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ABSTRACT 
Boundary Representations (B-Reps) of actual solid parts are correct from the 
geometrical and topological points of view. However, when the solid to model has 
extreme slender ratios, the rigid rules of the B-Rep force a large number of finite 
elements required to model the solid interior of a closed shell (also called a 2-
manifold without border). In the practice, modelling is then pursued by using only 
a partial shell (2-manifold with border), excluding the “interior” of it. For the 
same reasons, other slender elements (trusses or beams) must be modelled as 1-
dimensional wires (1-manifolds with border). Assumptions are made in both cases 
to replace the solid model information left aside. The scenarios in which both 2-
manifolds and 1-manifolds must coexist are undesirable from the mathematical 
point of view, since they render flawed topologies and geometries. However, in 
the engineering domain, they are required, and enabled, by replacing the 
information lost in the modelling with additional kinematic and structural 
constraints. These constraints force the 1-manifolds and 2-manifolds to intervene 
together in the numerical solution, therefore rendering realistic results, without 
actually coexisting in the geometric model. These techniques are discussed here 
and applied to examples of shipbuilding industry, where slender forms and 
extremely large models are ubiquitous. 
 
Keywords: Geometric Modeling, Naval Elements, Mixed Manifolds 

 

1. Introduction 
Industry-related applications of Computer Aided Geometric Design (CAGD) and 
Computational Mechanics (and more specifically Finite Element Analysis) present 
challenges which are not foreseen at the layout of the CAGD and FEA formalisms.  



One important issue is the one of transport and manipulation of geometric information. 
This issue includes data formats and primitives, in a pursue to (i) represent the actual 
geometry with the simplest possible geometric primitives, (ii) efficiently convey 
information from the CAGD side to the FEA one, without distortion, and (iii) reliably 
generate space decompositions (meshing) for the FEA method.  In the scope of 
Computer Aided Engineering, these three steps occupy 80% to 90% of the resources, 
with the remaining balance being filled by the actual Computational Mechanics 
Problem (boundary conditions, pre-processing, numerical solution and post-processing).   
In the realm of naval (as well as aircraft) applications an additional difficulty is 
presented by the slenderness ratio of the elements. They are thin and long. If these 
elements are represented by solid models, their slenderness or shape ratio causes an 
explosive growth in the number of analysis elements which compose the solid. The 
characteristic of computational explosion in CAE when using solid models is 
transversal to all the known methods (including Fixed Grid ones [GARCIA.2001]).  The 
natural reaction is, obviously, to model with 2-manifolds (called sometimes SHELLs) or 
with 1-manifolds (BEAM or WIRE). This action, however, leads to scenarios in which 
1- and 2-manifolds must co-exist, for example when stiffeners are used to reinforce a 
shell. This situation is foreign to formal topology, and yet normal in engineering. The 
coexistence of 1- and 2-manifolds in FEA, made possible by kinematic and structural 
considerations complementing or replacing the topological ones, is the scope of this 
article. This coexistence is presented here in the scope of shipbuilding. 
Section 2. discusses the literature relevant to the subjects and draws conclusions about 
the actions to take to overcome the difficulties. Section 3 describes alternatives to attack 
the problems and examines dramatic modeling failures caused by ignoring the 
differences in topological dimensions. Successful results as well as examples of are 
discussed in Section 4, while conclusions are drawn in Section 5.  

2. Literature Survey 
A precise definition on what a shell or a wire are is required. Formal synonymous are 2-
manifold and 1-manifold, respectively, embedded in R3.  
Definition of k-Manifold.  A k-manifold M embedded in Rm is a set of points p in Rm 
such that every ball B(p, δ) of radius δ < δp (δp a small enough radius depending on p) 
centered in p intersects M in a set of points isomorphic to a unit disk in Rk. In what 
follows we make m=3 (i.e R3) (see [Morse.1934, Fomenko.1997]).  
Definition. Shell. A “shell” (Figure 1) is mathematically defined as a 2-manifold M 
embedded in R3. Informally, this means that every ball B(p,r) of small enough radius r, 
centered in p (p being a point of set M) intersects M in a set D which is isomorphic with 
a unit planar disc in R2 (an example appears in Figure 3).  
Definition. Wire or Beam. A “wire” or “beam” (Figure 2) is mathematically defined as a 
1-manifold M embedded in E3. Informally, this means that every ball B(p,r) of small 
enough radius r, centered in p (p being a point of set M) intersects M in a set D which is 
isomorphic with the interval [-1,1], which is called a “unit planar disc in R1”. 
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Figure 1 . A 2-Manifold in R3. 
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Figure 2. A 1-Manifold in R3. 



2.1 General Boundary Representation (B-rep)  

The Boundary Representation (B-rep) is the convention that a body is univocally 
expressed by its boundary M, which is a 2-manifold in R3 (see [Mantÿla.1988]). For 
that, it is necessary to specify which is the “interior” of M. When M is not completely 
closed, there are points called boundary or border points on M for which the disc D 
mentioned above is homeomorphic to a semi-disc instead than to a full disc. In such a 
case it is said that M is a 2-manifold with border, embedded in E3 (Figure 4). Notice that 
if M has borders, it is impossible to define interior vs. exterior. On the other hand, 2-
manifolds with boundary are essential to define non closed shells , of vital importance 
in applications of machining CNC, stereolitography, visualization. Additionally, Finite 
Element Analysis software (FEA) usually requires shell data rather (with borders) than 
a solid object. 
The B-rep schemes require a strict hierarchy of geometric and topologic entities. 
Although every geometric modeller (ACIS, ParaSolids, IDEAS, CATIA, etc.) uses 
different names, a typical hierarchy is shown in Table 1. 

Table 1. Relations and hierarchy of topologic and geometric elements in B- rep (from [Ruiz.2002a]) 

TOPOLOGIES GEOMETRIES 

BODY Set of possibly disconnected solid regions 
or LUMPs  

LUMP A solid connected region, bounded by 
SHELLs  

SHELL 
A connected part of the boundary of a 
LUMP region.  A 2-manifold in general 
without border. 

 

FACE 

A connected subset of points belonging to 
one SURFACE. The subset is bounded by 
closed contours (loop) formed by EDGES 
(edge) contained in the SURFACE. 

SURFACE
Analytic surface, in parametric 
form [X(u,v),Y(u,v) ,Z(u,v)] 
or implicit f(x,y,z)=c. 

LOOP 
Closed non-autointersecting path, formed 
by EDGES and fully contained in a 
SURFACE carrier. 

  

EDGE 
A connected subset of points belonging to 
a CURVE. Two VERTEX, contained in 
the CURVE bound the subset. 

CURVE 
Analytic curve, in parametric 
form [X(u),Y(u) ,Z(u)] 
or implicit f(x,y,z)=c. 

VERTEX 
A connected subset of points belonging to 
a POINT. Obviously there is only one 
POINT in such a subset. 

POINT (x,y,z) in R3 

 
Figure 3. SHELL (2-mainfold) without border (from 

[Ruiz.1999]) 

 
Figure 4. Several SHELLs (2-Manifolds) with 

border (from [Ruiz.1999]) 



2.2 Finite Element Analysis and Boundary Representation (B-rep)  

Figure 5 presents a typical naval element, which is a plate with stiffeners. The model 
presented is a full B-rep one, which is also exploded.  This construct, while recognized 
by FEA software, presents the problem of explosive number of elements at meshing 
time, given its large wide/thickness or length/thickness ratios. Since the dimensions of 
the elements are limited by its small thickness, many TETRA or BRICK elements are 
required to fill its space, therefore placing an unacceptable computational burden.  
As a result, main deviations from B-Rep are produced: (i) objects which are slender or 
thin solids in real world are abstracted in FEA as pairs (SHELL, thickness) or (BEAM, 
area), causing a major departure from the original B-Rep scheme, and (ii) manifolds 
with differing dimension 1- , 2- or 3- share the space R3 in the abstraction of a physical 
situation. 
The boolean union of a 1- and a 2- manifolds (or any union of differing dimension 
manifolds) violates the fundamental premises of a B-rep, causing illegal constructs in 
topology, called “dangling” FACES. Figure 6 and Figure 7 show two examples of FEA 
constructs, which are illegal from the point of view of topology and B-rep., and yet they 
are approximations of very common situations in engineering practice. 

 
Figure 5. Lower: Plate with stiffeners modeled as a full B-rep solid. Upper: exploded B-Rep 

In Figure 6 stiffeners are placed on a thin plate. Since the stiffeners are modeled as 1-
manifolds, geometrically they should be either embedded in the plate, thus having no 
effect, or removed and parallel to it, therefore contributing in nothing to the plate 
stiffness. In either case, other assumptions are required to correctly model their position 
and effects on the plate.  In Figure 7 two manifolds are joined (welded), but the 
abstraction of the situation in not a manifold, since non-manifold EDGEs appear, in 
which 3 FACEs are incident. Manifold property requires that on a particular EDGE, 1 
or 2 FACEs be incident.  And yet, the abstractions in Figure 6 and Figure 7 correspond 
to actual engineering situations. The challenge is, to represent them by selectively 
allowing non-manifold situations, and correcting them by adding conventions and 
constraints which fill the topological vacuum created.  

 

2-manifold
1-manifold  

Figure 6.  Plate (2-manifolds) with Stiffeners (1-
manifolds). 

2-manifold

non-manifold
zone 2-manifold  

Figure 7. Two 2-manifolds assembled in a non-
manifold topology. 

 



3. Methodology 
The topological problem considered is: given a 2-manifold which represents a thin 
plate, and a set of 1-manifolds welded on it, and representing stiffeners (Figure 5), one 
must model the stiffening effect of the 1-manifolds by either (i) setting plausible 
boundary conditions of the contact surface or (ii) conceptually linking the degrees of 
freedom of the elements in the manifolds, to model the restrictions that they impose on 
each other, therefore producing a stiffening effect.    

3.1 Modelling by Manipulation of Boundary Conditions on 2-manifolds. 

stiffener regionsempty region (door)

 
Figure 8. Wall with Stiffeners (Mamparo, Baos). 
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Figure 9.  Topological Division of Face with Loops.

As said before, modeling the wall and stiffeners in Figure 8 with full solid models leads 
to explosive computational expenses. Therefore, it is necessary to model using 1- and 2-
manifolds (to get elements SHELLS and or BEAM). Figure 9 shows the topological 
model using only 2D constructs (2-manifolds). The wall is modeled as a FACE, with 
one outermost LOOP, and one internal one, to model the door. However, because of 
requirements in the FEA software to exactly locate the boundary conditions, one must 
define additional LOOPs, which limit the regions in which the stiffeners are welded. 
These regions are assigned a null displacement to model the problem. Results of the 
modeling with this combination of topological subdivision and boundary conditions are 
shown in Figure 12 and Figure 13. As seen, the zero displacement dictated for the 
stiffener areas represents an exaggerate forecast for their role, although the results may 
seem plausible.  

 
Figure 10. Deformation (scale 4995.44) of Plate + 
Stiffeners model using constraints on topological 

regions.  

 
Figure 11. Von Misses stress of Plate + Stiffeners 
model using constraints on topological regions.  

3.2 Modelling by Perpendicularly placed 2-manifolds.  



In an attempt to handle solid geometry and topology (Figure 5), the Face 1 (in Figure 9) 
and FACEs of the stiffeners perpendicular to Face 1 were extracted from the solid 
model Plate+Stiffeners, and meshed. This modeling basically corresponds to flat 
SHELLs placed perpendicular to each other, attempting to stiffen the resulting structure. 
In the computer prediction the stiffener areas actually do nothing to arrest buckling in 
the modeling since those areas are truly separate constructs with respect to the wall 
body. Therefore, a collapse is inaccurately predicted (Figure 12 and Figure 13). 
Although the meshing in the perpendicular shells was not compatible, the problem here 
stems in a more fundamental way in the fact that the 2-manifolds or SHELLs do not 
present inertial moments, or stiffness against bending. 

 
Figure 12. Deformation. Modeling with 

perpendicular 2-manifolds (SHELLs) extracted 
from full solid model. 

 
Figure 13. Von Misses stress. Modeling with 

perpendicular 2-manifolds (SHELLs) extracted from 
full solid model. 

3.3 Modelling by Cancellation of Degrees of Freedom. 
The cancellation of degrees of freedom is based on the following steps or assumptions: 
(i) Elements of different topology coexist in the scenario. In this case, one has 

SHELL (2-manifold) and BEAM (1-manifold) elements. These elements are in 
contact. 

(ii) SHELL elements are equipped with a constant thickness t and BEAM elements 
are equipped with a cross sectional area As.  

(iii) Nodes for Finite Element Analysis have a private coordinate system, with, in 
general 6 degrees of freedom (three translations and three rotations) 

(iv) For simplicity, SHELL elements are here assumed to have 3 nodes (they may 
have 4, 5 or more), with six degrees of freedom per node (three translations and 
three rotations) for structural analysis. They have a coordinate frame (x-y-z) as 
per Figure 14.  

(v) For simplicity, a BEAM element is assumed to have a 2 nodes for purposes of 
three-dimensional nonlinear uni - axial structural models. Each element owns a 
coordinate frame (x-y-z) as per Figure 15. Six degrees of freedom (three 
translations and three rotations) are considered for each node. 
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Figure 14. Coordinate frame of SHELL element 
with node coordinate frames and degrees of 

freedom. 

Figure 15. Coordinate frame of BEAM element 
with node coordinate frames and degrees of 

freedom 
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Figure 16. A triangular element(SHELL) on a 2-
manifold carrying a BEAM element of a 1-

manifold. Initial conditions 
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Figure 17. Deformed  triangular elements SHELL 
and BEAM by enforcing position and orientation 

constraints on nodes. 

Figure 16 shows the initial disposition of a 2D mesh triangular element on which a 1D 
element is resting. The enforcement of unity between the plate and the beam is done not 
through node coincidence, but through additional kinematic constraints to be satisfied 
(see [Cook.1989]). These constraints (in their simplest form) are (see [Ruiz.1996] and 
Figure 17): 
(i)  f( ) is the deformation of the initial triangle in its final shape: 
   fff O)O(f;O)O(f;O)O(f 332211 ===  
(ii) The final Coordinate System [xcf , ycf  , zcf  , Ocf] of the beam node must rest on 

the deformed triangular element Pf(u,v):  )v,u(POc ff ∈  
(iii) The Zcf  vector (in the deformed configuration) of the beam must be normal to 

the deformed surface at the Ocf point:     
 fff Zc)Oc(P =∇  

(iv) The relative position of the beam node within the triangle must be maintained at 
the final position:     fc Oc)O(f =  

(v) The strength of the beam is related to its deformations and force and torque 
interpolated at the node points: 

   
[ ] [ ]
[ ] [ ])O,z,y,x,O,z,y,x(.K)O(

)O,z,y,x,O,z,y,x(.K)O(F

cfcfcfcfccccc

cfcfcfcfccccLfc

Θτ ΔΤ

Δ

=

=
 

Because the mathematical statement of the Finite Elements, it is usually not ensured that 
the curve representing the deformed beam rests on the deformed patch Pf(u,v). Only at 
the checkpoints (the node Oc ) is this required. The actual shape of the deformed 
SHELL element and the BEAM one is to be defined by the basis functions of the 
analysis, and, although for display purposes the elements look like triangles in the 
deformed situation, this may not be the case (see [Braess.1997]). The mentioned 
constraints (and the structural ones), are added to the numerical problem to solve.   

4. Results 
By taking advantage of the compactness of 1-manifold and 2-manifold models, possibly 
combined as discussed in previous sections, larger models may be analyzed. Here we 
present the results of the modeling and analysis of the Plate+Stiffeners model (see 
Figure 18 and Figure 19). The reader may observe that in effect, the constrained degrees 
of freedom convey to the model the presence of the stiffeners, therefore achieving a 
more realistic analysis as compared with Figure 10 to Figure 13.  



Figure 18. Plate plus Stiffeners model using 
Bonding of Degrees of Freedom. Deformation 

(scale 298.3). 

Figure 19. Plate plus Stiffeners model using 
Bonding of Degrees of Freedom. Von Misses 

stress. 

In similar way, by using 2-manifold elements the ship hull was modeled. The CAD 
stage of the geometric modeling was done by using at different times both, facetted and 
NURBS models. In the first case, a Piecewise Linear (PL) continuous shell is achieved, 
formed by flat facets, which may be used for additional meshing or used as they come. 
In the other case, the facetting is preformed on a NURB parametric surface set. In either 
case, no solid elements where used. The modeling is partial in the sense that no 
stiffening coming from the super- structure was considered yet. A dynamic analysis was 
conducted in order to establish the most important vibration modes of the ship hull are, 
as it crosses a wave, and most of the hull is in the air, with no support.  

 
Figure 20. Visualization of Ship Hull SHELL 

elements. Facetting performed at the CAD 
software. STL format. 

 
Figure 21. VRML visualization of Ship hull for 

normal vector monitoring and correction. 

Figure 22 shows the 5 largest vibration modes determined. The analysis was performed 
assuming that the stern of the ship is fixed in cantilever conditions. Although this is not 
exactly the situation in service conditions, it served as display scenario for the present 
discussion. 

 



   

 

  
Figure 22. First 5 modes of vibration for Ship hull model. 

5. Conclusions  
The results for the plate - stiffeners in Figure 18 and Figure 19 and may be positively 
compared to those in Figure 10 and Figure 11 in which the effect of the stiffeners is 
overstated. In the same manner, it is better as the one in Figure 12 and Figure 13, where 
the stiffening basically does not exist.  As said before, modeling plate and stiffeners by 
allowing only elements of the same dimensionality leads, along with limitations of the 
software used, to wrong results.  
On the other hand, it must be understood that mixing manifolds of different 
dimensionality makes no sense in the context of geometric modeling, and whatever 
usage made of this mixture must lead to incorrect outcomes. However, at the level of 
practice in engineering analysis, additional kinematic and structural conditions are used 
to relate the differing dimensionality manifolds at the level of numerical solutions, 
while keeping them in different spaces at the level of geometric modeling. 
The usage of kinematic and structural conditions its itself an approximation, which 
needs to be exercised with care. For example, the model examined does not enforce the 
permanence of the 1-manifold (beam) on the 2-manifold (shell) except for a finite 
number of points (the nodes on the beam). In other neighborhoods the numerical 
analysis shows a separation and / or invasion of one in the other. Finally, it should be 
kept in mind that, since a physical beam has area and inertia, in reality its center of 
gravity is removed from the plate it rests on. Therefore, the abstraction of embedding 
the 1-manifold in the 2-manifold is only a graphic user interface approximation of the 
problem. It is different from the problem stated at the equation level, which is 
considered the correct one for the numerical precision and assumptions applied. 
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