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Fixed Grid (FG) methodology was first introduced by Garćıa and Steven as an engine
for numerical estimation of two-dimensional elasticity problems. The advantages of using
FG are simplicity and speed at a permissible level of accuracy. Two dimensional FG has
been proved effective in approximating the strain and stress field with low requirements
of time and computational resources. Moreover, FG has been used as the analytical
kernel for different structural optimisation methods as Evolutionary Structural Optimi-
sation , Genetic Algorithms (GA), and Evolutionary Strategies . FG consists of dividing
the bounding box of the topology of an object into a set of equally sized cubic elements.
Elements are assessed to be inside (I), outside (O) or neither inside nor outside (NIO)
of the object. Different material properties assigned to the inside and outside medium
transform the problem into a multi-material elasticity problem. As a result of the sub-
division NIO elements have non-continuous properties. They can be approximated in
different ways which range from simple setting of NIO elements as O to complex non-
continuous domain integration. If homogeneously averaged material properties are used
to approximate the NIO element, the element stiffness matrix can be computed as a
factor of a standard stiffness matrix thus reducing the computational cost of creating
the global stiffness matrix. An additional advantage of FG is found when accomplishing
re-analysis, since there is no need to recompute the whole stiffness matrix when the
geometry changes.

This article presents CAD to FG conversion and the stiffness matrix computation
based on non-continuous elements. In addition inclusion/exclusion of O elements in the
global stiffness matrix is studied. Preliminary results shown that non-continuous NIO
elements improve the accuracy of the results with considerable savings in time. Numerical
examples are presented to illustrate the possibilities of the method.

Keywords: Fixed Grid Finite Element Analysis; Interactive Design.

1. Introduction

Fixed Grid (FG) as a methodology to solve elasticity problems was first introduced
by Garćıa and Steven, (1998, 1999a, 1999b) as an engine for numerical estimation of

∗Preliminary results of this investigation were presented at the Sixth Word Congress on Compu-
tational Mechanics (WCCM VI) Beijing, China.
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stress and displacement fields. The advantages of using FG are simplicity and speed
at a permissible level of accuracy. In FG the stress error was seen to increase near
the region of stress concentration, with a maximum stress error being approximately
10% for a reasonably-sized mesh. However, the average stress error was found to
be about 5% or below and the displacement field error was even lower, around 1%
[Garćıa and Steven (1996)]. Thus, the FG method was deemed as appropriate for
interactive design and structural optimisation where highly accurate analysis is not
needed.

A Fixed Grid is generated by superimposing a rectangular grid of equal-sized
elements on the given structure instead of generating a mesh to fit to the structure.
In this way, elements are either inside (I), outside (O), or on the boundary (NIO)
of the structure. An O element is given a material property of a non-interactive
media. That is, its value is significantly less than the property of an I element. This
transforms the problem into a bi-material one. NIO elements are constituted by two
types of material and therefore their properties are not continuous over the element.
Different methods can be used to approximate NIO elements. That includes from
dropping them as O elements to complex non-continuous domain integration. If
averaged material properties are used to approximate the NIO element properties,
then the element-stiffness matrix can be computed as a factor of a standard stiffness
matrix. therefore the assembly of the system matrix can be accomplished efficiently.
An additional advantage is found when the shape of the structure is changed in
response to a previous analysis. The global structure of the FG is maintained, and
re-computation of the new stiffness matrix can be accomplished by changing only
the positions affected by the elements whose I, O, and NIO state has changed
[Garćıa and Steven (2000)].

The application of FG–FEA to two-dimensional linear elastic problems has been
a research topic during the last years, see [Garćıa (1999a)]. It has been proved
effective in approximating the strain and stress field with low requirements of time
and computational resources. Moreover, FG–FEA was used as the mathematical
kernel for different structural optimisation methods like: Evolutionary Structural
Optimisation (ESO) [Kim et al. (2000)], Genetic Algorithms (GA) [Woon et al.
(2000)], and Evolutionary Strategies (ES) [Garćıa and Gonzalez (2004)].

Previous work has been done with three-dimensional linear elastic structures
by Suzuki and Ohtsubo [Suzuki et al. (1998)]. Boundary conditions are applied by
further subdividing the boundary elements (multi-scale voxel) thus requiring a less
general resolution. The present approach presents some improvements to the local
stiffness matrix and force vector calculations for NIO elements by considering them
as non-continuous elements. Also the inclusion or exclusion of O elements in the
global stiffness matrix is studied. Finally, preliminary results of this investigation
were presented at the Sixth Word Congress on Computational Mechanics [Garcia
et al. (2004)]
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1.1. Definitions

Let ΩFG denote the smallest bounding box that completely encloses the domain Ω
and is oriented along the axes of the coordinate system, that is

ΩFG =
{
x

∣∣∣ min
y∈Ω

(yi) ≤ xi ≤ max
y∈Ω

(yi)
}

, (1)

then ΩFG is called the fixed grid domain in this study. A point x ∈ ΩFG is
considered inside if x ∈ Ω. A point x ∈ ΩFG is considered outside if x /∈ Ω. In
order to preserve characteristics of the original problem, the material properties
of an outside point are the properties of a non-interactive medium. The object is
embedded into a box made of non interactive material. Notice that this definition
transforms the elastic problem into a bi-material problem. Figure 1 shows examples
of a fixed grid domain for two-dimensional and three-dimensional cases. The domain
is completely defined by the points xmin and xmax that define the maximum and
minimum points that belong to ΩFG.
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Fig. 1. Typical two- and three-dimensional fixed grid domains

In order to obtain the FG, the fixed grid domain, ΩFG, is subdivided into a set
of cubic elements with dimensions h1, h2, h3. See Figure 2.

An element is each one of the cells, of dimension h1×h2×h3, in which ΩFG is
subdivided. The elements em, m = 0, . . . , ne − 1 are numbered in ascending order
from the one containing the minimum point xmin in the direction of the x axis, then
in the y axis, and finally in the z axis. An element em can be associated by its index
in each dimension em = eijk, that is, row, column, and floor of the element in the
grid. The element domain Ωem is defined as Ωem =

{
x
∣∣ x ∈ em

}
, and its boundary

is denoted as ∂Ωem.
The nodes are the vertices of the elements in the FG. Each element em = eijk

has eight nodes nj , with j = 0..7. A node in the FG is classified as an inside node
if nj ∈ Ω and as an outside node if nj /∈ Ω.
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Fig. 2. Three-dimensional Fixed Grid

1.2. Element Classification

Outside (O)

Niether I nor O (NIO)
Boundary

of the structure

Inside (I)

Fig. 3. Fixed grid approximation of the geometry of a structure showing the different types of
finite elements

According to the position of the elements with respect to the structure, they
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can be classified as three different types: an element em is called I (Inside) if for
all x ∈ em,x ∈ Ω. An element is called O (Outside) if for all x ∈ em,x /∈ Ω, that
is, the element consists of only points external to Ω. An element is called NIO

(Neither Inside nor Outside) if there exist points x,y ∈ em such that x ∈ Ω and
y /∈ Ω. That means, the element has points inside as well as outside of Ω (these
are elements on the boundary of the structure). Figure 3 illustrates the different
types of elements for a given structure. These elements differ only in their material
properties. Elements I have the material properties of the structure, elements O the
material properties of a non-active medium, and elements NIO have both material
properties.

Ω e

Ωe

I

O

(a) Two-dimensional NIO element

Ωe
I

Ωe
O

(b) Three-dimensional NIO element

Fig. 4. NIO Element. An element with discontinuous material properties

This representation of the domain facilitates the process of analysis as it does not
require sophisticated and high order algorithms to generate the mesh. Furthermore,
it will be shown that the local stiffness matrix is the same for all the elements and
it only needs to be computed once for the whole analysis

An elements em can be classified according to its nodes types as

type(em) =


I if nj ∈ ei ⇒ nj ∈ Ω

O if nj ∈ ei ⇒ nj /∈ Ω

NIO Otherwise

. (2)

This criteria is not exact as there are cases where the element is classified as I or
O when it actually is NIO. These cases are presented when the B–Rep of the object
intersects the element at the face of the cube without touching any of the vertices,
for example, a cone end or a pyramid vertex penetrating the face of an element.
These cases are the result of small details in the geometry of the object which are
not captured by the fixed grid resolution. The important point to notice here is
that it may or not be desirable to capture the detail of the geometry for analysis
purposes. In general, CAD data needs to be defeatured by removing excessive detail
that only adds noise to the analysis. This is of particular interest at the initial stages
of the design [Mobley et al. (1998)].
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2. General description of Fixed Grid generation

A Finite Element preprocessor takes the geometry of a structure usually repre-
sented by its boundary representation (B–Rep) and subdivides it into a set of finite
elements of different shapes and sizes. A fixed grid preprocessor is a specialised
version of a finite element preprocessor where all the elements have fixed geome-
try but different physical properties. Furthermore, the boundary conditions must
be properly codified into this new representation. The fixed grid preprocessing or
conversion of the B–Rep geometry into a fixed grid representation is accomplished
in the following steps: (i) Fixed Grid domain computation, (ii) node classification,
(iii) B–Rep subdivision to suit the element size, (iv) element classification (I, O,
NIO), (v) computation of NIO geometry and volume, and (vi) boundary condition
assignment.

3. Fixed Grid Finite Element Analysis

The discrete form of finite element formulation for linear elastic material can be
stated as

[K] {uS} − {F} = 0 (3)

where [K] is the stiffness matrix of the system, uS is the vector of displacements,
and F represents the vector of forces. Additionally, the stiffness matrix [K] can be
constructed from element stiffness matrices

[
K(e)

]
as,

[K] =
E∑

e=1

[
K(e)

]
=

E∑
e=1

∫
Ω(e)

[B]T [C] [B] dΩ, (4)

where [B] is a matrix containing derivatives of the shape functions and [C] is the
tensor of material properties. For isotropic materials [C] is given by

[C] =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2 − ν 0 0

0 0 0 0 1
2 − ν 0

0 0 0 0 0 1
2 − ν


(5)

with E the Young modulus and ν the Poisson’s ratio.
Computation of integrals in (4) depends upon the shape and material of the

element. Due to its complexity the integrals are usually calculated by using iso-
parametric elements and numerical integration [Fagan, M.J. (1992)].
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3.1. The Fixed Grid method

In traditional FEA the domain is subdivided into a set of elements that fit its
shape. The most common algorithm to subdivide the domain is known as Delone
triangulation. The result of such algorithms is a set of irregularly shaped elements.
Construction of stiffness matrix [K] implies computation of the integral defined in
(4) for each element in the mesh. In contrast, all the elements of a FG have the same
shape but different material properties. However, as it was shown in the previous
section there are only three types of elements: I, O, and NIO. The following section
develops the computation of the stiffness matrix for the homogeneous I and O

elements and then for the non-homogeneous NIO elements.

3.2. Stiffness matrix for I and O elements

From (5) it can be observed that [C] depends only on the Young modulus and the
Poisson’s ratio. Then, it is possible to express [C] as the sum of two matrices [F ′]
and [G′] in the following way,

[C] = k (ν [F ′] + [G′]) (6)

where k =
E

(1 + ν) (1− 2ν)
, and

[F ′] = ν



−1 1 1 0 0 0

1 −1 1 0 0 0

1 1 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


, [G′] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
2


. (7)

Because of (6) it is possible to redefine (4) as

[
K(e)

]
=

∫
Ω(e)

[B]T [k (ν [F ′] + [G′])] [B] dΩ

= k

{
ν

∫
Ω(e)

[B]T [F ′] [B] dΩ +
∫

Ω(e)
[B]T [G′] [B] dΩ

}
= k

{
ν

∫
Ω(e)

[F ] dΩ +
∫

Ω(e)
[G] dΩ

}
(8)

where [F ] = [B]T [F ′] [B] and [G] = [B]T [G′] [B]. Additionally ν is taken out of the
integral because it is constant over Ω(e).

The computation of
[
K(e)

]
by (8) allows the separation between the mechanical

properties of the material and the geometry of the element. Given that all the
elements in the FG have the same geometry then the integrals over [F ] and [G] are
the same and need only to be computed once.
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3.3. Stiffness matrix for NIO elements

A typical NIO element is shown in Figure 4. These elements intersect the boundary
of the structure so they are subdivided between two parts Ωe = ΩI

e ∪ ΩO
e . Here

ΩI
e = Ω∩Ωe represents the part of the element with I material properties and ΩO

e =
Ωe−(Ω∩Ωe) the part of the element with O material properties. This discontinuity
in [C] represent a complexity in the computation of [Ke]. However, computation
of [Ke] can be approximated in different ways. Two possible approximations are
presented next.

3.3.1. Discrete approximation—A0

This is the simplest way of computing the integrals and consists of approximating
the NIO’s elements as I or O depending on the amount of element inside the struc-
ture. Because the material properties are allowed to take only discrete values (I or
O material properties) this approximation is referred to as discrete approximation.

If V = volume(Ωe), and VI = volume(ΩI
e) then, according to the A0 approxi-

mation, the material properties E and ν of an NIO element are given by

(ENIO, νNIO) =

{
(EI , νI) if VI/V > 1/2

(EO, νO) if VI/V 6 1/2
. (9)

Numerical experiments in the two-dimensional case have shown that AO ap-
proximation presents a large error in the displacement and stress fields. To reduce
the error it is necessary to decrease the size of the elements in the grid. As a con-
sequence of this mesh refinement there will be an increasing computational cost of
the analysis [Garćıa (1999a); Garćıa and Steven (1997)].

3.3.2. Weighted average approximation—A1

This is a more precise, but still an approximate method to represent the elements
on the boundary. NIO elements are constituted by two different materials (I and
O materials). A1 approximation transforms the bi-material element into a homo-
geneously isotropic element with material properties that best simulate the non-
continuous element. Thus a property will be the weighted average of the I and O

properties:

νNIO = νIξ + νO (1− ξ)

ENIO = EIξ + EO (1− ξ) (10)

where ξ is equal to the ratio ξ = VI/V .
Finally, A0 and A1 approximate an NIO element as homogeneous by applying

(9) and (10). Therefore, (8) can be used in both cases to compute the element
stiffness matrix.
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4. Point Forces

Punctual forces applied over a boundary should be translates into adequate nodes
of NIO or boundary elements.

Let H be a hexahedral finite element with eight nodes. The shape functions for
the element H can be obtained from the equation:

ω(x, y, z) = α1 + α2x + α3y + α4z + α5xy + α6yz + α7zx + α8xyz. (11)

The resulting shape functions [Zienkiewicz and Taylor (1994)] for the nodes of an
element H with node one at position (x0, y0, z0) [see figure 5(a)] can be expressed
as a vector N of size 8 as

N =
1

hx hy hz



−(z0 + hz − z)(y0 + hy − y)(x− x0 − hx)

(z0 + hz − z)(y0 + hy − y)(x− x0)

−(z0 + hz − z)(y0 − y)(x− x0)

(z0 + hz − z)(y0 − y)(x− x0 − hx)

(z0 − z)(y0 + hy − y)(x− x0 − hx)

−(z0 − z)(y0 + hy − y)(x− x0)

(z0 − z)(y0 − y)(x− x0)

−(z0 − z)(y0 − y)(x− x0 − hx)


. (12)

Every component of N represents the shape function for the node i with i =
1, . . . , 8. By the properties of N, for any x ∈ R3 the sum of the shape functions is
equal to one,

∑8
i=1 Ni(x) = 1. Furthermore, if x ∈ H then 0 ≤ Ni(x) ≤ 1. Then

the domain represented by H can be defined as:

H =

{
x

∣∣∣∣∣
8∑

i=1

Ni(x) = 1,∧, Ni(x) ∈ [0, 1], i = 1, . . . , 8

}
. (13)

This property can be used to relocate a force F applied at a point inside an NIO

element. If a force F is applied at a point x inside the domain of H and x [figure
6(a)] is not located at the nodes of the element, then F can be replaced by a set of
forces Gi distributed over all the nodes of H [see figure 6(b)].

Then the resulting set of forces applied to the element nodes can be computed
as a weighted set using the element shape functions Ni. That is:

F =
8∑

i=1

Gi =
8∑

i=1

F Ni(x, y, z). (14)

This is Gi = F Ni(x, y, z). It can be shown that as the value of the shape functions
Ni(x) is proportional to the distance from the i-th node to the point of application
of the force, the set of forces Gi will preserve the total momentum of the original
force F.

with the advantage that shape functions are proportional to the distance from
the i-th node to the point of application of the force.
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(a) Node numbering on an hexahedral element

1

5

8

4

2

6

7

3

x

y

z

3
(x ,y ,z )0 0 0

(b) Node numbering on a NIO element

Fig. 5. Variables defining the hexahedral element

F
p(x,y,z)

(a) Force applied on a point
p(x, y, z) inside the element do-
main

G7

G3

G4

G1

G5 G6

G8

G2

(b) Resulting force distributed over
the element nodes

Fig. 6. A force applied on a point inside the domain can be approximated as a set of forces applied
on the element nodes

5. Distributed forces

When distributed P forces are applied over NIO element facets they also need
to be translated into nodal forces. The total force over the element is given by∫

P dA =
∑

P(facet) × Area(facet). This is, the force over a k–th facet inside
an NIO element can be approximated as a force applied on the facet centroid.
F(k) = P(k) × A(k). Therefore the resulting force over an element can be obtained
as a successive application of (14) over all the F(k) forces.

6. Displacement boundary conditions

When a displacement boundary conditions is applied over an arbitrary point over
the surface of the object it needs to be translated to the nodes of the FG.
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Fig. 7. NIO element with displacement restrictions on the model boundaries

Let again consider the shape element functions Nk(x, y, z) over a finite element
as in equation (12). If nj represent any nodes at the element, then by definition
of a base functions Nk(nj) = δkj , with δkj the Kronecker delta which is equal to
one if k = j and equal to zero otherwise. As it was shown in the last section, if a
point x is at the inside of a element, then the value of the shape functions Nk(x)
will be proportional to the proximity to the nk node ( e.g., if a point x is at the
center of an element, the element shape functions evaluated at this point are all
equal to 1

8 ). This feature can be used as a metric to calculate the proximity of a
point to a node. By using this property from the element shape functions, the nodes
which are closer to a point p inside the element domain, inherit the displacement
boundary condition applied to the point p. This criteria can be applied selectively
in the following way:

(1) All the nodes in the NIO element inherit the displacement boundary condition
[Figure 8(a)];

(2) Only the I nodes inherit the displacement boundary condition [Figure 8(b)];
(3) Only the O nodes inherit the displacement boundary condition [Figure 8(c)].

With the conditions enumerated above, a point equidistant to the nodes, can be
included or excluded from the boundary condition translation in order to avoid all
the nodes from inheriting the boundary condition applied to a central point.

7. Numerical test

These examples show the capabilities of the FG method. Due to the lack of analytical
solutions the FG method is compared with solutions obtained using commercial
finite element software. For simplicity in all cases, the properties of the material
were chosen to be E = 1× 109 and ν = 0.2.

In order to compare the Fixed Grid Finite Element Analysis (FG–FEA) against
classical FEA a vector d of displacements is defined as di =

√
u2

1 + u2
2 + u2

3. That
is di is the norm of the displacement u at node i. The displacement error can be
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(a) Displacement restrictions
transfered to all the nodes of
the NIO element

(b) Displacement restrictions
transfered to the inside nodes
of the NIO element

(c) Displacement restrictions
transfered to the outside nodes
of the NIO element

Fig. 8. Transference of the displacement boundary condition to the nodes of an NIO element.

defined as

Er =
‖dFG − dreal‖∞

‖dreal‖∞
, (15)

where dreal corresponds to a theoretical result of the same experiment. This value
can be obtained based on convergence analysis of the FEA solution and using a
technique such as Richardson extrapolation [Garćıa (1999a)].

7.1. L beam example

This example consists of an L–shaped beam. It is fixed at one extreme and loaded
with a shear force at the other end as shown in Figure 9. The maximum displacement
was found to be located along the line formed by points (75, 0, 100) and (75, 25, 100).
Applying Richardson extrapolation to the displacement found by FEA, a value of
5.84930 × 10−5 was obtained. This value was compared with the results obtained
with different densities of grids. These are shown in Table 1.

Table 1. Displacement error and comparison with classical FEA for the example of
the L–shaped beam

Mesh size dof ‖d‖∞
FEA

% Error ‖d‖∞
FG–FEA

% Error

3x1x4 108 6.322× 10−6 89.2 6.037× 10−6 89.7

6x2x8 540 1.866× 10−5 68.1 1.766× 10−5 69.8

12x4x16 3240 5.724× 10−5 2.2 5.385× 10−5 7.9

In this test, the only difference with classical FEA is the inclusion of O elements
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Fig. 9. Boundary conditions for the L–shaped beam problem

into the stiffness matrix. In spite of the fact that the material properties of the O

elements are chosen to be those of non-active media, they can not be chosen as
zero because this will result into singularities of the system matrix. As a conse-
quence, inclusion of O elements will increase the stiffness of the overall structure.
Nevertheless, it is observed that the error decreases as the density of the mesh does.

7.1.1. Exclusion of O elements

Due to the increased stiffness caused by the presence of the O elements the same
test was accomplished without considering the O elements. As it was expected in
this case, the result of the FG was equal to that obtained with classical FEA.
However, when comparing the solution time of inclusion-exclusion of O elements, a
reduction of 50% was obtain when O elements were excluded [Ruiz (2001)]. There
are two factors that explain this time reduction: one is the reduction in the degrees
of freedom of the system, and second, the reduction in the condition number of the
stiffness matrix. The condition number is an indicator of how close to singularity a
matrix is and has a consequence in the number of iterations used to find the solution
when a preconditioned conjugate gradient method is used. The condition number
for a system of equations [K]u = f is defined by κ(K) = ‖K‖‖K−1‖. If κ(K) is
close to one, then the matrix is well conditioned. Otherwise, if κ(K) is large then
the matrix is ill-conditioned. This condition number was calculated for different
stiffness matrices of the L beam example. The results are shown in Table 2. It is
observed that there is a sharp increase of the condition number when including the
O elements in the solution.
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Table 2. Comparison of the condition number for the stiffness
matrix when including and excluding the O elements.

κ2(K)

Mesh size Including O elements Excluding O elements

2x2x1 9240.1790 79.9036

4x4x2 25438.5042 406.5693

8x8x4 66744.1386 1469.0489

16x16x8 256789.2165 5325.2153

x

y

z

100

100

50

50

p = 100 u.f./u.a.

Fig. 10. Schematic view of a quarter of the square plate with a circular hole.

7.2. Square plate with a circular hole

This numerical experiment uses a square plate with a circular hole. Figure 10 shows
the dimensions and boundary conditions of the structure. Due to the symmetry of
the problem, only a quarter of the object is analysed.

The test was intended to observe the behaviour of the method when modelling
a structure with NIO elements. The test also considers the inclusion of O elements
into the construction of the stiffness matrix. Using an FEA solver, a maximum dis-
placement of 3.835× 10−5 was found along the line formed by points (100, 0, 0) and
(100, 0, 50). (The FEA solver used a mesh of 6750 elements, 7936 nodes and 22784
degrees of freedom.) This calculated value was used to determine the displacement
error of the FG method.

The results are presented in Table 3 for A0 approximation and in Table 4 for A1
approximation. Similar results were obtained in both cases. It is observed that the
error has a marked oscillatory behaviour. However, it does decrease as the element
size decreased.
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Table 3. A0 approximation of NIO elements

with O elements without O elements

Mesh size dof ‖d‖∞ Error dof ‖d‖∞ Error

4x4x2 189 4.2199× 10−5 9.18% 180 3.7293× 10−5 3.52%

8x8x4 1115 4.4129× 10−5 14.17% 995 4.1426× 10−5 7.18%

10x10x5 2034 4.2931× 10−5 11.07% 1800 4.0555× 10−5 4.92%

16x16x8 7479 4.3226× 10−5 11.83% 6372 4.1093× 10−5 6.31%

20x20x10 14069 4.1854× 10−5 8.28% 11858 3.9840× 10−5 3.07%

32x32x16 54383 4.1684× 10−5 7.84% 45050 3.9812× 10−5 3.00%
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Fig. 11. Convergence plots for discrete (a) and weighted average (b) approximation of NIO elements

Table 4. A1 approximation of NIO elements

with O elements without O elements

Mesh size dof ‖d‖∞ Error dof ‖d‖∞ Error

4x4x2 189 3.6736× 10−5 4.96% 180 3.6215× 10−5 6.31%

8x8x4 1115 3.9627× 10−5 2.52% 995 3.8685× 10−5 0.08%

10x10x5 2034 3.9755× 10−5 2.85% 1800 3.8739× 10−5 0.22%

16x16x8 7479 4.0204× 10−5 4.01% 6372 3.8483× 10−5 0.44%

20x20x10 14069 4.0199× 10−5 4.00% 11858 3.8294× 10−5 0.93%

32x32x16 54383 4.0316× 10−5 4.30% 45050 3.8516× 10−5 0.35%

7.3. Re-analysis

The last numerical experiment deals with re-analysis using the FG method. Fig-
ure 12 shows the structure and boundary conditions used. The geometry of the
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Fig. 12. Geometry and boundary conditions for structure used to test reanalysis capabilities of the
FG method

object is expressed in terms of the parameter d. Variations to its dimension will re-
sult in different geometries. Initially a value of d = 10 was used. Then it was change
to d = 20 and d = 30 respectively. In this case the ΩFG is maintained constant
and if O elements are kept the structure of the stiffness matrix is also maintained.
The new stiffness matrix is given by [K]new = [K]old + ∆[K]. ∆[K] is obtained by
recomputing the element stiffness matrix of the elements whose I, O, NIO state
changed as a result of the geometry variation.

The problem was solved for the initial case and then the stiffness matrix was
modified to suit the structure with d = 20 and d = 30. The results are summarised
in table 5. They are compared with the results obtained using commercial FEA
software. The reanalysis procedure showed savings in time of 45% in the first case
and 28% in the second case.

Table 5. Re-analysis test and comparison with FEA

case ur−FEA ur−FG Error Time [s]

0 2.02801× 10−7 2.01282× 10−7 0.7493% 9.28519

1 2.08286× 10−7 2.17141× 10−7 4.2511% 5.07962

2 2.17406× 10−7 2.17094× 10−7 0.1437% 6.67140

8. Performance

In order to compare the performance of the FG method with classical FEA, the
structure of example 7.2 was solve for different mesh sizes using commercial FEA
software and FG. In each case the mesh was uniformly refined. For classical FEA,
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Fig. 13. Comparison of the FG and classical FEA computing times for the plate with circular hole
structure.

ANSYS 8.0 c© was used. The element type was chosen as a 10 node tetrahedral
element and the preprocessing used Delone triangulation. The solver used precon-
ditioned conjugate gradient. In order to avoid the delay due to user interaction, the
program was run in batch mode. The FG solver used an eight node cubic element,
the elements O were excluded, and the solver used preconditioned conjugate gra-
dient with Jacobi preconditioner. NIO reconstruction and volume calculation was
accomplished using a qhull algorithm [Barber et al. (1996)] over the points gener-
ated by the intersection em ∩ Ω for each em such that type(em) = NIO. The test
was accomplished using a Pentium 4 c© 2.4 GHz with 512 RAM.

The results are presented in Figure 13. The total preprocessing plus solution time
is plotted as a function of the number of nodes. It can be observed that classic FEA
requires less time than FG for small number of elements. However, as the number of
elements increases FG method perform faster than classical FEA revealing a smaller
order of complexity that offers the FG-method. Also, it has to be considered than
in an real situation the classical FEA will have to cover interaction time that was
not included in this experiments.

9. Conclusions

This article presents a method for numerical analysis using a fixed grid three-
dimensional domain. The program developed takes a structure previously con-
structed with a conventional solid modeller program and produces its fixed grid
representation. Special care is taken when obtaining the intersection of the object
with the grid in such a way that the elements preserve the geometry of the object.
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The stiffness matrix of the system is obtained as a function of a unique element
stiffness matrix thus saving time in its assembling.

The Boundary of the object is translated into NIO elements. The geometric
shape of the elements is capture through NIO elements. Although it is an ap-
proximation of the actual shape reducing the accuracy of the results it also acts
as an automatic defeaturing procedure that should be accomplished when porting
structures from a geometric modeller. This feature helps reducing the transition
CAD-analysis.

The displacement error obtained in the numerical test was found to be from 8
to 15 %. Therefore, the usefulness of method as a fast estimator of the displacement
and stress fields is observed. However, good accuracy will require a large number of
elements.

When analysing structures whose shape is similar to a shell or thin plate,the
number of elements required to properly model the geometry is too large and makes
impractical its applicability unless that O elements are excluded from the analysis.

Inclusion of O elements in the construction of the stiffness matrix increases
the degrees of freedom of the system and produces ill-conditioned matrix. How-
ever, when keeping O elements the matrix structure remains constant under small
changes in the geometry and therefore reduces the computational cost of reanalysis.
Finally the performance of the method overtakes the classic finite element analysis
performance as the number of elements increases.
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