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Abstract Fixed Grid (FG) methodology was first introduced by Garcı́a and Steven [7] as an engine for
numerical estimation of two-dimensional elasticity problems. The advantages of using FG are simplicity and
speed at a permissible level of accuracy. Two dimensional FG has been proved effective in approximating
the strain and stress field with low requirements of time and computational resources. Moreover, FG has
been used as the analytical kernel for different structural optimisation methods as Evolutionary Structural
Optimisation [9], Genetic Algorithms (GA), and Evolutionary Strategies [4]. FG consists of dividing the
bounding box of the topology of an object into a set of equally sized cubic elements. Elements are assessed
to be inside (I), outside (O) or neither inside nor outside (NIO) of the object. Different material properties
assigned to the inside and outside media transform the problem into a multi-material elasticity problem. As
a result of the subdivisionNIO elements have non-continuous properties. They can be approximated in
different ways which range from simple setting ofNIO elements asO to complex non-continuous domain
integration. If homogeneously averaged material properties are used to approximate theNIO element,
the element stiffness matrix can be computed as a factor of a standard stiffness matrix thus reducing the
computational cost of creating the global stiffness matrix. An additional advantage of FG is found when
accomplishing re-analysis, since there is no need to recompute the whole stiffness matrix when the geometry
changes
This  article  presents  CAD to FG conversion  and the stiffness matrix computation based on  non-continuous
elements. In addition inclusion/exclusion ofO elements in the global stiffness matrix is studied. Prelimi-
nary results shown that non-continuousNIO elements improve the accuracy of the results with considerable
savings in time. Numerical examples are presented to illustrate the possibilities of the method.
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INTRODUCTION

Fixed Grid (FG) is a methodology to solve elasticity problems was first introduced by Garcı́a and Steven
[2, 7, 6] as an engine for numerical estimation of stress and displacement fields. The advantages of using FG
are simplicity and speed at a permissible level of accuracy. In FG the stress error was seen to increase near
the region of stress concentration, with a maximum stress error being approximately 10% for a reasonably-
sized mesh. However, the average stress error was found to be about 5% or below and the displacement field
error was even lower, around 1% [5]. Thus, the FG method was deemed as appropriate for interactive design
and structural optimisation where highly accurate analysis is not needed.
A Fixed Grid is generated by superimposing a rectangular grid of equal-sized elements on the given structure
instead of generating a mesh to fit to the structure. In this way, elements are either inside(I), outside(O),
or on the boundary (NIO) of the structure. AnO element is given a material property of a non-interactive
media. That is, its value is significantly less than the property of anI element. This transforms the problem
into a bi-material one.NIO elements are constituted by two types of material and therefore their properties
are not continuous over the element. Different methods can be used to approximateNIO elements. That
includes from dropping them asO elements to complex non-continuous domain integration. If averaged
material properties are used to approximate theNIO element properties, then the element-stiffness matrix
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can be computed as a factor of a standard stiffness matrix. therefore the assembly of the system matrix can
accomplished efficiently. An additional advantage is found when the shape of the structure is changed in
response to a previous analysis. The global structure of the FG is maintained, and recomputation of the new
stiffness matrix can be accomplished by changing only the positions affected by the elements whoseI, O,
andNIO state has changed [8].
The application of FG-FEA to two-dimensional linear elastic problems has been a research topic during
the last years, see [2]. It has been proved effective in approximating the strain and stress field with low
requirements of time and computational resources. Moreover, FG-FEA was used as the mathematical kernel
for different structural optimisation methods like: Evolutionary Structural Optimisation (ESO) [10], Genetic
Algorithms (GA) [14], and Evolutionary Strategies (ES) [4].
Previous work has been done with three-dimensional linear elastic structures by Suzuki and Ohtsubo [13].
Boundary conditions are applied by further subdividing the boundary elements (multi-scale voxel) thus re-
quiring a less general resolution. The present approach presents some improvements to the local stiffness
matrix and force vector calculations for NIO elements by considering them as non-continuous elements.
Also the inclusion or exclusion of O elements in the global stiffness matrix is studied.

1. Definitions

Let ΩFG denote the smallest bounding box that completely encloses the domainΩ and is oriented along the
axes of the coordinate system, that is

ΩFG =

{
x
∣∣∣ min

y∈Ω
(yi) ≤ xi ≤ max

y∈Ω
(yi)

}
,

thenΩFG is called in this study thefixed grid domain. A point x ∈ ΩFG is consideredinside if x ∈ Ω. A
point x ∈ ΩFG is consideredoutsideif x /∈ Ω. In order to preserve characteristics of the original problem,
the material properties of an outside point are the properties of a non-interactive medium. The object is
embedded into a box made of non interactive material. Notice that this definition transforms the elastic
problem into a bi-material problem. Figure1 shows examples of a fixed grid domain for two-dimensional
and three-dimensional cases. The domain is completely defined by the pointsxmin andxmax that define the
maximum and minimum points that belong toΩFG.
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Fig. 1 Typical two- and three-dimensional  fixed grid domains

In order to obtain the FG, the fixed grid domain, ΩFG, is subdivided into a set of cubic elements with
dimensionsh1, h2, h3. See figure2.
An  element  is  each  one of the cells,  of dimension h1×h2×h3, in whichΩFG is subdivided. The elements
em, m = 0, . . . , ne− 1 are numbered in ascending order from the one containing the minimum pointxmin in
the direction of thex axis, then in they axis, and finally in thez axis. An elementem can be associated by its
index in each dimensionem = eijk . That is row, column, and floor of the element in the grid. The element
domainΩem is defined asΩem =

{
x
∣∣ x ∈ em} , and its boundary is denoted as∂Ωem.

The  nodes  are the vertices  of the elements in the FG.  Each  element em = eijk has eight nodesnj, with
j = 0..7. A node in the FG is classified as emphinside node ifnj ∈ Ω andoutside nodeif nj /∈ Ω.
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Fig. 2 Three-dimensional fixed grid

2. Element Classification

Outside (O)

Niether I nor O (NIO)
Boundary

of the structure

Inside (I)

Fig. 3 Fixed grid approximation of the geometry of a structure showing
the different types of  finite elements

According  to  the position of  the elements  with respect to the structure,  they can be  classified in three
different types: an elementem is calledInside (I) if for all x ∈ em,x ∈ Ω. An element is calledOutside
(O) if for all x ∈ em,x /∈ Ω, that is, the element consists of only points external toΩ. An element is called
Neither Inside nor Outside (NIO) if there exist pointsx,y ∈ em such thatx ∈ Ω andy /∈ Ω. That
means, the element has points inside as well as outside ofΩ ( these are elements on the boundary of the
structure). Figure3 illustrates the different types of elements for a given structure. These elements differ
only in their material properties. ElementsI have the material properties of the structure, elementsO the
material properties of a non-active medium, and elementsNIO have both material properties.
This  representation of  the domain  facilitates  the process of  analysis as it  does not require sophisticated
and high order algorithms to generate the mesh. Furthermore, it will be shown that the local stiffness matrix
is the same for all the elements and it only needs to be computed once for the whole analysis
According  to  the  type  of  nodes,  nj, in an element it can be classified as

type(em) =


I if nj ∈ ei ⇒ nj ∈ Ω

O if nj ∈ ei ⇒ nj /∈ Ω

NIO Otherwise

(1)

This criteria  is  not  exact as  there are cases  where the element is classified as I or O when it actually is
NIO. These cases are presented when the B–Rep of the object intersects the element at the face of the cube
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Fig. 4 NIO Element. An element with discontinuous material properties

without touching any of the vertices. For example, a cone end or a pyramid vertex penetrating the face of
an element. These cases are the result of small details in the geometry of the object which are not captured
by the fixed grid resolution. The important point to notice here is that it may be desirable or not to capture
the detail of the geometry for analysis purposes. In general, CAD data needs to bedefeaturedby removing
excessive detail that only add noise to the analysis. This is of particular interest at the initial stages of the
design [11].

GENERAL DESCRIPTION OF FIXED GRID GENERATION

A Finite Element preprocessor takes the geometry of a structure usually represented by its boundary rep-
resentation (B–Rep) and subdivides it into a set of finite elements of different shapes and sizes. A fixed
grid preprocessor is a specialised version of a finite element preprocessor where all the elements have fixed
geometry but different physical properties. Furthermore, the boundary conditions must be properly codi-
fied into this new representation. The fixed grid preprocessing or conversion of the B–Rep geometry into
a fixed grid representation is accomplished in the following steps: (i) Fixed grid domain computation, (ii )
node classification, (iii ) B–Rep subdivision to suit the element size, (iv) element classification (I, O, NIO),
(v) computation ofNIO geometry and volume, and (vi) boundary condition assignment.

FIXED GRID FINITE ELEMENT ANALYSIS

The discrete form of finite element formulation for linear elastic material can be stated as

[K] {uS} − {F} = 0 (2)

where[K] is the stiffness matrix of the system,uS is the vector of displacements andF represent the vector
of forces. Additionally, the stiffness matrix[K] can be constructed from element stiffness matrices

[
K(e)

]
as,

[K] =
E∑
e=1

[
K(e)

]
=

E∑
e=1

∫
Ω(e)

[B]T [C] [B] dΩ. (3)

where[B] is a matrix containing derivatives of the shape functions and[C] is the tensor of material properties.
For isotropic materials[C] is given by

[C] =
E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν


(4)
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with E the Young modulus andν the Poisson’s ratio.
Computation of  integrals in  (3)  depends  upon the shape and material of the element.  Due to its complexity
the integrals are usually calculated by using iso-parametric elements and numerical integration [1].

1. The Fixed Grid method

In traditional FEA the domain is subdivided into a set of elements that fit the its shape. The most common
algorithm to subdivided the domain is known as Delaunay triangulation. The result of such algorithms is
a set of irregular shaped elements. Construction of stiffness matrix[K] implies computation of the integral
defined in (3) for each elements in the mesh. In contrast, all the elements of a FG have the same shape
but different material properties. However, as it was show in previous section there are only three types of
elements:I, O, andNIO. The following section develops the computation of the stiffness matrix for the
homogeneousI andO elements and then for the non-homogeneousNIO elements.

2. Stiffness matrix for I and O elements.

From (4) it can be observed that[C] depends only from the Young modulus and the Poisson’s ratio. Then, it
is possible to express[C] as the sum of two matrices[F ′] and[G′] in the following way,

[C] = k (ν [F ′] + [G′]) (5)

wherek =
E

(1 + ν) (1− 2ν)
, and

[F ′] = ν



−1 1 1 0 0 0

1 −1 1 0 0 0

1 1 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


, [G′] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2


. (6)

Because of (5) it is possible to redefine (3) as[
K(e)

]
=

∫
Ω(e)

[B]T [k (ν [F ′] + [G′])] [B] dΩ

= k

{
ν

∫
Ω(e)

[B]T [F ′] [B] dΩ +

∫
Ω(e)

[B]T [G′] [B] dΩ

}
= k

{
ν

∫
Ω(e)

[F ] dΩ +

∫
Ω(e)

[G] dΩ

} (7)

where[F ] = [B]T [F ′] [B] and[G] = [B]T [G′] [B]. Aditionally ν is taken out of the integral because it is
constant overΩ(e).
The  computation  of

[
K(e)

]
by (7) allows the separation between the mechanical properties of the material

and the geometry of the element. Given that all the elements in the FG have the same geometry then the
integrals over[F ] and[G] are the same and need only to be computed once.

3. Stiffness matrix for NIO elements.

A typicalNIO element is shown in figure4. These elements intersect the boundary of the structure so they
are subdivided between two partsΩe = ΩI

e ∪ΩO
e . HereΩI

e represents the part of the element withI material
properties andΩO

e the part of the element withO material properties. This discontinuity in[C] represent
a complexity in the computation of[Ke]. However, computation of[Ke] can be approximated in different
ways. Two possible approximations are presented next.
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1) Discrete approximation - A0  This  is  the  simplest  way of  computing  the integrals  and consist of ap-
proximating theNIOs elements asI orO depending of the amount of element inside the structure. Because
the material properties are allowed to take only discrete values (I orO material properties) this approxima-
tion is referred as discrete approximation.
If  V = volume(Ω e), and VI = volume(ΩI

e) then,  according  to the  A0 approximation, the material
properties,E andν, of anNIO element are given by

(ENIO, νNIO) =

{
(EI , νI) if VI/V > 1/2

(EO, νO) if VI/V 6 1/2
(8)

Numerical  experiments  in  the  two  dimensional case have showed  that AO approximation presents a large
error in the displacement and stress fields. To redue the error it is necesary to decreasing the size of the
elements in the grid. As a consequence of this mesh refinement there will be an increasing computational
cost of the analysis [2, 3].

2) Weighted average approximation - A1 This  is  a  more  precise,  but  still  an  approximate method to
represent the elements on the boundary.NIO elements are constituted by two different materials (I andO
materials). A1 approximation transforms the bi-material element into a homogeneously isotropic element
with material properties that best simulate the non continuous element. Thus a property will be the weighted
average of theI andO properties:

νNIO = νIξ + νO (1− ξ) (9)

ENIO = EIξ + EO (1− ξ) (10)

whereξ is equal to the radioξ = VI/V .
Finally, A0 and A1 approximate aNIO element as homogeneous elements by applying (8) and (9).

Therefore, (7) can be used in both cases to compute the their element stiffness matrix.

NUMERICAL TEST

These examples show the capabilities of the FG method. Due to the lack of analytical solutions the FG
method is compared with solutions obtained using commercial finite element software (COSMOS/M). For
simplicity in all the cases the properties of the material were chosen to beE = 1× 109 andν = 0.2
In order to compare the Fixed Grid Finite Element Analysis (FG–FEA) against classical FEA avectord
of displacements is defined asdi =

√
u2

1 + u2
2 + u2

3. That isdi is the norm of the displacementu at nodei.
The displacement error can be defined as

Er =
‖dFG− dreal‖∞
‖dreal‖∞

, (11)

wheredreal correspond to a theoretical result of the same experiment. This value can be obtained based on
convergence analysis of the FEA solution and using a technique as Richardson extrapolation [2].

1. L beam example

This example consist of an L shaped beam. It is fixed at one extreme and loaded with a shear force at the
other end as shown in Figure5. The maximum displacement was found to be located along the line formed
by points(75, 0, 100) and(75, 25, 100). Applying Richardson extrapolation to the displacement found by
Cosmos/M, a value of5.84930×10−5 was obtained. This value was compared with the results obtained with
different densities of grids. These are are shown in table1.
In this test, the only difference with classical FEA is the inclusion of O elements into the stiffness matrix.
In spite of the fact that the material properties of the Oelements are chosen to be those of non-active
media, they can not be chosen as zero because this will result into singularities of the system matrix. As a
consequence, inclusion ofO elements will increase the stiffness of the overall structure. Nevertheless, it is
observed that the error decreases as the density of the mesh does.
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Fig. 5   Boundary conditions for the L beam 

Table 1 Displacement error and comparison with classical FEA for the example of the L shaped beam 

 

1) Exclusion of O elements Due to the increased stiffness caused by the presence of the O elements the 
same test was accomplished without considering the O elements. As it was expected in this case, the result 
of the FG were equal to the obtained with classical FEA. However, when comparing the solution time of 
inclusion-exclusion of O elements, a reduction of 50% was obtain when O elements were excluded [12]. 
There are two factors that explain this time reduction: one is the reduction in the degrees of freedom of the 
system, and second, the reduction in the condition number of the stiffness matrix. The condition number is 
an indicator of how close to singularity a matrix is and has a consequence in the number of iterations used 
to find the solution when a preconditioned conjugate gradient method is used. The condition number for a 
system of equations  is defined by . If  is close to one then the matrix is 
well conditioned. Otherwise, if  is large then the matrix is ill-conditioned. This condition number was 
calculated for different stiffness matrices of the L beam example. The results are shown in Table 2. It is 
observed a severe increase of the condition number when including the O elements in the solution. 

Table 2  Comparison of the condition number for the stiffness matrix 
when including and excluding the O elements 
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Fig. 6   Schematic view of a quarter of the square plate with a circular hole 

 
Table 3  A0 approximation of NIO elements 

 
2. Square plate with a circular hole  This numerical experiment uses a square plate with a circular hole. 
Figure 6 shows the dimensions and boundary conditions of the structure. Due to the symmetry of the 
problem, only a quarter of the object is analysed. 
The test was intended to observe the behaviour of the method when modelling as tructure with NIO 
elements. The test also considers the inclusion of O elements into the construction of the stiffness matrix. 
Using a FEA solver, a maximum displacement of 3.835×10−5

 was found along the line formed by points 
(100, 0, 0) and (100, 0, 50). (The FEA solver used a mesh of 6750 elements, 7936 nodes and 22784 degrees 
of freedom). This calculated value was used to determine the displacement error of the FG method. The 
results are presented in Table 3 for A0 approximation and in Table 4 for A1 approximation. Similar results 
were obtained in both cases. It is observed that the error has a marked oscillatory behaviour. However, it 
does decreased as the element size decreased. 

Table 4  A1 approximation of NIO elements 
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Fig. 7 Geometry and boundary conditions for structure used 

 to test reanalysis capabilities of the FG method 
 

3. Re-analysis  The last numerical experiment deals with re-analysis using the FG method. Figure 7 shows 
the structure and boundary conditions used. The geometry of the object is expressed in terms of the 
parameter d. Variations to its dimension will result into different geometries. Initially a value of d = 10 was 
used. Then it was change to d = 20 and d = 30. The problem was solved for the initial case and then the 
stiffness matrix was modified to suit the structure with d = 20 and d = 30. The results are summarised in 
table 5. They are compared with the results obtained using Cosmos/M FEA software. The reanalysis 
procedure showed savings in time of 45% in the first case and 28% in the second case. 

Table 5  Re-analysis test and comparison with FEA 

 
 
CONCLUSIONS 
 

This article presents a method for numerical analysis using a fixed grid three-dimensional domain. The 
program developed takes a structure previously constructed with a conventional solid modeller program 
and produces its fixed grid representation. Special care is taken when obtaining the intersection of the 
object with the grid in such a way that the elements preserve the geometry of the object. The stiffness 
matrix of the system is obtained as a function of a unique element stiffness matrix thus saving time in its 
assembling. 
The displacement error obtained in the numerical test was found to be from 8 to 15%. Therefore, the 
usefulness of method as a fast estimator of the displacement and stress fields is observed. However to 
obtain a good accuracy of the solution a large number of elements is required. 
Inclusion of O elements in the construction of the stiffness matrix increases the degrees of freedom of the 
system and produces ill-conditioned matrix. The method is not suitable to analyse structures whose shape 
is similar to a shell or thin plate. In these cases the number of elements required to properly model the 
geometry is too large and makes impractical its applicability. Finally, the results presented here are 
considered preliminary and therefore it is necessary to accomplish a more extensive testing. 
 
Acknowledgements  The support by EAFIT-COLCIENCIAS under contract 572-2003 is gratefully 
acknowledged. 
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