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Abstract— Assessment of cylindricity has been traditionally
performed on the basis of cylindrical crowns containing a set
of points that are supposed to belong to a controlled cylinder. As
such, all sampled points must lie within a crown. In contrast, the
present paper analyzes the cylindricity for wear applications, in
which a statistical trend is assessed, rather than to assure that
all points fall within a given tolerance. Principal Component
Analysis is used to identify the central axis of the sampled
cylinder, allowing to find the actual (expected value of the)
radius and axis of the cylinder. Application of k-cluster and
transitive closure algorithms allow to identify particular areas
of the cylinder which are specially deformed. For both, the
local areas and the global cylinder, a quantile analysis allows
to numerically grade the degree of deformation of the cylinder.
The algorithms implemented are part of the CYLWEAR c© system
and used to assess local and global wear cylinders.

I. INTRODUCTION

REGARDING extrusion or injection cylinders there is

an economic interest in quantifying the degree of de-

formation away from a mathematical cylinder. The software

processing a point sample of the interior of a cylinder is

expected to fulfill the following criteria: (i) independence of

the coordinate frame of the measurement, (ii) identification of

the axis of the cylinder, (iii) identification and quantification of

local, high wear areas, (iv) automated quantification of global

wear.

The present article discusses a software that takes as input

a point cloud evenly sampled on the interior wall of a cylinder

and that is contained between two planes, approximately per-

pendicular to the cylinder axis. The point sample is assumed

to be evenly spread in such an area, in such a manner that no

part is over-sampled or under-sampled. No order is assumed

in the point cloud.

II. LITERATURE REVIEW

An important application in metrology is the evaluation of

cylindricity, since a large fraction of mechanical parts are

cylinders. The evaluation of cylindricity is not simple, because

it requires a number of circularity traces to be taken at different

horizontal sections of the cylinder and must be combined with

the straightness of the generators of the cylinder [1].

In the evaluation of cylindricity the zone cylinder has

become a standard for the quality control community. The

zone cylinder is the cylindrical crown contained between two

co-axial cylinders with minimum radial separation (width) and

containing all the data points. Determining the zone cylinder
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involves the calculation of the direction axis, and internal and

external radius.

Sampling nominally cylindrical objects usually involves an

apparatus consisting of a turntable, a probe, and the support of

the probe. This measurement system involves three different

axes: the axis of rotation of the table, the axis of the cylindrical

object and the axis of the probe support [2]. In practice,

these axes are not parallel, and accurate information of the

orientation of the cylinder is not available. Therefore, the

direction axis must be calculated.

A comparison of different methods for cylindricity eval-

uation is presented in [1]. An approach using normal least

squares was introduced, which minimizes the squares of the

perpendicular distances from the measured points to the axis

of the cylinder. The author also presents a method based on

the development of the surface of the cylinder, in which the

surface is “flattened” using as reference the axis of the probe

support. The flatness of the surface is then obtained from the

mean plane equation.

Reference [2] presents a linear programming-based ap-

proach to estimate the minimum zone cylinder enclosing a

set of points. The linear programming problem is iteratively

solved in a 6-dimensional space generated by 6 parameters

that define a hyperboloid associated to the cylinder. The above-

mentioned approach is therefore relevant to the evaluation of

overall cylinder deformation, but does not aim to solve the

local wearing detection problem. The efficiency and accuracy

of this method was improved through a procedure in which

points that cannot provably define the solution are culled from

the input point set [3].

The problem of finding the minimum width cylinder con-

taining a set of points is an extension to three dimensions of the

problem of finding the annulus of smallest width containing

a set of points in the plane. Several works have addressed

the minimum width annulus problem. Reference [4] proposes

a fast algorithm that exploits the properties of convex-hull

and Voronoi diagrams. Reference [5] proposes a generalized

method for the minimum width annulus in a d-dimensional

space. Reference [6] addresses this problem in 2-dimensions

(disks) and 3-dimensions (balls). Their method for testing disk

roundness (mentioned below) is extended to the evaluation of

balls by partitioning them into several slices, each of which is

evaluated as a disk.

Reference [7] also studies the problem of determining

whether a manufactured cylinder is sufficiently round. They

first introduce a procedure for testing roundness in disks, in

which set of probes are iteratively taken at uniform intervals

directed at the origin, using the finger probing model of [8].

The procedure stops when a decision is made on whether

the sample points can be covered by some “thin” annulus.

The roundness testing procedure is extended to cylinders by



projecting the points on the surface of the cylinder onto the

XY plane, and applying the “thin” annulus criterion to the

projected points. Notice that this method assumes that the

sampled cylinder is resting on the XY plane and that its

orientation is known. As noted above, such an assumption is

not always valid since the axes of the measurement system

(e.g. the axis of rotation of the cylinder) are unknown in

practice.

The problem of cylinder fitting is also addressed by [9],

[10], as a part of their method for detecting bore holes for

Industrial Automation. They propose a sequential cylinder

parameter fitting in which the orientation of the axis is first

calculated, followed by the calculation of the radius and the

position of the axis. A previous step in this bore detection

method consists in estimating the normal vector to the surface

at each sampled point.

The first sub-quadratic solution to the minimum width

cylindrical shell problem, based on a linearization of such

problem, is presented in [11]. Again, the problem addressed

is that of estimating the global deviation of a point set from

a cylindrical shape, and does not cover our aim of statistical

assessment.

General comments to the reviewed literature are: (i) a

dimensional quality control problem is attacked, which poses

the question of whether a workpiece must be rejected or

not, (ii) the determination of minimal enclosing and maximal

enclosed cylinders, minimum zone cylinder, etc. are sought,

usually in cylinders which are placed in a particular position

of the space, (iii) in the item (i), data are interpreted in literal

way, i.e. ignoring the trends or statistical indicators of their

quality. The approach undertaken in our work is to produce a

statistical diagnose of the cylindricity (see section III-D), and

therefore each data is taken as inherently biased by several

sources of noise. One can do so, since our work is aimed to

help the production manager to numerically evaluate the need

to replace the cylinder when (from his/her point of view) the

wear or distortion in the cylinder reaches unacceptable values

(see section III-G). As a result, we do not use the typical

deterministic geometry algorithms of the literature. Instead,

we apply stochastic geometry to diagnose the data.

III. METHODOLOGY AND RESULTS

The diagnosis of cylinder wear is basically a treatment of

an unordered point set, collected on the internal wall of the

sampled cylinder. The point set is measured in the particular

unknown (local) coordinate system of the reading instrument,

different from the World Coordinate System -WCS- of the

shop floor. Although the points are collected on a definite

geometrical shape (a cylinder), the numerical values output by

the measuring device contain several stochastic components.

The processing of the point cloud (see Figure 1) is as

follows:

1) Assuming for the cylinder a Length/Diameter ratio larger

than 5.0, a Principal Component Analysis -PCA- is run.

The PCA allows to identify the direction of largest

dispersion in the data, which is the direction of the

cylinder axis. As a by-product, the center and mean

radius of the cylinder are also identified.
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Fig. 1. Cylindricity Diagnose with Point Cloud

2) A rigid geometric transformation is applied to the point

cloud to align the cylinder with the Z axis of the WCS.

3) A Quantile Analysis is performed, which renders the

histogram of frequencies of radius deviations for the

global point cloud.

4) The cylindrical data is developed (unwrapped or flat-

tened) onto R
2 (XY plane) to perform a local analysis.

5) A low pass filter is applied to the data, which eliminates

the high frequencies of the point cloud.

6) A surface is reconstructed for the point data, using a

lift of a Delaunay Triangulation, to facilitate the visual

identification of the high wear areas. At this time, the

data resembles a rectangular mountain region, whose

heights correspond to the areas (regions of (θ, h) values)

with larger cylinder wear.

7) Two alternative algorithms are applied to automatically

identify such high wear areas: k-cluster and Extended

Neighborhood Analyses.

8) Quantile and Mean-Median Analyses are performed on

the local wear regions.

9) All the results are given in the form of text files (for

documentation and analysis) and via graphic output (for

the easy identification by the user).

A. Measured Data

Three sources of deviation of point data away of a perfect

cylinder are assumed: (i) a general wear, (ii) localized wear

spots, and (iii) measurement noise introduced by the scanner.

The point set has an arbitrary orientation and position, and it

is necessary to determine the coordinate system in which it

was collected by the measuring devise. The nominal radius

and length of the cylinder are assumed to be known.



B. Transformation of Measured Data to the World Coordinate

System

The purpose of this section is to rigidly transform measured

data so that the calculated axis of the cylinder is coincident

with the Z axis of the WCS and its center is coincident with

the origin O of the WCS. However, we know neither the

axis of the cylinder, nor its effective radius and length. To

determine such values is the purpose of the following section.

1) Principal Component Analysis: Let P ′ =
{

(x′, y′, z′) ∈ R
3
}

be the set of points sampled on the

surface of a cylinder C (R,H,A,O), where R, H , A, O

are the nominal radius, nominal length, axis and center of

gravity of the cylinder, respectively. It must be noticed that

only R and H are known. The actual values of radius, height,

axis, and center must be determined from P ′. By applying

a Principal Component Analysis -PCA- the trends in the

collected data will be identified (see [12], [13]).

Let Σ be the (3 × 3) covariance matrix of the process

P ′ = {(x1, y1, z1) , . . . , (xn, yn, zn)}, with cij being the cross

covariance of components i and j of the point set. Σ is semi-

positive definite, since it is symmetric with non-negative main

diagonal. The eigenvalues of Σ are non-negative real numbers

λi. Then, Σ satisfies the equation Σ.V = V.Λ with V a

matrix whose columns are the (orthogonal) eigenvectors of Σ,

and Λ is a diagonal matrix containing the eigenvalues of Σ.

Without sacrificing generality one may sort the eigenvalues

in decreasing order, say λ1 ≥ λ2 ≥ λ3 ≥ 0, and write the

eigenpairs of the covariance matrix as:

Σ.V = Σ.
[

v1 v2 v3

]

=

[

v1 v2 v3

]

.





λ1 0 0
0 λ2 0
0 0 λ3





with λi being the variance of the data in the direction vi.

It follows that v1 is the direction of the data P ′ in which

maximal variance appears, v2 is the direction in which the

next decreasing variance appears, and v3 is the direction with

lowest data variance in P ′. For a Length/Diameter ratio larger

than 5.0, it can be seen that v1 ≡ A, i.e. the axis of the cylinder

A is the eigenvector associated with the largest eigenvalue or

variance, λ1 (the direction with highest variance of the data

P ′). Therefore Σ.A = λ1A. The triad v1, v2, v3 is orthogonal,

and we may enforce the condition v1 × v2 = v3, forming a

right handed canonical coordinate system. Notice that given

the cylindrical symmetry of the data, the second and third

variances are almost the same. Except for numeric stochastic

errors: λ2 ≈ λ3.

2) Transformation to a standardized coordinate system:

Once we know the axis A = (Ax, Ay, Az) and the center of

mass O = (Ox, Oy, Oz) of the measured cylinder, we must

find out a 4 × 4 rigid transformation

M =

[

R∗

3×3 T ∗

3×1

0 0 0 1

]

to move the point data in such a way that the axis of the

cylinder is coincident with the Z axis of the WCS, and its

center of mass is coincident with the origin of the WCS.

[

R∗ T ∗

0 0 0 1

]

=

[

v2

0
v3

0
A

0
O

1

]

−1

(1)

Once R∗ and T ∗ have been determined from (1), each point

sampled can be transformed with (2), so the data set looks like

in Figures 2(a) and 2(b).
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C. Mapping of Normalized Cylinder 3D data onto 2D

After a normalization has been performed on the measured

data, the axis of the cylinder coincides with the Z axis, and its

center of mass with the origin O. The next step is to “unwrap”

the point cylinder, and to extend the point set on the XY

plane. The function used to do so is not an isometry, since the

cylinder data is shrunk in order to fit into a rectangular basis

of size 1.0 × 1.0.
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Fig. 2. Sampling of a cylinder surface with local damage

The point set P = {(x, y, z)} (which is the cylinder

point sample with its axis aligned with the Z axis of the

World Coordinate System) is transformed into a new set

Q = {(xf , yf , zf )}, with the following characteristics: (i) the

zf coordinate of each point in Q is the deviation, for the

corresponding point in P , away from the calculated radius of

the cylinder, (ii) the point set Q is organized as a function

g : R
2 → R, with zf = g(xf , yf ), (iii) the (x, y) pairs

are included in a rectangular domain in R
2. This means, the

cylinder has been unwrapped and extended on the XY plane

(Figure 3). The unwrapping transformation for set P into

Q is described in equation (3). It maps each point (x, y, z)
sampled on the surface of a cylinder into (xf , yf , zf ) with

(xf , yf ) ∈ [−0.5, 0.5] × [−0.5, 0.5].
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Fig. 3. Point set with noise, placed in general position in space. Measured
data in an experiment.

xf =
arctan(x, y)

2π
−

1

2

yf =
1

2

(

z

max(|maxi zi|, |mini zi|)

)

(3)

zf = ‖(x, y)‖ − R

The reader may notice that in Figure 3 the intensity is

not uniform. This is due to the fact that a color coding is

given to the zf coordinate. Consequently, regions with larger

deviation from the nominal radius (regions with higher wear)

look lighter in the image.

D. Statistical Analysis

The points in Figure 3 have a zf coordinate that represents

the deviation with respect to the nominal cylinder radius. This

deviation is due to three causes: (i) a general wear of the

cylinder, (ii) localized wear in specific regions of the cylinder,

and (iii) a stochastic noise resulting from the measurement

process. The purpose of this step is to measure the deviation

of the data that is explained by each factor, i.e. how much

in the collected data are these components present. Figure 4

shows the histogram of frequencies with respect to zf . The

horizontal axis is divided into intervals of the zf variable.

The vertical values correspond to the number of points whose

radial deviation zf falls within each interval. In this histogram

we can see in the range [−0.02, 0.02] an approximately normal

distribution with mean µ = 0. This distribution corresponds

to the sampling error of the instrument (factor (iii) above).

Above a deviation of 0.02 away from the nominal radius

we find the effects (i) and (ii) mentioned before. Thus, in

the interval [0.02, 0.07] one will find the cutting deviation to

classify localized wear or damage in the cylinder.

By using the frequency histogram of Figure 4, one is able to

separate the set of points Q into points showing only overall

wear vs. points showing overall and localized wear. In the

histogram, the cutting value is ε = 0.02. This means, points

whose radial deviation is below 0.02mm are considered to

have overall wear. Points with radial deviation above 0.02mm

are considered to present overall and localized wear. These

points constitute the set Qε.

Fig. 4. Histogram of the cylinder radius deviation.

E. Cluster Analysis

The purpose of the cluster analysis applied to a set of n

points in R
m is to identify k groups (k being set by the user)

in the n points, such that in each group the points are close

to each other, and at the same time far away from the points

in other groups. In this manner, in the initial population, k

clusters of neighboring points are identified. Let the population

be formed in this application by n points in the set Qε. The

space of the points is R
m = R

3. Let each point qi in Qε be

noted as:

(xfi, yfi, zfi) = (Xi,1, Xi,2, Xi,3) ∈ Qε

The mean of the j-th variable (j = 1, 2, 3) in the l-th group

is noted by X̄(l),j , for l = 1, . . . , k. The distance of the point

qi to the l-th cluster is:

D(i,l) =





3
∑

j=1

(Xi,j − X̄(l)j)
2





1/2

The error of the partition is given by the summation of the

distance of each point to the cluster under which it is classified.

The error of a partition P (n, k) of the n points in k clusters

is noted by:

ε(P (n, k)) =
n

∑

i=1

[D(i,l(i))]
2

where l(i) is the set under which the i-th point is classified,

which is the one for which the distance D(i, l) is a minimum.

It must be noticed that for each partition of the set Qε

there will exist a value ε(P (n, k)). The partition that makes

ε(P (n, k)) a minimum is our k-mean partition.

The method of the k-means is summarized as follows:

1) Propose k initial points X̄(l).

2) For each point qi find out its corresponding cluster l(i)
(for which the summation of the D(i, l) is a minimum).

3) Recalculate X̄(l) as the centroid of the qi points belong-

ing to the cluster l(i).
4) Repeat the steps 2 and 3 until l(i) remains constant

for every i between successive iterations. At this point,

ε(P (n, k)) reaches a minimum.



In this manner the points migrate from one cluster to

another, until the reduction of ε(P (n, k)) is zero. After the l(i)
are found with the previous algorithm, and as a visualization

aid, the convex hull of each l(i) may be found and drawn.

In the particular case of the wear of the cylinders, such a

visual post-processing helps in displaying the zones of the

cylinder whose wear is higher. The main inconvenience of the

k-means method is the need of pre-establishing k, the number

of clusters. For this reason an alternative method is introduced

next.

F. Partition Analysis

The set Qε in (4) represents all the point data whose

distance to the axis of the cylinder is higher than the threshold.

Notice that the proposed algorithm seeks to eliminate the user

interaction and to identify and bound the different deformation

regions. Therefore, Qε must be partitioned into the local

zones that present a particular wear of the cylinder. For such

a purpose we define an equivalence relation R on Qε and

then we calculate a partition Π of Qε by R. Let R be the

equivalence relation defined as:

R(a, b) ⇔ ∃q1, q2, ..., qw((qi ∈ Qε, i = 1, ..., w)∧

(a = q1) ∧ (b = qw) ∧ (‖qi − qi+1‖ < δ)) (4)

This equivalence relation basically states that points a and

b belonging to Qε are equivalent if and only if there exists

a path of points starting at a and ending at b such that two

points qi and qi+1 of the path are not separated from each

other by more than a distance δ. In order to partition Qε in

a partition of all points that are equivalent to each other, we

apply algorithm 1.

Algorithm 1 Partitioning Algorithm to calculate neighbor-

hoods of cylinder deformation

1: Π = []
2: while Qε do

3: p = first(Q)
4: queue to expand = {p}
5: Qε = Qε − {p}
6: partition = {}
7: while queue to expand do

8: element to expand = first(queue to expand)

9: partition = partition ∪ {element to expand}
10: queue to expand = queue to expand −

{element to expand}
11: for a such that R(element to expand, a) do

12: Qε = Qε − {a}
13: queue to expand = queue to expand ∪ {a}
14: end for

15: end while

16: Π = [Π, partition]
17: end while

Figure 5 shows the results of the partition algorithm applied

on Q = Q0.02. The three resulting data sets are automatically
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Fig. 5. Result of localized deformations found with partition analysis.

Fig. 6. Surface of Radius deformation with physical dimensions (workpiece
coordinate system)

classified by the algorithm, projected on the XY plane, and

the convex hull of the projection calculated and displayed on

such a plane in Figure 5.

Figures 6 and 7 present the different noise factors in the

flattened data set. Figure 6 shows the unfiltered data set in the

scaled dimensions of the cylinder, while figure 7 shows the

filtered data set mapped back to the physical dimensions of the

cylinder. The localized damage in this data set has the shape of

a mountain ridge (typical of a case in which a foreign object

slides inside the cylinder) accompanied by isolated peaks. The

highest deformation is present in a region centered in point

h = 500mm and θ = 60o. Also, the wear located at [0o, 100]
is the same as the one located at [360o, 100], since 0o = 360o

because the cylinder wraps itself.

G. Diagnose Output

Three different outputs are produced from the process pre-

viously discussed: (i) graphical; (ii) histograms of frequency

of radial deformation; and (iii) output file. They are discussed

next.

1) Graphical Output: The radial deformation is converted

to a function f : Θ × H → ∆R (the deviation of the radius

form its nominal value, see Figure 6). Delaunay triangulations

and filtering are applied to display such a surface, as well as

the regions of f : Θ×H which represent a higher ∆R. Colors



Fig. 7. Filtered, automatically-detected localized Wear Regions (using
Partition Analysis)

green and blue mean lower deformation, while colors yellow

and red indicate higher deformation.

2) Histogram of Frequencies of Radial Deformation: A

histogram results from plotting the number of samples ni

measured which fall into each range of radius deviation

(∆(Ri)) (Figure 4). Two clearly differentiated regions appear:

(i) A normal distribution of measurement errors, centered in

0, containing negative values of ∆R. Values of ∆R between

[−σ,+σ] correspond to the measurement errors; and (ii)

Values of ∆R above σ representing the deterministic trend

of the data, which corresponds to the wear.

3) Output File: The output file contains two basic compo-

nents: (i) the quantile information for the global deformation

of the cylinder radius (∆R deviation from the nominal radius);

and (ii) the statistical information for each one of the local

areas of higher wear. Global information corresponds to a

text version of the histogram information discussed above.

Local deformation includes for each area of large deformation

the mean, median, standard deviation, maximal deviation and

position of the wear area (θ, h).

IV. CONCLUSIONS AND FURTHER WORK

This article has presented a software tool to diagnose

the general and local wear of a cylinder. No assumption is

made on the orientation or position of the cylinder in the

space, or on the coordinate frame of the measuring devise.

The software implemented is successful in identifying the

position in space of the cylinder (in this case, five degrees

of freedom). These algorithms filter out high frequencies in

the data, fit a surface to the resulting point cloud, and identify

by two alternative methods the regions of largest local wear.

Several statistical reports (quantile and frequency histogram)

are produced, which also diagnose the cylinder in local spots

as well as globally.

Future efforts include:

1) Bringing the devised tools to the domain of dimensional

quality control.

2) Approaching the problem as a non linear minimization

or optimization one.

3) Using the findings in the previous item to diagnose other

geometries different from the cylindrical one (torus,

spheres, partial cylinders, cones, etc.).
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