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ABSTRACT 

Geometric Reasoning ability is central to many applications 
in CAD / CAM / CAPP environments. An increasing demand 
exists for Geometric Reasoning systems which evaluate the 
feasibility of virtual scenes specified by geometric relations. 
Thus, the Geometric Constraint Satisfaction or Scene 
Feasibility (GCS/SF) problem consists of a basic scenario 
containing geometric entities, whose context is used to propose 
constraining relations among still undefined entities. If the 
constraint specification is consistent, the answer of the 
problem is one of finitely or infinitely many solution scenarios 
satisfying the prescribed constraints. Otherwise, a diagnostic 
of inconsistency is expected. The three main approaches used 
for this problem are numerical, procedural or operational and 
mathematical. Numerical and procedural approaches answer 
only part of the problem, and are not complete in the sense that 
a failure to provide an answer does not preclude the existence 
of one. The mathematical approach previously presented by 
the authors describes the problem using a set of polynomial 
equations. The common roots to this set of polynomials 
characterizes the solution space for such a problem. That work 
presents the use of Grobner basis techniques for verifying the 
consistency of the constraints. It also integrates subgroups of 
the Special Euclidean Group of Displacements SE(3) in the 
problem formulation to exploit the structure implied by 
geometric relations. Although theoretically sound, these 
techniques require large amounts of computing resources. This 
work proposes  Divide-and-Conquer techniques applied to 
local GCS/SF subproblems to identify strongly constrained 
clusters of geometric entities. The identification and 
preprocessing of these clusters generally reduces the effort 
required in solving the overall problem. Cluster identification 
can be related to identifying short cycles in the Spatial 
Constraint graph for the GCS/SF problem. Their preprocessing 

uses the aforementioned Algebraic Geometry and Group 
theoretical techniques on the local GCS/SF problems that 
correspond to these cycles. Besides improving the efficiency 
of the solution approach, the Divide-and-Conquer techniques 
capture the physical essence of the problem. This is illustrated 
by applying the discussed techniques to the analysis of the 
degrees of freedom of mechanisms. 
 
 
1. INTRODUCTION 

In diverse problems in CAD / CAM / CAPP a set of 
geometric objects is presented, and a set of geometric relations 
between them is proposed. The goal is to obtain instances or 
positions of the objects which respect the proposed relations. 
In a more formal way, the  Geometric Constraint Satisfaction 
or Scene Feasibility (GCS/SF)  problem can be stated as 
follows: Let a World W be, a closed, homogeneous subset of 
E3, with a set of partially or totally defined geometric entities 
S={e1,..en} which are closed, connected subsets of W. A set of 
spatial relations, R={Ri,j,k} is defined/specified over pairs of 
entities, where Ri,j,k is the kth relation between entities i and j. 
The goal is to obtain either instances of every entity ei in S, 
consistent with all specified relations in R, or a diagnostic of  
inconsistency in the set of specified relations. 

The fact that GCS/SF underlies a number of problems in 
CAM / CAM / CAPP areas motivates this work. In  fixturing 
the holding of a workpiece during a manufacturing process is 
an assessment of the feasibility/consistency of a number of 
contact relationships between two bodies. The verification of 
deterministic positioning (Asada and By, 1985) of workpiece 
in the fixture is an analysis of the degrees of freedom of the set 
of contact constraints. In  assembly planning the problem of 
feasibility of an assembly implies a study of the possible 
relative positions and motion between its components. In  
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constraint-based design geometrical relations specified 
between entities can be viewed as one subset of the constraint 
set. Verification of the geometrical feasibility of the design is a 
GCS/SF problem. Modifications to dimensions or positions of 
components in the design must be compatible with the 
relations specified between them. Conversely, modification of 
these relations must be accompanied by a verification of their 
consistency, given the dimensions and positions of the existing 
objects. In  tolerancing and dimensioning, tolerance relations 
are essentially geometric constraints. Their satisfaction implies 
issues such as inconsistent and redundant dimensioning, which 
are intrinsically scene feasibility problems. From these 
examples, it is evident that a strong theoretical and practical 
background in satisfaction of geometric constraints is crucial 
in CAD / CAM / CAPP applications. 

Topology and  Geometry are two interdependent aspects of 
the GCS/SF problem, though they have often been treated 
independently. Topology deals exclusively with the 
connectivity and nature of the spatial relations between 
entities. Geometry refers to the distances and directions that 
parameterize these relationships. Topologically, this work will 
address  contact constraints. As is demonstrated in (Ruiz and 
Ferreira, 1994) contact constraints can be expressed as 
algebraic equalities. In contrast, other types of constraints, for 
example the  non-invasiveness between solids, require the use 
of inequalities. Geometrically, this work is restricted to zero 
curvature (points, straight lines and planes) proper subsets of 
E3. 
 
 
1.1 Literature Survey 

Solving the GCS/SF problem implies the ability to: 
1. Instance entities (or produce configurations) which satisfy 

the given constraints. 
2. Identify a redundant constraint.  
3. Determine an inconsistent set of constraints. 
4. Determine the degrees of freedom between two entities.  

In addition to the above capabilities, it is necessary to have 
reduced computational effort and a clear relation between 
variables used in the mathematical formulation of the GCS/SF 
problem and physical degrees of freedom of the entities 
involved. The GCS/SF problem has been be addressed in 
various forms, often indirectly, using: (i) numerical methods; 
(ii) procedural or operational approaches; and (iii) 
mathematical formalization. 

Numerical techniques (Ambler and Popplestone, 1975; 
Celaya and Torras, 1990; Rocheleau and Lee, 1987) 
essentially  sample points in the solution space of the GCS/SF 
problem. They produce a particular answer (a set of fully 
instanced entities) representing a single configuration of the 
scene, irrespective of the multiplicity or dimension of the 
solution space. They only provide an incomplete answer to 
question 1. We emphasize the incomplete nature of such an 
approach because failure of the numerical method to produce 
an answer does not imply an empty solution space 
(inconsistent set of relations in the problem) as it could result 
from a failure of convergence of the numerical procedure. 
Numerical techniques, although required for determining 

particular configurations, do not address the questions 2, 3, and 
4. 

Procedural or operational techniques (Fu and DePennington, 
1994; Kramer, 1992; Turner et al, 1992) apply intuitive 
algorithms to keep an account of the degrees of freedom 
present in the scene in the face of added constraints. Kramer 
(Kramer, 1992) attacks the problem of Geometric Constraint 
Satisfaction using an algorithmic approach called  degree of 
freedom analysis. This work concentrates on the area of 
kinematic analysis of mechanisms. This procedural technique 
sequentially satisfies the imposed constraints, placing the 
emphasis on the degrees of freedom of the entities. They are 
classified into  rotational and  translational, and an inventory 
of degrees of freedom is kept for each entity in the scene. This 
inventory is updated whenever a new constraint is added to the 
system. Although this work partially answers questions 1-4; its 
limitations are: (i) in many situations the separation between 
rotational and translational degrees of freedom is not possible; 
(ii) the approach encounters a large number of exceptions and 
attempts to deal with them on a case-by-case basis; and (iii) 
template solutions obtained on the basis of the  topology of the 
constraint network cannot be re-applied to identical constraint 
networks under different  geometrical conditions. This fact, 
extensively documented in (Angeles, 1988; Herve, 1978; 
Hoffmann, 1989; Ruiz and Ferreira, 1994; Turner et al, 1992), 
is due to the fact that the  existence of solution spaces for the 
constraint equations depends upon the value of the parameters 
of the problem, even under identical constraint structures.  

Although numerical and procedural techniques have the 
advantages of simplicity and computing efficiency, their lack 
of completeness is a serious obstacle in their applicability 
(especially in automated analysis environments). It is opinion 
of the authors that more work is needed on the mathematical 
formalization and solution of the GCS/SF problem before 
numerical or procedural techniques can be effectively used. 
The following paragraphs address a review of research efforts 
in this direction. 

Questions 2-4 have not been satisfactorily answered in a 
systematic manner to the present because the dimension of the 
solution space for the GCS/SF problem is a function of both 
topological and geometrical conditions. In other words, 
manipulation of the topological part of the GCS/SF problem is 
not sufficient for determining the topology (degrees of 
freedom) of the solution. 

In current literature, the GCS/SF problem has been 
approached from the areas of group theory (Herve, 1978) and 
kinematics and mechanisms (Angeles, 1982; Angeles, 1988). 
A joint in a rigid bar mechanism is, by definition, a constraint. 
Therefore, historically, the study of mechanism analysis 
precedes constraint satisfaction problems. This multiplicity of 
disciplines studying the same area is manifested in the fact that 
the terms  (trivial) constraint, joint and  group are used 
interchangeably in the discussion. 

Investigators (Ambler and Popplestone, 1975; Popplestone 
et al, 1980) introduced the necessary formalization for the 
GCS/SF problem in the form of equations of unknown 
positioning matrices. They proposed re-writing rules as a 
solution approach to the resulting system of equations. Since it 
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is often the case that there is no closed form solution for the 
GCS/SF problem, re-writing rules have limited success. They 
guarantee a complete solution only for trivial constraint chains, 
discussed below. Popplestone (Popplestone, 1984; Popplestone 
et al, 1990) has explored the mathematical formalization of 
situations involving symmetries such as arrays, hexagonal 
pieces, mirror arrangements, etc. Finite groups are particularly 
appealing in the statement of these problems. 

In the context of kinematic analysis, Angeles (Angeles, 
1982; Angeles, 1988) expanded on Herve's formalization of 
kinematic joints in terms of the subgroups of the SE(3) Group. 
Angeles proposed an algorithm for mobility analysis of 
kinematic chains whose degrees of freedom can be solely 
determined by the topology of the participant joints. These 
chains are classified into  trivial and  exceptional (Angeles, 
1982; Angeles, 1988). The trivial chain is constituted by 
sequences of joints (subgroups of SE(3)) whose composition is 
another subgroup of SE(3). The exceptional chains are not, but 
can be reduced to, trivial ones. The method is based on 
application of re-writing rules from Herve's look-up tables 
(Herve, 1978). They predict the topological structure of the 
composition and intersection of subgroups. The method is 
limited in the following aspects: (i) re-writing rules are based 
only on the type of joints (topology) of the chain. Therefore 
they ignore a variety of chains (called  paradoxical), in which 
the topology aspect is insufficient to predict their behavior; 
and (ii) they do not allow the so called  complex constraint 
networks, in which an entity may have more than two 
constraining relations. In addressing paradoxical chains, 
Angeles proposes the Jacobian method, which has the 
advantage of including topological and geometrical 
information. With this integration paradoxical and complex 
constraint systems can be analyzed. Based on Herve's 
formalization, the case of trivial constraints has been studied 
(Thomas and Torras, 1989; Thomas, 1991; Celaya and Torras, 
1990, 1994) in the context of topological reduction of 
constraint networks. This reduction may be achieved by the 
application of re-write rules also used by Ambler (Ambler, 
1975) or the reduction tables by Herve (Herve, 1978). 
Limitations of this work are the topology-only treatment, and 
the type of constraints (trivial) that it considers. Its 
contributions are (i) the methodology proposed to state the 
GCS/SF problem in terms of the SE(3) group in the 
applications of assembly planning; and (ii) the separation of 
geometry and topology in the formulation of the problem. 

Ruiz & Ferreira (Ruiz and Ferreira, 1994; Ruiz, 1995) 
formulated the GCS/SF problem as one of determining the 
solution space of a set of polynomials. Beyond the elementary 
goal of solving a set of polynomials for common roots, 
Grobner Bases were used to characterize the algebraic set of a 
polynomial ideal and the properties of Grobner Bases (Kapur 
and Lakshman, 1992) were used as a theoretical framework to 
respond to questions about consistency, ambiguity and 
dimension of the solution space. The method allowed the 
integration of geometric and topological reasoning. The high 
computational cost of Buchberger's algorithm (Buchberger, 
1989; Hoffmann, 1989) for the Grobner Basis forced the use of 
a more efficient set of variables, able to express the prescribed 

constraints with a minimum amount of redundancy, and with a 
strong physical meaning. Using the group theoretic 
formulation of Herve for the formulation of the problem and 
Grobner Basis techniques for its solution, Ruiz & Ferreira 
were able to integrate individual advantages of Algebraic 
Geometry and Group Theory, therefore reducing the 
computational effort (Ruiz and Ferreira, 1994; Ruiz, 1995). 
However, to solve larger problems, increased computational 
efficiency is required to make the theoretical completeness of 
the methods useful from the practical point of view. Therefore, 
the issue of lowering computational expenses is addressed in 
this investigation. As one moves to more complex scenarios, 
the structure of the problem plays a larger role in the 
computational costs of the solution. To exploit the problem 
structure this investigation uses a Divide-and-Conquer 
paradigm for solving complex problems. First, the problem of 
identifying well-constrained sets of "clusters" of entities as 
subproblems is addressed. Then, the aggregation of the 
solutions to these subproblems into the overall solution is 
attempted. This paper therefore represents an extension of the 
work in (Ruiz and Ferreira, 1994; Ruiz, 1995).  

This paper is organized as follows: Section 2 explores 
previous work in which Algebraic Geometry and Group 
Theory complement each other to make the solution to 
GCS/SF a theoretically sound and physically meaningful 
procedure. Section 3 discusses the Spatial Constraint (SC) 
graph as a means of expressing the GCS/SF problem. It also 
explains how the partitioning of the SC graph relates to 
physical situations. Section 4 establishes the applicability of 
graph theory to the solution of the GCS/SF problem. Section 5 
presents a case study in Design of Mechanisms as a GCS/SF 
problem. It applies the different techniques proposed and 
compares their performances. Section 6 offers conclusions 
about this work and draws lines for future research. Appendix 
A presents the detailed Grobner Basis results obtained in the 
examples. 
 
 
2. BACKGROUND 

This section briefly reviews material on Algebraic 
Geometry (Grobner Basis) and Group Theory which have 
important consequences on the statement and solution of the 
GCS/SF problem. For standard properties or notation see 
(Herve, 1978; Hoffmann 1989; Kapur and Lakshman, 1992; 
Ruiz and Ferreira, 1994; Ruiz, 1995; Thomas, 1991). 
 
 
2.1 Algebraic Geometry and the GCS/SF Problem 

The GCS/SF problem takes place in a world W, with a set of 
relations R. If a set of entities S={e1,..,en} satisfies the 
constraints, it is said that  S is feasible for W and R , and this 
fact is written as S=feasible(W,R). If the polynomial form of 
the problem is F = {f1,f2,..,fn} with fi polynomials in variables 
x1,x2,...,xn, it is said that F=poly_form(W,R). Since S is a 
solution for F, it is denoted as S=solution(F). 

Given that F=poly_form(W,R) and S=feasible(W,R), F has 
an associated ideal I〈 F 〉. For any polynomial set F, the 
Grobner Basis GB(F) is an alternative set, which generates the 
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same ideal I〈 F 〉, but presents advantages in characterizing its 
solution space. For the purposes of this paper, the calculation 
of the Grobner Basis of a set of polynomials F can be regarded 
as a black box procedure whose result, GB(F), has several 
important properties. The properties allow to draw the 
following propositions:  
1. S=solution(F) iff S=solution(GB(F)). This is a consequence 

of the fact that F and GB(F) span the same polynomial 
ideal. In the context of the GCS/SF problem, this implies 
that GB(F) and F describe the same scene, although GB(F) 
presents properties useful in the solution process.  

2. 1 ∈ GB(F) → S=solution(F) = φ . If the field is 
algebraically closed, finding "1" or a constant polynomial in 
GB(F) implies the equation "0=1" leading to the fact that F 
has no solution in that field. However, the converse 
proposition has to be carefully used: If 1∉ GB(F), a solution 
exists, although it might be complex. Therefore, an 
additional check to ensure a  real solution is needed. 

3. If I〈 F 〉 is a Zero-dimensional ideal, then the set F (and 
GB(F)) has a finite number of solutions. Therefore 
S=feasible(W,R) has a finite number of configurations. The 
zero-dimensionality of I can be assessed: A variable x is free 
if it does not appear as head(p) for any polynomial p ∈ 
GB(F) (p=xd + tail(p),    d ∈ N). A zero-dimensional ideal 
I〈 F 〉 has no free variables in its polynomial basis, GB(F).  

4. Let a new constraint be represented by polynomial f. f is 
redundant to F   ↔   (1 ∈ GB(F ∪ {y.f-1})) for a new 
variable y.  This proposition determines whether an 
additional constraint is redundant by examining if the 
satisfaction of the new constraint f is unavoidable when the 
initial set of constraints is satisfied. 

5. GB(F) (based on a lexicographic order) is a triangular set in 
the sense that GB(F) contains polynomials only in x1, some 
others only in x1,x2, and so on, making the numerical 
solution a process similar to triangular elimination. 
These properties and propositions provide a theoretical 

framework for the solution of the GCS/SF problem. It can be 
summarized in the following macro-algorithm (Ruiz, 1994), in 
which the invariant clause for the loop is the existence of a set 
of non-redundant, consistent and multi-dimensional set of 
(constraint-generated) polynomials.In the event of the addition 
of new constraints to the scene (line 3), the algorithm converts 
them into polynomial(s) (line 6), and tests their redundancy by 
using Property 4 (line 10), consistency by using Property 2 
(line 7) and zero-dimensionality of the accumulated set of 
constraint-based polynomials by Property 3 (line 15). If the 
new constraint is redundant, it is ignored (line 11). In the other 
two cases the invariant becomes false and the loop breaks. If 
the ideal has become zero-dimensional a triangular Grobner 
Basis under some stated lexicographic order is extracted and 
solved by using Property 5 (line 24). Property 1 is the 
underlying basis of the algorithm, since it establishes that the 
GB(F) faithfully represents F, with the same roots and ideal 
set. 

In (Ruiz and Ferreira, 1994) the theoretical completeness of 
this formulation was demonstrated. However, two problems 
were detected in the initial approaches to the problem: (i) the 
set of variables used did not have a direct relation with the 
degrees of freedom of the entities, therefore impeding the 
interpretation of the resulting Grobner Bases in terms of scene 
configuration; and (ii) the large computational complexity 
(Hoffmann, 1989) of Grobner Basis was compounded by the 
large number of variables used in the formulations. In order to 
address the issue of computational expenses and the need for a 
geometrically meaningful statement for GCS/SF, a Group-
theoretical approach was adapted from previous investigations. 
Next section addresses the results of such efforts. 
 
 
2.2 Group-Theoretic Formulation for the GCS/SF 
Problem 

This section examines the modeling of the GCS/SF problem 
by using the canonical form of conjugation classes developed 
by Herve (Herve, 1978) and the application of his work by 
several authors (Angeles, 1988; Ruiz and Ferreira 1994; 
Thomas, 1991). The set of Euclidean displacements in 3D, 
SE(3), is a (non commutative) group (Ledermann, 1953; 
Ledermann, 1973) with the composition operation (o). SE(3) 
presents subsets which are groups themselves, and which 
express certain common classes of displacements. They are 
called  subgroups. For example, the subgroup of the rotations 
about a  given axis u in the space, Ru, is a subset of SE(3), and 
a group itself. Given A, B, subgroups of the Euclidean group 
SE(3), A is a conjugate of B ( A ~ B ) iff ∃ T ∈ SE(3) such that 

 
0 {Pre: W a fixed scenario } 
1 F = {}  
2 GBt = { } 
3 do new relation Ri  
4{Inv: F is consistent, non-redundant, non-zero-dimensional }  
5  R = R ∪ { Ri }  
6  f = poly_form( W, Ri )  
7  if (1 ∈ GBt( F ∪ {f}) ) then  
8        stop ( system is inconsistent )  
9  else  
10    if (f ∈ Radical(F)) then  
11     skip ( f is redundant )  
12   else  
13     F = F ∪ { f } 
14     GBt=GrobnerBasis(F,<t)  
15   if ( ZeroDimension(GBt) ) then  
16      break loop  
17     else  
18      skip (next relation-constraint)  
19     fi  
20   fi  
21  fi  
22 od  
23 GBl = GrobnerBasis(F, <l)  
24   S = triangular_solution( GBl )  
25 {Post:R = {Ri} a set of relations; S=feasible(W,R) }  
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A = T-1 B T. The relation A ~ B is an equivalence relation. It is 
symmetric, reflexive and transitive. It defines equivalence 
classes called  conjugation classes. Conjugation classes have a 
canonical subgroup which represents any other subgroup in the 
class by applying a transformation T for a change of basis. A 
list of the conjugation classes for the subgroups of SE(3) and 
their canonical representation (Herve, 1978), as well as their 
degrees of freedom is shown in Table 1. In this Table, twix(θ) 
means a rotation about the X axis by θ. XTOY means a rotation 
by 900 about the Z axis. trans(x,y,z) indicates a general spatial 
translation. The concept of equivalence (conjugation) allows 
naming certain displacements in SE(3) as "linear translations", 
"rotations", "planar slidings", etc, therefore making the link 
between subgroups of SE(3) and kinematic  constraints. For 
example, "rotations" are all transformations of the form: 

 
Ru(θ) = B.ℜu(θ).B-1=B.twix(θ).B-1 

 
with B ∈ SE(3) and ℜu(θ)=twix(θ) being the canonical 
representation of the conjugation class of rotations. The 
displacement B represents the  geometric part of a particular 
constraint, while the canonical part contains the  topological 
information; the number and type of degrees of freedom. 

A constraint between two entities by definition maintains 
invariant certain relations between the constrained entities. For 

example (see Table 1), a  planar sliding, Gp, allows 2 
translational and 1 rotational degree of freedom, while still 
ensuring planar contact between the two parts. A  rotational 
constraint, Ru, preserves axial and radial relative distances, 
allowing 1 angular degree of freedom between the constrained 
entities. 

Using this methodology, the contact constraints addressed in 
this investigation are specified as shown in Table 2. For 
example, a P-ON-PLN relation confines a point to be on a 
plane, therefore configuring a 5-dof constraint. It includes 2 
dof related to the position of the point on the plane (Tp), and 3 
dof, corresponding to the orientation (S) of the frame attached 
to the point (points are in the origin of their attached frame; 
lines coincide with the X axis of their frame and planes 
coincide with the Y-Z plane of their attached frame). These 
(matrix) equations allow for the construction of the polynomial 
form of the GCS/SF problem. The methodology for this 
modeling is discussed next.  

The GCS/SF problem is stated as a series of constraints Ri 
relating Fi1 with Fi2 as shown in Figure 1 (corresponding to a 
two body system), where Fij is the ith feature of body Bj. The 
Ri() constraints are in general composed by translations T() and 
rotations Rot(), as dictated by Tables 1 and 2. Body B1 
contains two features, whose frames are F11 and F21. The 
corresponding features in body B2 are F12 and F22. The goal is 
to find a final position of B1 (assuming B2 stationary), such 
that F11 relates to F12 and F21 relates to F22 satisfying the 
invariance dictated by R1() and R2() respectively. The final 
position of B1 must be such that feature frames F11 and F12 
differ exactly in the orientation and position changes allowed 
by constraint R1(). The same should be true for F21 and F22 
with regard to R2(). The equations expressing the facts above 
are:  

 
  B1 . F11 . R1( ) = B2 . F12   ;    B1 . F21 . R2( ) = B2 . F22 
 (1)  

TABLE 1 CONJUGATION CLASSES AND THEIR 
CANONICAL FORMS 

dof Symbol Conjugation Class Canonical Subgroup 
1 Ru Rotations about  

axis u  
{twix(θ)} 

1 Tu Translations along 
axis u  

{trans(x,0,0)} 

1 Hu,p Screw movement 
along axis u, with 

pitch p  

{trans(x,0,0).twix(px)} 

2 Cu Cylindrical 
movement along  

axis u 

{trans(x,0,0).twix(θ)} 

2 Tp Planar translation 
parallel to plane P 

{trans(0,y,z)} 

3 Gp planar sliding along 
plane P 

{trans(0,y,z).twix(θ)} 

3 So  Spherical rotation 
about center o 

{twix(ψ).XTOY.twix(φ). 
XTOY.twix(θ)} 

3 T  3D translation  {trans(x,y,z)} 
3 Yv,p  Translating Screw 

axis v, pitch p 
{trans(x,y,z).twix(px)} 

4 Xv  3D translation 
followed by rotation 

about v  

{trans(x,y,z).twix(θ)} 

 
 

TABLE 2. ENTITY RELATIONS IN THE FORM OF 
KINEMATIC JOINTS 

macro joint chain kinematic joints in 
chain 

dof 

P-ON-P S spherical   3  
P-ON-LN Tv 

o So linear translation, 
spherical 

 4  

P-ON-PLN TP o So planar translation, 
spherical 

 5  

LN-ON-LN C cylindrical  2 
LN-ON-PLN TP o Rv 

o Rw planar translation, 
revolute 

 4  

PLN-ON-PLN TP o Rv planar translation, 
revolute 

 3  
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The above procedure can be generalized to the case in 
which there are several relations (constraints) Ri() specified 
among bodies. Once the constraint equations are obtained by 
this procedure, the construction of the Grobner Basis and its 
interpretation are carried out in the manner described by the 
constraint management algorithm discussed in last section. 
This formulation of the problem produced significant savings 
in computational effort when compared to a formulation 
obtained by trying to directly obtain a transformation for each 
body in a world coordinate frame (see Ruiz and Ferreira, 1994) 
for details). Further information on the group theoretic 
formulation of such problems appear in (Herve, 1978; Ruiz 
and Ferreira, 1994; Thomas and Torras, 1989). 
 
 
3. PARTITIONING OF THE GCS/SF PROBLEM 

 We have, thus far, outlined a problem formulation based on 
the underlying group structure of displacements and a general 
solution procedure based on Grobner Basis construction. In 
this section, we present a scheme that attempts to exploit 
structures that might be present in particular instances of a 
GCS/SF problem by a Divide-and-Conquer Technique 
(Thomas, 1995; Thomas, 1991). The discussion will be 
illustrated with an example of a mechanisms; the Cartesian, or 
X-Y table. The mechanism is expressed in the form of a set of 
bodies with constraints between them. The goal of the exercise 
is to determine the degrees of freedom of the design. Other 

examples of GCS / SF in the area of Mechanism Design and 
Analysis can be found in (Ruiz, 1995). 

The Cartesian table (see Figure 2) is intended to produce 
two translational degrees of freedom, thereby producing a 
planar translation between bodies B4 and B5. The constraints in 
the problem are shown in Table 3. The features Fij involved in 
each Ck appear in column 3, while the sequences of 
compositions of subgroups of SE(3) for each constraint Ck 
appear in the column 4.  Notice that this example includes non-
trivial constraints such as C1, C2, C3 and C4. 

With the specified constraints, the bodies B1, B2 and B3 have 
zero degrees of freedom relative to each other. This fact, 
together with constraints C1, C2, C3 and C4, forces the planes 
F15 and F14 to remain perpendicular to each other. An 
additional Gp (planar sliding) constraint forces planes F25 and 
F24 to remain in contact, therefore producing the desired X-Y 
movement. 

The SC graph, presented in Figure 3, conveys the 
topological and geometrical information of the GCS/SF 
problem. This representation allows: (i) a very clear 
formulation of the problem; (ii) a systematic way, suitable for 
computer generation of the equations governing the degrees of 
freedom of the entities involved and; most importantly (iii) the 
identification of subproblems which help in the solution of the 
GCS/SF problem, by allowing the application of preprocessing 
techniques. 

Conventions: Since entities are represented by frames, the 
terms  entity and  frame are equivalent. In the SC graph the 
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nodes are  entity frames (Bj and Fij). The arc between two 
nodes represents the displacement that relate the corresponding 
entity frames. There are three types of nodes; nodes Bj, which 
represent the origin frame of a body in the World Coordinate 
System, feature nodes Fij, which represent the feature i in body 
Bj and  body nodes that include the origin frame of the body 
and its features. Conceptually, there are two types of arcs:  
positioning and  constraint arcs. Positioning arcs represent  
known relative positions of features within bodies. They 
always join an entity Bi and one of its features Fji. Constraint 
arcs always connects two feature nodes, which may be joined 
by more than one arc to admit more than one constraint 
between them. The constraint arcs are represented by Ci(xj, 
θm,..), with the degrees of freedom xj, θm... sometimes being 
omitted. To simplify the notation, positioning arcs are named 
Fji, as the features themselves, and the body nodes are named 
as their origin frame, Bj.  

 
3.1 Partitioning of the Spatial Constraint Graph 

Regardless of the methodology used for solving the 
polynomial form of the GCS/SF problem, the complete set of 
constraints has to be considered in the solution process. At the 
same time, given the costly symbolic processing required in 
the production of a Grobner Basis, redundancy in the 
constraint-based polynomial set must be avoided. Observing 
the SC graph of Figure 3, it is clear that each cycle in the 
graph produces a constraint equation for the GCS/SF problem. 
For example, the cycle involving constraints C5 and C8 leads 
to the following equation:  
  F23.C8.F21

-1 = F13.C5.F11
-1 (2) 

 
The cycle-based Equation 2 represents the connectivity of a 

subgraph of the SC graph. Therefore, it is relevant to 
determine a set of small cycles while still capturing the 
complete connectivity of the SC graph. A  basic set (also 
called  fundamental) of cycles in a graph presents such 
properties; every other cycle in the graph can be expressed as 
the  ring sum (Johnson and Johnson, 1972; Deo, 1974; Swamy 
and Thulasiraman, 1981) of cycles of this set. At the same 
time, no cycle of the basic set can be expressed in terms of the 

other cycles of such a set. These two conditions render a 
complete and non-redundant coverage of the SC graph. Hence, 
the equations generated by a basic set of cycles of the SC 
graph are a set of equations that completely and non-
redundantly express the topology of the GCS/SF problem.  

Well known results (Johnson and Johnson, 1972; Deo, 1974; 
Swamy and Thulasiraman, 1981) in graph theory indicate that 
(i) the set of basic cycles is not unique, and (ii) any such a set 
contains exactly |E|-|V|+1 cycles. Since the set is not unique, 
it is possible to generate several alternative sets of equations or 
formulations for the GCS/SF problem. This investigation 
proposes a partition of the SC graph into cycles that represent 
easily solvable GCS/SF subproblems. This partition represents 
the Divide stage of the Divide-and-Conquer strategy presented.  

The GCS/SF problem decomposition requires the generation 
of subproblems which are highly constrained since they are 
associated with ideals of low dimensionality (Ruiz and 
Ferreira, 1994; Kapur, 1992). Two remarks are relevant at this 
point: (i) low dimensional ideals are less expensive to calculate 
since the time complexity of Buchberger's algorithm is doubly 
exponential in the dimension of the ideal represented by the 
polynomials in the base (Becker, 1993); and (ii) in some 
domains of application, such as assembly planning, low 
dimensional ideals are associated to self contained 
subassemblies. Therefore such a partitioning of the GCS/SF 
problem presents direct applications in CAD / CAM 
environments. Since high dimensional ideals are usually 
related to long compositions of constraints, and to expensive 
computations, a desirable goal is to identify small cycles in the 

TABLE 3. JOINT LIST OF THE CARTESIAN TABLE 
Constraint Constraint 

Type 
Elements Canonical 

Representation 
C1 LN-PLN F11,,F14 Ru(θ1)oTp(y1,z1)oRu(φ1) 
C2 LN-PLN F21,,F14 Ru(θ2)oTp(y2,z2)oRu(φ2) 
C3 LN-PLN F12,,F15 Ru(θ3)oTp(y3,z3)oRu(φ3) 
C4 LN-PLN F22,,F15 Ru(θ4)oTp(y4,z4)oRu(φ4) 
C5 LN-LN F13,,F11 Cu(θ5,x5) 
C6 LN-LN F13,,F12 Cu(θ6,x6) 
C7 PLN-PLN F24,,F25 Gp(θ7,y7,z7) 
C8 LN-LN F23,,F21 Cu(θ8,x8) 
C9 LN-LN F33,,F22 Cu(θ9,x9) 

 
 

F13

F23

B3

F33

Position Arc
Ck

Bj

Fij

Body Origin Frame

Freature Frame

Body

Constraint Arc

B2

F12

F22

C6

C9

C5

C8 B4

F14

F24

B5

F25

F15
C4

C3

C2

C1

C7

B1

F11

F21

 
FIGURE 3 GRAPH OF SPATIAL CONSTRAINTS FOR 

CARTESIAN TABLE 
 
 



Oscar E. Ruiz, Placid M. Ferreira    8 

SC graph, with short chains of constraints, which lead to low 
dimensional ideals and less expensive computations.  

Figure 4 illustrates several elementary graph theoretic 
concepts (Johnson and Johnson , 1972; Deo, 1974; Swamy and 
Thulasiraman, 1981) related to the SC graph of Figure 3. 
Figure 4(a) presents a simplified version of the graph, in which 
each node represents the basic body frame and its feature 
frames. The graph SC=(V,E) therefore presents |V| nodes and 
|E| arcs. Figure 4(b) shows a spanning tree for the graph. 
Figure 4(c) relates the cords (edges not in the spanning tree in 
4(b)) with the cycles shown in Figure 4(d), which presents a 
fundamental (or basic) set of cycles for the SC graph. Each 
cord produces exactly one of such cycles when added to the 
spanning tree.  

The construction of a basic set of cycles for a graph can be 
achieved by obtaining a spanning tree T and the set of 
corresponding cords (sometimes called  cotree T'). Each cord 
ci when added to T, produces one and only one cycle. Since 
exactly |E|-|V|+1 cycles are needed and there exist |E|-|V|+1 
cords, it follows that the set of cycles obtained in this way 
serves as a basis for the set of circs (and therefore cycles) of 
the graph. Obviously, the equations for the GCS/SF problem 
only need to be written for the cycles which form the basis for 
the SC graph; any other set of equations can be written as a 
linear combination of the equations for the set of basic cycles. 

The algorithms used for the decomposition of the SC graph 
are well known in graph theory, and therefore not explicitely 
included here. The first algorithm determines a spanning tree T 
from a graph G. In a spanning tree T every cord completes a 
cycle that, in the worst case, has length 2H+1, where H is the 
depth of the tree. Therefore, by using a low-depth spanning 
tree, the largest cycle length is limited. A heuristic strategy is 
used to obtain a low-depth tree (Thomas, 1995). The second 
algorithm uses a given spanning tree T and its cotree T' to 
obtain the corresponding set of basic cycles. For the SC graph 

of the Cartesian table this set contains four cycles of length 2, 
and one cycle of length 5 (see Figure 4(d)). The SC graph 
presents |V|=5 nodes (entities) and |E|=9 edges (constraints). 
Since the set of basic cycles must have |E|-|V|+1 = 5 cycles, it 
follows that, since the set is basic, it constitutes a basis for the 
set of circs (and cycles) of the graph. For this example, the 
algorithms (Thomas, 1991) partition the GCS/SF problem into 
subproblems that correspond to the following set of basic 
cycles:  

 
 SBC={{C1-C2},{C3-C4},{C6-C9},{C8-C5},{C5-C1-C7-C3-C6}}
 (3) 

 
The matrix equations describing the constraint chains for 

each cycle appear in Table 4.  
At this point, in the context of the Cartesian table example, 

a partition of the original GCS/SF problem -using a basic set 
of cycles for the SC graph- has been determined. The next 
section will use such a partition in alternative solution 
procedures for the problem. 
 
 
4. PROBLEM MODELING AND SOLUTION 
TECHNIQUES 

This section discusses the method of solution proposed for 
the GCS/SF problem. Next section applies them to the 
Cartesian table example. 
 
 
4.1 Brute Force Approach 

The initial strategy for dealing with the GCS/SF problem, 
called  Brute-Force here, implies the determination of the set 
of equations which convey all the connectivity information of 
the corresponding SC graph. This approach uses the set of 
basic cycles of the SC graph to merely state a complete and 
non redundant set of simultaneous equations. The polynomials 
contributed by all the cycles in the basic set are put together in 
a set input to a Grobner Basis algorithm (Maple and/or 
Mathematica were used for this purpose). along with 
constraints that specify relationships between the parameters 
used in the canonical representations of the contact constraints 
(for example, a rotational constraint might produce a sin and 
cosine of an angle). Although the partition of the SC graph 
plays a role in the  Divide-and-Conquer techniques, discussed 
later, it is also a requisite for the statement of the polynomial 
form of the GCS/SF problem. 

 

B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

C7 B3

B2 B5

B4B1

B3

B2 B5

B4B1

B3

B2 B5

B4B1 C1

B3

B2 B5

B4B1

C6

C5

C4

b) a spanning tree for G

B3

B2 B5

B4B1

c) cords, cycles and spanning tree for G

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

C6
C5

C9
C3

C8

C4

C1

C2

C7B3

B2 B5

B4B1

C6
C5

C9
C3

C8

C4

C1

C2

C7 B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

B3

B2 B5

B4B1

a) original graph G

C6
C5

C9
C3

C8

C4

C1

C2

C7

 
FIGURE 4. SPANNING TREE AND BASIC CYCLES 

FOR THE CONSTRAINT GRAPH OF THE CARTESIAN 
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TABLE 4. CONSTRAINT GRAPH BASIC CYCLES  
Cycle Name Cycle Equations 

C1-C2 F11.C1=F21.C2 
C3-C4 F12.C3=F22.C4 
C6-C9 F13.C6.F12

-1=F33.C9.F22
-1 

C8-C5 F23.C8.F21
-1=F13.C5.F11

-1 
C5-C1-C7-C3-C6 C5.C1.F14

-1.F24.C7=C6.C3.F15
-

1.F25 
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4.2 Divide-and-Conquer Algorithm 

The Divide-and-Conquer algorithms introduced in this 
investigation assume the existence of a fundamental set of 
basic cycles for the SC graph. For each cycle (or loop) Li (lines 
2,4) the algorithm extracts the polynomial equations and 
calculates its Grobner Basis gbi (line 5). The equations for 
each cycle have the form of Equation 2. In the algorithm they 
are denoted as equations(Li). The equations obtained in this 
way are put together into the set full_equations (line 7), whose 
Grobner Basis is finally calculated. Obviously, if any one of 
the gi sets shows any inconsistency (gbi={1}), the process 
should stop (line 9). 

The rational behind the partition technique just discussed 
lies in several facts; (i) the individual gbi are (reduced) 
Grobner Bases for the polynomials representing each basic 
cycle; therefore they have no internal redundancy; (ii) local 
inconsistencies are filtered  before the full GCS/SF problem is 
addressed; (iii) local solutions to subproblems can be found 
and used towards the solution of the full problem, and (iv) the 
gbi sets represent an already (triangularly) ordered set of 
polynomials. Although it is not within the scope of this 
investigation to examine the details of Grobner Basis 
calculation, it is possible that in later work the pre-ordering in 
the individual Grobner Bases could be exploited to speed up 
the processing of the full set. 
 
 
4.3 Incremental-Instancing Algorithm 

The Incremental-Instancing (II) method is a variant of the 
Divide-and-Conquer technique, in which variables that can be 
given a value by the characteristics of the local constraint 
scenario are instanced immediately, therefore  progressively 
reducing the size of the variable and polynomial sets. 

This algorithm maintains a set named instanced_variables 
which contains the variables that have taken a value at any 
point in the execution. Subsequently, only variables not 
contained in this set can be considered for Grobner Basis 
calculation (lines 8,9). If a Grobner Basis is successfully 

calculated for a cycle (line 9), the set of instanced variables is 
augmented by its contribution (line 10), and the general set of 
polynomials, full_equations is augmented by the  partially 
instanced version of its set of polynomials gbi (line 11). When 
the solution of the overall GCS/SF problem is finally 
attempted, only the free variables and the instanced version of 
the individual Grobner Bases gbi are used (lines 17-19). 

5. THE GCS/SF PROBLEM IN DESIGN AND 
ANALYSIS OF MECHANISMS 
 
 
5.1 Brute-Force Procedure 

The Brute-Force approach consists of the construction of a 
polynomial set which contains all the polynomials originating 
from the cycle-matrix equations in Table 4. The set is shown 
in appendix A, Equation 4, together with its lexicographical 
Grobner Basis, Equation 5. No partial or intermediate solutions 
are used in this case. 

By applying the methodology and algorithms developed 
(Ruiz and Ferreira, 1994; Thomas, 1995) and summarized in 
previous sections, the following conclusions can be drawn: (i) 
the Ideal is not zero-dimensional (because the head terms of all 
the polynomials are not pure powers of some variable and all 
the variables are not accounted for in the head terms) ; (ii) the 
table is restricted to a planar translation, Tp with two degrees 
of freedom Tp(y7,z7) -the two variables missing in the head 
terms- and (iii) the subassembly B1-B2-B3 still keeps one 
degree of freedom (z4) when all the other objects in the space 

 
procedure Divide_and_Conquer( G set of graph )  
0 {Pre: G={L1,L2,..Lk} basic cycles in Spatial Constraint 
graph} 
1 full_equations={}; 
2 do not_empty( G ) 
3 {Inv:full_equations has same roots as {L1,L2,..Li} }  
4  Li = next_cycle( G );  
5  gbi = GB( equations( Li ), <l ) ;  
6  if (gbi ≠ {1}) →  
7   full_equations = full_equations ∪ gbi;  
8  else →  
9   exit;  
10  fi  
11  G = G - { Li }; 
12 od  
13 full_GB = GB( full_equations, <l ) ;  
14 {Post: full_GB is the Grobner Basis for equations(G) }  
 

 
procedure Incremental_Instancing( G set of graph )  
0 {Pre: G={L1,L2,..Lk} basic cycles in Spatial Constraint 
graph} 
1 full_equations={}; 
2 free_variables={}; 
3 instanced_variables={}; 
4 do not_empty( G ) 
5 {Inv: full_equations has same roots as {L1,L2,..Li} }  
6  Li = next_cycle( G );  
7  Vi = variables(Li) - instanced_variables;  
8  gbi = GB( equations( Li ), Vi, <l ) ;  
9  if (gbi ≠  {1}) →  
10   instanced_variables=instanced_variables ∪ 
    instanced_vars(Vi, gbi); 
11   full_equations=full_equations ∪ 
    instanced_form(gbi,instanced_variables );  
12  else →  
13   exit;  
14  fi  
15  G = G - { Li }; 
16 od  
17 free_variables=all_variables(G)-
instanced_variables;  
18 full_equations= 
 instanced_form(full_equations,instanced_variables); 
19 full_GB = GB( full_equations, free_variables, <l ); 
20 {Post: full_GB is the Grobner Basis for equations(G) }  
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are positioned. It can move  along the line intersecting planes 
F15 and F14. Although in real machine tool design such a 
degree of freedom is unrealistic, in this example, it has the 
capability to demonstrate that the confinement of the 
subassembly B1-B2-B3 onto a plane F25  is not a necessary 
condition for the cartesian movement of the table. In more 
general terms, this result demonstrates the need for a formal 
degree of freedom analysis although the problem illustrated 
may be apparently simple. 

 
 
5.2 Divide-and-Conquer Procedure 

This section presents the results of the preprocessing 
(Divide-and-Conquer) applied to the individual cycles 
presented in Table 4. By observing the Figure 2 and 
considering the constraints in cycles C1-C2, C3-C4, C5-C8 and 
C6-C9 it is evident that the constraint intersections represented 
by these cycles are indeed reducible, and the resulting 
constraints are as shown in Table 5, where I4 is the neutral 
element in the group SE(3), and indicates a null displacement. 
Their reduction cannot be guaranteed by techniques of group 
intersection or composition because of the non-triviality of the 
constraints involved. It will be shown here that the results in 
Table 5 (column 4) can be obtained in a local preprocessing of 
the constraints by using Grobner Basis, and by the application 
of the relations, established (Ruiz and Ferreira, 1994), between 
the properties of the Grobner Basis, and the solutions for the 
GCS/SF problem. The application of the Divide-and-Conquer 
strategy to the Cartesian table problem follows (The 
lexicographic Grobner bases for each subproblem are given in 
appendix A): 
Local Preprocessing. Cycle C1-C2 

The simultaneous enforcement of the two LN-ON-PLN 
constraints C1 and C2 should produce a (trivial) constraint of 
the type Gp, planar sliding. This can be understood by realizing 
that non-colinear lines F11 and F21 of body B1 have to 
simultaneously lie on plane F14 of body B4. It is expected that 
the following procedure will confirm this intuitive conclusion. 

By using the cycle equations shown in Table 4 for cycle C1-
C2, and a lexicographic order, the triangular basis is calculated. 
It can be inferred that y2,z2,Cφ2 are free variables since they 
appear in no polynomial p as the head term, i.e., head(p). 
Consistently, the result of this preprocessing indicates that 
angular degrees of freedom θ1 and θ2 are lost. The degrees of 
freedom left represent the planar sliding Gp(φ2,y2,z2), as 
predicted in Table 5. 
Local Preprocessing. Cycle C3-C4 

From Table 4 and Figure 2 it is apparent that the cycle C3-
C4 presents a situation identical to cycle C1-C2. By using the 
cycle equations shown in Table 4 for cycle C3-C4, and a 
lexicographic order, the corresponding Grobner Basis is 
calculated. The free variables, z4, y4 and Cφ4, are left in the 
constraint Gp(z4, y4, φ4). As in the previous case, the cycle 
would not be reducible by a topology-based re-writing strategy 
for trivial constraints. 
Local Preprocessing. Cycle C5-C8 

The satisfaction of constraints C5 and C8 implies that lines 
F13 and F23 of body B3 have to be respectively placed on 
(perpendicular) lines F11 and F21 of body B1. This geometric 
condition (perpendicularity) suppresses all degrees of freedom 
of the cycle. As before, this conclusion can be extracted from 
the Grobner Basis for the polynomials corresponding to this 
cycle. In this case, no variables are left free; and effectively 
bodies B1 and B3 have their relative movement completely 
constrained. 
Local Preprocessing. Cycle C6-C9 

As in the case of the cycle C5-C8 one expects that all 
movement be restricted between bodies B3 and B2. The 
(triangular) Grobner Basis shows the zero-dimensionality of 
this ideal; therefore all the variables are instanced, and bodies 
B3 and B2 are rigidly attached. 
Local Preprocessing. Cycle C5-C1-C7-C3-C6 

Although this cycle was determined as part of the basic set 
of cycles in the SC graph, the number of constraints (5) that it 
involves makes it unattractive for calculation of its Grobner 
Basis. The reason is that its potential for high dimensionality 
makes its preprocessing very expensive. The alternative 

TABLE 5. TOPOLOGICAL BASIC CYCLE 
REDUCTIONS 

Cycle  Path 1    Path 2   Reduced 
Constraint 

Defining 
Geometry 

C1-C2 C1= 
F11-ON-

F14 

C2= 
F21-ON-F14 

Gp F14 

C3-C4 C3= 
F12-ON-

F15 

C4= 
F22-ON-F15 

Gp F15 

C5-C8 C5= 
F13-ON-

F11 

C8= 
F23-ON-F21 

I4 - 

C6-C9 C6= 
F13-ON-

F12 

C9= 
F33-ON-F22 

I4 - 

 
 

TABLE 6. STATISTICS FOR THE CT EXAMPLE.  
DIVIDE-AND-CONQUER STRATEGY 

Problem variables equations GB size time 
(secs) 

Total 
Brute 
Force 

40  73  40  107.4  

  C1-C2  12  16  9  1.8  
 C3-C4  12  16  9  2.0  
 C5-C8  6  14  6  0.6  
 C6-C9  6  14  6  1.0  
 Full 

Graph  
40  43  40  54.3  

Total 
D & C 

   59.9 
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followed was to simply include its original cycle equations in 
the calculation of the full-graph Grobner Basis, instead of their 
Grobner Basis. In such a case, the rest of the constraint 
equations lower the dimensionality of the ideal, making its 
processing feasible. 
Global Processing. Full Graph 

The (gi) Grobner Bases already calculated for the individual 
cycles { gb1-2, gb3-4, gb5-8, gb6-9 } are used towards the 
calculation of the Grobner Basis for the whole constraint 

graph, together with the original cycle equations for cycle C5-
C1-C7-C3-C6. The same variable order was used as for the 
Brute-Force approach. As expected, the Grobner Basis 
obtained is the same as in Equation 5; therefore, it is not 
presented again. 

Table 6 presents the statistics for the application of the 
Divide-and-Conquer and Brute-Force techniques. It is found 
that the Divide-and-Conquer techniques are able to lower the 
computational expense of the problem, while guaranteeing the 
correctness of the results. 

 
 

5.3 Incremental-Instancing Procedure 
According to the Incremental-Instancing algorithm 

presented in previous sections, the sequence of cycles 
considered in the execution is presented in Table 7. Cycle C1-
C2 produces an instancing of variables Cθ2, Sθ2, Sθ1 and Cθ1. 
This result confirms the fact that two rotational degrees of 
freedom are lost in this cycle. Cycle C3-C4 presents a similar 
situation for variables Sθ3, Cθ3, Sθ4 and Cθ4, and so on. Notice 
that, in general, the order in which the cycles are considered is 
significant if they share variables (line 8 of the Incremental-
Instancing algorithm). In that case, a variable instanced in a 
processed cycle would become a constant for the later stages 
of the algorithm. In this particular example the first four cycles 
considered do not have variables in common among 
themselves. Therefore they do not influence each other. The 
last cycle, C5-C1-C7-C3-C6, shares variables with the ones 
previously considered. The comparison between Tables 6 and 
7 indicates that the advantage of the Incremental-Instancing 
technique is present in the manipulation of the full set of 
equations. This is so because at that stage the set of variables 
has been reduced by the Incremental-Instancing. 

 
 

6. CONCLUSIONS 
The ability to produce answers to questions about the 

feasibility and solution structure of the GCS/SF problem is 
crucial in automated analysis and planning environments. 
Previous work by the authors has established an algebraic 
geometry approach to the problem. As would be expected, the 
cost of such determinism is the exponential computational 
effort required. This paper has presented graph-theoretic 
approaches to formulate and solve the problem using a Divide-
and-Conquer approach in the hope of exploiting special 
structure that might exist in a particular problem. This method 
(i) identifies the degrees of freedom lost in local subproblems; 
(ii) detects local geometric or topological inconsistencies and 
(iii) reduces the size of the GCS/SF problem to the degrees of 
freedom left by the local instancing processes. The results in 
Tables 6 and 7 evidence the reduced computational effort of 
these techniques when compared to the results produced by 
attempting to solve the entire problem at once. 

We contemplate the use of such an approach to model and 
solve instances of GCS/SF problems that present strongly 
(non-trivially) constrained local sub-problems, in a multi-body 
multi-constraint problem. We conclude with the following 
remarks: 

TABLE 7. STATISTICS FOR INCREMENTAL-
INSTANCING ALGORITHM 

Subgraph Instanced 
values 

# vars equations GB 
size 

time 
(secs) 

C1-C2 Cθ2→1 12 16 9 1.8 
 Sθ2→0     
 Sθ1→-1     
 Cθ1→0     

C3-C4 Sθ3→0 12 16 9 2.2 
 Cθ3→1     
 Sθ4→-1     
 Cθ4→0     

C5-C8 x5→1 6 14 6 0.7 
 x8→2     
 Sθ5→-1     
 Cθ5→0     
 Sθ8→0     
 Cθ8→1     

C6-C9 x6→-1 6 14 6 0.7 
 x9→2     
 Sθ6→1     
 Cθ6→0     
 Sθ9→0     
 Cθ9→1     

Full 
Graph 

Cφ1→0 20 65 20 10.2 

 Sφ1→1     
 Sφ2→0     
 Cφ2→1     
 Sφ3→1     
 Cφ3→0     
 Sφ4→0     
 Cφ4→1     
 Cθ7→0     
 Sθ7→-1     

Total Time     15.7 
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1. In general, the Grobner Basis, produced by lexicographic or 
total degree ordering, lends itself very well to computation 
of the set of common roots of a polynomial set. 

2. For larger systems, the  Divide-and-Conquer techniques are 
advisable, since they take advantage of the existence of 
subsystems strongly constrained internally, and weakly 
related to the external world. These subsystems correspond 
to cycles in the Spatial Constraint graph which have 
instanced some of their degrees of freedom. A directly 
related situation in Assembly Planning corresponds to the 
existence of subassemblies within a large assembly. If 
Divide-and-Conquer techniques are used, the local Grobner 
Bases are used towards the solution of the general system. 
These GBi sets are already ordered (lexicographically or by 
degree order) and free of redundancy and inconsistencies. 
Therefore there is a amount of work contributed by these 
bases towards the final solution.  

3. Incremental-Instancing presents the advantage of actually 
eliminating degrees of freedom from the variable set, 
therefore contributing to lower the computational expenses 
of the solution. The improvement by this technique acts 
during the most expensive part of the solution process (Full 
Graph processing). Therefore, it has the potential of 
significantly speeding up the computation. 

4. Although the pertinent examples are not discussed because 
limitation in space, it has been found that preprocessing 
techniques speed up the solution of large-size problems, 
while for small-sized ones the Brute-Force approach is more 
advisable. This result can be attributed to the overhead in 
setting up the different subproblems, which cannot justified 
if the full-size problem is not large enough. 

5. A partitioning of the GCS/SF problem is required to 
establish the complete, non redundant set of equations for 
the problem. If this is done with the Divide-and-Conquer 
technique in mind, then no additional computation effort is 
expended in producing a workable set of sub-problems. 
Since the cost corresponding to the partition of the GCS/SF 
problem is present regardless of the utilization of Divide-
and-Conquer techniques, their application simply takes 
advantage of direct computational costs.  

 
 
APPENDIX A. GROBNER BASES FOR CARTESIAN 
TABLE EXAMPLE 
 
 
A.1 Brute-Force Approach 

The complete set of group-based matrix equations modeling 
the constraint structure of the Cartesian table is:  

 
 F11.C1(θ1,y1,z1,φ1)=F21.C2(θ2,y2,z2,φ2) (4) 
 F12.C3(θ3,y3,z3,φ3)=F22.C4(θ4,y4,z4,φ4) 
 F13.C6(θ6,x6).F12

-1=F33.C9(θ9,x9).F22
-1 

 F23.C8(θ8,x8).F21
-1=F13.C5(θ5,x5).F11

-1 
 C5(θ5,x5).C1(θ1,y1,z1,φ1).F14

-1.F24.C7(θ7,y7,z7)= 
 C6(θ6,x6).C3(θ3,y3,z3,φ3).F15

-1.F25 
 

A lexicographically ordered Grobner Basis is calculated for 
this model, using the order: Sφ1 > Cφ1 > y1 > z1 > Sθ1 > Cθ1 
> Sφ2 > Cφ2 > y2 > z2 > Sθ2 > Cθ2 > Sφ3 > Cφ3 > y3 > z3 > 
Sθ3 > Cθ3 > Sφ4 > Cφ4 > y4 > z4 > Sθ4 > Cθ4 > Sθ5 > Cθ5 > 
x5 > Sθ6 > Cθ6 > x6 > Sθ7 > Cθ7 > y7 > z7 > Sθ8 > Cθ8 > x8 
> Sθ9 > Cθ9 > x9 

The Grobner Basis is as follows:  
 

 Sφ1+Sθ4.Cφ4=0 (5) 
 Cφ1=0 
 y1-Sθ4.z4-3=0 
 5.z1-10.Sθ4+y4.Sθ4.y7+5.Sθ4.y4-2.Sθ4.y7-
Cφ4.z7.Sθ4.y7- 5.Cφ4.z7.Sθ4=0 
 5.Sθ1-Cφ4.z7+y4-2=0 
 Cθ1=0 
 Sφ2=0 
 Cφ2-Sθ4.Sθ7=0 
 y2+Sθ4.y7+5.Sθ4-2=0 
 5.z2-Sθ4.z4.Cφ4.z7-2.Cφ4.z7+Sθ4.z4.y4+2.y4-2.Sθ4.z4-
4=0 
 Sθ2=0 
 5.Cθ2+Cφ4.z7-y4+2=0 
 Sφ3+Sθ4.Cφ4=0 
 Cφ3=0 
 y3-1-Sθ4.z4=0 
 z3-2.Sθ4+Sθ4.y4=0 
 Sθ3=0 
 Cθ3+Sθ4=0 
 Sφ4=0 
 Cφ4

2-1=0 
 Cφ4.y4-2.Cφ4+5.Sθ7-z7=0 
 5.Cφ4.Sθ7+y4-Cφ4.z7-2=0 
 Cφ4.z7

2+2.z7-25.Cφ4-z7.y4-5.Sθ7.y4+10.Sθ7=0 
 y4

2-4.y4-21+10.Sθ7.z7-z7
2=0 

 Sθ4
2-1=0 

 Cθ4=0 
 Sθ5+1=0 
 Cθ5=0 
 x5-1=0 
 Sθ6-1=0 
 Cθ6=0 
 x6+1=0 
 Sθ7

2-1=0 
 Cθ7=0 
 Sθ8=0 
 Cθ8-1=0 
 x8-2=0 
 Sθ9=0 
 Cθ9-1=0 
 x9-2=0 
 

Which presents y7 and z7 as free variables. 
 
 
A.2 Divide-and-Conquer Approach 
Local Preprocessing. Cycle C1-C2 

For this cycle the constraint equation is:  
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 F11.C1(θ1,y1,z1,φ1)=F21.C2(θ2,y2,z2,φ2)  (6) 
 
Given the order: Sφ1 > Cφ1 > y1 > z1 > Sθ1 > Cθ1 > Sφ2 > 

Cφ2 > y2 > z2 > Sθ2 > Cθ2 the lexicographic Grobner Basis 
resulted in:  

 
 Sφ1-Cθ2.Cφ2=0 (7) 
 Cφ1+Cθ2.Sφ2=0 
 y1-1+Cθ2.z2=0 
 z1+2.Cθ2-Cθ2.y2=0 
 Sθ1+Cθ2=0 
 Cθ1=0 
 Sφ2

2+Cφ2
2-1=0 

 Sθ2=0 
 Cθ2

2-1=0 
 

Which presents y2,z2,Cφ2 as free variables. 
Local Preprocessing. Cycle C3-C4 

The constraint equation for this cycle is:  
 

 F12.C3(θ3,y3,z3,φ3) = F22.C4(θ4,y4,z4,φ4)  (8) 
 
For the order: Sφ3 > Cφ3 > y3 > z3 > Sθ3 > Cθ3 > Sφ4 > Cφ4 

> y4 > z4 > Sθ4 > Cθ4, the following lexicographic Grobner 
Basis is calculated:  

 
 Sφ3+Sθ4 . Cφ4=0   (9) 
 Cφ3-Sθ4  . Sφ4=0  
 y3-1-Sθ4 . z4=0  
 z3-2 . Sθ4 +Sθ4 . y4=0  
 Sθ3=0  
 Cθ3+Sθ4=0  
 Sφ4

2+Cφ4
2-1=0  

 Sθ4
2-1=0  

 Cθ4  
 

Which presents free variables z4, y4 and Cφ4 . 
Local Preprocessing. Cycle C5-C8 

The constraint structure of this loop is as follows:  
 

 F23.C8(θ8,x8).F21
-1 = F13.C5(θ5,x5).F11

-1  (10) 
 
The ordering x5 > Sθ5 > Cθ5 > x8 > Sθ8 > Cθ8 leads to a 

(lexicographic) Grobner Basis:  
 

 x5-1=0  (11) 
 Sθ5+1=0  
 Cθ5=0  
 x8-2=0  
 Sθ8=0  
 Cθ8-1 =0  
 

Which represents a zero-dimensional ideal. 
Local Preprocessing. Cycle C6-C9 

The constraint matrix equation for this loop is:  
 

 F13.C6(θ6,x6).F12
-1 = F33.C9(θ9,x9).F22

-1  (12) 
 

The ordering x6 > Sθ6 > Cθ6 > x9 > Sθ9 > Cθ9 produces 
this (lexicographic) Grobner Basis, which represents a zero-
dimensional ideal:  

 
 x6+1=0 
 (13) 
 Sθ6-1=0  
 Cθ6=0  
 x9-2=0  
 Sθ9=0  
 Cθ9 -1 =0  
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