A Geometric Reasoning Server with Applications to Geometric
Constraint Satisfaction and Reconfigurable Feature Extraction

Oscar E. Ruiz 5., Rodrigo A. Marin, Placid M. Ferreira

Department of Mechanical and Industrial Engineering
University of llinois at Urbana-Champaign
1206 West Green St. Urbana, IL, 61801, USA

Abstract

Geometric Reasoning can be defined as the modeling and manipulation of geometric entities and their
relations. A large number of applications in Computer Aided Design, Manufacturing and Process
Planning intensively manipulate and reason about Geometric Objects. However intensive is the use of
geometrical utilities in a CAD/ICAMICAPP environment, the construction of such systems frequently
uses an ad hoc set of geometric routines written for the particular application at hand. If another
application is to be developed, the geometric requirements of it are satisfied in similar manner, therefore
leacing to a large replication of effort, a difficulty in their integration, and to difficulty in the modeling of
robust and yet flexible and extensible applications. In this investipation, the design, modeling and
development of a Geometric Reasoning Kemel which serves the needs for CAMICAMICAPP
environments is discussed. N

Geometric Reasoning acts in two conceptually different levels: the Static level in which fully instanced
geometric objects and relations among them are manipulated. Examples of this sort of services are
logical queries, which test sets of objects for relations among them (parallelism, perpendicularity,
inclusion, etc), and construction gueries, which build non ambiguous entities to meet certain
requirements, for example construction of convex hulls, projections, object intersections, etc. In
Dynamic Level, objects are specified by geometric relations, called constraints, which involve other
cbjects in the World, possibly not completely defined themselves. The result is & system of
interdependencies which frequently results in ambiguously or inconsistently defined scenarios. The
evalustion of inconsistencies, ambiguities, and the production of a feasible world is called the
Geometric Constraint Satisfaction or Scene Feasibility (GCS/SF) problem. A Static Geometric Reasoning
Server has been developed using an object oriented approach 1o model geometric objects. The server is
built in a way that it can be used as a library to which client programs can link, even providing them
with services that aliow the user to interact through a graphic interface on which the objects can be
directly manipuiated and visualized. Two (client) applications of the static geometric reasoning server
have been explored. The first is a Reconfigurable Feature Extraction system, The second is the
Dynamic Reasoning part itseli. The core of the Reconfigurable Feature Extraction system is a high level
language that allows the user to define private, customized features in terms of topological and
geometric objects and relations. No generic algorithm is used to recognize the features. Instead, the
language also allows the user to dynamically specify and automatically produce the recognition
procedure. This makes possible to have an open library of features and to exploit the specific
krnowledge that users have about them and the context in which they are to be found. The conceptual
cavelopment and thearetical foundations for the Dynamic Reasoning module are discussed here, and as
& result, an algorithmic solution for the GCS/SF problem is presented. This algorithm heavily relies on
caoncepts of algebraic geometry which allow to evaluate the characteristics of 1he solution sSpace
nassible scenarios) for the GCS/SF problem.

1 Introduction

Geometric relations are of primary importance in Computer Aided Design, Manufacturing and
Process Planning. The ability to create, modify, maintain and reason about such
relationships has to be provided to any software application in these aress. These abilities
have traditionally been imparted to the software on a case-by-case basis. The repercussions
of this approach are : (i} a failure to address the common, fundamental problems underlying
particular instances, lii) restricted domains of solutions, and (iii} replication of code,
producing larger and difficult-to-maintain systems. In Spatial Reasoning, two main areas can
be identified; Static and DOynamic Reasoning. Static’ Reasoning problems are those
caoncerned with fully and unambiguously defined entities. Typical problems include boolean
gueries testing a particular relation among entities and construction queries which create
entities satisfying relations with other given entities in the world, in general producing wvell
defined (although not unique) answers. In Oynamic Reasoning, a set of geometric entities
is specified by geometric relations (also called constraints) in the context of a given world.
As the set of relations varies, the position (and the very nature) of the entities in the space
changes. The specification may be ambiguous, resulting in an infinite number of possible
answers, or inconsistent, producing an empty solution space. The determination of a set of
geometric entities that satisfy a series of geometric relations (constraints) in the context of
a basic, fixed world constitutes the Geometric Constrain Satisfaction or Scene Feasibility
(GCS/SF) problem.

In this work, a centralized kernel philosophy is pursued with the objective of serving all of
these ievels of spatial reasoning, including solutions for instances of the GCS/SF problem
while avoiding the drawbacks mentioned above.

This article presents the philosophy and implementation of a Geometric Reasoning { GR)
Server, followed by two aspects of its application; first, the design and implementation of a2
client system which allows reconfigurable feature definition and extraction by using the
capabilities of the Static GR module, and second, the theoretical fundaments and
algorithmic support for solutions of the GCS/SF problem, which are the basis for the
Dynamic GR module. Exampies of application of this theoretical framework are discussed,
which show different approaches to formulate and solve the GCS/SF problem, and
evaluation of their advantages is presented here.

The applications of these capabilities spread owver diverse fields in design and
manufacture such as mechanism design, feature extraction, fixturing, assembly planning,
parametric design, tolerancing analysis, etc.

Figure 1. Centralized Geometric Server,

Figure 1 shows the underlying philosophy in the creation of a centralized Geometry
Server. From the point of view of the user {(programs or humans), it extends the capabilities
of the computer, presenting geometric cbjects as primitive types in the computer collection
of manageable objects, similar to real or integer numbers, or character strings. On top of
this iayer, the GR Server is anchored. The nature of the problems aimed at implies that

- Allow the user to use prior knowledge on the nature of the features and of the parts on
which they will be recognized, to define the recognition strategy. This will put the
correctness and the efficiency of the recognition process under direct user control, and
these can be adjusted at his convenience.

We claim to have met these two requirements by having developed a high level language
in which the user can conveniently define the features and the corresponding recognition
strategies. The feature definitions in this language are compiled into a C+ + program and
linked with the Static GR Library and with the Application Programming Interface of the
ACIS Solid Modeler. A brief description of the characteristics of the language is given in the

sections below.
3.1.1 Feature Definition

Features are modeled as sets of attributed topological entities among which a set of
topological and geometric relationships are defined. Topological entities are faces, edges and
vertices. The topological relationships between the entities are defined by the connectivity
existing between them. This can be assimilated to the frequently used Face Adjacency
Graph representation. See Figure3.

The following geometric geometric attributes can be defined based on topological
entities:

- Faces geometric type: Planar, cylindrical.
- Edges geometric type: Straight, circular, etc.
- Edges convexity: Edges can be convex or concave.

Gecmetric relationships between entities define the relative positioning and orientation.
These can be perpendicularity, parallelism, coplanarity, colinearity, distance, angle, etc. The
assessment of these relations is performed by using the the GR server discussed above.

Figure 3. Definition of a Notch Feature

3.1.2 Feature Recognition Process Definition

The recognition of a feature is closely related to its definition, as described in the previous
section. An instance of a solution to the recognition process is a cne to one mapping
between the topological entities given in the definition and the instznces of topological
entities found in the solid model of the part. The recognition process consists of finding the
sets of instances of topological entities that satisfy the attributes and relationships given in
the definition.

Two types of statements are possible in the recognition process specification:

- Search Statements: These statements try to instantiale one or more topological entities
according to one or more criteria expressed in terms of attributes and/or relationships
given in the definition and that must be satisfied by the entities.

- Verification Statements: These statements enforce the satisfaction of some attribute
and/or relationship on one or maore of the entities found in the partial solutions found so
far. The instances not satisfying the criteria are removed.

3.1.3 Efficiency considerations

From the above discussion, it can be seen that if a certain set of entities in the solid model
of the part are a valid instance of the feature 1o be recognized, it may happen that by
permuting some or all of the entities in the set the feature definition will also be satisfied.
This means that it is possible to have multiple solutions representing the same feature
instance in the part. For example, if a slot is defined as a base face perpendicular and
connected to two parallel side faces, a permutation of the two side faces in an instance of
the slot would also be a valid solution. This can become a serious problem because of the
risk of combinatorial explosion in the solution set.

Currently, the language is being enhanced to provide mechanisms to rule out the inclusion
of permutations of the same feature in the solution set. The user will be able to specify
what permutations are to be allowed or not at a particular stage of the recognition process.
However, tests have shown that careful writing of the recognition procedure plays a key
role in keeping the solution set as small as possible. Once a set of entities is instantiated
using a search statement, it is a good practice to use one or more verify statements that will
eliminate invalid solutions, before using additional search statements that increase the size
of the solution set. The difference can sometimes be dramatic as demonstrated by the
examples that follow.

3.7.3 Example

Two examples of a recognition procedure for a simple slot feature in a part are shown in
this section (See Figure 4). These examples intend to show the use of the language in the
recognition of a feature and to illustrate the efficiency considerations made in the previous
section.

Srmpes b Besah o sk recispsalmen on 2 fan

Figure 4. Simple slot feature

The first procedure is the following:

First exampls of recognition program for & slot.

DEFINITION
NAME SLOT ;

ENTITIES:

F1, F2, F3: FACE ;
E1, E2, E3: EDGE ;

EDGE TYPE:

E1, E2: STRAIGHT ;

FACE TYPE:

F1, FZ, F3: PLANAR ;

CONNECTIVITY:

F1:(F2, E1, CONCAVE) ;
F2:(F1, E1, CONCAVE), (F3, E2, CONCAVE] ;

ORIENTATION:

F1, F3: PARALLEL ;
F1, F2: PERPENDICULAR :
F2, F3: PERPENDICULAR :

END DEFINITION

BEGIN

FIND [E1, EZ] BASED ON EDGE CONVEXITY ;

FIND [F1] BASED
FIND [F2] BASED

ON CONNECTIVITY WITH [F2] ;
ON CONNECTIVITY WITH [F3] ;

WVERIFY [E1] DERIVED CONNECTIVITY FROM [F1, F2] ;
VERIFY [E2] DERIVED CONNECTIVITY FROM [F2, F3]

END

This first procedure is very inefficient, having to consider a set of 4128 candidates for
the feature after the third recognition statement is executed. In total, the recognition
procedure takes 140.23 seconds to produce the final result. The inefficiency is mainly due
to the fact that all the search statements are executed before any wverification statement,

allowing the solution set to grow very large.
The second procedure is the following:

Second example of

DEFINITION
NAME SLOT ;

ENTITIES:

recognition program for & slot,

F1, FZ, F3: FACE ;

El. E2
EDGE TYPE:

E1, E2
FACE TYPE:

F1. F2

, E3: EDGE ;
: STRAIGHT ;

. F3: PLANAR ;

CONNECTIVITY:

F1:(F2
F2:(F1
ORIENT ATLON:

= -

. E1, CONCAVE] ;
. E1, CONCAVE), (F3, E2, CONCAVE) ;

manary B =

F2, F3: PERPENDICULAR ;
END DEFINITION

BEGIN
FIND (F1] BASED ON CONNECTIVITY WITH [F2] :
FIND [E1] BASED EDGE CONVEXITY ;
VERIFY [E71] DERIVED CONNECTIVITY FROM [F1, F2] :
FAND [F3] EASED ON CONNECTIVITY WITH [F2] ;
FIND [E2] BASED ON EDGE CONVEXITY :
VERIFY [E2] DERIVED CONNECTIVITY FROM [F2, F3]
END

By contrast with the first example, this procedure performs werifications as early as
possible between search statements. As a result, the solution set grows 1o a maximum of
2B8 elements and takes 3.5 seconds to execute.

3.1.4 Evaluation and Future Work:

Initial testing of this system has been completed. The system has been found to be
robust and the flexibility provided by the language adeguate. Currently the language is
being enhanced to increase its expressive power and to improve its efficiency preventing the
potential combinatorial explosion that can be caused by permutations of the entities defining
a feature.

4 Theoretical Fundaments for Dynamic GR

Prior sections of this paper introduced the GR system in its Static part, and showed an
application area in which the services of the system are used in a Reconfigurable Feature
definition and Recognition client program. In this section, the theoretical foundations which
allow us to attack the Dynamic Reasoning problem are laid out. Applications of this theory
have been successfully realized in Assembly Planning and Kinematic Analysis of
Mechanisms among other areas.

4.1 Problem Statement

The Dynamic Reasoning are essentially a version of the Geometric Constraint Satisfaction,
or Scene Feasibility (GCS/SF) problem defined as follows: Let a World W be a closed,

homogeneous subset of £, and a set of zero curvature geometric entities S={el,..en}
(points, straight lines, planes). A set of spatial relations between pairs of entities R={Hﬂ_k}
are specified, where A, ik is the k% relation between entities / and j. The goal is o find &
position for each entity e; in the world W, R; ., consistent with all relations A specified on
it. The world W is a basic, fixed scenario in which the entities S satisfying A will eventually
be instantiated. One says that S s feasible for W and R, and denotes this fact by
S={feasiblefW.R). This problem can be translated into the solution of a set of polynomial
equations F = {f, .f,,...f, }; therefore F is the polynomial form of the problem (W,FJ; and it
is written as F=poly_form(W,R/. If S is a solution for F, we write it as: S=solution(F].

4.2 Modeling Methodaolagy

The terms used are explained next; entity means geometric entity: point, line or plane.
Each entity has an attached frame. Points are in the origin of their attached frame. Lines
coincide with the X axis of their frame. Planes coincide with the Y-Z plane of their attached
fram:. The world W contains a set of topological (polyhedra and possibly non manifold
objects) and geometrical (lines, planes, points) entities S={e,,e,..e,}. For the discussion at

hand it is assumed that the entities are part of a body. FJF is the known, fixed position of
entity / with respect to the body frame /. R, represent relations or constraints between
entities. These relations, shown in Table 2 represent conract relations which can be stated
as “place entity £; ON entity £," (E,-ON-£E,}, and they can be expressed in the vector form

shown there.
Table 2: Constraint Relations snd Polynomisl Forms)

relation entity T entity 2 veclor eguation
B-ON-F P P2 P1 =P
BON-LN Py N=(paval (Ppy-psl x vo=0
P-ON-PLN Py PEN=lpgn ol {pynal.ag =
LN-ON-LN iN= oy vyl 'u'r":pi-"fl Vi X vpm o
ﬂJr-sz K ygy= o
LN-ON-PIN | IN=p vyl PN=(p a2 PyPyl.np =0
Vy.np =0
PLN-ON-PLN PN =ipsayl Plmipanal PyPal-ny =0
Ap.ng= + T

4.3 Grobner Basis

Each relation (constraint) R; enforced on the entities of the World translates into 3 number

of polynomial equations as discussed above. The fact that there is a Feasible World for that
set of constraints is directly determined by the existence of simultaneous roots to the set 7
of polynomials originated from all the constraints imposed on the (entities of the) system.
The analysis of the common roots for this set can be performed in the framework of
Algebraic Geometry Techniques. In particular, an alternative set of polynomials calied
Grobner Basis, (GB(F)) can be analyzed. In the present work some properties of the
Grobner Basis of the set F will be stated with no proof or further discussion. We are
assuming that the set F={ f;, f f5.... .f, } has variables x_,, %_..... x_, for which we
define an ordering x; < x, <... < x,. For a deep treatment of this topics see [3,2,1].

Proposition 1. S=solution(F) iff 5 =solution(GB(F)).

Proposition 2. 7 in GB(F) = = > F has no solution.

Proposition 3. These exists an algorithm ZeroDimensional{GB(F]) which is able to decide
whether F has a finite number of zeros. In such a case 5=/feasiblefW,R/ has
a finite number of configurations.

Proposition 4. There exists an algorithm /n_Radical{GE(F],f] which allows to decide whether
the zeros of F are contained in the zeros of f. In that case, f expresses a
constraint already included in F.

Proposition 5. There exists an algorithm GB(F] which produces a triangular Grobner Basis,
in the sense that GB(F) contains polynomials only in x;, some others only in
Xy, X3 and so on, making the numerical solution a process similar to

triangular elimination.

4.4 An Algorithmic Seolution to the GCS/SF Problem

This theoretical background can be summarized in the following macro-algorithm, in which
the invariant clause for the loop is the existence of a set of non-redundant, consistent and
multi-dimensional set of (constraint generated) polynomials. In the event of the addition of
new constraints to the scene, the algorithm converts them into polynomialis), and tests their
redundancy (by using Proposition 4), inconsistency (Proposition 2} and Zero Dimensionality
{(Froposition 3). If the new constraint is redundant no action is taken; in the other tvwwo C35€S

the invariant becomes false and the loop breaks. If the ideal has become Zero-dimensional a
triangular Grobner Basis under some stated order is extracted (Property 5) and solved.
Proposition 1 is the underlying basis of the algorithm, since it establishes that the G&(F)
faithfully represents F, with the same roots and ideal set.

{Pra: W & fixed scenario }
F={]

GE wm [)

do new relation A ;

{lnv: F is consistent, non redundant,, Multi-dimensional }

Awhfas+ (R}
f = poly_form{ W, R ;]
Froposition 2 if (Tin GBIF + {r}) then
stop (system is incongistent |
elsa
Proposition & if In_RadicallGBIFIfl then
skip | Fis redundant)
alse
F=F + {f)
Proposition 1 GE = GrobnerBasiz(F, prec)
Proposition 3 if ZerobDimansion/GE]] then
breok loop
eize
skip (naxt relation-constraint)
fi
fi
fi
od
Froposition § 5 = trisngular_solution(GE |

{Post:R = (R} a set of relations; S ={easible/W,R) }

4.5 Example

In order to illustrate the methodology for modeling and solution of the GCS/SF problem 2
very simple example is presented here, which follows the methodology applied to larger and
more complex systems ([4,5]). Consider a scene in which there are two straight lines
LN;=(Pyv,) and LN,=(P, v,/ (See Figure 5] expressed parametrically, and assumed to be
rigidly linked to each other by a displacement M. Another set of lines, with similar conditions
are given by LN;=(Pyvs and LN =P vyl

The proposed relations placelN;- ON -LN; and LN,- ON -LN, (being LN 5 LN, also rigidly
joined). The goal of the problem is to find whether the relations can be satisfied, what
displacement is to be performed on the rigid body holding LN, and LN, to achieve the goal,
and the degrees of freedom that are afforded to the body holding LN, and LN, by the

relztionship. In this example, an abstraction of an electric outlet plug, the remaining variable
is a translational degree of freedom in the direction of the line axes.

Figure 5: Simultaneous Line-to-Line Bestriction between Pairs of Lines

The problem can be stated as follows:
1. Apply a (still unknown) rigid displacement D to LN, and LN, D is formed by a

rotation Aot and a translation T.

Xy1X12 X43 T,
Rot = X3y X33 X33 T=1T,
X371 %X32%X33 T,

The transformed entities are
PI' '= T + Rot 'PI'" Vr' = Rﬂ‘f.'lfp' Pﬂt =T + RGT.FE..' VI" = Rﬂf.V:

2. The specified relations (paralfel, contained, etc) impose the following conditions
{expressed in vector terms for simplicity):

(Py'-Py) x vy= O; P,' in LN;
vy x vy = 0; vy |l v
(Py'-Py x vg=0; P, in LN,
vy' X vg=0; vl vg

detf Rot] = +1;
The condition detf Ror) = +1 imposes dexterous orthonormality to the matrix

Rot=[v,:vyivyl. Orthonormality implies [v;| =1, (i=1.3); nv;v;=0, i # j). Dexterity
implies v; x v; = v,

The equations arrived at are polynomials, whose solution determine the martrix 0, and
therefore the position of the pair LN,-LN,. The analysis of this set of equations is
performed within the framework provided by the algorithm above.

The llexicographic) order used in this example, for the calculation

of the Grobner Basis is: x ;; > X ;5 > X ;3 > X33 > X 53 > X3 2 X g
‘.‘:-132} XJJ}TI}TY:" Tz-

When the first constraint is applied (LN ,-ON-LN,/, the conditions

Py "-P3] x vz =0; Py "inLiNgJ;
vi'x vy =0 lvy" || vyl
produce an solution:
d+ T, =‘-':'”'Ty =0 xq, =0 x5, =0 _
The Grobner Basis corresponding to this condition is shown below. The f notation 1s
used to identify the variables which are the leading terms in polynomial 7
L+d=0
T -n=0

X357 +x357-1=0

£ﬂ=‘:}

2 2.1 =

Hpp+ X33 X35 Ka3X32X33=0
XypX35+X25X33=0
EEZJH"'XS-?'X-??:O
x ;_Zz_x 3 =0
Loy =
X 1_3_'=ﬂ
X;5=0
Kyg+XpgX3XK35.X33=0
The parameters of the World configuration (c.d.w.n) appear as constants in the basis.
First, the fact that it does not contain 1, suggests that we cannot conclude that the
constraint is inconsistent with the preexisting scene. Yet, we might have a solution with
complex wvariables which is not physically realizable. Second, the ZeroDimensionall)
algorithm of proposition 3 (see [3]) establishes that 7, and x;; stay as free variables,
therefore producing a two dimensional space of solutions. In T, and x;; we can recognize a
translational and rotational degrees of freedom respectively,
Suppose, the second constraint (LN ,-ON-LN, resulting in the equations
(Py'-Py x vy=0; (Py" in LN ,); vy' X vy =0 fva' | vy
is added to the scene.
The Grobner Basis for the accumulated constraints, once again, shows neither

inconsistency nor zero-dimensionality, for the same reason as befare.
Ie +d=0

In this case, however, 7, variable is effectively the only degree of freedom left. Two
assembly modes are possible, by setting x,,= + 1.

If an additional constraint is set, for example P,-ON-P;, the Grobner Basis becomes Zero
Dimensional, reflecting the fact that all the degrees of freedom are now fixed, and there are
a finite number of configurations (D transformations) to satisfy the conditions:

T, +d=0
-—E
I-n= o
I2-c2+w2-2.w.T, =0
X33+71= o0
X30=0
Xar = 0
5‘2‘_2=O
C.Xq7+w-T,=0

Iﬂ=ﬂ

£1_§=":"
£.B=a
Xi.c-w+T, =0

if yet one more condition is set, unless it is redundant, the system becomes
inconsistent; for example, if one requires P,-ON-P,, the Grobner Basis shows the
inconsistency:

GEBE={1)}

The modeling of the GCS/SF problem and its solution using the techniques discussed
above has been implemented and have shown that although the computational expenses
incurred by the Grobner Basis calculation (GB = GrobnerBasisiF, prec J) are high, there are
special sets of variables, derived from the formulation of the GCS/SF problem in terms of
subgroups of the Euclidean Group SE/3) which induce better performance in the algorithm.
These results are omitted in this abstract owing to the limited space available.

5 Conclusions

A Geometric Reasoning (GR) server has been described, which presents several advantages
in terms of simplification of software production, reusability of highly specialized knowledge,
compatibility for data structures and algorithms, accessibility from a client and expandability.
The server has been implemented and its Static Reasoning Capabilities are used in a
Reconfigurable Feature Extraction and Definition system. The theoretical foundations for the
Dynamic GR system have been discussed, in the context of the GCS/SF problem, and an
example has been provided. It is felt that Dynamic reasoning is the underlying framework
for many problems in CAD/CAM, Mechanism Analysis, Robotics, Tolerancing, and other
design and manufacturing applications.

References

[B. Buchberger. Applications of Grobner Basis in Non-Linear Computational
Geometry. In D. Kapur and J. Mundy, editors, Geometric Reasoning, pages
413-446. MIT Press, 1989,

(2] Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann
Publishers Co., 1988.
(3] D. Kapur and Y Lakshman. Elimination Methods: An Introduction. In B. Donald, D.

Kapur and J. Mundy, editors, Symbolic and Numerical Computation for Artificial
intelligence, pages 45-88. Academic Press, 1992,

(4] 0. Ruiz and P. Ferreira. Spatial Reasoning for Computer Aided Design,
Manufacturing and Process Planning. Technical Report UILU-Eng-94-4004,
University of lllinois at Urbana-Champaign, 1994.

[5] 0. Ruiz and P. Ferreira. Grobner Bases and Group Theory in Geometric
Constraint Satisfaction. Proc. International Symposium on Symbolic and
Algebraic Computation, Oxford, England , 1994,

