing the local adjoined pyramids to the ver-

tices. And finally, faces of higher dimension (i.e. edges, facets and volumes)

2http://www.cgal.org
3http://www.mpi-sb.mpg.de
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Figure 2.12: Reduced Würzburg structure for a 2D Nef polyhedron
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are explicitly stored along with their geometry and incidence relationship in

a structure called Selective Nef Complex.

2.6.1 Infimaximal box

As stated in the definition of incidence, it is sufficient to store the pyramids

of the minimum elements in the incidence relationship in order to represent

a Nef Polyhedra.

However, the minimum elements of the incidence relationship are not

always vertices. They also can be faces of higher dimension.

This situation occurs when unbounded faces are present. As an example,

figure 2.13(a) illustrates a 2D Nef Polyhedron consisting of a face f1 that

defines a half-plane bounded by the edge e1, and the outer face f0. In this

situation, the edge e1 would become the minimum element in the incidence

relationship since there are not lower dimensional faces in the polyhedron.

For unifying the dimension of the minimum elements and forcing them

to be always vertices, Nef Polyhedra are clipped using an Infimaximal Box

[SM01] in order to constrain the unbounded faces to a finite space. The

result of such operation over the Nef polyhedron shown on figure 2.13(a) is

displayed in figure 2.13(b).

Definition 80 (Infimaximal box) A d-dimensional infimaximal box is an

axis-orthogonal regular box whose set of vertices V = {vi, i = 1 . . . 2d} have

coordinates of the form vi = (x1 = ±R, . . . , xd = ±R), where d is the dimen-

sion of the space and R is an infimaximal number, i.e. a number which is

larger than any other real number.
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Figure 2.13: Concept of Infimaximal boxes applied to Nef Polyhedra

The unbounded faces on a Nef Polyhedron are clipped to the infimaximal

box, defining new lower dimensional faces (e.g. vertices, edges and facets) on

the boundary of the box. Therefore no unbounded faces remain, allowing one

to define a Nef Polyhedron by only providing the local adjoined pyramids to

its vertices.

2.6.2 Sphere maps

In [DMY93] the concept of Local-graph-data-structure is introduced for stor-

ing the local pyramids of the faces of a Nef polyhedron.

The idea proposed is the following. Given P x, the pyramid of a point x

related to a Nef polyhedron P ∈ R3, let S(x) be a sufficiently small sphere

centered on x. The intersection between P x and S(x) defines a planar graph
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Figure 2.14: Example of a randomly generated sphere map from intersecting

segments

embedded on the surface of S(x) and it is denoted by GP (x). The nodes,

arcs and regions of the graph correspond to the edges, facets and volumes of

P x.

Every feature of GP (x), i.e. every node, arch or region, has a label indi-

cating whether or not the feature is contained in the set of points of P x. The

containment label for the center point x is also specified.

The joint of the graph together with the labels for its features and the

label for the center point is called a Local-graph-data-structure.

Extending the ideas in [DMY93], in the implementation of 3D Nef poly-

hedra it is used an embedding of a 2D Nef Polyhedron in the sphere for

representing the local adjoined pyramid to any point of the space, as a re-

placement for the representation using an embedded planar graph. Such

structure is named a Sphere map. An example of a randomly generated

sphere map from intersecting segments is displayed on figure 2.14.

Since sphere maps are represented as 2D Nef Polyhedron, the naming
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convention for the faces of such polyhedra is the same followed by now.

However, for differencing them from the faces on the 3D Nef polyhedra a ’s’

prefix is put before each face name. A sphere map is then defined by a set

of svertices, sedges and sfaces.

As one may intuit, there is a 1-1 map between the faces of a sphere map

and the faces on the 3D Nef polyhedron. Each svertex is related to an edge,

each sedge is associated to a facet, and each sface is related to a volume.

The coordinate of each svertex corresponds to the piercing point of the

related edge on the boundary of the sphere. Each sedge defines a curve on the

surface of the sphere corresponding to the intersection with the associated in-

cident facet. Finally, each sface defines a 2-dimensional region corresponding

to the intersection of the sphere boundary with the related incident volume.

Every face on the sphere map also holds a mark which is the same mark of

the associated face on the 3D Nef polyhedron.

In figure 2.15 an example of the sphere map associated to a vertex v of a

3D Nef polyhedron is shown. Three facets fi, three edges ej and two volumes

ck are incident to v. Each one of such incident faces has a corresponding

face on the sphere map. The faces are associated in the following way: the

edges e1, e2, e3 are incident to the svertices sv1, sv2, sv3 respectively, the facets

f1, f2, f3 are incident to the sedges se1, se2, se3 respectively, and the volumes

v0, v1 are incident to the sfaces sf0, sf1 respectively.

2.6.3 Selective Nef Complex

Although a Nef Polyhedron is fully represented by the local adjoined pyra-

mids to its vertices, it is also desired to provide a straightforward interface
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Figure 2.15: Sphere map corresponding to one of the vertices of a 3D Nef

Polyhedron
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for exploring the higher dimensional faces and their incidence relationships.

Starting from the local adjoined pyramids to the vertices, one can recover

the higher dimensional faces by running an algorithm called synthesis[Bie96].

In this algorithm, the faces are reconstructed in ascending order according to

their dimension, i.e. first the edges are recovered, then the facets and lastly

the volumes.

For recovering the edges, the svertices are classified by their supporting

line, i.e. the line passing through the svertex and the center of the supporting

sphere map. Then, the svertices are ordered along each line following the

xyz-lexicographical order. There are exactly two svertices defining each edge

which remain adjacent in the svertices list corresponding to their supporting

line. Therefore the edges of the Nef polyhedron can be recovered by taking

every consecutive pair of svertices along each supporting line.

The boundaries of the facets or facet cycles are recovered by pairing up

the sedges incident to each pair of svertices defining an edge. Since every

sedge corresponds to an incident facet to the sphere map of a vertex and

the same set of facets are incident to the two vertices of an edge, there is a

one to one correspondence between the sedges incident to the pair svertices

defining an edge. By linking the corresponding sedges as previous-next items

of a boundary, one can trivially recover the boundary cycles of the facets.

The following step is to classify the recovered facet cycles by their sup-

porting plane. Having all the facet cycles classified by supporting plane,

the facets are recovered by finding the nesting relationship among the cycles

on each plane. This is accomplished by running a sweeping algorithm along

each plane, keeping track of the edge below the xyz-lexicographical minimum
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vertex of each facet cycle.

Lastly, the volumes are recovered by finding the nesting structure of the

shells, i.e. the connected surfaces bounding the volumes. Shells are detected

by traversing the incidence graph associated to vertices, edges and facets

and marking the faces reachable from a fixed face with a unique shell tag.

In order to find the nesting structure of the shells, a ray is shot in the −x

direction from the xyz-lexicographical minimum vertex of each shell. This

allows one to determine the immediately enclosing shell of every shell.

Along with every face a selection mark is stored. Such mark says whether

the point set defined by the face belongs or not to the point set of the Nef

polyhedron. The structure containing the geometry and incidence relation-

ship for the vertices, edges, facets and volumes of a Nef Polyhedron, along

with a selection mark for every face, is called Selective Nef Complex or SNC

for short.

By definition, any set of points defining a Nef Polyhedron has a unique

minimum representation as a set of faces. However, one could construct Nef

Polyhedra defining a specific set of points but using more faces than in its

minimum representation. For reducing a Nef polyhedron to its minimum

representation a process called simplification is used, where redundant faces

are pruned out from the SNC structure.

2.6.4 Ray shooting

Given a Nef polyhedron P ⊆ R3 and a ray r, a ray shooting query consists

in to find the vertex, edge or facet f ∈ F (P ) intersecting r (if any) such that

the intersection point is the closest to the origin of r.
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For solving this query the ray is tested for intersection against all the ver-

tices, edges and facets of P . When an intersection is found the ray is pruned

by the intersection point and the search continues. The last intersected face

becomes the answer for the query.

The running complexity of a ray shooting query is O(v+e+f · f̄e), where

v, e, f are the number of vertices, edges and facets of P respectively, and f̄e

is the average number of edges defining the boundary of the facets. Note

that in the general case, to solve a ray-facet intersection query is equivalent

to perform a point-facet inclusion query with the intersection point between

the ray and the supporting plane of the facet. This operation is linear in the

number of edges bounding the facet.

The ray shooting query is used in the last step of the point location query,

explained in the following section. The query is also required during the

synthesis process for determining the nesting structure of the shells bounding

the volumes of a Nef Polyhedron.

2.6.5 Point location

Given a Nef Polyhedron P ⊆ R3 and a point p, a point location query consists

in to obtain the face f ∈ F (P ) such that p ∈ f .

This query can be naively implemented by first testing if p belongs to

any vertex, edge or facet of P . When the p is not located in any lower

dimensional face it follows that p is contained inside a volume. For obtaining

such volume, a ray r is shot from p in an arbitrary direction and the first

lower dimensional face fl hit by r is taken.

The volume can be obtained by looking at the incidence graph of fl, and
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getting the incident face (a volume for this case) in the direction of the query

point p.

When the query point p is located in a lower dimensional facet, the run-

ning complexity of the naive implementation becomes O(v + e + f · f̄e). In

the general case, i.e. when the point is located in a volume the complexity of

this query becomes O(v + e+f · f̄e +T↑), where O(T↑) is the time complexity

of the ray shooting query.

Besides its possible uses as an end user service, point location queries are

used during the qualifying process of the binary set operations. There, we

obtain the face on each operand where every candidate point is located in

order to reconstruct the local pyramid on each operand and use them to com-

pute the local pyramid on the resulting polyhedron. Binary set operations

are described on the following section.

2.6.6 Binary set operations

Given two Nef Polyhedra P0, P1 ⊆ R3, one might want to compute the Nef

Polyhedron P = P0 � P1, where the operator � correspond to any binary set

operation such like the intersection, union, difference or symmetric difference.

As it was stated before, it is sufficient to know the local pyramids of the

vertices of P in order to recover its SNC structure. Therefore, in order to

construct the complete result of any binary set operation it is sufficient to

compute the local pyramids adjoined to the vertices of P .

The locations of the vertices of P are a subset of the vertices of P0, P1

plus the edge-edge and facet-edge intersection points between the edges and

facets of P0, P1. Note that not every vertex of P0, P1 or every intersection



2.6. IMPLEMENTATION OF NEF POLYHEDRA IN 3D 49

point will become a vertex of P since some could be cut out when they are

redundant, e.g. when an isolated marked vertex is inside a marked volume.

Having all the possible locations of the vertices, the local pyramids on

both P0 and P1 for each location are computed. The process of obtaining the

local pyramid for a given point is called qualifying. Since local pyramids are

represented by means of 2D Nef polyhedra embedded on a sphere, one can

operate those sphere maps using the � operator, and obtain the corresponding

local pyramid on P . As it is shown in Nef’s book[Nef78], the local pyramid

P x on a point x on P is the result of the � operation between the local

pyramids P x
0 and P x

1 , validating this procedure.

Having computed the local pyramids of the possible vertices of P , those

which correspond to redundant vertices are discarded, and finally the remain-

ing local pyramids are given as input to the synthesis process for recovering

the SNC structure representing P .

As it is shown in [GHH+03], the time complexity of the binary set opera-

tions over Nef Polyhedra is O(TI +(n+m+s) log(n+m)+k log(k)+cT↑). The

first part, TI is the time required for finding the locations of the vertices of the

resultant Nef Polyhedron, including both the time required for locating each

vertex in the other Nef Polyhedron and the time required for finding all edge-

edge and edge-facet intersections. The second part, O((n+m+s) log(n+m))

is the complexity of the overlaying process over all the n + m + s sphere

maps of the result. Here, n, m are the respective number of vertices on each

operand and s is the number of intersection points found. The third part,

O(k log(k) + c · T↑) is the complexity of the synthesis process, where k is the

number of vertices of the result after simplifying, c is the number of recovered
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shells, and O(T↑) is complexity of the ray shooting query.



Chapter 3

Definition of the Problem

During the development of the 3D Nef Polyhedra package for CGAL, each

feature has been carefully analyzed in order to assure the application of the

most appropriated design patterns, algorithms and data structures available

for the solution of every step of the problem, leading to a complete and

correct implementation of the package.

The current implementation provides complete but naive algorithms for

performing point location, ray shooting and intersection tests over the 3D

Nef Polyhedra. Such implementation was only intended for concept probing

and for serving as a reference point for further implementations. However,

this implementation was not intended to be used as final code since it does

not make use of any optimization techniques to improve the running time of

the algorithms.

The problems threaten in this project are first, the definition of the re-

quirements of the point location, ray shooting and intersection tests. Second,

the analysis, design and implementation of an efficient solution that meets

51
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these requirements. And third, the gathering of experimental data describing

the performance of the proposed solution.



Chapter 4

Analysis of the problem

In this chapter, the role of point location, ray shooting and segment intersec-

tion tests (PLRSSI for short) over 3D Nef polyhedra is described. Thereafter,

it is shown that the point location and segment intersection queries can be

solved by means of ray shooting. Finally, a survey over the different methods

developed for optimizing ray shooting is shown, from which the method to

be applied in this project is chosen.

4.1 Introduction

Ray shooting is necessary during the synthesis process, defined in section

2.6.3. Point location and segment intersection queries are required during

the binary set operations, described on section 2.6.6. The role of such queries

in the algorithms is briefly described below.

During the synthesis of a Nef polyhedron P ∈ R3, a ray r is shot from

the xyz-lexicographical minimum vertex of every shell in order to discover
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the nesting structure of the shells and recover the set of volumes of the Nef

polyhedron.

During the Boolean set operations between two Nef polyhedra P0, P1 ∈
R3, point location queries are necessary to discover the face f1−i ∈ P1−i

where every vertex vi ∈ Pi is located, in order to construct the local adjoined

pyramid P vi

1−i.

Segment intersection queries are also required during Boolean set opera-

tions. Given an edge e ∈ Pi, it is required to find the set of edges and facets

FI = {f1−i : (f1−i ∈ P1−i)∧ (f1−i ∩ e 6= ∅)}, i.e. the set of edges and facets of

P1−i intersecting e.

It can be shown that both point location and segment intersection tests

can be solved by means of ray shooting operations.

Given a Nef polyhedron P ∈ R3 and a point p ∈ R3, a point location query

can be solved by shooting a closed ray r with origin at p in any direction.

When r hits a lower dimensional face fl, i.e. a vertex, edge or facet, at its

origin then p ∈ fl and the query is solved. Otherwise, p is located in a volume

and the face fl intersecting r is incident to such volume. The volume can be

obtained by looking at the incidence graph of fl.

Segment intersection test is very similar to the ray shooting problem and

it only differs on the bounds of the query primitive. In the case of segment

intersection it becomes a finite open line segment and any intersected face

farther the segment’s endpoint can be ignored.

The general problem of point location, ray shooting and segment inter-

section over Nef polyhedra is graphically depicted on figure 4.1.

Having shown the similarity among the ray shooting, point location and
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Figure 4.1: PLRSSI queries over a Nef polyhedron P
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intersection test, the effort is concentrated in solving the ray shooting prob-

lem.

The problem of ray shooting has been attacked from both a theoretical

and heuristic approach in computational geometry and computer graphics,

respectively. In the following sections, the most well known approaches on

both fields are described. For a detailed survey on ray tracing strategies see

Arvo’s survey on ray tracing acceleration techniques [Gla97] and Havran’s

dissertation about algorithms for heuristic ray shooting [Hav00].

4.2 Theoretical solutions

The problem of ray shooting has been extensively studied by the compu-

tational geometry field. The general approach has been to develop optimal

worst-case algorithms. Lower bounds for the space and time complexity have

been stated for this problem.

Szirmay-Kalos and Márton [SKM98] demonstrated that worst-case time

complexity of the ray shooting problem is in Ω(n), where n is the number

of objects in the model. They also demonstrate that for achieving sub-linear

time complexity, e.g. O(log n), one has to expend in preprocessing time and

storage space whose complexity is in Ω(n4). They also present an algorithm

that runs in O(log n) time with O(n8) storage complexity.

de Berg et al. [dHO+91] present a structure that enables ray shooting on

a set of possibly intersecting triangles in the space, using O(log n) query time

and O(n4+ε) preprocessing time for any fixed ε > 0.

The space complexity and hence the preprocessing time of the worst-
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case optimal solution for ray shooting, makes this approach prohibitive for

practical uses.

4.3 Heuristic solutions

In computer graphics, ray tracing is the common approach to perform ren-

dering, a technique where the interaction between lights and objects has to

be simulated in order to recreate realistic images. Light is usually represented

by rays. Since computing ray-object intersections is usually computationally

expensive, to develop heuristics for reducing the number of ray-object inter-

sections has been one of the main concerns. For similar reasons, the effort

has been also directed to develop algorithms and data structures for speeding

up the ray shooting problem for the average scenario, instead of trying to

construct a worst-case optimal solution.

In the following sections the main heuristics available for improving the

performance of the ray shooting queries are described. For a depth insight

into the various heuristics available see [Hav00].

4.3.1 Bounding volumes and BVH’s

The simplest alternative for avoiding expensive ray-object intersection tests

is to tight simple bounding volumes to the objects in a scene. Common

shapes used as tight volumes are spheres, cubes and rectangles for whose

the intersection test is very simple [FTI86]. In this technique, every ray is

first tested against the bounding volume of the object. If the test fails it is

known the ray does not cross the bounding volume and hence it does not
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intersect the enclosed object, such a way that a possibly expensive ray-object

intersection test is avoided.

The next logical step to take is to group the bounding volumes in Bound-

ing Volumes Hierarchies (BVH) [RW80]. In this schema, the bounding vol-

umes enclosing the objects are grouped in larger bounding volumes. The ray

is first tested against the outermost bounding volumes. When the ray hits a

bounding volume the enclosed bounding volumes or objects are tested, but

if the ray does not hit an enclosing volume the objects hanging inside in the

hierarchy can be safely skipped.

4.3.2 Spatial subdivisions

In this sort of heuristics, the distance and among the objects is roughly

captured by dividing the space into disjoint cells, each one storing the objects

intersecting it. Objects close to each other are likely to be stored in the same

cell. The general idea follows that if a ray does not intersect the boundary of

a cell, then one can safely skip the objects lying inside since they will never

be intersected by the ray. As one might guess, the quality of the subdivision

determines the performance of the ray shooting process.

Regular subdivisions or grids [FTI86] are the simplest spatial subdivi-

sions. Here, the space is divided into cubic cells of equal size. To perform

ray shooting in such structures is very efficient since it is easy to jump from

one cell to the next one in the ray’s trajectory, due the regularity of the

subdivision. However, the grid does not adapt itself to the scene, e.g. the

space is partitioned as much in empty regions as it is done in regions densely

populated. As consequence, time is wasted when many empty consecutively
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cells are traversed and too many objects are tested for intersection when

dense cells are reached.

Taking in count these concerns, one would desire to have a spatial subdi-

vision that adapts itself to the scenario, i.e. it is fine where the details are con-

centrated, and coarse otherwise. Strategies such hierarchies of grids [JW89]

and non-uniform grids [Gig88] been proposed to overcome those weaknesses,

falling into structures similar to octrees and bsp-trees, described next.

Introduced by Glassner [Gla84], the octree structure divides the space

into eight uniform cubic cells and subdivides again each cell recursively until

certain criterion is reached, e.g. a sufficiently small number of objects in the

cell is achieved or a maximum tree deep is reached.

However, octrees are still not very adaptative structures. When some

objects concentrate in specific regions, the resulting tree could be quite un-

balanced. Octree-R [WSC+95] allow adaptative cell subdivisions, i.e. the

planar boundaries of the cells could be placed according to the scene, falling

into structures very similar to bsp-trees.

Binary space partitions or bsp-trees for sort, overcome the problem of con-

structing balanced spatial subdivisions [NT86]. This structure subsequently

splits the space in halves using planes of arbitrary orientations. The planes

could be chosen such that the objects remain evenly distributed on both sides

of the plane.

Kd-trees [Kap87] are a special case of bsp-tress where the splitting planes

are always chosen to be axis aligned. The main advantage of this restriction

resides in the simplicity of the ray intersection tests with such kind of planes.
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4.3.3 Ray Coherence

Other properties such that the ray coherence has been taken into account for

approaching the ray tracing problem. By classifying the rays in equivalence

classes according to the set of objects they intersect, the coherence between

rays could be exploited. This is a theoretical worst-case optimal approach for

which, as it was stated before, the storage complexity is too high for practical

purposes [SKM98].

Nevertheless, a more coarse classification of rays is possible [AK87]. Rays

can be represented as points in a 5-dimensional space, where three dimensions

are assigned to the origin of the ray, and the two left to the sphere coordinates

of its direction. Arvo and Kirk [AK87] proposed a strategy where a spatial

subdivision over the 5-dimensional space of the rays is performed, and a

conservative set of candidates for intersection is assigned to each cell of the

subdivision.

4.4 Choosing an strategy

As described before, most approaches for the ray shooting problem can be

classified into worst-case and average case solutions. The worst-case optimal

algorithms have space (and hence preprocessing) complexity in Ω(n4), which

makes them very prohibitive for practical purposes. Therefore, the approach

to follow in this project will be to apply heuristics in order to improve the

performance in the average case situation.

As stated by Szirmay-Kalos and Márton [SKM98], a good ray shoot-

ing heuristic should have sub-linear query time and linear space complexity.
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They also show that although every heuristic has a worst case linear time

complexity, the expected time complexity for the average case, e.g. for a set

of spheres randomly distributed in the space, is constant.

The criteria for choosing the heuristic to apply for ray shooting have to

take in account not only the query time complexity but also the preprocess-

ing time and storage complexity. But since most heuristics have an constant

time query complexity for the average case, and similar storage and prepro-

cessing complexity, the final decision might be taken by considering practical

results from simulations. The heuristics in contest are then bounding vol-

umes hierarchies (BVH), uniform grids, octrees, kd-trees, bsp-trees and ray

classification.

As discussed in [Hav00], ray classification strategies have the drawback

that to construct the candidate list of a cell is more computationally de-

manding than for spatial subdivisions. Also, since it is an approximation of

the worst-case optimal algorithm for ray shooting, algorithms based on ray

classification exhibit a high storage complexity, leaving the ray classification

strategies out of consideration.

The bounding volumes hierarchies are very similar to the spatial subdi-

visions and often use strategies for partitioning the set of objects similar to

the octrees or bsp-trees [BCG+96, AdBG+01]. However, bounding volumes

hierarchies do not divide the space into disjoint cells like spatial subdivisions

do. Bounding boxes are allowed to intersect, obligating the algorithms to test

all the bounding volumes at the same level of the hierarchy. This behavior is

not shown by spatial subdivisions, where the space bounded by each cell is

disjoint. BVH’s can be safely discarded the since their properties regarding
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ray shooting are overcame by spatial subdivisions.

Now the spatial subdivision strategies are compared in order to choose

the most suitable one for the problem. First, uniform spatial subdivisions do

not adapt themselves to the distribution of the objects in a scene and further

improvements made to address this limitation, e.g. non-uniform grids, fall

into structures equivalent to either octrees or bsp-trees. For this reason, this

approach will be also discarded.

Octrees are also not fully adaptative to the scene distribution, a drawback

which is addressed by the Octree-R structure. Nevertheless, the octrees can

be easily emulated by bsp-trees, so any improvement achieved by octrees is

committed by bsp-trees as well.

The approach using bsp-trees remains as the heuristic to apply. Bsp-

trees are flexible regarding the orientation of the splitting planes such that

one can choose between using arbitrary oriented or axis aligned splitting

planes. Ray-plane intersections are more efficient when the normal vector of

the plane is axis orthogonal. However, arbitrary oriented planes are more

adaptative to the scenes because they can split evenly the set of objects

without leaving too many objects intersecting the splitting plane, as it is

more likely to happen when using axis aligned planes. The drawback of

using arbitrary oriented planes is that choosing good splitting planes is a

complex task. For addressing this problem, randomized algorithms are used

in order to produce good subdivisions in the average case [AEG98].

In the specific problem of this project, the spatial subdivision required for

speeding up the ray shooting process is meant to be constructed only once

for each Nef Polyhedron. For this reason, rather than using a randomized
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heuristic that sometimes could lead to bad subdivisions, it would be more

desirable to apply a deterministic heuristic that always gives us a fair good

result, even though it would be possible to obtain sometimes better results

with a randomized algorithm.

After this discussion, bsp-trees using axis aligned splitting planes would

become the strategy chosen for improving the ray shooting queries on this

project. Binary space partition using axis aligned planes are also refereed in

the literature as kd-trees. Extensive experimental results [Hav00] also support

kd-trees as the best heuristic for speeding up the ray shooting process.



64 CHAPTER 4. ANALYSIS OF THE PROBLEM



Chapter 5

Interface Requirements

5.1 Introduction

For solving the ray shooting, point location and intersection tests on 3D Nef

Polyhedra, a server-client approach will be followed. Here, the Nef Polyhe-

dron package will play the role of the client and a point locator class will

play the role of the server. The latter class will solve the ray shooting, point

location and intersection queries and it will have access to the whole SNC

structure representing the Nef Polyhedron, in order to have enough informa-

tion to answer the queries.

In the following sections we will define the client and server side require-

ments which are collected in order to define a proper interface between the

Nef Polyhedra and the point locator class.
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5.2 Client side requirements

5.2.1 Functional requirements

For a given Nef polyhedron P ⊆ R3, solve the following queries:

1. Given a point p ∈ R3 state the face f ∈ F (P ) such that p ∈ f .

2. Given an open ray r ⊆ R3, find the vertex, edge or facet f ∈ F (P ) (if

any) such that f is the first face intersected by r.

3. Given an open line segment e, find the set of edges and facets FI ⊆
F (P ) which are intersected by e.

5.2.2 Non-functional requirements

Although any strategy applied for solving the point location, ray shooting

and segment intersection queries, i.e. a kd-tree or a naive search, should

provide the same answer for a given query, the strategies applied could differ

in their processing time and memory space or they could behave better or

worse under certain scenarios.

For this reason, it is desirable to have the possibility of easily interchange

the strategies available, allowing the end user to enable the strategy that

better fits his needs.

5.3 Server side requirements

As it is described in chapter 4, there are many strategies available to approach

the ray shooting, point location and segment intersection problem. It was
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also shown that a strategy using spatial subdivisions via kd-trees would be

the most suitable approach for our problem.

The requirements for implementing a kd-tree structure will be analyzed

to extract the set of predicates required by the algorithm to work. The

requirements for the naive method are also established, since it is convenient

to construct an alternative solution that we can use to validate and compare

with the results provided by the kd-tree method.

As a matter of fact, it will be shown that the requirements for the naive

method are a subset of the requirements of the kd-tree method.

5.3.1 Naive method

In this section, the requirements of point location, ray shooting and segment

intersection using a naive method will be elicited and summarized.

Point location and ray shooting

The naive point location method is divided in two fully separable parts. First,

the query point must be tested for inclusion against all the lower dimensional

faces, i.e. the vertices, edges and facets of the Nef polyhedron. If the point

is contained in one of those faces, the query is complete. Until now, it is

sufficient to have access to the set of vertices, edges and facets, along with a

point-face inclusion predicate for each type of face that allows us to determine

if a point is located in a given face.

The second part occurs when the point is not located in the 2-skeleton,

and then we have to determine the volume where the point is located. This

step is performed by doing a ray shooting query from the query point towards
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any vertex of the polyhedron, looking for the first 2-skeleton face hit by the

ray and taking its incident volume in the opposite direction of the ray. For

obtained the first face hit, all boundary faces have to be tested for intersection

against the ray and the intersection point must be known. For this operation

it is required to have access to the set of vertices, edges and facets, and the

corresponding ray-face intersection predicates for each kind of face. Also, in

order to obtain the proper volume once the hit face is known, it is necessary

to have access to the local adjoined pyramid to the intersection point. In the

case of vertices, its local adjoined pyramid is given by its associated sphere

map. For the case of edges, the incident volume in any direction can be

known by traversing along its incident facets. And for the case of facets it is

necessary to known the volume incident to the facet on each side.

Segment intersection

The naive segment intersection requires finding all the edges and facets of

a Nef polyhedron intersecting a given segment. Therefore, it is required to

have access to the set of edges and facets of the Nef polyhedron and to the

corresponding segment-face intersection predicates.

Naive method requirements

Summarizing the requirements, it is necessary to provide the following items:

1. The set of vertices, edges and facets of the Nef polyhedron.

2. Point-vertex, point-edge and point-facet inclusion predicates.

3. Ray-vertex, ray-edge and ray-facet intersection predicates.
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4. Segment-edge and segment-facet intersection predicates.

5. A method for querying the incident face to a given face in a given

direction.

Summarizing, the algorithm requires having knowledge about the geome-

try of each 2-skeleton face and their incidence relationship. It is also required

to provide a point inclusion, ray intersection, and segment intersection tests

for each kind of face. Note that by given the point locator class access to the

SNC structure representing the Nef polyhedron, the first and last require-

ments will be fulfilled.

5.3.2 Spatial subdivision by kd-trees

The point location using a spatial subdivision follows the same approach as

the naive implementation, with the difference that the search space is shrunk.

This constraint of the search space is achieved by taking in count only the

faces in the neighborhood of the point, ray or segment using for the query.

The faces in the neighborhood are defined as the set of objects stored in the

same cell or cells intersected by the query geometry.

In order to construct the spatial subdivision, it is required to know the

spatial relationship between a cell of the subdivision and a given face. This

means that, for a given lower dimensional face f and given cell C, one should

be able to say whether f is enclosed, intersects the boundary or it is not

bounded by C.

When using kd-trees the boundaries of each cell are defined by a set

of oriented planes. For this reason the face-cell side predicates mentioned
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above could be answered by means of face-plane side predicates. Given this

assumption, the following requirement is needed in addition to the require-

ments defined for the naive implementation:

6. A face-plane side predicates for vertices, edges and facets.

5.4 Interface definition

The interface will be defined by means of an abstract class, which declares the

requirements that any class aiming to implement the interface must fulfill.

The ray shooting method has, of course, a ray as input and it will return

an object handle containing a vertex, an edge, a facet or an empty object if

the ray does not intersect any face of the polyhedron.

〈functional requirements〉≡
virtual Object_handle shoot(const Ray_3& r) const = 0;

The point location takes a point as input and it will return an object

handle containing the face where the point is located.

〈functional requirements〉+≡
virtual Object_handle locate(const Point_3& p) const = 0;

The implementation of the segment intersection query will be split in two

parts: one for solving edge-edge intersections and another for solving edge-

facet intersections. The input argument is an edge, which belongs normally to

a different Nef polyhedron. The result of the query, i.e. the set of intersected

edges and facets respectively is handled by a call back function which must

be given as well. The call back function takes as arguments the input edge,
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the intersected object (an edge or a facet) and the coordinates of intersection

point.

The advantage of using a call back function is that in this way it is not

necessary to use a data container for storing the set of intersected objects.

Instead, each object is processed as soon as it is available and thus the

memory allocation and storage necessary for the container is saved.

〈functional requirements〉+≡
class Intersection_call_back {

public:

virtual void operator()

( Halfedge_handle edge,

Object_handle object,

const Point_3& intersection_point) const = 0;

};

virtual void intersect_with_edges

( Halfedge_handle edge,

const Intersection_call_back& call_back) const = 0;

virtual void intersect_with_facets

( Halfedge_handle edge,

const Intersection_call_back& call_back) const = 0;

The point locator class must also provide a method for setting the subja-

cent SNC structure. Note that a non-constant pointer to the SNC structure

is passed to the initializing method even thought the point locator does not

need to modify the structure. However, a mutable parameter is required in



72 CHAPTER 5. INTERFACE REQUIREMENTS

order to allow including mutable objects in the result of the queries.

〈structural requirements〉≡
virtual void initialize(SNC_structure* W) = 0;

There are two more basic operations that have to be provided by the

point locator class. They are, the ability to clone itself, needed when copying

Nef polyhedra, and the ability to transform the point locator substructure,

necessary when affine transformations are applied to a Nef polyhedron.

〈structural requirements〉+≡
virtual Self* clone() const = 0;

virtual void transform(const Aff_transformation_3& t) = 0;

The data types used for supporting the interface are taken from the SNC

structure, which is given to the point locator class through a template pa-

rameter.

〈public types definition〉≡
#define USING(t) typedef typename SNC_structure::t t

USING(Object_handle);

USING(Vertex_handle);

USING(Halfedge_handle);

USING(Halffacet_handle);

USING(Volume_handle);

USING(Vertex_iterator);

USING(Halfedge_iterator);

USING(Halffacet_iterator);

USING(Point_3);

USING(Segment_3);
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USING(Ray_3);

USING(Direction_3);

USING(Aff_transformation_3);

#undef USING

Finally, the whole abstract class is sketched by placing together the code

chunks defined in this chapter.

〈SNC point locator base.h〉≡
#ifndef SNC_POINT_LOCATOR_BASE_H

#define SNC_POINT_LOCATOR_BASE_H

#include <CGAL/Timer.h>

#define TIMER(instruction) instruction

CGAL_BEGIN_NAMESPACE

template <typename SNC_structure>

class SNC_point_locator_base

{

typedef SNC_point_locator_base<SNC_structure> Self;

protected:

char version_[64];

〈run time log variables〉

public:

〈public types definition〉



74 CHAPTER 5. INTERFACE REQUIREMENTS

〈functional requirements〉
〈structural requirements〉

const char* version() const { return version_; }

virtual ~SNC_point_locator_base() {

〈run time log reports〉
}

};

CGAL_END_NAMESPACE

#endif // SNC_POINT_LOCATOR_BASE_H

We store the time used for construction, point location, ray shooting and

segment intersection respectively. Note that the total time displayed could be

actually larger that the real total time spent by the methods of an implemen-

tation of this class, since the point location and segment intersection queries

make use the ray shooter and so such running time could be accounted to

both timers at the same time.

〈run time log variables〉≡
mutable Timer ct_t, pl_t, rs_t, si_t;

〈run time log reports〉≡
#define CLOG(msg) std::clog<<msg<<std::endl

CLOG("construction time: "<<ct_t.time());

CLOG("point location time: "<<pl_t.time());
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CLOG("ray shooting time: "<<rs_t.time());

CLOG("segment intersection time: "<<si_t.time());

CLOG("total time: "<<

ct_t.time()+pl_t.time()+rs_t.time()+si_t.time());
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Chapter 6

Candidate Provider Concept

6.1 Introduction

It is intended to provide a global scheme for the implementation of the point

location, ray shooting and segment intersection operations over Nef polyhe-

dra that would allow to easily applying different optimization strategies.

The implementation of such operations have in common that a search

over the whole set of faces of the polyhedron is performed in order to obtain

a set of objects meeting certain characteristics depending on their spatial

location. More precisely, these operations require finding the face(s) on the

structure containing or intersecting a certain geometric primitive, namely a

point, a ray or a line segment.

A general optimization schema should provide a constrained set of can-

didate faces that contains the set of answer faces for the query. Such general

schema is depicted on figure 6.1. In the figure, colored regions mark closer

regions to the geometric primitive and hence correspond to the candidate set
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p

(a) Neighborhood of a point

~r

(b) Neighborhood of a ray

s̄

(c) Neighborhood of a segment

Figure 6.1: Example of candidate sets for the point location, ray shooting

and segment intersection queries
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used to solve the query. The set of candidate objects could differ depending

on the strategy chosen, i.e. for the naive implementation it corresponds to

the whole set of faces. When using a spatial subdivision it corresponds to

the subset of faces contained in the cells intersected by the query primitive.

However, the algorithms remain quite similar as one can observe when com-

paring the implementation of the ray shooting query using the naive strategy,

with the one using a spatial subdivision:

〈naive ray shooting〉≡
Object_handle shoot( Segment_3 ray) {

Object_handle o;

〈for each vertex v in P...〉 {

if( 〈ray contains v...〉) {

ray = Segment_3( ray.source(), point(v));

o = Object_handle(v);

}

}

〈for each edge e in P...〉 {

if( 〈ray intersects e in a single point...〉) {

ray = Segment_3( ray.source(), 〈intersection between ray and e...〉);
o = Object_handle(e);

}

}

〈for each facet in P...〉 {

if( 〈ray intersects f in a single point...〉) {

ray = Segment_3( ray.source(), 〈intersection between ray and f...〉);
o = Object_handle(f);
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}

}

return o;

}

The algorithm of ray shooting in both cases tries to intersect the ray with

each face on the polyhedron, trimming the ray each time an intersection is

found and storing the last intersected object. The unique difference sits on

the set of faces tested, which for the naive implementation is just the whole

structure but for the implementation using a spatial subdivision candidate

set corresponds to the set of faces inside the cells of the subdivision crossed

by the ray, avoiding in this way objects far from the ray that could never be

intersected.

〈ray shooting by spatial subdivision〉≡
Object_handle shoot( Segment_3 ray) {

list<Object_handle> L = get_objects_around(ray);

Object_handle o;

〈for each vertex v in L...〉 {

if( 〈ray contains v...〉) {

ray = Segment_3( ray.source(), point(v));

o = Object_handle(v);

}

}

〈for each edge e in L...〉 {

if( 〈ray intersects e in a single point...〉) {

ray = Segment_3( ray.source(), 〈intersection between ray and e...〉);
o = Object_handle(e);
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}

}

〈for each facet in L...〉 {

if( 〈ray intersects f in a single point...〉) {

ray = Segment_3( ray.source(), 〈intersection between ray and f..〉);
o = Object_handle(f);

}

}

return o;

}

The same conclusion appears when comparing the implementation of the

point location query using a naive algorithm and the implementation using

a spatial subdivision.

〈naive point location〉≡
Object_handle locate( Point_3 p) {

〈for each vertex v in P...〉 {

if( 〈v is located on p〉)
return Object_handle(v);

}

〈for each edge e in P...〉 {

if( 〈e contains p in its interior...〉)
return Object_handle(e);

}

〈for each facet in P...〉 {

if( 〈f contains p in its interior..〉)
return Object_handle(f);
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}

〈determine the volume where p is located〉
}

〈point location by spatial subdivision〉≡
Object_handle locate( Point_3 p) {

list<Object_handle> L = get_objects_around(p);

〈for each vertex v in L...〉 {

if( 〈v is located on p〉)
return Object_handle(v);

}

〈for each edge e in L...〉 {

if( 〈e contains p in its interior...〉)
return Object_handle(e);

}

〈for each facet in L...〉 {

if( 〈f contains p in its interior..〉)
return Object_handle(f);

}

〈determine the volume where p is located〉
}

〈determine the volume where p is located〉≡
Object_handle o = shoot( Segment_3( p, 〈any vertex of P...〉));
Sphere_map sm = get_sphere_map_of(o);

return sm.locate( CGAL::ORIGIN - ray.direction());

Again, the algorithms for point location only differ in the set of candidate

faces considered on each case.
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The implementation of the segment intersection query is quite similar to

the ray shooting, with the only difference that all the faces intersected by

the segment will be reported. Thus, a comparison of the implementations

for this query would lead us to the same conclusion.

For the reasons explained above, a candidate provider interface is pro-

posed. Such interface would avoid the implementation of the ray shooting,

point location and segment intersection algorithms for the naive and the

kd-tree version of the point locator class, and also for any other incoming

strategy that follows a compatible scheme. By inserting this abstraction

layer, maintainability is improved since a single version of the algorithms is

hold. Second, the code’s reusability is improved by decoupling the choice of

the candidate space from the actual implementation of the queries.

6.2 Interface definition

In a ray shoot query, it is required to obtain the closest object intersecting

a ray. In a subdivision of the space into cells, a ray could actually intersect

many cells. However, one would be interested in examining first the faces

on the cell containing the ray’s origin and then advance to the next cell in

the direction of the ray if no intersection with the faces on the current cell is

found.

By traversing the cells of the spatial subdivision in this way, one can

exploit the locality of the ray by considering only the objects around in the

cells the ray intersects, but also the order in which the cells are intersected.

The following interface class is defined for traversing the cells intersected
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by a ray and for obtaining the set of faces laying on each one of the cells:

〈interface for the objects along ray〉≡
class Objects_along_ray

{

public:

class Iterator

{

public:

virtual const Object_list& operator*() const = 0;

virtual Iterator& operator++() = 0;

virtual bool operator==(const Iterator& i) const = 0;

virtual bool operator!=(const Iterator& i) const = 0;

virtual ~Iterator() {}

};

virtual Iterator begin() const = 0;

virtual Iterator end() const = 0;

virtual ~Objects_along_ray() {}

};

The method for obtain the locality of a ray would return an object of the

Objects along ray class, and will have the following signature:

〈interface for the objects along ray〉+≡
virtual

Objects_along_ray objects_along_ray( const Ray_3& r) const = 0;

There is an issue with this method that one needs to couple with. As

it will be defined in chapter 8, in an spatial subdivision a face is stored on

each one of the cells it intersects. For this reason, it is possible that a ray
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intersects a face lying (partially) in a cell, but the intersection point actually

lies in a different cell, which is not yet reached. This situation impels an

inclusion in the interface of a method for checking whether a point is located

in a certain cell, in order to verify that the intersection really occurs in the

current cell.

〈interface for checking intersection correctness〉≡
typedef Objects_along_ray::Iterator Cell_iterator;

virtual

bool is_point_on_cell( Point_3 p, Cell_iterator cell) const = 0;

The point location and segment intersection algorithms require to know

the set of faces in the neighborhood of the query primitive, i.e. the faces

around the point or the faces around the segment respectivelly, and hence

methods for obtaining such neighborhood have to be provided.

〈interface for the objects around point〉≡
virtual

const Object_list& objects_around_point( const Point_3& p) const = 0;

〈interface for the objects around segment〉≡
virtual

Object_list objects_around_segment( const Segment_3& s) const = 0;

The data types used by the methods on the interface are taken from the

SNC structure, which will be given as a template parameter.

〈definition of the public types〉≡
typedef typename SNC_structure::Point_3 Point_3;

typedef typename SNC_structure::Segment_3 Segment_3;

typedef typename SNC_structure::Ray_3 Ray_3;
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typedef typename SNC_structure::Object_list Object_list;

Finally, the structure of the interface class is defined as follows:

〈SNC candidate provider.h〉≡
#ifndef SNC_CANDIDATE_PROVIDER_H

#define SNC_CANDIDATE_PROVIDER_H

CGAL_BEGIN_NAMESPACE

template <typename SNC_structure>

class SNC_candidate_provider

{

public:

〈definition of the public types〉
〈interface for the objects along ray〉
〈interface for the objects around point〉
〈interface for the objects around segment〉
virtual ~SNC_candidate_provider() {}

};

CGAL_END_NAMESPACE

#endif // SNC_CANDIDATE_PROVIDER_H



Chapter 7

Naive Candidate Provider

A naive implementation of the candidate provider interface defined on chapter

6 will be presented in this chapter. For a given Nef polyhedron, the candi-

date provider class provides the set faces in the neighborhood of a geometric

primitive, more precisely, of a point, a segment or a ray. This information

is used for constraint the search space of faces necessary for solving the ray

shooting, point location and segment intersection tests. As one may intuit, a

naive implementation of this interface would return the whole set of faces in

the Nef polyhedron as the answer for a neighborhood query. This is called a

naive implementation since it does not apply any optimization scheme that

could provide a more accurate answer for the queries.

Hence, the implementation of this interface takes the SNC structure as-

sociated to a Nef polyhedron and basically returns the whole set of faces as

the answer for any query. The class has the following structure:

〈SNC candidate provider naive.h〉≡
#ifndef SNC_CANDIDATE_PROVIDER_NAIVE_H

87
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#define SNC_CANDIDATE_PROVIDER_NAIVE_H

CGAL_BEGIN_NAMESPACE

template <typename SNC_structure>

class SNC_candidate_provider_naive

{

public:

class Objects_along_ray;

friend class Objects_along_ray;

〈public types definition〉

SNC_candidate_provider_naive

( const Object_list& L, Object_list_size n_vertices)

: objects(L) {}

〈objects along ray class definition〉
〈objects along ray method〉
〈objects around segment method〉
〈objects around point method〉
〈point-cell inclusion method〉
〈affine transformation method〉

private:

Object_list objects;

};

CGAL_END_NAMESPACE
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#endif // SNC_CANDIDATE_PROVIDER_NAIVE_H

Now, the data types the class will provide are defined. Such data types

must give support to both the input and output objects. The input objects

correspond to the geometric primitives, specifically the points, segments and

rays suitable to be prompted for their neighbor faces. The output object

types become the generic containers necessary to store the various types of

faces that could come out as the result from a neighbor query. Also, the

object types corresponding to each kind of face that could be embedded in

a generic object, i.e. the handlers for the vertices, edges and facets must be

provided.

〈public types definition〉≡
typedef typename SNC_structure::Point_3 Point_3;

typedef typename SNC_structure::Segment_3 Segment_3;

typedef typename SNC_structure::Ray_3 Ray_3;

typedef typename SNC_structure::Aff_transformation_3 Aff_transformation_3;

typedef typename SNC_structure::Object_list Object_list;

typedef typename Object_list::size_type Object_list_size;

typedef typename SNC_structure::Object_handle Object_handle;

typedef typename SNC_structure::Vertex_iterator Vertex_iterator;

typedef typename SNC_structure::Halfedge_iterator Halfedge_iterator;

typedef typename SNC_structure::Halffacet_iterator Halffacet_iterator;

In the naive implementation of the candidate provider interface there is

a single cell covering the whole space and therefore the cell’s iterator goes

over a single element. The begin element of the set of objects along the ray
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would be the whole set of faces, and the next and end element of the iteration

becomes an iterator holding the empty set.

〈objects along ray class definition〉≡
class Objects_along_ray

{

public:

class Iterator;

friend class Iterator;

Objects_along_ray( const Object_list& L) : objects(L) {}

class Iterator

{

public:

Iterator() : objects(NULL) {}

Iterator( const Object_list* L) : objects(L) {}

Iterator( const Iterator& i) : objects(i.objects) {}

const Object_list& operator*() const {

return *objects;

}

Iterator& operator++() {

CGAL_assertion( objects != NULL);

objects = NULL;

return *this;

}

bool operator==(const Iterator& i) const {

return (objects == i.objects);

}
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bool operator!=(const Iterator& i) const {

return !(*this == i);

}

private:

const Object_list* objects;

};

Iterator begin() const {

return Iterator(&objects);

}

Iterator end() const {

return Iterator();

}

private:

const Object_list& objects;

};

As it was explained before, the whole set of faces is always the answer for

a neighbor query for points, segments or rays. Hence, the methods for each

geometric primitive will just return the whole set of faces contained in the

Nef polyhedron.

〈objects along ray method〉≡
Objects_along_ray objects_along_ray( const Ray_3& r) const {

return Objects_along_ray(objects);

}

〈objects around segment method〉≡
Object_list objects_around_segment( const Segment_3& s) const {

return objects;
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}

〈objects around point method〉≡
Object_list objects_around_point( const Point_3& p) const {

return objects;

}

The interface also requires a method for testing if a given point p is

contained in a given cell C represented by an iterator of the Objects along ray

class. In the naive implementation, one has a cell bounding the whole space,

and hence, every point p would be contained.

〈point-cell inclusion method〉≡
typedef typename Objects_along_ray::Iterator Objects_along_ray_iterator;

bool is_point_on_cell( const Point_3& p,

const Objects_along_ray_iterator& target) const {

return true;

}

Lastly, the transform method is implemented. This method is called for

updating the underlying structure of a Nef polyhedron when it an affine

transformation is applied. However, such operation does not affect the naive

candidate provider since no geometrical information is stored in this class

and hence no action is taken.

〈affine transformation method〉≡
void transform(const Aff_transformation_3& t) {}

With this method, the naive implementation of the candidate provider is

completed.



Chapter 8

Candidate Provider by Spatial

Subdivision

8.1 Introduction

An implementation of the candidate provider interface, defined on chapter 6,

is presented in the following sections. In brief, in order to fulfill the require-

ments of such interface the following basic operations have to be provided:

• Get the set of faces L around a point p.

• Get the set of faces L in the neighborhood of a ray r starting with the

faces closer to the origin of r.

• Get the set of faces L around a segment s.

The strategy applied for the implementation of this interface is the fol-

lowing: having the set of vertices, edges and facets of a Nef polyhedron, a

93
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subdivision of the space using a kd-tree is defined. The corresponding class

model used for the implementation of this interface and its related classes is

displayed on appendix A.2.

A kd-tree is the d-dimensional equivalence of a binary search. In this

project a 3-dimensional kd-tree will be used. It splits the space into cells by

consecutively dividing it using axis aligned planes, splitting every time the

set of objects in two parts, each containing the objects lying on each side of

the plane. When an object intersects the splitting plane, one could either

divide the object in order to leave each part in a distinct side of the plane,

or treat the object as if lies in both sides of the plane. Since it is not always

possible to split an object such that it belongs only to one side, e.g. when

having a facet lying on the splitting plane, the second alternative is chosen.

However, there is a drawback by choosing that option. As a result of

letting some objects to lie in more than one cell, there is no guaranty that

the intersection point between a ray passing through a cell and an object

crossing such cell, will lie on the cell as well. This makes it necessary to

perform an additional point-cell location to assure the intersection point is

on the current cell. This fact becomes important during the ray shooting

process, described later on.

The planes are chosen such that the objects are evenly distributed on

both sides. This is done with the objective of constructing balanced trees,

which would provide a better search performance. This consecutive division

splits the space into cells that are represented by each node of the tree. The

leaves of the tree, that represent the resulting cells of the subdivision, will

store the set of objects lying totally or partially the cell.
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The objective pursued by implementing a spatial subdivision is to im-

prove the time performance of the ray shooting, point location and segment

intersection over Nef polyhedra.

8.2 Definition of the kd-tree structure

The structure of the class implementing the candidate provider interface is

defined as follows:

〈K3 tree.h〉≡
#ifndef K3_TREE_H

#define K3_TREE_H

#include <CGAL/Unique_hash_map.h>

#include <CGAL/Nef_3/quotient_coordinates_to_homogeneous_point.h>

#include <queue>

#include <deque>

#include <sstream>

#include <string>

#undef _DEBUG

#define _DEBUG 503

#include <CGAL/Nef_2/debug.h>

CGAL_BEGIN_NAMESPACE

template <typename Traits_>
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class K3_tree

{

class Objects_around_segment;

friend class Objects_around_segment;

public:

class Objects_along_ray;

friend class Objects_along_ray;

〈declaration of public types〉

private:

〈declaration of private types〉
〈definition of the node structure〉

public:

K3_tree( const Object_list& L,

Object_list_size n_vertices) : objects(L) {

〈compute the bounding box of the input objects〉
〈compute the maximum depth of the subdivision〉
root = build_kdtree( objects, 0, bounding_box);

}

〈definition of the objects around point method〉
〈definition of the objects along ray methods〉
〈definition of the objects around segment methods〉
〈definition of the point on cell test〉

〈definition of the kd-tree display methods〉
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〈definition of the kd-tree update method〉
〈definition of the kd-tree destructor〉

private:

〈definition of the kd-tree construction methods〉
〈implementation of the objects around point method〉

Traits traits;

Node* root;

int max_depth;

Bounding_box_3 bounding_box;

Object_list objects;

};

CGAL_END_NAMESPACE

#endif // K3_TREE_H

First, it is necessary to compute two parameters obtainable from the

Nef polyhedron and which are required for constructing the kd-tree. Those

parameters are the maximum tree depth and the bounding box of the Nef

polyhedron.

All the faces of a Nef Polyhedron represented by a SNC structure are

incident to vertices, so the number of vertices in the polyhedron would define

a good complexity measure of the object. Then the maximum depth of the

kd-tree would be a function of the number of vertices. The depth of a well

balanced binary tree with n objects is log2 n, formula that will be used to
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compute the maximum depth allowed in the kd-tree.

〈compute the maximum depth of the subdivision〉≡
std::frexp( n_vertices-1.0, &max_depth);

The bounding box of faces belonging to the Nef polyhedron becomes

necessary in two processes of the kd-tree. First, during the construction

of the spatial subdivision where the bounding box is recursively divided in

halves defining each one a node of the tree. Second, during the ray shooting

where the bounding box is used to clip the rays into finite segments.

〈compute the bounding box of the input objects〉≡
Objects_bbox_3 objects_bbox = traits.objects_bbox_3_object();

bounding_box = objects_bbox(objects);

The whole set of data types used by the kd-tree class are taken from a

traits class, which is be defined in appendix B. This traits class, in addition

to the type definition for the various kinds of faces, the generic containers

and the geometric primitives, provides side-plane predicates for each kind of

face, via the Side of plane class.

〈declaration of public types〉≡
typedef Traits_ Traits;

typedef typename Traits::Vertex_handle Vertex_handle;

typedef typename Traits::Halfedge_handle Halfedge_handle;

typedef typename Traits::Halffacet_handle Halffacet_handle;

typedef typename Traits::Object_list Object_list;

typedef typename Traits::Object_handle Object_handle;

typedef typename Traits::Point_3 Point_3;

typedef typename Traits::Segment_3 Segment_3;
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typedef typename Traits::Ray_3 Ray_3;

typedef typename Traits::Aff_transformation_3 Aff_transformation_3;

〈declaration of private types〉≡
typedef typename Traits::Explorer Explorer;

typedef typename Object_list::const_iterator Object_const_iterator;

typedef typename Object_list::iterator Object_iterator;

typedef typename Object_list::size_type Object_list_size;

typedef typename Traits::Vector_3 Vector_3;

typedef typename Traits::Direction_3 Direction_3;

typedef typename Traits::Plane_3 Plane_3;

typedef typename Traits::Bounding_box_3 Bounding_box_3;

typedef typename Traits::Side_of_plane Side_of_plane;

typedef typename Traits::Objects_bbox_3 Objects_bbox_3;

typedef typename Traits::Kernel Kernel;

8.3 Construction of the kd-tree

During the construction of a kd-tree, the space bounded by the Nef poly-

hedron is consecutively divided into two half-spaces, switching each time

between x = ki, y = ki and z = ki planes, where ki is a constant specifying

the i-th plane. Every time the space is divided the set of faces is distributed

into the resulting half-spaces they intersect until no further splitting of the

objects is possible or a maximal tree depth is reached.

In figure 8.1, two examples of kd-tree over 3D Nef polyhedra are shown.

There, each model is enclosed inside its bounding box, and the first three

subdivisions of such bounding box are displayed.
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(a) Kd-tree over a mushroom model

(b) Kd-tree over a shark model

Figure 8.1: Examples kd-trees over Nef polyhedra showing the first three

subdivisions of the space
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As the kd-tree structure divides the set of objects into two subsets of

equal size, one could expect a well balanced tree as result. Balanced binary

trees have a depth close to log2n, so this value serves as a proper limit for

the tree depth.

〈definition of the kd-tree construction methods〉≡
template <typename Depth>

Node* build_kdtree( const Object_list& L, Depth depth,

const Bounding_box_3& bbox, Node* parent=0,

unsigned short ineffective_splits=0) {

CGAL_precondition( depth >= 0);

if( !can_set_be_divided( L, depth)) {

return new Node( parent, 0, 0, depth, Plane_3(), bbox, L);

}

Plane_3 partition_plane = construct_splitting_plane( L, depth);

Object_list L1, L2;

bool was_split_effective =

classify_objects( L, partition_plane,

std::back_inserter(L1),

std::back_inserter(L2));

if(!was_split_effective)

++ineffective_splits;

else

ineffective_splits = 0;

if( ineffective_splits == 3) {

return new Node( parent, 0, 0, depth, Plane_3(), bbox, L);

}
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〈compute the bounding box of each offspring node〉
Node *node = new Node( parent, 0, 0, depth, partition_plane,

bbox, Object_list());

node->left_node = build_kdtree( L1, depth+1, lbbox, node,

ineffective_splits);

node->right_node = build_kdtree( L2, depth+1, rbbox, node,

ineffective_splits);

return node;

}

The first step on the construction of the kd-tree consists in to determine

whether one should continue splitting or not the set of objects. The very

first parameters available for making a decision are the current tree depth

and the number of vertices on the actual cell.

When there is only one vertex in a cell, the node subdivision will stop and

the node is marked a leaf. This criteria, taken from the PM octrees [Sam89],

is used in order to avoid infinite divisions while trying to separate the single

vertex remaining on a cell, from the edges and facets incident to it.

〈definition of the kd-tree construction methods〉+≡
template <typename Depth>

bool can_set_be_divided( const Object_list& L, Depth depth) {

CGAL_precondition( depth <= max_depth);

if( L.size() <= 1)

return false;

if( depth == max_depth)

return false;

Object_list_size n_vertices = 0;
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Object_const_iterator o;

for( o = L.begin(); (o != L.end()) && (n_vertices <= 1); o++) {

Vertex_handle v;

if( assign( v, *o))

++n_vertices;

}

return (n_vertices > 1);

}

If the partition plane is known, it is easy to classify the objects into

two categories, one for the objects lying in the positive side of the plane,

and another for the objects on the negative side, by calling the side-of-plane

predicate provided by the traits class. The objects intersecting the partition

plane are included in both categories.

In order to make the kd-tree structure consistent, the orientation of the

partition planes used during the construction must be uniform, so the concept

of positive and negative side will be the equal at every level of the tree.

Once knowing the location of the partition plane, it is necessary to de-

termine if the plane actually divides the set of objects in two distinct parts,

i.e. if there are objects lying on both on sides of the plane. If this is not the

situation, there is no gain by splitting the set of objects along the current

axis. However, it is still possible that a further plane located along a different

axis could actually split the set of objects. For this reason the division is not

yet stopped until three consecutive x = ki, y = ki, z = ki planes are tested.

While obtaining the side where each object lies, they are stored in two

lists according to the side they belong to. Those lists become later the input
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for the next division step of the algorithm.

〈definition of the kd-tree construction methods〉+≡
template <typename OutputObjectIterator>

bool

classify_objects( const Object_list& L, Plane_3 partition_plane,

OutputObjectIterator L1, OutputObjectIterator L2) {

Object_list_size on_positive_side_count = 0,

on_negative_side_count = 0;

Side_of_plane sop;

for( Object_const_iterator o = L.begin(); o != L.end(); ++o) {

Oriented_side side = sop( partition_plane, *o);

if( side == ON_NEGATIVE_SIDE) {

*L1 = *o;

++L1;

++on_negative_side_count;

}

else if( side == ON_POSITIVE_SIDE) {

*L2 = *o;

++L2;

++on_positive_side_count;

}

else {

CGAL_assertion(side == ON_ORIENTED_BOUNDARY);

*L1 = *o;

++L1;

*L2 = *o;

++L2;
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}

}

return (on_negative_side_count != 0 &&

on_positive_side_count != 0);

}

Now, it remains to define the algorithm that computes the partition plane

for a given set of objects. There are many strategies known for obtaining

such plane. Those strategies go from choosing the middle or median point

of each cell as the pinning point of the plane, to iteratively place and test

planes until a good enough division is achieved.

In order to choose an alternative, it is necessary to take in count that

time spent for constructing the kd-tree should stay as low as possible, but

taking care of obtaining a reasonably good division of the space. For these

reasons, it is chosen to place the plane at the median point of the vertices,

which is not as expensive as a heuristic algorithm and provides a much better

division than simply choosing the middle point of the bounded space.

For computing the median point of the vertices, the std::nth element algo-

rithm of STL is used. This algorithm has in average a linear time complexity.

In order to apply this generic algorithm, a comparison operator that takes

a pair of vertices and compares them by the proper coordinate has to be

provided. This operator is defined as follows:

〈definition of the kd-tree construction methods〉+≡
template <typename Explorer, typename Coordinate>

class Is_vertex_smaller

{
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typedef typename Explorer::Vertex_handle Vertex;

public:

Is_vertex_smaller(Coordinate c) : coord(c) {

CGAL_assertion( c >= 0 && c <=2);

}

bool operator()( const Vertex& v1, const Vertex& v2) {

return (D.point(v1)[coord] < D.point(v2)[coord]);

}

private:

Coordinate coord;

Explorer D;

};

The std::nth element algorithm is used in order to obtain the b(n+1)/2c-
th vertex of the ordered sequence of vertices along an axis. This vertex will

be used to fix the location of splitting plane. The orientation of the plane is

chosen to be perpendicular to the x, y or z axis, according to the level of the

node.

〈definition of the kd-tree construction methods〉+≡
template <typename Depth>

Plane_3

construct_splitting_plane( const Object_list& L, Depth depth) {

typedef typename std::vector<Vertex_handle> Vertex_list;

typedef typename Vertex_list::difference_type Vertex_index;

typedef typename Vertex_list::size_type Vertex_list_size;

typedef typename Is_vertex_smaller< Explorer, unsigned short>

Is_vertex_smaller;
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CGAL_precondition( depth >= 0);

CGAL_precondition( L.size() > 0);

Vertex_list vertices;

for( Object_const_iterator o = L.begin(); o != L.end(); ++o) {

Vertex_handle v;

if( assign( v, *o))

vertices.push_back(v);

}

Vertex_list_size n = vertices.size();

CGAL_assertion( n > 1);

Vertex_index median = ((n+1)/2)-1;

std::nth_element( vertices.begin(),

vertices.begin() + median,

vertices.end(),

Is_vertex_smaller(depth%3));

Explorer D;

Point_3 p0(D.point(vertices[median]));

switch( depth % 3) {

case 0: return Plane_3( p0, Vector_3( 1, 0, 0)); break;

case 1: return Plane_3( p0, Vector_3( 0, 1, 0)); break;

case 2: return Plane_3( p0, Vector_3( 0, 0, 1)); break;

}

CGAL_assertion_msg( 0, "never reached");

return Plane_3();

}

Every node of the kd-tree carries a bounding box that defines the enclosed

space of the cell of the subdivision it represents. Such bounding box is
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computed by dividing the bounding box of the node’s parent in the two

halves corresponding to each offspring.

〈compute the bounding box of each offspring node〉≡
Bounding_box_3 lbbox, rbbox;

Point_3 pmax = quotient_coordinates_to_homogeneous_point<Kernel>

( bbox.xmax(), bbox.ymax(), bbox.zmax());

pmax = partition_plane.projection(pmax);

lbbox = Bounding_box_3( bbox.xmin(), bbox.ymin(), bbox.zmin(),

pmax.x(), pmax.y(), pmax.z());

Point_3 pmin = quotient_coordinates_to_homogeneous_point<Kernel>

( bbox.xmin(), bbox.ymin(), bbox.zmin());

pmin = partition_plane.projection(pmin);

rbbox = Bounding_box_3( pmin.x(), pmin.y(), pmin.z(),

bbox.xmax(), bbox.ymax(), bbox.zmax());

In the last bunch of constructor methods the structure of the nodes is

defined. They represent binary trees, where every node has a splitting plane

that subdivides its enclosed space, and two offspring representing each half

of the space. The leaf nodes do not have an associated plane but they store

the set of faces bounded by or intersecting its enclosed space.

〈definition of the node structure〉≡
class Node {

friend class K3_tree<Traits>;

public:

Node( Node* p, Node* l, Node* r, unsigned long d,

const Plane_3& pl, const Bounding_box_3& b,

const Object_list& L)
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: parent_node(p), left_node(l), right_node(r), tree_level(d),

splitting_plane(pl), bounding_box(b), object_list(L) {}

bool is_leaf() const {

CGAL_assertion( (left_node != 0 && right_node != 0) ||

(left_node == 0 && right_node == 0));

return (left_node == 0 && right_node == 0);

}

const Node* parent() const { return parent_node; }

const Node* left() const { return left_node; }

const Node* right() const { return right_node; }

unsigned long depth() const { return tree_level; }

const Plane_3& plane() const { return splitting_plane; }

const Bounding_box_3& bbox() const { return bounding_box; }

const Object_list& objects() const { return object_list; }

〈definition of the node display method〉
〈definition of the node destructor〉

private:

Node* parent_node;

Node* left_node;

Node* right_node;

unsigned long tree_level;

Plane_3 splitting_plane;

Bounding_box_3 bounding_box;

Object_list object_list;

};

During the simplification process of an SNC structure (see section 2.6.3),



110CHAPTER 8. CANDIDATE PROVIDER BY SPATIAL SUBDIVISION

some vertices, edges and facets could be removed as a result of the merging

process.

The point locator class is instantiated before this simplification process

occurs, in order to perform the ray shooting queries required during the

volumes recovering process, where ray shooting is used for finding the nesting

structure of the shells.

Given this scenario, the faces handlers stored on the nodes of the kd-

tree are suitable become invalid after simplifying the SNC structure. For

overcoming this problem, a method for updating the kd-tree is provided.

Here, a map storing the set of vertex, edge and facet handlers remaining

after the simplification process is used. If a face handler is not found in the

map it means it was merged with another and therefore it has to be removed

from the set of faces stored in the leaf nodes.

〈definition of the kd-tree update method〉≡
bool update( const Unique_hash_map<Vertex_handle, bool>& V,

const Unique_hash_map<Halfedge_handle, bool>& E,

const Unique_hash_map<Halffacet_handle, bool>& F) {

return update( root, V, E, F);

}

〈definition of the kd-tree update method〉+≡
bool update( Node* node,

const Unique_hash_map<Vertex_handle, bool>& V,

const Unique_hash_map<Halfedge_handle, bool>& E,

const Unique_hash_map<Halffacet_handle, bool>& F) {

CGAL_assertion( node != 0);

if( node->is_leaf()) {
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bool node_updated = false;

Object_list& L = node->object_list;

Object_iterator next_o, o = L.begin();

while( o != L.end()) {

next_o = o;

++next_o;

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

if( assign( v, *o)) {

if( !V[v]) {

L.erase(o);

node_updated = true;

}

}

else if( assign( e, *o)) {

if( !E[e]) {

L.erase(o);

node_updated = true;

}

}

else if( assign( f, *o)) {

if( !F[f]) {

L.erase(o);

node_updated = true;

}

}
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else

CGAL_assertion_msg( 0, "wrong handle");

o = next_o;

}

return node_updated;

}

bool left_updated = update( node->left_node, V, E, F);

bool right_updated = update( node->right_node, V, E, F);

return (left_updated || right_updated);

}

When the geometry of Nef polyhedra is modified, i.e. by applying an affine

transformation, the kd-tree structure has to be updated accordingly. In such

cases, the current spatial subdivision is deleted, the new bounding box of

the Nef polyhedra is recomputed, and a kd-tree with the new geometry is

rebuilt.

〈definition of the kd-tree update method〉+≡
void transform(const Aff_transformation_3& t) {

delete root;

〈compute the bounding box of the input objects〉
root = build_kdtree( objects, 0, bounding_box);

}

Finally, everything that has a beginning has also an end, so now the

destructor the kd-tree structure is defined. For freeing the memory allocated

for the tree, the hierarchy of nodes is recursively traversed just in the same

way it was created. The list of generic objects stored on the leaf nodes is
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automatically freed when the node’s destructor is called.

〈definition of the kd-tree destructor〉≡
~K3_tree() {

delete root;

}

〈definition of the node destructor〉≡
~Node() {

if( !is_leaf()) {

delete left_node;

delete right_node;

}

}

8.4 Neighborhood of a point

Using a kd-tree, the set of faces in the neighborhood of a given point p ∈ R3

can be obtained by locating the cell where p is contained and returning the

set of objects stored on the cell. This operation corresponds to a search in

a binary tree where, starting from the root node, one has to walk to the left

or right child depending on the side of the splitting plane where p is located

until a leaf node is reached.

In figure 8.4, an example of a 2-dimensional kd-tree for a set of triangles

and their boundary is shown. There, a point p and the cell where it is located

are displayed. The vertices, edges and facets located in the cell where p is

contained correspond to the neighborhood of p.
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p

C1

Figure 8.2: Cell containing a point p in a 2-dimensional kd-tree defined over

a set of triangles in the plane

If p happens to lie on the partition plane, the search could continue with

any of the two child nodes. This step is safe since the objects intersecting

a partition plane are always stored on the nodes associated to both sides of

plane. The choice of which node to visit in such cases is arbitrary.

〈definition of the objects around point method〉≡
const Object_list& objects_around_point( const Point_3& p) const {

return locate_cell_containing( p, root)->objects();

}

〈implementation of the objects around point method〉≡
const Node* locate_cell_containing( const Point_3& p,

const Node* node) const {

CGAL_precondition( node != 0);
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while( !node->is_leaf()) {

Oriented_side side = node->plane().oriented_side(p);

if( side == ON_NEGATIVE_SIDE || side == ON_ORIENTED_BOUNDARY) {

node = node->left();

}

else { // side == ON_POSITIVE_SIDE

CGAL_nef3_assertion( side == ON_POSITIVE_SIDE);

node = node->right();

}

CGAL_assertion( node != 0);

}

return node;

}

The candidate provider interface also requires a point-cell inclusion query,

due the fact that the intersection between a ray and an object lying on a cell

could actually be located in a different cell.

From the user’s point of view, the set of cells traversed by a ray are

represented by a cell’s iterator that goes from the cell containing the ray’s

origin until the last cell in the subdivision intersected by the ray.

〈definition of the point on cell test〉≡
typedef typename Objects_along_ray::Iterator

Objects_along_ray_iterator;

bool is_point_on_cell

( const Point_3& p,

const Objects_along_ray_iterator& target) const {

Bounded_side s = target.get_node()->bbox().bounded_side(p);
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return (s == CGAL::ON_BOUNDED_SIDE || s == CGAL::ON_BOUNDARY);

}

8.5 Neighborhood of a ray

The interface for performing ray tracing on the kd-tree structure will consist

in an iterator that goes over the sets of objects contained in the cells inter-

sected by the ray, in order of proximity to the origin of the ray. The concept

of iterator is introduced here in order to prevent the user to interact with

the objects of the underlying structure of the kd-tree, providing in this way

an internal-attributes free interface.

The Objects along ray class will do the work of traversing the kd-tree

structure, leaving to the eyes of the user just the set of objects on the cells

intersected by the ray. This class takes a ray r and the kd-tree itself as

arguments for its computation.

〈definition of the objects along ray methods〉≡
Objects_along_ray objects_along_ray( const Ray_3& r) const {

return Objects_along_ray( *this, r);

}

In order to deal with the unboundedness of the rays, r can be substituted

by a segment s ⊆ r with source at the ray’s origin and target at the inter-

section point between r and the bounding box of the Nef polyhedron. This

operation does not introduce any error since no object is located beyond the

bounding box.

On the Nef polyhedron package, ray shooting is used for two basic tasks:
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finding the shell’s hierarchy during the synthesis process and locating the

volume where a point is lying during the point location process. Both situa-

tions make use of ray shooting with the same purpose: to determine the shell

containing a point. In the case of the synthesis process, the point corresponds

to the location of the xyz-lexicographical minimum vertex of a shell and for

point location it corresponds to the query point itself.

Finding the immediate enclosing shell of a point is a matter of shooting

a ray in any direction and taking the shell that owns the first boundary face

hit by the ray. However, it is convenient for the synthesis process to shoot a

ray with direction −x, because it cannot intersect any face belonging to the

shell from which the ray is shot, making it easier to find the enclosing shell.

For this reason, in this implementation of 3D Nef polyhedra, all the rays

suitable to be asked for their neighborhood, have direction −x and this fact is

set as a precondition of the ray shooting algorithm. This restriction facilitates

the process of transforming the ray into a finite segment since bounding such

rays is a matter of computing the intersection between the ray and a plane

with normal vector −x containing minimum point of the bounding box.

When a ray does not intersect the bounding volume then the ray’s source

is located on the leftmost side of the bounding box and its direction does

not point to the interior of the bounding box. In such case it is known

that there are not candidates for intersecting the ray. However, instead of

somehow reporting that there are not objects in the neighborhood of r, the

ray is simply replaced by a segment s ⊆ r lying on the unbounded side of

the bounding box. This approach is taken in order to avoid introducing any

additional return value and hence maintaining the class interface clean.
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〈definition of the objects along ray methods〉+≡
class Objects_along_ray

{

public:

Objects_along_ray( const K3_tree& k, const Ray_3& r) {

CGAL_assertion( r.direction() == Direction_3( -1, 0, 0));

Point_3 p(r.source()), q;

Bounding_box_3 b = k.bounding_box;

Point_3 pt_on_minus_x_plane =

quotient_coordinates_to_homogeneous_point<Kernel>

( b.xmin(), b.ymin(), b.zmin());

Plane_3 pl_on_minus_x( pt_on_minus_x_plane, Vector_3( -1, 0, 0));

Object o = oas.traits.intersect_3_object()( pl_on_minus_x, r);

if( !assign( q, o) || pl_on_minus_x.has_on(p))

q = r.source() + Vector_3( -1, 0, 0);

else

q = normalized(q);

oas.initialize( k, Segment_3( p, q));

}

typedef typename Objects_around_segment::Iterator Iterator;

Iterator begin() const { return oas.begin(); }

Iterator end() const { return oas.end(); }

private:

Objects_around_segment oas;

};

The Objects along ray class is derived from the Objects around segment

class. This comes from the fact that during the construction of the class the
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ray is converted into a (bounded) segment. Given such situation the same

algorithms for obtaining the set of cells intersected by a segment can be used.

These algorithms are defined in the following section.

8.6 Neighborhood of a segment

The Boolean operations among Nef polyhedra require finding the set of in-

tersection points between the edges of one Nef polyhedron and the edges and

facets in another, and vice versa. Naively, all the edges and facets of the Nef

polyhedron should have to be tested, but when using a spatial subdivision,

it is possible to cut down the number of intersection tests by taking as can-

didates only the objects in the cells the supporting line segment of each edge

is intersecting.

〈definition of the objects around segment methods〉≡
typedef typename Objects_around_segment::Iterator

Objects_around_segment_iterator;

Object_list objects_around_segment( const Segment_3& s) const {

Object_list L;

〈get all objects on the cells intersected by s〉
return L;

}

In figure 8.6, an example of a 2-dimensional kd-tree for a set of triangles

and their boundary is displayed. There, a ray (bounded into a segment) is

shot in the −x direction from the leftmost vertex of a triangle. The three

cells of the subdivision traversed by the ray are shown as dashed regions. In
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Figure 8.3: Cells intersected by a ray ~r in a 2-dimensional kd-tree defined

over a set of triangles in the plane

this example, the facets, edges or vertices located on such intersected cells

will be taken as the neighborhood of the ray.

For obtaining the set of objects in the neighborhood of a segment s, the

set of cells crossed by the segment is traversed, storing in a container the set

of objects associated to each cell. However, it is possible that some objects

may intersect several cells and hence those objects could appear duplicated

in the output container. For this reason, it is necessary to guarantee that

every object in the final set of candidates appears only once. This is achieved

by building a hash map where the handlers for the faces found on each cell

are marked, avoiding in this way to report faces more than once.

〈get all objects on the cells intersected by s〉≡
Objects_around_segment objects( *this, s);
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Unique_hash_map< Vertex_handle, bool> v_mark(false);

Unique_hash_map< Halfedge_handle, bool> e_mark(false);

Unique_hash_map< Halffacet_handle, bool> f_mark(false);

for( Objects_around_segment_iterator oar = objects.begin();

oar != objects.end(); ++oar) {

for( Object_const_iterator o = oar->begin();

o != oar->end(); ++o) {

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

if( assign( v, *o)) {

if( !v_mark[v]) {

L.push_back(*o);

v_mark[v] = true;

}

}

else if( assign( e, *o)) {

if( !e_mark [e]) {

L.push_back(*o);

e_mark[e] = true;

}

}

else if( assign( f, *o)) {

if( !f_mark[f]) {

L.push_back(*o);

f_mark[f] = true;

}
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}

else

CGAL_assertion_msg( 0, "wrong handle");

}

}

The process of obtaining the set of cells intersected by a segment is done

by means of the Objects around segment class, which implements the inter-

face defined on chapter 5.

〈definition of the objects around segment methods〉+≡
class Objects_around_segment

{

friend class Objects_along_ray;

public:

Objects_around_segment() : initialized(false) {}

Objects_around_segment( const K3_tree& k, const Segment_3& s) :

root_node(k.root), segment(s), initialized(true) {

}

class Iterator;

Iterator begin() const {

CGAL_assertion( initialized == true);

return Iterator( root_node, segment);

}

Iterator end() const {

return Iterator();

}

〈definition of the iterator for the cells traversed by a segment〉
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protected:

void initialize( const K3_tree& k, const Segment_3& s) {

root_node = k.root;

segment = s;

initialized = true;

}

Traits traits;

Node *root_node;

Segment_3 segment;

bool initialized;

};

The Objects around segment class defines the member class Iterator, which

performs all the tasks related to the cell traversing. The iterator can be ini-

tialized to the first and to the beyond the last cell intersected by s through

the methods begin() and end() of the parent class. The incremental operator

(++) moves the iterator from the current intersected cell to the next one in

the order defined by the orientation of the segment.

The functionally of the Iterator class is defined on the incremental (++)

operator. The constructor of the class takes the query segment s and the

root node n of the kd-tree and calls the incremental operator with those

parameters, which are given through a stack. Then the incremental operator

pops the couple (n, s) and sets the current node nc to the first leaf node

traversed by s, leaving the iterator properly initialized at the first element of

the cells iteration. Further calls to the iterator’s incremental operator would

move nc to the next leaf node in the order of cells traversed by s until the

last cell is passed and nc is set to null.
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〈definition of the iterator for the cells traversed by a segment〉≡
class Iterator

{

friend class K3_tree;

private:

typedef Iterator Self;

typedef std::pair< const Node*, Segment_3> Candidate;

public:

Iterator() : node(0) {}

Iterator( const Node* root, const Segment_3& s) {

S.push_front( Candidate( root, s));

++(*this);

}

Iterator( const Self& i) : S(i.S), node(i.node) {}

const Object_list& operator*() const {

CGAL_assertion( node != 0);

return node->objects();

}

const Object_list* operator->() const {

CGAL_assertion( node != 0);

return &(node->objects());

}

Self& operator++() {

〈find next intersected cell〉
return *this;

}

bool operator==(const Self& i) const {
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return (node == i.node);

}

bool operator!=(const Self& i) const {

return !(*this == i);

}

private:

const Node* get_node() const {

CGAL_assertion( node != 0);

return node;

}

〈definition of segment intersection helpers〉
protected:

std::deque<Candidate> S;

const Node* node;

Traits traits;

};

For determining which cells are intersected by a segment s, a recursive

approach is followed. The algorithm is implemented by means of a stack S.

On each node, beginning from the root, the division plane Πn associated

to the node n is used to clip s. The algorithm continues according to the two

different outcomes from the segment clipping described below.

The first scenario occurs when s does not intersect Πn. Here, s lies

completely on one side of Πn and hence it only can intersect the cells located

on that side of the plane. The second scenario occurs when s intersects Πn.

In this situation, the cells located on the side where the source of s lies must

be considered at first, and afterwards the cells in the other side, following in
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this way the direction defined by the segment. This fact is important for ray

shooting.

There are two more special cases that must be handled explicitly. One

occurs when s lays completely on the plane Πn. This situation is handled by

considering the space on one side of Πn closed and the another open, falling

in this way into a situation where s lies in only one side of Πn. The decision

of which side to consider closed is arbitrary. In the implementation of this

algorithm, the negative side plays this role. Since the objects intersecting the

division plane associated to a node are stored on both sides, no candidates

are excluded by this simplification.

The second special case occurs when s does not intersect Πn interiorly

but one of its end-points does. In this case, only the cells located on the

side where the interior of s is lying on have to be considered. Again, no

candidates are excluded by doing in such way.

〈classify the segment according to the division plane〉≡
Oriented_side src_side = nc->plane().oriented_side(sn.source());

Oriented_side tgt_side = nc->plane().oriented_side(sn.target());

if( (src_side == ON_ORIENTED_BOUNDARY) &&

(tgt_side == ON_ORIENTED_BOUNDARY))

src_side = tgt_side = ON_NEGATIVE_SIDE;

else if( src_side == ON_ORIENTED_BOUNDARY)

src_side = tgt_side;

else if( tgt_side == ON_ORIENTED_BOUNDARY)

tgt_side = src_side;

〈push on the stack the segment fragments on each side of the plane〉≡
if( src_side == tgt_side)



8.6. NEIGHBORHOOD OF A SEGMENT 127

S.push_front( Candidate( get_child_by_side( nc, src_side), sn));

else {

Segment_3 s1, s2;

divide_segment_by_plane( sn, nc->plane(), s1, s2);

S.push_front( Candidate( get_child_by_side( nc, tgt_side), s2));

S.push_front( Candidate( get_child_by_side( nc, src_side), s1));

}

For iterating over the leaf nodes representing the cells intersected by the

query segment s, a stack S is defined as helper structure. In the stack,

couples (n, sn) are stored, where n is a node of the kd-tree and sn ≡ s∩B(n),

defining B(n) as the space enclosed by the cell represented by n.

Each time the incremental operator is called, pairs (n, sn) from the top of

S are taken and processed in the following way until a leaf node is reached.

The segment sn is divided in two parts s−n , s+
n corresponding to the portions

of sn lying on the negative and positive side of Πn respectively. The pairs

(n∗, s∗n), where ∗ represents the side of the plane, are push in S but taking

care of pushing at last the couple corresponding to the side of Πn containing

the source of sn. In this way, such couple remains on the top of the stack

and it will be processed at first in the next iteration.

The iteration is stopped when the couple taken from the top of S corres-

ponds to a leaf node. The current node nc is set properly. When the elements

in the stack are exhausted nc is set to null to denote the end of the iteration.

〈find next intersected cell〉≡
if( S.empty())

node = 0;

else {
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while(!S.empty()) {

const Node* nc = S.front().first;

Segment_3 sn = S.front().second;

S.pop_front();

if( nc->is_leaf()) {

node = nc;

break;

}

else {

〈classify the segment according to the division plane〉
〈push on the stack the segment fragments on each side of the plane〉

}

}

}

In this implementation of kd-trees, it is followed the convention of rep-

resenting the cell lying on the negative side of its division plane by the left

child node and the one on the positive side by the right node. The following

helper method states this convention:

〈definition of segment intersection helpers〉≡
inline const Node*

get_child_by_side( const Node* node, Oriented_side side) {

CGAL_assertion( node != NULL);

CGAL_assertion( side != ON_ORIENTED_BOUNDARY);

if( side == ON_NEGATIVE_SIDE) {

return node->left();

}
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CGAL_assertion( side == ON_POSITIVE_SIDE);

return node->right();

}

Lastly, the following method is defined in order to clip a segment in two

portions using a plane. This method has as precondition that the input

segment does intersect the plane in a single point.

〈definition of segment intersection helpers〉+≡
void divide_segment_by_plane( Segment_3 s, Plane_3 pl,

Segment_3& s1, Segment_3& s2) {

Object o = traits.intersect_3_object()( pl, s);

Point_3 ip;

CGAL_assertion( assign( ip, o));

assign( ip, o);

ip = normalized(ip);

s1 = Segment_3( s.source(), ip);

s2 = Segment_3( ip, s.target());

CGAL_assertion( s1.target() == s2.source());

CGAL_assertion( s1.direction() == s.direction());

CGAL_assertion( s2.direction() == s.direction());

}

8.7 Kd-tree displaying

In order to facilitate the debugging process, it would be convenient to provide

a way to dump the structure and information stored in a kd-tree. For this
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reason an overload method for the output operator is provided, allowing one

to retrieve such information and to display it as a text string.

〈definition of the kd-tree display methods〉≡
friend std::ostream& operator<<

(std::ostream& os, const K3_tree<Traits>& k3_tree) {

os<<k3_tree.root;

return os;

}

The displaying method is implemented in a recursive way. The main

interest is to see the distribution of the objects on the tree. For this purpose

the number of objects stored on the leaf nodes is displayed in a format that

represents the structure of the tree. In the output stream, each node is

represented as a pair of matched parenthesis enclosing the display of each

offspring node. Since a recursive algorithm is used, the relationship between

the nodes would be represented by the nesting structure of the parenthesis.

〈definition of the node display method〉≡
friend std::ostream& operator<<

(std::ostream& os, const Node* node) {

CGAL_assertion( node != 0);

if( node->is_leaf())

os<< node->objects().size();

else {

CGAL_assertion( node->left() != 0);

CGAL_assertion( node->right() != 0);

os<<" ( "<<node->left()<<" , "<<node->right()<<" ) ";

}
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return os;

}

It is also convenient to provide a method that would allow the user of

the kd-tree class to process in any specific way the information contained

in the nodes, e.g. for implementing and external visualization program. For

this reason, following the Visitor pattern, a method that takes an object

visitor as argument, and calls its visit method for every node on the kd-tree

structure is implemented.

〈definition of the kd-tree display methods〉+≡
template <typename Visitor>

void visit_nodes( Visitor& visitor) const {

std::queue<const Node*> q;

q.push(root);

const Node *node;

while( !q.empty()) {

node = q.front();

q.pop();

visitor.visit(node);

if( !node->is_leaf()) {

CGAL_assertion( node->left() && node->right());

q.push(node->left());

q.push(node->right());

}

}

}

Finally, a method for displaying the set of objects contained in a node
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is defined for debugging purposes. This method initially displays only the

number of vertices, edges and facets contained in the node. However, con-

trolled by a debug level parameter, one could increase the verbosity level of

the method and display as well the geometry of the objects contained in the

node.

〈definition of the kd-tree display methods〉+≡
std::string

dump_object_list( const Object_list& O, int debug_level = 0) {

std::stringstream os;

Object_list_size v_count = 0, e_count = 0,

f_count = 0, t_count = 0;

Object_const_iterator o;

for( o = O.begin(); o != O.end(); ++o) {

Explorer D;

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

if( assign( v, *o)) {

if(debug_level > 0)

os<<D.point(v)<<std::endl;

v_count++;

}

else if( assign( e, *o)) {

if(debug_level > 0)

os<<D.segment(e)<<std::endl;

e_count++;
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}

else if( assign( f, *o)) {

if(debug_level > 0)

os<<"facet"<<std::endl;

f_count++;

}

else CGAL_assertion_msg( 0, "wrong handle");

}

os<<v_count<<"v "<<e_count<<"e "<<f_count<<"f "<<t_count<<"t";

return os.str();

}



134CHAPTER 8. CANDIDATE PROVIDER BY SPATIAL SUBDIVISION



Chapter 9

Point Locator, Ray Shooter

and Segment Intersector

Implementation

9.1 Introduction

In this chapter the interface for point location, ray shooting and segment

intersection described on chapter 5 is implemented. Such implementation

makes use of the Candidate provider concept defined on chapter 6 and im-

plemented in chapters 7 and 8. The corresponding class diagram for the

implementation of this interface and its related classes is displayed on ap-

pendix A.1.

Briefly described, given a Nef polyhedron P and a geometric primitive

g, e.g. a point, segment or ray, a model for the candidate provider concept

provides methods for obtaining a set of boundary faces Fg ⊆ F (P ) such that

135
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Fg contains at least all the faces of P intersecting g. Formally, Fg must hold

the following predicate:

(∀f ∈ F (P ))(f ∩ g 6= ∅ ⇒ f ∈ Fg)

From the predicate above it follows that not all the faces belonging to

Fg actually intersect the query primitive g, but no one intersecting g could

remain excluded from the set.

The candidate provider is used during the point location, ray shooting and

segment intersection tests for shrinking the set of faces that the algorithms

have to test in order to solve the query. The implementation of each query

is described in the following sections.

9.2 Ray shooting

Given a Nef polyhedron P and a ray r, the objective of ray shooting is to de-

termine the first boundary face f ∈ F (P ) intersected by r (see section 2.6.4).

For this purpose, the set intersection candidates Fg is obtained through the

candidate provider and, for every face f ∈ Fg, it is tested if f intersects r,

i.e. f ∩ r 6= ∅.
Defining r0 as the source point of r, every time a face intersecting r at a

point p is found, r is shortened by p by redefining r = (r0, p), and continue

looking for intersecting faces with the new r.

After testing all faces in Fg, the last intersected face will become the

answer for the query. Note that since r is shortened every time by p, it is not

necessary to evaluate the distance between r0 and p in order to obtain the

nearest intersected face. This is because every time r is shortened, the faces
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beyond p are automatically discarded, and hence when all the candidates in

Fg are exhausted, the last intersected face becomes the nearest one.

As mentioned above, the algorithm obtains the set of possible intersect-

ing faces Fg from the candidate provider. The interface with the candidate

provider releases the intersection candidates grouped into bunches of faces

corresponding to each cell crossed by r in order of proximity to r0. These

groups of bunches of faces are proved one by one, and the process is stopped

when an intersection in a group is found. This is controlled by the hit flag.

Nevertheless, all the faces on the current group are tested.

〈definition of the ray shooting method〉≡
Object_handle shoot(const Ray_3& ray) const {

TIMER(rs_t.start());

CGAL_assertion(initialized);

Object_handle result;

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

bool hit = false;

Point_3 eor; // ’end of ray’, the latest point hit

Objects_along_ray objects =

candidate_provider->objects_along_ray(ray);

Objects_along_ray_iterator objects_iterator = objects.begin();

while( !hit && objects_iterator != objects.end()) {

Object_list candidates = *objects_iterator;

Object_list_iterator o;

CGAL_for_each( o, candidates) {
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if( assign( v, *o)) {

〈check ray intersection with a vertex 〉
}

else if( assign( e, *o)) {

〈check ray intersection with an edge〉
}

else if( assign( f, *o)) {

〈check ray intersection with a facet〉
}

else

CGAL_nef3_assertion_msg( 0, "wrong handle");

}

if(!hit)

++objects_iterator;

}

TIMER(rs_t.stop());

return result;

}

Now, the process of testing and registering the intersections between r

and the possible candidates, i.e. the vertices, edges and facets on each cell will

be described. In order to handle the unboundedness of the rays, an auxiliary

point eor, whose purpose is to carry the current extent of r, is defined. The

point eor is set each time an intersection with a face is found, and hence the

ray is redefined by the segment (r0, eor).

Testing the intersection between r and vertex v is just a matter of a

point-ray inclusion test, which is already available in the kernel of CGAL.
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When v is contained on r, one still has to test whether v is contained or

not in the segment (r0, eor) in order to state if v is actually closer than the

last intersected face. In such case, and also when no intersections have been

found yet, the last intersected face, the current eor, and the hit flag are set

properly.

〈check ray intersection with a vertex 〉≡
if( (ray.source() != point(v)) &&

((!hit && ray.has_on(point(v))) ||

(hit && Segment_3( ray.source(), eor).has_on(point(v))))) {

eor = point(v);

result = Object_handle(v);

hit = true;

}

In similar way than the applied with vertices, for testing if r intersects an

edge or a facet, the respective ray-segment and ray-facet intersection tests

available through the SNC intersection class are used. When an intersection

q is found, then it is checked if q is actually closer to r0 than the current

eor, if any. One also has to check if q is really located on the cell that r is

currently crossing, in order to avoid registering prematurely an intersection

with a face that would occur in a further cell.

〈check ray intersection with an edge〉≡
Point_3 q;

if( is.does_intersect_internally( ray, segment(e), q)) {

if( !hit || has_smaller_distance_to_point( ray.source(), q, eor)) {

if( candidate_provider->is_point_on_cell( q, objects_iterator)) {

eor = q;
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result = Object_handle(e);

hit = true;

}

}

}

〈check ray intersection with a facet〉≡
Point_3 q;

if( is.does_intersect_internally( ray, f, q)) {

if( !hit || has_smaller_distance_to_point( ray.source(), q, eor)) {

if( candidate_provider->is_point_on_cell( q, objects_iterator)) {

eor = q;

result = Object_handle(f);

hit = true;

}

}

}

9.3 Point location

Given a point p ∈ R3 and a Nef polyhedron P ⊆ R3, a point location query

consists in to determine the face fp ∈ F (P ) such that p ∈ fp (see section

2.6.5).

The candidate provider class is used for obtaining a subset of boundary

faces Fg ⊆ F (P ) where p could be possibly located. Having Fg, one first

has to exhaust the possibility that p is located on a boundary face, i.e. on

a vertex, edge or facet. When p is located on any f ∈ Fg, then the query
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is solved. Note that since the faces of a Nef polyhedron are disjoint, once

a face containing f is located it is not necessary to continue processing the

remaining faces.

If after testing all the boundary faces in Fg, p is not contained in any of

them, then it is known that p is located inside a volume. The process for

obtaining the volume is described below.

〈definition of the point location method〉≡
Object_handle locate( const Point_3& p) const {

TIMER(pl_t.start());

CGAL_assertion( initialized);

Object_handle result;

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

bool found = false;

Object_list candidates = candidate_provider->objects_around_point(p);

Object_list_iterator o = candidates.begin();

while( !found && o != candidates.end()) {

if( assign( v, *o)) {

〈check if p located on a vertex v〉
}

else if( assign( e, *o)) {

〈check if p located on an edge e〉
}

else if( assign( f, *o)) {

〈check if p located on a facet f〉
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}

o++;

}

if(!found) {

Ray_3 r( p, Direction_3( -1, 0, 0));

result = Object_handle(determine_volume(r));

}

TIMER(pl_t.stop());

return result;

}

Checking if a point is located on a vertex is done by performing a co-

ordinate comparison of p with the supporting point of v. This operation is

already available in the kernel of CGAL.

〈check if p located on a vertex v〉≡
if ( p == point(v)) {

result = Object_handle(v);

found = true;

}

For checking if a point is contained either in an edge or a facet, the

predicates available via the SNC intersector class are used. These predicates

perform point-edge and point-facet inclusion tests, taking in count that the

edges and facets of a Nef polyhedron define open sets.

〈check if p located on an edge e〉≡
if ( is.does_contain_internally( segment(e), p) ) {

result = Object_handle(e);

found = true;
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}

〈check if p located on a facet f〉≡
if ( is.does_contain_internally( f, p) ) {

result = Object_handle(f);

found = true;

}

When it is known that p is not located in a boundary face, then it is

located inside a volume. Determining such volume is a matter of shooting a

ray r from p in any direction and obtaining the first boundary face intersected

fi. Then, the volume where p is located is taken from the incidence graph of

fi.

Since several volumes could be incident to fi, the direction of r is used for

solving the ambiguity. This is done by taking the volume on which a vector

placed on fi with direction −~r is located. The latter operation depends on

the kind of the face fi hit.

〈definition of the point location helper method〉≡
Volume_handle determine_volume( const Ray_3& r) const {

Halffacet_handle fv;

TIMER(pl_t.stop());

Object_handle fi = shoot(r);

TIMER(pl_t.start());

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

if( assign( v, fi)) {

〈get incident volume to vertex v at −~r direction〉
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}

else if( assign( e, fi)) {

〈get incident volume to edge e at −~r direction〉
}

else if( assign( f, fi)) {

〈get incident volume to facet f at −~r direction〉
}

return const_cast<Self*>(this)->volumes_begin();

}

In the case fi corresponds a to a facet f , it could have either one or two

incident volumes, depending on whether f makes part of the boundary of

a water tide shell or not. Given the supporting plane Πf of f , we take the

volume incident to the orientation of f whose normal vector fv is on the same

side of Πf than −~r.

The set of get visible facet methods perform the task of obtaining, for a

given boundary face fi and a ray r with source at r0 passing through fi, a

facet fv incident to fi that would be visible from r0, if any.

〈get incident volume to facet f at −~r direction〉≡
fv = get_visible_facet(f, r);

CGAL_nef3_assertion( fv != Halffacet_handle());

return volume(fv);

When fi corresponds to an edge e, it is tried to first obtain a facet fv

visible from r0 and incident to e. If such facet exists, the answer is the volume

incident to fv.

〈get incident volume to edge e at −~r direction〉≡
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fv = get_visible_facet( e, r);

if( fv != Halffacet_handle())

return volume(fv);

In the case that e has no incident facets, we know e does not belong

to the boundary of any volume and hence it is completely located inside a

volume. In such situation, also one of vertices v0, v1 at the boundary of e is

located inside the same volume as e and therefore, its unique incident volume

is the answer for the query. In order to check which one of the vertices lies

inside the volume (both actually could), the number of sfaces on the local

adjoined pyramid to the vertex is checked. This is possible since there is an

1-1 relationship between the incident volumes to a vertex and the sfaces on

its local adjoined pyramid. Therefore, if the vertex is incident to a single

volume then it only would have a single sface in its local view.

〈get incident volume to edge e at −~r direction〉+≡
SM_decorator v0(source(e));

SM_decorator v1(source(twin(e)));

if( v0.number_of_sfaces() == 1)

return volume(sface(e));

else if( v1.number_of_sfaces() == 1)

return volume(sface(twin(e)));

return Volume_handle(); // never reached

Getting the volume c incident to a vertex v such that r0 ∈ c is done

through the get visible facet method as well. This method takes v and r and

returns a facet fv incident to v and visible from r0. The required volume c

is the volume incident to fv.
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〈get incident volume to vertex v at −~r direction〉≡
fv = get_visible_facet( v, r);

if( fv != Halffacet_handle())

return volume(fv);

In a similar way than for edges, vertices may not be incident to any facet

or edge. In such cases, when v has no incident facets, one just needs to take

the unique incident volume c from the local adjoined pyramid to v, which

becomes the result for the point location query.

〈get incident volume to vertex v at −~r direction〉+≡
SM_decorator SD(v);

CGAL_nef3_assertion( SD.number_of_sfaces() == 1);

return volume(SD.sfaces_begin());

9.4 Segment intersection

Given two Nef polyhedra P, Q ∈ R3 and an edge ep ∈ F (P ), the segment

intersection test consists in to obtain the set of edges and facets Fe ⊆ F (Q)

defined as follows:

Fe ≡ {fq ∈ F (Q) : ep ∩ fq 6= ∅}

Two different methods are provided, one for performing edge-edge inter-

sections and another for performing edge-facet intersections.

As explained in section 2.6.6, these operations are necessary during binary

Boolean operations with Nef polyhedra in order to obtain the set of relevant

intersection points between the two operands.
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This implementation also makes use a call back function in order to pro-

cess the intersections as soon as they are found, avoiding in this way the

storage necessary if one would return a container with the set of intersec-

tions.

Those methods obtain the set of faces Fg ⊆ F (Q) possibly intersecting ep

using the candidate provider class. Note that Fe ⊆ Fg. Once Fg is known,

an iteration over the elements of Fg is performed, testing if ep intersects the

edges or facets found. When an intersection is found the call back function,

which is given by parameter, is called with ep, the intersected edge or facet

fq and the intersection point pi ≡ ep ∩ fq as arguments.

Note that since it is required to find only single intersection points, which

will later become part of the input for the synthesis of Nef polyhedra al-

gorithm (see section 2.6.3), it is not necessary to compute the intersection

between edges and facets or between edges and edges that would correspond

to line segments.

〈definition of the edge-edge intersection method〉≡
void intersect_with_edges

( Halfedge_handle e0, const typename

SNC_point_locator_base::Intersection_call_back& call_back) const {

TIMER(si_t.start());

CGAL_assertion( initialized);

Segment_3 s(segment(e0));

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

Object_list_iterator o;



148CHAPTER 9. IMPLEMENTATION OF THE PL, RS AND SI QUERIES

Object_list objects =

candidate_provider->objects_around_segment(s);

CGAL_for_each( o, objects) {

if( assign( v, *o)) {

// do nothing

}

else if( assign( e, *o)) {

Point_3 q;

if( is.does_intersect_internally( s, segment(e), q)) {

q = normalized(q);

call_back( e0, Object_handle(e), q);

}

}

else if( assign( f, *o)) {

// do nothing

}

else

CGAL_nef3_assertion_msg( 0, "wrong handle");

}

TIMER(si_t.stop());

}

〈definition of the edge-facet intersection method〉≡
void intersect_with_facets

( Halfedge_handle e0, const typename

SNC_point_locator_base::Intersection_call_back& call_back) const {

TIMER(si_t.start());

CGAL_assertion(initialized);
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Segment_3 s(segment(e0));

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

Object_list_iterator o;

Object_list objects =

candidate_provider->objects_around_segment(s);

CGAL_for_each( o, objects) {

if( assign( v, *o)) {

// do nothing

}

else if( assign( e, *o)) {

// do nothing

}

else if( assign( f, *o)) {

Point_3 q;

if( is.does_intersect_internally( s, f, q) ) {

q = normalized(q);

call_back( e0, Object_handle(f), q);

}

}

else

CGAL_nef3_assertion_msg( 0, "wrong handle");

}

TIMER(si_t.stop());

}
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9.5 Class definition

In this section the implementation of the point locator interface is completed

by defining the class constructor and destructor, the structural requirements

defined in the interface and the private and public data types required by

the class.

9.5.1 Class construction and destruction

The objective of the constructor of the point locator class is basically to

set up the candidate provider, which will be used for speeding up the point

location, ray shooting and segment intersection queries.

For a given Nef polyhedron P ∈ R3, the candidate provider relies on the

set of boundary faces on F (P ) in order to build up its underlying structure,

e.g. the kd-tree. This set of faces is gathered and then used to feed candidate

provider constructor.

〈initialization of the class〉≡
void initialize(SNC_structure* W) {

TIMER(ct_t.start());

CGAL_assertion( W != NULL);

SNC_decorator::initialize(W);

initialized = true;

Object_list objects;

Vertex_iterator v;

Halfedge_iterator e;

Halffacet_iterator f;

CGAL_nef3_forall_vertices( v, *sncp())
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objects.push_back(Object_handle(Vertex_handle(v)));

CGAL_nef3_forall_edges( e, *sncp())

objects.push_back(Object_handle(Halfedge_handle(e)));

CGAL_nef3_forall_facets( f, *sncp()) {

objects.push_back(Object_handle(Halffacet_handle(f)));

}

candidate_provider =

new SNC_candidate_provider(objects, sncp()->number_of_vertices());

TIMER(ct_t.stop());

}

A point locator class is usually destroyed when the Nef polyhedron it

is associated to is destructed as well. The unique dynamically generated

attribute of this class is the candidate provider and hence, this is the only

variable one has to take care of destroying.

〈destructor of the class〉≡
~SNC_point_locator() {

CGAL_warning(initialized); // required?

delete candidate_provider;

}

9.5.2 Structural requirements

There are three requirements of the interface which are left to implement.

They are the method for updating the point locator structure, used after

simplification, the method for cloning the point locator, used when making

copies of Nef polyhedra, and the method for transforming the point locator
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structure, used when Nef polyhedra are transformed.

The tasks of updating and transforming the point locator are delegated

to the candidate provider object since this is the object which is directly

affected by these operations.

〈implementation of structural requirements〉≡
bool update( const Unique_hash_map<Vertex_handle, bool>& V,

const Unique_hash_map<Halfedge_handle, bool>& E,

const Unique_hash_map<Halffacet_handle, bool>& F) {

TIMER(ct_t.start());

CGAL_assertion(initialized);

bool updated = candidate_provider->update( V, E, F);

TIMER(ct_t.stop());

return updated;

}

〈implementation of structural requirements〉+≡
void transform(const Aff_transformation_3& t) {

CGAL_assertion(initialized);

candidate_provider->transform(t);

}

When making copies of a Nef polyhedron, one needs to copy its point

locator as well. But since the point locator is an abstract class, it is not

possible neither to construct a new class of this type nor to store the specific

type of the class implementing the point locator interface attached to a Nef

polyhedron. For this reason, we have to provide a clone method, which

returns a new uninitiated instance of point locator class which will be later

initialized by the Nef polyhedra class.
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〈implementation of structural requirements〉+≡
Self* clone() const {

return new Self;

}

9.5.3 Required types

Now, we are going to define the private and public data types used by the

point locator class. The private types required are the SNC SM decorator

and the SNC intersection classes. The SNC SM decorator is needed for ac-

cessing to the local adjoined pyramids of the vertices of a Nef polyhedron.

The SNC intersection class is required for performing the point-face inclu-

sion test and the ray-face and segment-face intersection tests, used during

the point location, ray shooting and segment intersection tests respectively.

〈definition of private types〉≡
typedef SNC_structure_ SNC_structure;

typedef SNC_candidate_provider_ SNC_candidate_provider;

typedef SNC_point_locator<SNC_structure, SNC_candidate_provider> Self;

typedef SNC_point_locator_base<SNC_structure> SNC_point_locator_base;

typedef SNC_decorator<SNC_structure> SNC_decorator;

typedef SNC_SM_decorator<SNC_structure> SM_decorator;

typedef SNC_intersection<SNC_structure> SNC_intersection;

Along with the required classes mentioned above, shortcut names are de-

fined for the member classes of the candidate provider used by the algorithms

defined in this class.

〈definition of private types〉+≡
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typedef typename SNC_candidate_provider::Object_list Object_list;

typedef typename Object_list::iterator Object_list_iterator;

typedef typename SNC_candidate_provider::Objects_along_ray

Objects_along_ray;

typedef typename Objects_along_ray::Iterator

Objects_along_ray_iterator;

The public types are taken from the abstract base class SNC point locator base

and comprehend the geometric primitives and Nef polyhedron faces handlers

involved into the point location, ray shooting and segment intersection pro-

cess.

〈definition of public types〉≡
#define USING(t) typedef typename SNC_point_locator_base::t t

USING(Object_handle);

USING(Vertex_handle);

USING(Halfedge_handle);

USING(Halffacet_handle);

USING(Volume_handle);

USING(Vertex_iterator);

USING(Halfedge_iterator);

USING(Halffacet_iterator);

USING(Point_3);

USING(Segment_3);

USING(Ray_3);

USING(Direction_3);

USING(Aff_transformation_3);

#undef USING
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9.5.4 Class definition

Finally, the point locator class is defined by placing together all the code

chunks defined in this chapter.

〈SNC point locator.h〉≡
#ifndef SNC_POINT_LOCATOR_H

#define SNC_POINT_LOCATOR_H

#include <CGAL/Nef_3/SNC_decorator.h>

#include <CGAL/Nef_3/SNC_SM_point_locator.h>

#include <CGAL/Nef_3/SNC_intersection.h>

#include <CGAL/Nef_3/SNC_point_locator_base.h>

#include <CGAL/Unique_hash_map.h>

#include <CGAL/Timer.h>

#ifdef CGAL_NEF3_TRIANGULATE_FACETS

#include <CGAL/Polygon_triangulation_traits_2.h>

#include <CGAL/Nef_3/triangulate_nef3_facet.h>

#endif

#undef _DEBUG

#define _DEBUG 509

#include <CGAL/Nef_3/debug.h>

#define CGAL_for_each( i, C) for( i = C.begin(); i != C.end(); ++i)

CGAL_BEGIN_NAMESPACE
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template <typename SNC_structure_,

typename SNC_candidate_provider_>

class SNC_point_locator :

public SNC_point_locator_base<SNC_structure_>,

public SNC_decorator<SNC_structure_>

{

template <typename T> friend class Nef_polyhedron_3;

〈definition of private types〉
public:

〈definition of public types〉

SNC_point_locator() :

initialized(false), candidate_provider(0) {}

〈initialization of the class〉
〈implementation of structural requirements〉

〈definition of the ray shooting method〉
〈definition of the point location method〉
〈definition of the edge-edge intersection method〉
〈definition of the edge-facet intersection method〉

private:

〈definition of the point location helper method〉

bool initialized;

SNC_candidate_provider* candidate_provider;

SNC_intersection is;

};
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CGAL_END_NAMESPACE

#endif // SNC_POINT_LOCATOR_H
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Chapter 10

Experimental results

In this project, the problem of speeding up the process of computing Boolean

operations over 3D Nef polyhedra is discussed.

Currently, the time critical processes involved in the computation of such

operations are the point location, ray shooting and segment intersection

queries, or PLRSSI for short, which became the target of optimization in

this work. The optimization scheme followed was to define an spatial sub-

division, more precisely a Kd-tree (see chapter 8), over the set of faces of a

3D Nef polyhedra in order to quickly provide the set of faces around a given

geometric primitive, e.g. a point, a ray, or a segment, reducing in this way

the number of faces that one has to test in order to solve a PLRSSI query.

In order to provide a reference point for comparing the performance of the

Boolean operations using Kd-trees, a naive implementation of the PLRSSI

queries was also included in this work (see chapter 7). Such implementation

makes use of brute force for solving the PLRSSI queries, i.e. it tests every

face on the 3D Nef polyhedron for solving each query.

159
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In the following sections, the algorithm using Kd-trees for computing

Boolean operations will be referred as the Kd-tree Method, and the algorithm

using naive algorithms will be referred as the Naive Method.

This chapter presents three different sets of experiments, each pursuing

a different objective. Such objectives are:

1. Comparing the performance of the Kd-tree Method versus the Naive

one in the computation of Boolean operations over 3D Nef polyhedra.

2. Displaying examples of the result of Boolean operations with real world

models, therefore illustrating the features of Nef polyhedra.

3. Displaying other applications of the PLRSSI queries over 3D Nef poly-

hedra, such as generation of ray tracing images.

10.1 Runtime comparison of Naive vs. Kd-

tree Methods

The objective of this section is to compare the performance of the Kd-tree

Method versus the Naive one, for computing Boolean operations over 3D Nef

polyhedra.

The following specific objectives are pursued:

1. Displaying (for each method) the relationship between the data com-

plexity of models involved in the Boolean operations and the time re-

quired for computing it.
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Model Radius Vertices Facets Edges View

S32 2000u 18 32 48

S128 2000u 66 128 192

S512 2000u 258 512 768

S2048 2000u 1026 2048 3000

Table 10.1: Description of the sphere models used in Experiment 1 and

Experiment 2.

2. Identifying (for each method) the proportion of time required by the

PLRSSI queries in the computation of Boolean operations.

The experiments on this section are defined as sequences of Boolean Union

operations over 3D Nef polyhedra defining spheres of different resolutions.

The characteristics of those models are described on table 10.1.

10.1.1 Experiment 1

Description

This experiment starts with a Nef polyhedron representing the sphere S32

(see table 10.1). Randomly located copies of the sphere S32 are sequentially
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added via Union operations to the Nef polyhedron until a model holding 50

spheres is completed.

Experimental setup

1. A set C = {ci : ci ∈ R3, i = 1 . . . 50} of randomly distributed points

inside a sphere of radius 100.000u centered at the origin is generated.

Those points will serve as the center points for each of the spheres to

be united.

2. For every ci ∈ C, a Nef polyhedron Pi is defined as an instance of the

sphere S32 centered at ci. The points on the set C of random centers

are generated such that Pi ∩ Pj = φ, for any i 6= j.

3. Let R0 be the empty Nef polyhedron. The Nef polyhedron Ri = Pi ∪
Ri−1 is computed, for every i ∈ {1, . . . , 50}, using the Naive and Kd-

tree Methods.

The Nef polyhedra R10, R30 and R50 are shown in figures 10.1(a), 10.1(b)

and 10.1(c) respectively, as an example of the Nef polyhedra Ri constructed

on this experiment. Due the fact the spheres are located very sparsely in

order avoid intersections, in the figures mentioned above each of the spheres

looks actually as a point.

Result analysis

The running times required by the Naive and Kd-tree Methods for computing

each model Ri are presented in table 10.2 and graphically compared on figure

10.2.
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Method time (sec) Method time (sec)

Model Naive Kd-tree Model Naive Kd-tree

R2 14.27 8.36 R27 353.76 121.24

R3 26.29 12.42 R28 371.50 128.26

R4 36.31 16.31 R29 386.65 138.75

R5 48.51 20.56 R30 399.07 138.99

R6 57.72 24.17 R31 414.60 148.20

R7 71.88 27.43 R32 431.45 146.27

R8 83.04 33.47 R33 459.05 156.36

R9 96.18 37.43 R34 474.04 166.86

R10 109.58 40.06 R35 490.03 170.84

R11 122.37 44.97 R36 512.51 170.66

R12 133.24 51.56 R37 529.14 175.46

R13 147.46 59.13 R38 553.50 180.68

R14 150.28 61.00 R39 578.29 192.03

R15 173.91 61.33 R40 592.91 198.10

R16 184.09 68.54 R41 599.83 200.03

R17 186.31 75.95 R42 621.97 201.25

R18 212.70 82.48 R43 628.86 208.13

R19 231.41 81.25 R44 657.98 210.89

R20 248.96 85.59 R45 673.08 222.27

R21 265.18 90.59 R46 699.83 234.18

R22 269.94 96.58 R47 735.37 244.44

R23 295.18 106.45 R48 750.34 251.25

R24 306.54 109.41 R49 771.08 264.17

R25 323.13 108.27 R50 789.45 271.15

R26 340.42 118.85

Table 10.2: Runtime required by the Naive and Kd-tree Methods for com-

puting the Nef polyhedra Ri = Pi ∪ Ri−1, where Pi corresponds to the i-th

randomly located sphere S32
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(a) R10 (b) R30 (c) R50

Figure 10.1: Some of the resultant Nef polyhedra from Experiment 1

The time complexity of the binary set operations over Nef Polyhedra is

O(TI +(n+m+s) log(n+m)+k log(k)+cT↑), where n, m are the number of

vertices on each operand, k is the number of vertices of the result, s denotes

the number of edge-edge and edge-facet intersections, and c is the number of

shells on the result (see section 2.6.6). Here, the terms TI and T↑ depend on

the method used for solving the PLRSSI queries.

The term TI corresponds to the time required for finding all edge-edge

and edge-facet intersection plus the qualifying time. For the Naive Method

this complexity is O(NM + s(N + M)) while for the Kd-tree Method it is

O(s(N(M
1

3 log M)+M(N
1

3 log N))), where N, M are the number of faces on

each operand.

The term T↑ corresponds to the ray shooting time. For the Naive Method

this complexity corresponds to O(R) and for the Kd-tree Method it corres-

ponds to O(R
1

3 log R), where R is the number of faces on the resultant Nef

polyhedron.
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Figure 10.2: Runtime comparison of the Naive and Kd-tree Methods for

computing the Nef polyhedra Ri = Pi ∪ Ri−1, where Pi corresponds to the

i-th randomly located sphere S32. The runtime is shown as a function of the

number of vertices in the Nef polyhedron Ri−1 since the number of faces on

Pi is constant for this experiment.
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In the specific sequence of union operations performed in this experiment,

one of the operands (Pi) is common to all the operations and only one of

the operands (Ri−1) varies its number of faces. This situation explains the

fact that the plot of the runtime vs. the complexity of the variable model

displayed on figure 10.2 does not show a quadratic behavior for the Naive

Method.

Conclusions

By using the Kd-tree Method, the time spent on the point location, ray

shooting and segment intersection queries is decreased in average by a 80%

of the time required by the Naive Method.

10.1.2 Experiment 2

Description

In this experiment, a sequence of Boolean Union operations is computed

among Nef polyhedra defining spheres of increasing complexity. Such Nef

polyhedra correspond to the spheres S32, S128, S512, S2048 described on table

10.1.

Experimental setup

For each sphere Si, i ∈ {32, 128, 512, 2048} the following steps are taken:

1. The sphere S ′
i is defined as a translation of Si in the direction ~v =

(1000, 1000, 0).
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Figure 10.3: Visualization of the resulting Nef polyhedron R2048

2. The Boolean operation Ri = Si ∪S ′
i is computed, using both the Naive

and Kd-tree Methods.

In figure 10.3, the resulting Nef polyhedron R2048 = S2048 ∪ S ′
2048 is dis-

played.

Result analysis

In contrast with Experiment 1 where one of the operands is common to all

union operations in the sequence, in this experiment the number of faces

on the operands Si, S
′
i differ on each test. The running times required by

the Naive and Kd-tree Methods for computing each model Ri = Si ∪ S ′
i are

presented in table 10.3 and graphically compared on figure 10.4.

As explained in the previous experiment, the runtime complexity of the

Boolean operations is sub-quadratic for the Kd-tree Method, and quadratic
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Model Naive Method (sec) Kd-tree Method (sec)

S32 ∪ S ′
32 12.07 8.04

S128 ∪ S ′
128 134.48 32.45

S512 ∪ S ′
512 1799.67 141.57

S2048 ∪ S ′
2048 18851.49 860.86

Table 10.3: Runtime required by the Naive and Kd-tree Methods for com-

puting the Nef polyhedra Ri = Si ∪ S ′
i

for the Naive Method. This improvement in the runtime complexity is

achieved at the expense of an O(N log N) preprocessing time on each of

the operands of the Boolean operation required for constructing the Kd-tree

structure on each. Such structure is also constructed on the resulting Nef

polyhedron at the end of the synthesis process for speeding up the shells

nesting discovering process.

Conclusions

In this experiment, the runtime improvement gained by the Kd-tree Method

was in average a 82% over the runtime of the Naive Method.

10.2 Boolean operations with real world ob-

jects

The objective of the experiments in this section is to present examples of

Boolean operations with real world models, emphasizing on the features sup-
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Figure 10.4: Runtime required by the Naive and Kd-tree Methods for

computing the Nef polyhedra Ri = Si ∪ S ′
i, where each Si, S

′
i, with i ∈

{32, 128, 512, 2048}, corresponds to a sphere defined by i facets. The run-

time is presented as a function of the number of vertices on each operand

sphere.
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Model # vertices # facets # edges Surface description

Helicoid 441 1240 800 2-manifold with boundary

Mushroom 226 672 448 closed 3-manifold

Hammerhead 2544 7091 4551 closed 3-manifold

Table 10.4: Description of models used on Experiments 3, 4 and 5.

Model Operation Naive Method (sec) Kd-tree Method (sec)

Helicoid Sym. difference 825.5 28.5

Mushroom Difference 601.3 71.6

Hammerhead Difference 65595.1 738.1

Table 10.5: Runtime results for Experiments 3, 4 and 5.

ported by Nef polyhedra such as the representation of non-manifold situations

and open or closed point sets.

The experiments in this section are defined as Boolean operations between

a model and a transformed copy of itself. The characteristics of the models

used in this section are described on table 10.4.

The running times of the Naive vs. Kd-tree Methods for each experiment

are shown in table 10.5.

Each of the experiments will be described in detail in the following sec-

tions.
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10.2.1 Experiment 3

Description

This experiment shows the symmetric difference between the Helicoid model

(see figures 10.5(a) and 10.5(b)) and a rotated copy of itself. Such Boolean

operation is computed using both the Naive and Kd-tree Method.

Experimental setup

1. The first operand will be called H0, and corresponds to the original

Helicoid.

2. The second operand Hπ/2 is obtained by rotating a copy of H0 an angle

of π/2 radians around its axis.

3. The Boolean operation Hs = H0 	Hπ/2 is computed, where 	 denotes

the symmetric difference operator. The resulting Nef polyhedron Hs is

shown in figures 10.5(c) and 10.5(d).

Result analysis. Symmetric Difference Experiment

By first computing the intersection H∩ = H0 ∩Hπ/2, the set of points shared

by both helicoids is obtained. Given that both helicoids are coaxial and do

not intersect each other at any other point of their surface, H∩ will correspond

exactly to the axis of H0 (and Hπ/2). The symmetric difference removes H∩

from H0 ∪ Hπ/2.

Furthermore, every edge on the axis of Hs has four incident facets, two

coming from each helicoid. This corresponds to a non-manifold situation
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(a) Original helicoid H0

(wireframe)

(b) Original helicoid H0

(c) Resulting Helicoid

Hs = H0 	Hπ/2 (wire-

frame)

(d) Resulting Helicoid

Hs = H0 	 Hπ/2

Figure 10.5: Symmetric difference Hs = H0 	 Hπ/s, between an helicoid H0

and a copy Hπ/2 rotated by π/2 around its axis
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Figure 10.6: Detail of the non-manifold situation presented by the model Hs

which is naturally handled by Nef polyhedra. A detail of such non-manifold

situation is displayed on figure 10.6, where the facets meeting at a single

common edge are shown as shaded and the remaining facets of the model are

shown as transparent.

Conclusion

In this experiment, the runtime improvement achieved by using the Kd-tree

Method corresponds to the 97% over the time required by the Naive Method.

10.2.2 Experiments 4 and 5

Description

In this experiment, the Boolean Difference between a model and a trans-

lated copy of itself is performed. The models used for this experiment are
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the Mushroom and the Hammerhead models, described on table 10.4 and

displayed on figures 10.7(a) and 10.8(a).

Experimental setup

With each of the Mushroom and Hammerhead models, the following steps

are performed:

1. Let N be the original model. Construct N t as a translated copy of N

by a vector ~v, which corresponds to ~vm = (1e5, 1e5, 0) for the Mush-

room model and to vh = (0,−2.5e5, 0) for the Hammerhead model.

Note that the translation vectors applied are here quite large. This

situation comes from the fact that the points of the models had been

scaled in order to obtain integer valued coordinates, which can be eas-

ily converted to the exact number representation used by the 3D Nef

polyhedra package.

2. Compute the Boolean Difference R = N t \N using both the Naive and

the Kd-tree Methods.

Result analysis. Boolean Difference Experiments

The results of such operations are displayed on figures 10.7(c), 10.7(d) and

10.8(c), 10.8(d).

The Mushroom and Hammerhead models represent solid objects and

hence both the points on their boundary and the points in their interior

belong to the Nef polyhedra representing them. For this reason, when per-

forming a difference operation between solids, the points on the boundary of
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(a) Original model M (b) Boolean Union M ∪ M t

(c) Boolean Difference MR = M \M t

(wireframe)

(d) Boolean Difference MR = M \ M t

Figure 10.7: Boolean Difference MR = M \M t between the Mushroom model

M and a copy M t translated by a vector ~vm = (1e5, 1e5, 0)

one of the operands are subtracted from the other. This situation is made ev-

ident in the resulting models shown on figures 10.7(d) and 10.8(d). In those

figures, the green regions correspond to boundary faces whose points belong

to the Nef polyhedron, and the yellow regions correspond to boundary faces

which set of points do not belong to it.
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(a) Original model H (b) Boolean Union H ∪ H t

(c) Boolean Difference HR = H \ Ht

(wireframe)

(d) Boolean Difference HR = H \ Ht

Figure 10.8: Boolean Difference HR = H \ H t between the Hammerhead

model H and a copy H t translated by a vector ~vh = (0,−2.5e5, 0)
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(a) Head model (b) Hammerhead model

Figure 10.9: Base models of the ray tracing experiments

Conclusions

On Experiments 4, 5, the Kd-tree Method computed the Boolean operations

an 88% and 99% faster than the Naive Method, respectively.

10.3 Ray tracing experiments

The objective of the experiments in this section is showing other applications

of the PLRSSI queries over 3D Nef polyhedra such like in the generation of

ray tracing images, and to compare the performance of the Naive and Kd-tree

Methods in such applications.

The Head and Hammerhead models, described on table 10.6 and dis-

played on figure 10.9, will serve as base objects for the ray tracing experi-

ments on this section.
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Model # vertices # facets # edges Surface description

Head 1487 4406 2918 2-manifold with boundary

Hammerhead 2544 7091 4551 closed 3-manifold

Table 10.6: Description of models used on Experiments 6, 7 and 8.

With each one of the models, a series of ray shooting operations are

performed in order to construct a ray tracing image of the model, in which

each pixel represents the distance between the camera’s plane and the model.

The runtime performance of the Naive and Kd-tree Methods on the gen-

eration of such images is compared on Experiments 6 and 7 (see section

10.3.1), and examples of the images generated are presented in Experiment

8 (see section 10.3.2).

For constructing each image, the steps below are followed:

1. Definition of the coordinate system where the camera will be placed.

Such coordinate system defines the location and orientation of the cam-

era, and it is given by the following parameters:

(a) A base plane Π with normal vector ~u.

(b) A base point p0 ∈ Π for setting the position of image on the plane.

(c) Two perpendicular vectors ~v, ~w such that ~v⊗ ~w = ~u for fixing the

orientation of the image on Π.

2. Definition of the resolution of the image, which is given by the following

parameters:

(a) The dimension m × n of the image.
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Figure 10.10: Setup of the parameters required for constructing a ray tracing

image

(b) The step size ∆d between the sample points which will define each

of the pixels of the image.

3. Shooting of m × n rays from the camera’s plane in direction ~u. The

distance between Π and the point on the model hit by the ray (if any)

will determine the intensity of its corresponding pixel on the image.

The figure 10.10 depicts the parameters described above, required on the

construction of a ray tracing image.
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Number of rays Naive time (sec) Kd-tree time (sec) Improvement

9 (3x3) 34.92 14.79 57.65%

36 (6x6) 131.31 17.35 86.79%

81 (9x9) 292.22 22.04 92.46%

144 (12x12) 514.51 28.29 94.50%

225 (15x15) 802.39 36.23 95.48%

Table 10.7: Runtime comparison of ray shooting over the Head model (1487

vertices, 4406 facets). The times shown include the preprocessing time re-

quired for each method.

10.3.1 Experiments 6 and 7

Description

The ray tracing experiments in this section are performed over the Head

and Hammerhead models, which are displayed on figures 10.9(a) and 10.9(b)

respectively.

For this experiment a set of grids of adjustable size, all of them sharing the

same base point and orientation, were defined. For each grid, a series of ray

shooting operations were executed in order to obtain the distance between

the camera’s plane and the model on each pixel of the image.

The resolution of the images generated for the Head and the Hammer-

head models, along with the running time required by the Naive and Kd-tree

Methods for computing them are displayed in tables 10.7 and 10.8 respec-

tively. A graphical comparison of the running times is also shown on figures

10.11(a) and 10.11(b).
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(b) Runtime comparison for the Hammerhead model

Figure 10.11: Runtime comparison of the Naive and Kd-tree methods for

performing ray shooting operations



182 CHAPTER 10. EXPERIMENTAL RESULTS

Number of rays Naive time (sec) Kd-tree time (sec) Improvement

18 (3x6) 112.73 57.14 49.31%

72 (6x12) 432.65 65.74 84.81%

162 (9x18) 970.54 78.21 91.94%

288 (12x24) 1730.24 94 94.57%

Table 10.8: Runtime comparison of ray shooting over the Hammerhead model

(2544 vertices, 7091 facets). The times include the preprocessing time re-

quired for each method.

Result analysis. Ray Shooting Experiments

The time for the ray shooting process showed a linear behavior with respect

to the number of rays shot for both the Naive and Kd-tree Methods.

In the Naive Method, all the boundary faces of a Nef polyhedron P shall

to be tested every time a ray is shot in order to solve the query, which

corresponds to an O(N) runtime complexity, where N denotes the number

of boundary faces on the Nef polyhedron P . When using a Kd-tree structure

for speeding up the process, all the boundary faces have to be tested as well

in the worst case. However, in the average case the ray shooting process has

an expected O(N
1

3 log N) runtime complexity for axis aligned rays, but at

the expense of an O(N log N) preprocessing time.

The expected runtime for shooting a single ray is then known for both

methods, and therefore by incrementing the number of rays the runtime

also increases in a proportional value. The linear regression y = mx + b

constructed for predicting the runtime of each method on each of the models
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Method Linear regression y = mx + b Standard error (sec)

Naive y = 3.511x + 3.505 0.729

Kd-tree y = 0.1x + 13.88 0.1

Table 10.9: Linear regression for the runtime of ray shooting over the Head

model

Method Linear regression y = mx + b Standard error (sec)

Naive y = 5.993x + 2.48 3.036

Kd-tree y = 0.136x + 55.469 0.928

Table 10.10: Linear regression for the runtime of ray shooting over the Ham-

merhead model

is shown on tables 10.9 and 10.10. In the equations, x corresponds to the

number of rays shot and y corresponds to the required runtime. By looking

at each regression line one can observe that the time per ray m required for

performing each ray shooting operation is much lower for the Kd-tree Method

but at the price of a paying a higher preprocessing time of approximately b,

when compared with the Naive Method.

Conclusion

On this set of experiments, the Kd-tree Method achieves in average an 85%

runtime improvement over the Naive Method on the Head model, and an

80% on the Hammerhead model, but at the expense of a higher preprocessing

time.
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Model Number of facets Image resolution Runtime (sec)

Head 2918 240x240 3342

Hammerhead 4551 480x240 6699

Table 10.11: Resolution and runtime of the ray tracing images

10.3.2 Experiment 8

The objective of this experiment is to produce ray tracing images of higher

resolution than the generated in the Experiments 6 and 7, for the Head and

Hammerhead models (see figure 10.9). The resolution of the resulting images

and running time required for generating them are shown in table 10.11.

A color-map image was computed for each model, where every pixel of

the image corresponds to one of the rays shot. The intensity of the pixels

is set according to the distance from the camera’s plane to the intersected

point in the model. The resulting images are displayed on figures 10.12 and

10.13 together with the set of points used to generate them. In the images,

colors at the beginning of the saturation spectrum (red) represent regions

closer to the camera’s plane, and colors at the end of the spectrum (violet)

correspond to the farther ones.

The images on this experiment were generated using the Kd-tree Method

only, due the fact that after 24 hours the Naive Method was unable to com-

plete the process. This situation goes accordingly with the linear regression

equations obtained on Experiments 6 and 7 that predict the time required

by the Naive Method to generate the images is more than 4 days.
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(a) Set of points ob-

tained from ray trac-

ing

(b) Generated image

Figure 10.12: Image generated for the Head model using ray tracing
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(a) Set of points obtained from ray shooting

(b) Generated image

Figure 10.13: Image generated for the Hammerhead model using ray tracing



Chapter 11

Conclusions and Future Work

11.1 Conclusions

Two main aspects where considered during the development of this project.

First, an algorithmic side, where the most appropriate algorithms for solv-

ing the point location, ray shooting and segment intersection queries had

to be chosen. And second, a design side, where interchangeable interfaces

for communicating such algorithms among themselves and with the 3D Nef

polyhedra package had to be specified. The following conclusions related to

the both aspects of the project where extracted:

1. The problem of solving the point location, ray shooting and segment

intersection queries over 3D Nef polyhedra showed to be dominated

by the ray shooting problem, since the two remaining queries could

be expressed in terms of ray shooting operations. For this reason, the

choice of an optimization strategy was directed to finding the most

suitable alternative for performing fast ray shooting operations over
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3D Nef polyhedra.

2. The theoretical optimal runtime complexity of ray shooting queries

is O(log n), where n is the number of objects in the model. However,

theoretical worst-case optimal solutions accomplishing such complexity

are not practical, due their high storage complexity. Heuristic methods

present a theoretical O(n) runtime complexity but in practice such

methods show a close to constant runtime complexity. Among the

set of heuristics available, kd-trees were found to be the most suitable

alternative, showing to be an effective and efficient solution for the

problem of implementing fast point location, ray shooting and segment

intersection queries over 3D Nef polyhedra.

3. The design of an interface between the implementation of 3D Nef poly-

hedra, and the implementation of the point location, ray shooting and

segment intersection queries, allows the library user to easily implement

and deploy alternative strategies for performing such queries.

4. The performance of algorithms designed for solving the point location,

ray shooting and segment intersection queries depends mainly on the

number of objects they have to test before a solution for the query is

found. Such performance can be improved by feeding the algorithms

with a subset of the original objects that still carries enough informa-

tion for solving the query. Those feeder algorithms were called candi-

date providers and an interface for communicating the queries solver

with the candidate providers was defined in order to allow their inter-

changeability. For this project, a naive feeder algorithm and a feeder
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algorithm using kd-trees were implemented.

5. The literate programming methodology encourages a complete docu-

mentation of the all the concepts surrounding the implementation of

an algorithm. By using the tools provided by a type-sheet language

like LATEX together with a literate programming tool, the researcher

can explain and at the same time code the implementation of such

algorithms in a single document, from which the source code can be

automatically extracted. This methodology is very appropriate in en-

vironments where the completeness, correctness and efficiency of the

algorithms are the main concerns.

11.2 Future work

Most of the known strategies for improving the 3D Nef polyhedra package

are being currently developed by the people involved in the project. These

strategies are the following:

1. In this project, a single strategy for solving the point location, ray

shooting and segment intersection queries was applied for approaching

the three problems at the same time. However, a different approach

where each problem is attacked individually could be followed.

For instance, a segment tree [ZE02] for improving the performance of

the segment intersection queries was developed in parallel with this

project.

The main drawback of applying different strategies for each problem is
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the preprocessing time and storage required for constructing the struc-

tures supporting each strategy.

2. It was detected, during the execution profile of the 3D Nef polyhedra

implementation, that the sphere map overlaying process is the most

time expensive routine, after the PLRSSI queries.

Usually, the sphere maps associated to the faces of 3D Nef polyhedra

present a simple layout, specially when working with models whose set

of points are manifolds. By detecting and implementing special cases

of overlaying processes for such simple sphere maps, the performance of

the Boolean operations over 3D Nef polyhedra can be easily improved.

This strategy is being developed at the moment by the people working

on the 3d Nef polyhedra package.

3. The facets on the boundary of 3D Nef polyhedra can actually contain

holes and be arbitrary complex. Given this situation, point inclusion

and segment and ray intersection queries which such facets could be

very expensive depending on their complexity. A way of dealing with

this complexity is to store along with every facet a triangulation of

it, which could be used in order to accelerate the queries mentioned

above. During this project, a triangulation algorithm based on mono-

tone partitioning was implemented. However, the execution time of

its implementation was too high and hence it had to be dropped from

the project. By including fast triangulation algorithms and storing

such triangulation in a compact way, the performance of the PLRSSI

queries could be improved.
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Class diagrams

A.1 Class diagram of the point locator class
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A.2 Class diagram of the kd-tree class



Appendix B

Kd-tree traits class for the

SNC structure

The concept of traits class is fundamental in CGAL. A traits class is the ap-

plication of a design pattern that specifies the set of functional requirements

of an algorithm or data structure, needed in order to interact with their

objects of study [pro02]. The use of traits classes decouples the algorithms

and data structures from the objects they work with by means of function

predicates. Those predicates are supplied using a traits class which is usually

given through a template argument. By using this pattern, the behavior of

the algorithms and data structures could be adapted to any kind of object

by only tailoring these predicates to the custom situation, without needing

to change their implementation.

A typical situation where the usefulness of this design pattern can be

observed is in the implementation of a 2-dimensional convex hull algorithm.

This algorithm relies on two basic predicates: Less xy 2 for sorting the set

193



194APPENDIX B. KD-TREE TRAITS CLASS FOR THE SNC STRUCTURE

of points, and Leftturn 2 for evaluating the orientation of a triple of points.

If one would like to apply the same algorithm to e.g. a set of coplanar points

in the space, it is only required to construct a traits class that provides a

3-dimensional version of the predicates specified.

In the following section, the traits class for the kd-tree implementation is

presented.

B.1 Kd-tree traits class definition

The kd-tree traits class will provide, among the basic data types of the Nef

Polyhedra class and the required geometric primitives, function objects for

performing the following tasks:

1. Computing ray-plane intersections. This function object is required

for bounding rays into segments by clipping them using the bounding

box of the kd-tree. This predicate will be implemented through the

Intersect 3 class available in the kernel of CGAL.

2. Obtaining the bounding box of a set of faces. This predicate is re-

quired for obtaining the space enclosed by a Nef polyhedron. It will be

implemented through the Objects bbox 3 class.

3. Computing the side-of-plane predicate for the vertices, edges and faces

of a Nef polyhedron. This predicate is required for classifying the set

of boundary faces of a Nef polyhedron into the cells of the kd-tree. The

predicate will be implemented through the Side of plane class.
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〈SNC k3 tree traits.h〉≡
#ifndef SNC_K3_TREE_TRAITS_H

#define SNC_K3_TREE_TRAITS_H

#include <CGAL/Nef_3/Bounding_box_3.h>

CGAL_BEGIN_NAMESPACE

〈side of plane class definition〉
〈faces bounding box class definition〉

template <typename SNCstructure>

class SNC_k3_tree_traits {

public:

typedef SNCstructure SNC_structure;

typedef typename SNCstructure::SNC_decorator Explorer;

typedef typename SNCstructure::Vertex_handle Vertex_handle;

typedef typename SNCstructure::Halfedge_handle Halfedge_handle;

typedef typename SNCstructure::Halffacet_handle Halffacet_handle;

typedef typename SNCstructure::Object_handle Object_handle;

typedef typename SNCstructure::Object_list Object_list;

typedef typename SNCstructure::Kernel Kernel;

typedef typename Kernel::RT RT;

typedef typename Kernel::FT FT;

typedef typename Kernel::Point_3 Point_3;

typedef typename Kernel::Segment_3 Segment_3;
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typedef typename Kernel::Ray_3 Ray_3;

typedef typename Kernel::Vector_3 Vector_3;

typedef typename Kernel::Direction_3 Direction_3;

typedef typename Kernel::Plane_3 Plane_3;

typedef typename Kernel::Aff_transformation_3 Aff_transformation_3;

typedef Bounding_box_3<FT> Bounding_box_3;

typedef typename Kernel::Intersect_3 Intersect_3;

typedef Side_of_plane<SNCstructure> Side_of_plane;

typedef Objects_bbox_3<SNCstructure> Objects_bbox_3;

Intersect_3 intersect_3_object() const {

return Intersect_3();

}

Side_of_plane side_of_plane_object() const {

return Side_of_plane();

}

Objects_bbox_3 objects_bbox_3_object() const {

return Objects_bbox_3();

}

};

CGAL_END_NAMESPACE

#endif // SNC_K3_TREE_TRAITS_H
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B.2 Side of plane predicate

The traits class has to provide side-of-plane predicates for vertices, edges

and facets of a Nef polyhedron. The possible outcomes of this predicate for a

given face f and plane Π are the same specified in the CGAL’s kernel, i.e. f

lies on the positive side, f lies on the negative side, or f lies on the oriented

boundary of Π. Since some faces could actually span both sides of the plane

at the same time, this situation is handled as if f would lie on Π since the

action performed on such cases is the same as for the faces truly lying on the

plane.

This predicate is fundamental for the kd-tree construction, where the

set of boundary faces of a Nef polyhedron is recursively split into two sets,

corresponding to the objects lying on each side of the division plane.

〈side of plane class definition〉≡
template <typename SNCstructure>

class Side_of_plane {

typedef typename SNCstructure::SNC_decorator SNC_decorator;

typedef typename SNCstructure::Halffacet_cycle_iterator

Halffacet_cycle_iterator;

typedef typename SNCstructure::SHalfedge_around_facet_circulator

SHalfedge_around_facet_circulator;

typedef typename SNCstructure::SHalfedge_handle SHalfedge_handle;

typedef typename SNCstructure::Kernel Kernel;

typedef typename SNCstructure::Point_3 Point_3;

typedef typename SNCstructure::Segment_3 Segment_3;
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typedef typename SNCstructure::Plane_3 Plane_3;

public:

typedef typename SNCstructure::Vertex_handle Vertex_handle;

typedef typename SNCstructure::Halfedge_handle Halfedge_handle;

typedef typename SNCstructure::Halffacet_handle Halffacet_handle;

typedef typename SNCstructure::Object_handle Object_handle;

Oriented_side operator()

( const Plane_3& pl, Object_handle o) const;

Oriented_side operator()

( const Plane_3& pl, Vertex_handle v) const;

Oriented_side operator()

( const Plane_3& pl, Halfedge_handle e) const;

Oriented_side operator()

( const Plane_3& pl, Halffacet_handle f) const;

private:

SNC_decorator D;

};

The Side of plane class overloads its functional operator in order to re-

ceive as parameter a generic object handler that could carry a vertex, edge

or facet handler. After determining the specific type of face contained in

the parameter, the computation of the predicate is delegated to the proper

method according to the given kind of face.

〈side of plane class definition〉+≡
template <typename SNCstructure>

Oriented_side
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Side_of_plane<SNCstructure>::operator()

( const Plane_3& pl, Object_handle o) const {

Vertex_handle v;

Halfedge_handle e;

Halffacet_handle f;

if( assign( v, o))

return operator()( pl, v);

else if( assign( e, o))

return operator()( pl, e);

else if( assign( f, o))

return operator()( pl, f);

else

CGAL_assertion_msg( 0, "wrong handle");

return Oriented_side(); // never reached

}

The computation of side-of-plane predicate for a given vertex v is simple,

since it is performed through the oriented side predicate available in the

kernel of CGAL.

〈side of plane class definition〉+≡
template <typename SNCstructure>

Oriented_side

Side_of_plane<SNCstructure>::operator()

( const Plane_3& pl, Vertex_handle v) const {

return pl.oriented_side(D.point(v));

}

An edge e is considered intersecting Π if both endpoints lie on different
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sides of Π or if they both lie on Π itself. Tangency by the endpoints of an

edge is not considered as intersection due the fact that the faces of a Nef

polyhedron define open sets.

〈side of plane class definition〉+≡
template <typename SNCstructure>

Oriented_side

Side_of_plane<SNCstructure>::operator()

( const Plane_3& pl, Halfedge_handle e) const {

Segment_3 s(D.segment(e));

Oriented_side src_side = pl.oriented_side(s.source());

Oriented_side tgt_side = pl.oriented_side(s.target());

if( src_side == tgt_side)

return src_side;

if( src_side == ON_ORIENTED_BOUNDARY)

return tgt_side;

if( tgt_side == ON_ORIENTED_BOUNDARY)

return src_side;

return ON_ORIENTED_BOUNDARY;

}

Determining the side of Π where a facet f lies is a bit more complex than

computing the same predicate for vertices or edges.

First, one should consider the situation where f lies completely on Π. On

this case, it is only necessary to test three of the vertices of f in order to

detect such situation. If three vertices lie on Π then the whole face lies on

the plane. Otherwise, the vertices of the face are tested as long as they are

located on the same side of Π. As soon as vertices lying on different sides of
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the plane are detected, one knows that f intersects Π and the predicate is

solved. The remaining situation occurs when the vertices of f all belong to

the same side of Π and therefore f lies on such side.

Only the vertices on the outer boundary of f are tested, since the vertices

defining the inner boundaries (or holes) have no effect on the result of the

predicate.

In an analogous way than for edges, when a facet f is tangent to Π it is

not considered as a intersection since f defines an open set.

〈side of plane class definition〉+≡
template <typename SNCstructure>

Oriented_side

Side_of_plane<SNCstructure>::operator()

( const Plane_3& pl, Halffacet_handle f) const {

CGAL_precondition( f->facet_cycles_begin() != f->facet_cycles_end());

Halffacet_cycle_iterator fc(f->facet_cycles_begin());

SHalfedge_handle e;

CGAL_assertion( assign( e, fc));

assign( e, fc);

SHalfedge_around_facet_circulator sc(e), send(sc);

CGAL_assertion( iterator_distance( sc, send) >= 3);

Oriented_side facet_side;

do {

facet_side = pl.oriented_side(D.point(D.vertex(sc)));

++sc;

}

while( facet_side == ON_ORIENTED_BOUNDARY && sc != send);
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if( facet_side == ON_ORIENTED_BOUNDARY)

return ON_ORIENTED_BOUNDARY;

CGAL_assertion( facet_side != ON_ORIENTED_BOUNDARY);

while( sc != send) {

Oriented_side point_side = pl.oriented_side(D.point(D.vertex(sc)));

++sc;

if( point_side == ON_ORIENTED_BOUNDARY)

continue;

if( point_side != facet_side)

return ON_ORIENTED_BOUNDARY;

}

return facet_side;

}

B.3 Bounding box predicate

The traits class defines as well the requirement of a function object for com-

puting the bounding box of the set of faces of a Nef polyhedron.

Since two bounding boxes can be merged such that the space enclosed

by each box would be covered by the resulting bounding box, the approach

followed for the implementation of this function object is to compute the

bounding box of each face and merge them incrementally, until one gets the

resulting bounding box of the whole set of faces.

〈faces bounding box class definition〉≡
template <typename SNCstructure>

class Objects_bbox_3 {
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typedef typename SNCstructure::SNC_decorator SNC_decorator;

typedef typename SNCstructure::Kernel Kernel;

typedef typename Kernel::Point_3 Point_3;

typedef typename Kernel::FT FT;

public:

typedef typename SNCstructure::Vertex_handle Vertex_handle;

typedef typename SNCstructure::Object_list Object_list;

typedef Bounding_box_3<FT> Bounding_box_3;

Bounding_box_3 operator()(const Object_list& L) const;

private:

Bounding_box_3 operator()(Vertex_handle v) const;

SNC_decorator D;

};

As stated on section 2.6.1, due the inclusion of an infimaximal box that

serves to bound infinite faces, the faces in this implementation of 3D Nef

polyhedra are always bounded by vertices. For this reason, every face on a

Nef polyhedron is downwards incident to a set of vertices and therefore, by

calculating the bounding box of the vertices one obtains the bounding box

of the whole Nef polyhedron.

For starting piling the bounding boxes, one needs to begin with a seed

box. This box can be trivially given by the first vertex found in the set of

faces. After constructing a seed bounding box, to build the bounding box of

the Nef polyhedron is just matter of merging the actual bounding box with

the (trivial) bounding box of every vertex found in the list of faces.

〈faces bounding box class definition〉+≡
template <typename SNCstructure>
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Bounding_box_3<typename SNCstructure::Kernel::FT>

Objects_bbox_3<SNCstructure>::operator()

( const Object_list& L) const {

typedef typename Object_list::const_iterator Object_const_iterator;

if( L.size() == 0)

return Bounding_box_3();

Vertex_handle v;

Object_const_iterator o = L.begin();

while( !assign( v, *o) && L.begin() != L.end())

o++;

CGAL_assertion( o != L.end());

Bounding_box_3 b(operator()(v));

for( ++o; o != L.end(); ++o) {

if( assign( v, *o))

b = b + operator()(v);

}

return b;

}

The bounding box of a vertex is defined trivially by setting both the

minimal and maximum point of the box to the coordinates of the vertex.

〈faces bounding box class definition〉+≡
template <typename SNCstructure>

Bounding_box_3<typename SNCstructure::Kernel::FT>

Objects_bbox_3<SNCstructure>::operator()

(Vertex_handle v) const {

Point_3 p(D.point(v));
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return Bounding_box_3( p.x(), p.y(), p.z(),

p.x(), p.y(), p.z());

}

With this method, the implementation of the traits class for kd-trees is

completed.
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