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Abstract Fixed Grid (FG) methodology was first introduced by Garand Steven7] as an engine for
numerical estimation of two-dimensional elasticity problems. The advantages of using FG are simplicity anc
speed at a permissible level of accuracy. Two dimensional FG has been proved effective in approximatin
the strain and stress field with low requirements of time and computational resources. Moreover, FG ha
been used as the analytical kernel for different structural optimisation methods as Evolutionary Structure
Optimisation P], Genetic Algorithms (GA), and Evolutionary Strategid$. [FG consists of dividing the
bounding box of the topology of an object into a set of equally sized cubic elements. Elements are assess
to be inside [), outside () or neither inside nor outsidéV(/O) of the object. Different material properties
assigned to the inside and outside media transform the problem into a multi-material elasticity problem. A
a result of the subdivisio /O elements have non-continuous properties. They can be approximated in
different ways which range from simple setting/8f O elements ag) to complex non-continuous domain
integration. If homogeneously averaged material properties are used to approximaté@helement,

the element stiffness matrix can be computed as a factor of a standard stiffness matrix thus reducing tt
computational cost of creating the global stiffness matrix. An additional advantage of FG is found when
accomplishing re-analysis, since there is no need to recompute the whole stiffness matrix when the geomet
changes

This article presents CAD to FG conversion and the stiffness matrix computation based on non-continuou
elements. In addition inclusion/exclusion ©felements in the global stiffness matrix is studied. Prelimi-
nary results shown that non-continuaMgO elements improve the accuracy of the results with considerable
savings in time. Numerical examples are presented to illustrate the possibilities of the method.

Key words: Fixed Grid Finite Element Analysis, Interactive Design

INTRODUCTION

Fixed Grid (FG) is a methodology to solve elasticity problems was first introduced byeaGard Steven

[2, 7, 6] as an engine for numerical estimation of stress and displacement fields. The advantages of using F
are simplicity and speed at a permissible level of accuracy. In FG the stress error was seen to increase ne
the region of stress concentration, with a maximum stress error being approximately 10% for a reasonabl
sized mesh. However, the average stress error was found to be about 5% or below and the displacement fi
error was even lower, around 1%j[ Thus, the FG method was deemed as appropriate for interactive design
and structural optimisation where highly accurate analysis is not needed.

A Fixed Grid is generated by superimposing a rectangular grid of equal-sized elements on the given structur
instead of generating a mesh to fit to the structure. In this way, elements are either inside(/), outside(O
or on the boundary/O) of the structure. ArO element is given a material property of a non-interactive
media. That is, its value is significantly less than the property df @lement. This transforms the problem

into a bi-material oneN 10O elements are constituted by two types of material and therefore their properties
are not continuous over the element. Different methods can be used to approXif@telements. That
includes from dropping them a3 elements to complex non-continuous domain integration. If averaged
material properties are used to approximateth&) element properties, then the element-stiffness matrix



can be computed as a factor of a standard stiffness matrix. therefore the assembly of the system matrix c
accomplished efficiently. An additional advantage is found when the shape of the structure is changed i
response to a previous analysis. The global structure of the FG is maintained, and recomputation of the ne
stiffness matrix can be accomplished by changing only the positions affected by the elementd whose
and N0 state has change8][

The application of FG-FEA to two-dimensional linear elastic problems has been a research topic during
the last years, se@][ It has been proved effective in approximating the strain and stress field with low
requirements of time and computational resources. Moreover, FG-FEA was used as the mathematical kerr
for different structural optimisation methods like: Evolutionary Structural Optimisation (EBI)Genetic
Algorithms (GA) [14], and Evolutionary Strategies (ES)|{

Previous work has been done with three-dimensional linear elastic structures by Suzuki and Ohtsubo [13
Boundary conditions are applied by further subdividing the boundary elements (multi-scale voxel) thus re:
quiring a less general resolution. The present approach presents some improvements to the local stiffne
matrix and force vector calculations for NIO elements by considering them as non-continuous elements
Also the inclusion or exclusion of O elements in the global stiffness matrix is studied.

1. Definitions

Let Qrg denote the smallest bounding box that completely encloses the déhaaid is oriented along the
axes of the coordinate system, that is

Qrg = ‘ in(y;) < x; < i) (s
FG {x min(y;) < _Iggg(y)}

thenQgg is called in this study théixed grid domain. A pointx € Qg is considerednsideif x € Q. A

pointx € Qgc is considereautsideif x ¢ €. In order to preserve characteristics of the original problem,
the material properties of an outside point are the properties of a non-interactive medium. The object i
embedded into a box made of non interactive material. Notice that this definition transforms the elastic
problem into a bi-material problem. Figuteshows examples of a fixed grid domain for two-dimensional
and three-dimensional cases. The domain is completely defined by the pginendx,,.,. that define the
maximum and minimum points that belong(ge.
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Q
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Fig. 1 Typical two- and three-dimensional fixed grid domains

In order to obtain the FG, the fixed grid domaing4} is subdivided into a set of cubic elements with
dimensionshy, hs, hz. See figure.

An element is each one of the cells, of dimensiontii, x ks, in WhichQgg is subdivided. The elements
em, m=0,...,n.—1are numbered in ascending order from the one containing the minimunmspginh

the direction of ther axis, then in the axis, and finally in the axis. An element,, can be associated by its
index in each dimensioa,, = e;;; . That is row, column, and floor of the element in the grid. The element
domain(e,, is defined asle,, = {x| x € e, } , and its boundary is denoted &8¢,,.

The nodes are the vertices of the elements in the FG. Each elemente;;;, has eight nodes;, with

j = 0..7. Anode in the FG is classified as emphinside nodg i€ 2 andoutside nodeif n; ¢ Q.
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Fig. 2 Three-dimensional fixed grid

2. Element Classification

Outside (O) Inside (1)
\\ BEREEREEE EEEE
QB d
) oundary
Niether | nor O (NIO) of the structure

Fig. 3 Fixed grid approximation of the geometry of a structure showing
the different types of finite elements

According to the position of the elements with respect to the structure, they can be classified in thre
different types: an elemeat, is calledInside (/) if for all x € e,,,x € Q. An element is calle®utside

(O) iffor all x € e,,,x ¢ Q, that is, the element consists of only points externdltd\n element is called
Neither Inside nor Outside (NO) if there exist pointx,y € e, such thatx € 2 andy ¢ . That
means, the element has points inside as well as outsitle(dhese are elements on the boundary of the
structure). Figure illustrates the different types of elements for a given structure. These elements differ
only in their material properties. Elementshave the material properties of the structure, eleméntse
material properties of a non-active medium, and elemant® have both material properties.

This representation of the domain facilitates the process of analysis as it does not require sophisticat:
and high order algorithms to generate the mesh. Furthermore, it will be shown that the local stiffness matri
is the same for all the elements and it only needs to be computed once for the whole analysis

According to the type of nodes,;,sin an element it can be classified as

I if n; e = n; € Q
typele,,) = < O if n; €e, =n; ¢ Q)
NIO Otherwise

This criteria is not exact as there are cases where the element is classified as 7 or O when it actually i
NIO. These cases are presented when the B—Rep of the object intersects the element at the face of the c
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Fig. 4 NIO Element. An element with discontinuous material properties

without touching any of the vertices. For example, a cone end or a pyramid vertex penetrating the face ¢
an element. These cases are the result of small details in the geometry of the object which are not captur
by the fixed grid resolution. The important point to notice here is that it may be desirable or not to capture
the detail of the geometry for analysis purposes. In general, CAD data needddéehéuredby removing
excessive detail that only add noise to the analysis. This is of particular interest at the initial stages of th:
design [L1].

GENERAL DESCRIPTION OF FIXED GRID GENERATION

A Finite Element preprocessor takes the geometry of a structure usually represented by its boundary re
resentation (B—Rep) and subdivides it into a set of finite elements of different shapes and sizes. A fixe
grid preprocessor is a specialised version of a finite element preprocessor where all the elements have fix
geometry but different physical properties. Furthermore, the boundary conditions must be properly codi
fied into this new representation. The fixed grid preprocessing or conversion of the B—Rep geometry int
a fixed grid representation is accomplished in the following stepg=iXed grid domain computationii

node classification,ii{) B—Rep subdivision to suit the element size) element classification,(O, NIO),

(v) computation ofV/O geometry and volume, andgif boundary condition assignment.

FIXED GRID FINITE ELEMENT ANALYSIS
The discrete form of finite element formulation for linear elastic material can be stated as

[K]{us} = {F} =0 (2)

where[ K] is the stiffness matrix of the systems is the vector of displacements ahatrepresent the vector
of forces. Additionally, the stiffness matr{¥] can be constructed from element stiffness matrides’ |
as,

E

K=Y (K9] =3 [ (B (c)1B]ae. ©

e=1

where[B] is a matrix containing derivatives of the shape functions|afiis the tensor of material properties.
For isotropic material§] is given by

-1—V v v 0 0 0 ]
v 1—v v 0 0 0
E v v 1—v 0 0 0
T=Tmaa=-2 |0 o o0 i-v 0o o @
0 0 0 %—I/ 0
0 0 0 %—V



with E the Young modulus and the Poisson’s ratio.
Computation of integralsin (3) depends upon the shape and material of the element. Due to its complexit
the integrals are usually calculated by using iso-parametric elements and numerical intedijation [

1. The Fixed Grid method

In traditional FEA the domain is subdivided into a set of elements that fit the its shape. The most commor
algorithm to subdivided the domain is known as Delaunay triangulation. The result of such algorithms is
a set of irregular shaped elements. Construction of stiffness maffiimplies computation of the integral
defined in B8) for each elements in the mesh. In contrast, all the elements of a FG have the same shar
but different material properties. However, as it was show in previous section there are only three types c
elements:/, O, and NIO. The following section develops the computation of the stiffness matrix for the
homogeneous andO elements and then for the non-homogenedu® elements.

2. Stiffness matrix for 7 and O elements.

From (@) it can be observed th&t'| depends only from the Young modulus and the Poisson'’s ratio. Then, it
is possible to expreg§’] as the sum of two matricé$”| and|[G’] in the following way,

[C] =k (v [F] +[G]) (5)
E
h =
wherek A1 1=2) and
11 1 0 0 0] (1000 0 0
1 -1 1 0 0 010000
1 1 -1 0 0 001000
[F]=v @ = (6)
0 0 -1 0 0 0003 00
0o 0 0 0 -1 0 000040
0 0 0 -1 000001

Because off) it is possible to redefinedf as
KO = [ B (e[ + ()] [B) a9
Qle)

- {y /Q . [B]" [F'] [B] dS2 + /Q . [B]" [G"] [B] dQ} (7)

_ {”/me) [F]dQ+/Q(€) [G]dﬂ}

where[F] = [B]" [F'][B] and[G] = [B]" [G"][B]. Aditionally v is taken out of the integral because it is
constant ovef(®),

The computation of [K(fﬂ by (7) allows the separation between the mechanical properties of the material
and the geometry of the element. Given that all the elements in the FG have the same geometry then t
integrals ovefF] and[G] are the same and need only to be computed once.

3. Stiffness matrix for N1O elements.

A typical N10O element is shown in figuré. These elements intersect the boundary of the structure so they
are subdivided between two pafts = QL U Q9. Here)! represents the part of the element witmaterial
properties and2? the part of the element witth material properties. This discontinuity |i] represent

a complexity in the computation ¢f<{.|. However, computation ofi.] can be approximated in different
ways. Two possible approximations are presented next.
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1) Discrete approximation - AO This is the simplest way of computing the integrals and consist of ap-
proximating theV /Os elements ag or O depending of the amount of element inside the structure. Because
the material properties are allowed to take only discrete vallues @ material properties) this approxima-
tion is referred as discrete approximation.

If V = volume(f2,), and /= volume(2L) then, according to the AO approximation, the material
properties,F andv, of an N0 element are given by

(E],V]) if V}/V> 1/2

(Eo,vo) it Vi/V <1/2 (8)

(Enio;vnIO) = {
Numerical experiments in the two dimensional case have showed that AO approximation presents a larg
error in the displacement and stress fields. To redue the error it is necesary to decreasing the size of t

elements in the grid. As a consequence of this mesh refinement there will be an increasing computation
cost of the analysigZ 3].

2) Weighted average approximation - A1 This is a more precise, but still an approximate method to
represent the elements on the bound&y.O elements are constituted by two different materidladO
materials). Al approximation transforms the bi-material element into a homogeneously isotropic elemen
with material properties that best simulate the non continuous element. Thus a property will be the weighte
average of thd andO properties:

vnio = vi§ +vo (1 =€) 9
Enio = Ef§ + Eo (1 =) (10)

where¢ is equal to the radig = V;/V.
Finally, AO and Al approximate & /O element as homogeneous elements by apply@agid Q).
Therefore, 7) can be used in both cases to compute the their element stiffness matrix.

NUMERICAL TEST

These examples show the capabilities of the FG method. Due to the lack of analytical solutions the F(
method is compared with solutions obtained using commercial finite element software (COSMOS/M). For
simplicity in all the cases the properties of the material were chosenb-bd x 10° andy = 0.2

In order to compare the Fixed Grid Finite Element Analysis (FG—FEA) against classical FEA avectord
of displacements is defined ds= /u? + u3 + u. That isd; is the norm of the displacementat node;.

The displacement error can be defined as

HdFG - dreaIHoo
E, = , 11
”dreaI”oo ( )

whered,e, correspond to a theoretical result of the same experiment. This value can be obtained based ¢
convergence analysis of the FEA solution and using a technique as Richardson extrap@jlation [

1. L beam example

This example consist of an L shaped beam. It is fixed at one extreme and loaded with a shear force at tf
other end as shown in Figuke The maximum displacement was found to be located along the line formed
by points(75,0,100) and (75, 25,100). Applying Richardson extrapolation to the displacement found by
Cosmos/M, a value df.84930 x 10~° was obtained. This value was compared with the results obtained with
different densities of grids. These are are shown in table

In this test, the only difference with classical FEA is the inclusion of O elements into the stiffness matrix.
In spite of the fact that the material properties of the Oelements are chosen to be those of non-activ
media, they can not be chosen as zero because this will result into singularities of the system matrix. As
consequence, inclusion 6f elements will increase the stiffness of the overall structure. Nevertheless, it is
observed that the error decreases as the density of the mesh does.
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Fig. 5 Boundary conditions for the L beam

Table 1 Displacement error and comparison with classical FEA for the example of the L shaped beam

]|~ ||~

Mesh size  dof COSMOS/M FG_FEA Error

3x1x4 108 6.322 x 1008 6.037 = 108 89.68%
OX2X8 540 1L86G6 % 1075 1.766 % 1075  69.81%
12x4x16 3240 5724 x 1075 5.385 x 107°  7.93%

1) Exclusion of O elements Due to the increased stiffness caused by the presence of the O elements the
same test was accomplished without considering the O elements. Asit was expected in this case, the result
of the FG were equal to the obtained with classical FEA. However, when comparing the solution time of
inclusion-exclusion of O elements, areduction of 50% was obtain when O elements were excluded [12].
There are two factors that explain this time reduction: one is the reduction in the degrees of freedom of the
system, and second, the reduction in the condition number of the stiffness matrix. The condition number is
an indicator of how close to singularity a matrix is and has a consequence in the number of iterations used
to find the solution when a preconditioned conjugate gradient method is used. The condition number for a
system of equations [K|u — f is defined by x(K) — ||K||||K!|. If x(K) is close to one then the matrix is
well conditioned. Otherwise, if x(K) islarge then the matrix isill-conditioned. This condition number was
calculated for different stiffness matrices of the L beam example. The results are shown in Table 2. It is
observed a severe increase of the condition number when including the O elementsin the solution.

Table 2 Comparison of the condition number for the stiffness matrix
when including and excluding the O elements

kol )

Mesh size  Including O elements  Excluding O elements

2x2x1 9240.1790 79.9036

4x4x2 2543R8.5042 4060.5693
Bx&x4 067441386 1469.0489
16x16x8 256789.2165 5325.2153
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Fig. 6 Schematic view of a quarter of the square plate with a circular hole

Table 3 AO approximation of NIO elements

with O elements without O elements
Mesh size dof I|d]| Error dof l|d|| < Error
Ax4x2 |89 3.7155 x 1075 3.1% 153 2.7838 x 1075  27.4%
Sx8x4 1115 LAG8G » 1075 18.8% 890 1.0438 % 1073 5.4%
[0x10x5 2034 LAZ0G =« 1075 15.5% 1638 L4306 % 1073 15.5%
lox16x8 7479 1.0094 % 1079 6.8% 5967  3.6008 x 1077 3.5%
20x20x10 14069 43810 x 1075 14.2% 11231 1.3811 x 1075 14.2%

2. Square plate with a circular hole Thisnumerical experiment uses a square plate with acircular hole.
Figure 6 shows the dimensions and boundary conditions of the structure. Due to the symmetry of the
problem, only a quarter of the object is analysed.

The test was intended to observe the behaviour of the method when modelling as tructure with NIO
elements. The test also considers the inclusion of O elements into the construction of the stiffness matrix.
Using a FEA solver, a maximum displacement of 3.835 10 °was found along the line formed by points
(100, 0, 0) and (100, 0, 50). (The FEA solver used amesh of 6750 elements, 7936 nodes and 22784 degrees
of freedom). This calculated value was used to determine the displacement error of the FG method. The
results are presented in Table 3 for AO approximation and in Table 4 for A1 approximation. Similar results
were obtained in both cases. It is observed that the error has a marked oscillatory behaviour. However, it
does decreased as the element size decreased.

Table 4 Al approximation of NIO elements

with O elements without O elemenis
Mesh size  dof |d]| . Error dof ||| Error
4x4x2 189 3.4258 x 1075 10.6% 153 2.5000 x 1073  32.2%
8x8x4 1115 4.0578 x 10°° 5.8% 890 3.0810 x 10°°%  19.6%
10x10x5 2034 14306 x 1075 15.5% 1638 1.4306 = 10°%  15.5%
loxloxs 7479 3.8112 x 1075 0.6% 5967 3.1666 = 1075 1 7.4%
20x20x10 14069 1.3810 x 1075 14.2% 11231 1.3811 % 107 [4.2%
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Fig. 7 Geometry and boundary conditions for structure used
to test reanalysis capabilities of the FG method

3. Re-analysis Thelast numerical experiment deals with re-analysis using the FG method. Figure 7 shows
the structure and boundary conditions used. The geometry of the object is expressed in terms of the
parameter d. Variationsto itsdimension will result into different geometries. Initially avalue of d = 10 was
used. Then it was change to d = 20 and d = 30. The problem was solved for the initial case and then the
stiffness matrix was modified to suit the structure with d = 20 and d = 30. The results are summarised in
table 5. They are compared with the results obtained using Cosmos/M FEA software. The reanalysis
procedure showed savings in time of 45% in the first case and 28% in the second case.

Table 5 Re-analysistest and comparison with FEA

case Ur_ Cosmos u, Error  Time [s]
1 2.02801 x 1077 2.01282 x 1077 0.7493% 9.28519
2 208286 x 1077 217141 x 1077 4.2511% 5.07962
3 217406 x 1077 217094 x 1077 0.1437%  6.67140

CONCLUSIONS

This article presents a method for numerical analysis using a fixed grid three-dimensional domain. The
program developed takes a structure previously constructed with a conventional solid modeller program
and produces its fixed grid representation. Specia care is taken when obtaining the intersection of the
object with the grid in such a way that the elements preserve the geometry of the object. The stiffness
matrix of the system is obtained as a function of a unique element stiffness matrix thus saving timein its
assembling.

The displacement error obtained in the numerical test was found to be from 8 to 15%. Therefore, the
usefulness of method as a fast estimator of the displacement and stress fields is observed. However to
obtain agood accuracy of the solution alarge number of elementsis required.

Inclusion of O elementsin the construction of the stiffness matrix increases the degrees of freedom of the
system and produces ill-conditioned matrix. The method is not suitable to analyse structures whose shape
is similar to a shell or thin plate. In these cases the number of elements required to properly model the
geometry is too large and makes impractical its applicability. Finally, the results presented here are
considered preliminary and therefore it is necessary to accomplish a more extensive testing.
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acknowledged.
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