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Summary of Contributions

This thesis develops and applies techniques from the area of computation geometry to the domain
of Medicine. The specific areas of medicine that are investigated and the contributions performed
in each of such areas are the following:

Table 1: Investigated domains and main contributions of this thesis.

Investigated Domain Contribution
Medical Imaging

(1) An optimized algorithm for curve reconstruction.

(2) A sensitivity analysis of the algorithm in (1).

(3) A method for the geometry simplification of digital models of
porous materials.

Image-Guided Surgery

(1) A robotic research platform that precisely handles equipment
for medical image acquisition.

(2) A dataset for the design and testing of algorithms for medical
image analysis.

(3) An algorithm for the registration of Computer Tomography
and Ultrasound medical images.

Motor Neurorehabilita-
tion

(1) A method to estimate the posture of the patient during
robotic-assisted rehabilitation therapy.

(2) The assessment of (1) in simple and compound movements
training.

(3) A hybrid system for the precise estimation of the shoulder
joint angles in exoskeleton-based rehabilitation.
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Bertelsen, Eduardo Carrasco, Ángel Gil-Agudo, Oscar Ruiz-
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Simplification of Open-Cell Porous Materials. Submitted to the
Computers & Graphics Journal.

Journal Arti-
cle / Submit-
ted

ix



This compendium of publications has the following co-authors.

Table 3: Co-authors of this compendium of publications.

Name Affiliation

Diego Acosta Grupo de Investigación DDP, Universidad EAFIT
Aitor Ardanza Interactive Computer Graphics, Vicomtech-IK4
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Introduction
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I-A

Goal of the Final Examination

Under the regulations of the Doctoral Program in Engineering at U. EAFIT, the purpose of the
Final Examination is to assess the thesis work of the doctoral student, which should reflect the
capacity of the student to: (I) conduct high-quality scientific research, (II) contribute to the state
of the art, and (III) articulate in novel manners the existing knowledge to advance in the formulation
and solution of theoretic and practical problems in the Engineering domain.

The Final Exam assesses these aspects:

1. The academic trajectory undertaken and opportunities profited by the doctoral student during
the doctoral studies, in terms of (a) Doctoral Courses, (b) Special Trainings, (c) Attendance to
Specialized Forums, Industries, Government Committees, (d) Equipment, Software, accessory
materials, (e) Funding Proceedings, (f) Special Advisors, etc.

2. The thematically connected results of the research of the student and the doctoral team, and
the endorsement of the international scientific community to these results, in the form of
ranked publications.

The Jury approves or reproves the thesis work of the doctoral student.
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I-B

Organization of this Document

The remaining of this document is organized as follows:

� Part II: Academic Trajectory. This part reports the following aspects of the doctoral process:

(a) Doctoral Courses

(b) Special Trainings

(c) Attendance to Specialized Forums

(d) Special Advisors

(e) Projects

(f) Training in Scientific Funds Leveraging

� Part III: Research Results. This part provides:

(a) An overview of the domains in which the doctoral investigation has been conducted.

(b) The list of publications generated by the doctoral support team.

(c) The compendium of publications generated in each of the investigated domains.

� Part IV: General Conclusions.
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Part II

Academic Trajectory
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II-A

Academic History
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II-A.1

Summary

1. In December of 2010, Camilo Cortés obtained his bachelor degree in Mechatronic Engineering
from the Escuela de Ingenieros de Antioquia (EIA).

2. In January of 2011, Camilo joined the CAD/CAM/CAE Laboratory of Universidad EAFIT
and began his Master studies in Engineering under the supervision of Prof. Dr. Ing. Oscar
Ruiz.

3. In November of 2011, Camilo started an internship at the eHealth and Biomedical Applications
Department of Vicomtech-IK4 (Spain) as part of his Master thesis.

4. In December of 2012, Camilo obtained his Master Degree in Engineering from U. EAFIT.

5. In January of 2013, Camilo started his Doctoral Studies in Engineering at U. EAFIT under
the supervision of Prof. Oscar Ruiz.

6. From January of 2013 to July of 2015, Camilo performed his doctoral internship at Vicomtech-
IK4 under the supervision of Prof. Dr. Ing. Julián Flórez.

In the framework of the collaborative program between EAFIT and Vicomtech-IK4, the student
and his doctoral support team have achieved several publications, formalizing the doctoral work of
the student. The mentioned doctoral support team is composed by the doctoral supervisors of the
student and several researchers of EAFIT and Vicomtech-IK4.
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II-A.2

Doctoral Courses

II-A.2.1 Preparatory Courses

According to the regulations of U. EAFIT, the courses that prepare the student to perform his
doctoral thesis are taken during the master program. The preparatory courses that the student
took are presented in Table II-A.2.1:

Table II-A.2.1: Preparatory Courses.

Course Semester
Data Structures and Algorithms 2011-1
Computer-Aided Design 2011-1
Advanced Mathematics for Engineers 2011-1
Introduction to Finite Element Analysis 2011-1
Advanced Data Structures and Algorithms 2011-2
Computational Geometry 2011-2
Optimization Techniques 2011-2
Advanced Finite Element Analysis 2011-2

II-A.2.2 Qualifying Exams

During the first year of the doctoral program, the student prepared, took and approved the doctoral
qualifying exams that are reported in Table II-A.2.2:

II-A.2.3 Preliminary Exam of Dissertation

During the third year of the doctoral studies, the doctoral student prepared, presented and approved
the Preliminary Exam of Dissertation. The Preliminary Examination assessed: (a) The academic
trajectory undertaken and opportunities profited by the doctoral student during the first 24-30
months of the doctoral studies, (b) The thematically connected results of the research of the student
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Table II-A.2.2: Qualifying Exams.

Exam Date Examiner
Optimization Techniques April 2013 Prof. Dr. Ing. Diego Acosta, U.

EAFIT
Robot Kinematics July 2013 Dr. Ing. Luis Unzueta,

Vicomtech-IK4, Spain
Data Structures and Algorithms December 2013 Prof. Dr. Ing. Juan Lalinde, U.

EAFIT

and the doctoral team in the form of ranked publications, and (c) The Closure research activities
and goals of the doctoral student and supporting team for the final 12 months (approx.).

On 29-09-2015 the Jury decided to permit the doctoral student to continue the academic and
research activities, in order to prepare and perfect the materials, goals, publications, etc. for the
Final Examination.

8



II-A.3

Special Trainings

As part of the doctoral formation, the student has performed the trainings presented in Table
II-A.3.1:

Table II-A.3.1: Special Trainings.

Topic Entity-Context Date Supervisor
CAD Software Database In-
terrogation (C++)

EAFIT - Colciencias GEMM
Project.

2011-2012 Prof. Dr. Ing.
Oscar Ruiz

Industrial Robot Trajectory
Programming and Masteriza-
tion

Keller und Knappich
(KUKA) Robots Ibrica
S.A., Vitoria, Spain

January
2012

Ing. Gaizka
Solano

3D Printing and Carving Vicomtech-IK4. Internal
Training.

February
2012

Dr. Ing. Gre-
gory Maclair

Medical Robotics for Surgi-
cal and Rehabilitation Appli-
cations

Vicomtech-IK4. Project
HYPER (Rehabilitation
Robotics)

2012-2013 Dr. Ing.
Alessandro De
Mauro

Medical Images (X-Rays,
Computer Tomography,
Ultrasound)

Vicomtech-IK4. Project
ORXXI (Surgical Robotics
Image-Guided Surgery).

November
2014

Dr. Ing. Luis
Kabongo

Software for Medical Image
Analysis

Vicomtech-IK4. Project
ORXXI (Surgical Robotics
Image-Guided Surgery).

April 2015 to
July 2015

Dr. Ing.
Álvaro Ber-
telsen
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II-A.4

Attendance to Specialized Forums

During the doctoral formation, the student has attended to the following specialized forums:

II-A.4.1 Scientific Conferences

1. BIOMED 2013: IASTED International Conference Biomedical Engineering BioMed-2013.
February 13-15, 2013, Innsbruck, Austria.

2. GRAPP 2013: International Conference on Computer Graphics Theory and Applications
GRAPP 2013. February 21-24, 2013, Barcelona, Spain.

II-A.4.2 Professional Forums

1. SACAI 2012: Workshop. Systems and Architectures for Computer-Assisted Interventions.
Satellite of MICCAI 2012. October 5, 2012. Nice, France.

2. MESROB 2014: Summer School on Medical Robotics. École Polytechnique Fédérale de
Lausanne (EPFL). July 8-12, 2014. Lausanne, Switzerland.

3. SSNR 2014 and WeRob 2014: Summer School on Neurorehabilitation and Exoskeletons. Con-
sejo Superior de Investigaciones Cient́ıficas (CSIC). September 14-19, 2014. Baiona, Spain.

4. HNPT 2015: Internship. Hospital Nacional de Parapléjicos de Toledo (HNPT), Experimental
assessment of a method for posture estimation of patients in Robot-Assisted Rehabilitation.
July 6-10, 2015. Toledo, Spain.

5. Doctoral Internship: Vicomtech-IK4. eHealth and Biomedical Applications Department.
November 2011 to July 2015. Donostia-San Sebastián, Spain.
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II-A.5

Special Advisors

In addition to the support provided by several professors and researchers from EAFIT and Vicomtech-
IK4, the student was advised by the specialists presented in Table II-A.5.1.

Table II-A.5.1: Special Advisors.

Name Role Entity Topic
Dr. Francisco
Molina (Physio-
therapist, Ph.D.)

Researcher on Neuroreha-
bilitation of stroke pa-
tients

Biomechanics, Ergonomy and
Motor Control Laboratory
(LAMBECOM), Physical
Therapy, Occupational Ther-
apy, Rehabilitation and
Physical Medicine Depart-
ment, Rey Juan Carlos
University, Madrid, Spain.

Patient Pos-
ture Estima-
tion.

Dr. Ángel Gil
(Physician, Ph.D.)

Director of the Rehabili-
tation Service and leader
of the Biomechanics and
Technical Aids Depart-
ment

Hospital Nacional de
Parapléjicos, Toledo, Spain.

Virtual Re-
ality and
Robot-based
Rehabilita-
tion.

Dr. Ana de los
Reyes-Guzman
(Ing., Ph.D.)

Researcher on Neuroreha-
bilitation of patients with
Spinal Cord Injury

Biomechanics and Techni-
cal Aids Department, Hospi-
tal Nacional de Parapléjicos,
Toledo, Spain.

Motion Track-
ing and Pa-
tient Posture
Estimation.

Prof. Diego Acosta
(Ing., Ph.D)

Director of the Design
and Development of Pro-
cesses and Products Re-
search Group (DDP)

Universidad EAFIT,
Medelĺın, Colombia.

Optimized
Parametric
Curve Fitting.
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II-A.6

Projects

During the student internship at Vicomtech-IK4, the student has participated in projects related
to the areas of Motor Rehabilitation and Image-Guided Surgery:

1. HYPER: This project focuses on the development of neuro-prosthetics, neuro-robotics and
virtual reality technologies to boost the rehabilitation of neuro-motor deceases (i.e. stroke,
spinal-cord injury, cerebral palsy).

2. ORXXI: This project focuses on the development of CAD/CAM technologies, intra-operatory
navigation systems and robotics for orthopedic surgery.
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II-A.7

Training in Scientific Funds Leveraging

During the internship at Vicomtech-IK4, the student participated in the preparation of the project
proposals presented in Table II-A.7.1 to obtain funding from local (Basque Government) and na-
tional (Spanish Government) and international (European Union) investigation support programs.

Table II-A.7.1: Project Proposals.

Project Name Project Objective Call
ORXXI Development of CAD/CAM technologies, intra-

operatory navigation and robotic systems for orthopedic
surgery.

Gaitek (Basque Gov-
ernment)

ReHand Development and Validation of a Low-Cost Device for
the Neurorehabilitation of the hand.

Retos (Spanish Gov-
ernment)

Robotracker Development of accurate intra-operatory navigation sys-
tems for spine surgery.

Gaitek (Basque Gov-
ernment)

MAXILARIS Development and validation of a system for the regis-
tration of the patient in robotic-assisted maxillofacial
surgery.

Retos (Spanish Gov-
ernment)

Robot-Assisted
TRUS

Development of a Teleoperated Robotic System to
acquire Ultrasound Images to guide the surgeon in
prostate surgery.

Ayudas a proyectos de
investigación en salud
(Basque Government)

The Internet of
Robots

Development of cloud technologies for robotics in order
to boost the learning of autonomous robots.

ICT Call Future Inter-
net (European Union)
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The student has also participated in commercial visits and meetings with the following industrial
customers (Table II-A.7.2):

Table II-A.7.2: Participation in commercial activities with industrial customers.

Company Name Industrial Field Location
Egile Computer-Aided Surgery Basque Country
Vitia Rehabilitation Robotics Basque Country
Virtualware Virtual Reality for Rehabilitation Basque Country
Rehub Health Rehabilitation Robotics Basque Country
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Research Results
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III-A

Context

This thesis develops and applies computational geometry techniques in the domain of medicine.
Computational geometry applies algorithms and data structures for the solution of problems that
can be stated in terms of geometry. The concepts of combinatorial and numerical computational
geometry applied in this thesis are presented in Table 3.

Table 3: Application domains of the computational geometry techniques implemented in this thesis.

Computational Geometry Concept Area of Application
Coordinate Frames Patient Registration, Patient Posture Estima-

tion.
Geometric Transformations (e.g. euclidean,
affine, projective)

Patient Registration, Patient Posture Estima-
tion.

Geometric Retrieval (e.g. nearest neighbor) Patient Registration, Parametric Curve Fit-
ting, Geometry Simplification.

Parametric Curves (e.g. bezier, splines) Parametric Curve Fitting.
Geometric Data Structures (e.g. Kd-trees) Patient Registration, Geometry Simplifica-

tion.
Meshing Patient Registration, Geometry Simplifica-

tion.
Geometric Modeling Parametric Curve Fitting, Geometry Simplifi-

cation.
Mathematical Programming (e.g. Nonlinear
programming)

Parametric Curve Fitting, Patient Posture Es-
timation.

Differential Geometry (e.g. tangent and nor-
mal vectors, curvature)

Parametric Curve Fitting, Patient Posture
Estimation, Patient Registration, Geometry
Simplification.

Geometric constraints Patient Posture Estimation, Parametric
Curve Fitting, Patient Registration, Geome-
try Simplification.

Fig. 1 shows the problems addressed in this thesis, their domain of application, and where
they take place within the Clinical Practice Workflow. Next, a brief description of the Stages and
Procedures presented in Fig. 1 is provided:

1. Stages:

(a) Diagnosis: Consists in the determination of the condition (e.g. the decease) that corre-
sponds the the patient symptoms. One of the diagnostic procedures is the acquisition
and analysis of medical images.
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TherapyStage:
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-PatientSPostureSEstimationMotorSNeurorehabilitation

Figure 1: Problems addressed in this thesis, their domain of application and location within the
Clinical Practice Workflow.

(b) Therapy: Consists in the process to remediate a health problem. The type of therapy to
be provided to a patient depends on the patient condition (e.g., surgery, rehabilitation,
etc.).

2. Procedures:

(a) Medical Imaging: Consists in the creation of visual digital representations of the anatom-
ical structures of the patient. The generated medical images can be used for analysis and
also to plan a surgical intervention. The medical images are not exclusively generated
during the diagnostic or pre-operative stages. They can also be acquired intra-operatively
in order to guide a surgical procedure.

(b) Image-guided Surgery: Consist in a surgical procedure in which pre-operatory and intra-
operatory medical images are used to indirectly guide the procedure due to the lack of
direct vision of the surgical target. The pre-operative images (e.g. Computer Tomog-
raphy, Magnetic Resonance) serve to establish the surgical plan (e.g. the location of a
tumor or the trajectory to insert a screw). The intra-operative images (e.g. ultrasound
images, X-rays, etc.) are used to transfer the surgical plan to the patient coordinate
system of reference.

(c) Motor Neurorehabilitation: Consists in the therapy to re-train the mobility skills of
a person that suffered an injury of the central nervous system, such as stroke, spinal
cord-injury and cerebral palsy. New therapies for neurorehabilitation involve the use of
robotic devices and virtual reality technologies.

The description of the specific problems and contributions performed in the Medical Imaging,
Image-guided Surgery and Motor Neurorehabilitation fields are presented in Parts III-C, III-D and
III-E, respectively.
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III-B

Publications

Table 4: List of published, accepted and submitted articles of the doctoral support team.

Item Bibliographic Information Type / Sta-
tus

1 Oscar E. Ruiz, Camilo Cortés, Mauricio Aristizábal, Diego Acosta
and Carlos Vanegas. (2013). Parametric Curve Reconstruction
from Point Clouds using Minimization Techniques. Proceedings
of the International Conference on Computer Graphics Theory
and Applications GRAPP 2013, pp. 35–48. ISBN 978-989-8565-
46-4, Barcelona, Spain.

Conference
Article /
Published

2 Camilo A. Cortés, Iñigo Barandiarán, Oscar E. Ruiz and Alessan-
dro De Mauro. (2013). Robotic Research Platform For Image-
Guided Surgery Assistance. Proceedings of the IASTED Interna-
tional Conference Biomedical Engineering BioMed-2013, pp. 427–
434. ISBN 978-0-88986-942-4, Innsbruck, Austria.

Conference
Article /
Published

3 Sebastian Koenig, Aitor Ardanza, Camilo Cortés, Alessandro De
Mauro and Belinda Lange. (2014). Introduction to Low-Cost
Motion-Tracking for Virtual Rehabilitation. Emerging Therapies
in Neurorehabilitation, pp. 287-303. ISBN 978-3-642-38555-1,
Springer.

Chapter
in Book /
Published

4 Camilo Cortés, Aitor Ardanza, F. Molina-Rueda, A. Cuesta-
Gomez, Luis Unzueta, Gorka Epelde, Oscar E. Ruiz, Alessan-
dro De Mauro and Julián Flórez. (2014). Upper Limb Pos-
ture Estimation in Robotic and Virtual Reality-Based Rehabili-
tation. BioMed Research International, vol. 2014, 18 pages,
doi:10.1155/2014/821908 (Impact Factor: 2.7).

Journal Ar-
ticle / Pub-
lished

5 Oscar E. Ruiz, Camilo Cortés, Diego A. Acosta and Mauricio
Aristizábal. (2015). Sensitivity Analysis in Optimized Paramet-
ric Curve Fitting. Editors Bart H.M. Gerritsen and Imre Horvath,
Engineering Computations, ISSN: 0264-4401, 2015, volume 32,
number 1, Issue Advancements in Modelling of Complex Prod-
uct, pp. 37-61, doi: 10.1108/EC-03-2013-0086, Emerald Group
Publishing (Impact Factor: 1.5).

Journal Ar-
ticle / Pub-
lished

Continued on next page
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Table 4 – Continued from previous page
Item Bibliographic Information Type / Sta-

tus
6 Camilo Cortés, Luis Kabongo, Iván Maćıa, Oscar E. Ruiz and

Julián Flórez. (2015). Ultrasound Image Dataset for Image Anal-
ysis Algorithms Evaluation. Innovation in Medicine and Health-
care 2015 (InMed15). Chapter in Book Series Smart Innova-
tion, Systems and Technologies, pp. 447-457, volume 45, doi:
{10.1007/978-3-319-23024-5 41}, ISBN 978-3-319-23023-8, 2015,
online: August 2015. Kyoto, Japan.

Chapter
in Book /
Published

7 Rebeca Echeverŕıa, Camilo Cortés, Álvaro Bertelsen, Iván Maćıa,
Oscar E. Ruiz and Julián Flórez. (2015). Robust CT to US 3D-
3D Registration using Principal Component Analysis and Kalman
Filtering. 3rd Workshop & Challenge on Computational Methods
and Clinical Applications for Spine Imaging, Held in Conjunction
with MICCAI 2015, Münich, Germany, October 5, 2015. To be
published as chapter in book series: Lecture in Computer Science
(Springer).

Chapter
In Book /
Accepted

8 Camilo Cortés, Ana de los Reyes-Guzmán, Davide Scorza, Álvaro
Bertelsen, Eduardo Carrasco, Ángel Gil-Agudo, Oscar Ruiz-
Salguero and Julián Flórez. (2016). Inverse Kinematics for Up-
per Limb Compound Movement Estimation in Exoskeleton - As-
sisted Rehabilitation. BioMed Research International, vol. 2016,
14 pages, doi: 10.1155/2016/2581924 (Impact Factor: 2.1).

Journal Ar-
ticle / Pub-
lished

9 Camilo Cortés, Luis Unzueta, Ana de los Reyes-Guzmán, Os-
car Ruiz-Salguero and Julián Flórez. (2016). Optical En-
hancement of Exoskeleton-based Gleno-Humeral Angles Estima-
tion. Applied Bionics and Biomechanics, vol. 2016, 20 pages, doi:
10.1155/2016/5058171 (Impact Factor: 0.7).

Journal Ar-
ticle / Pub-
lished

10 Camilo Cortés, Maria Osorno, David Uribe, Holger Steeb, Os-
car Ruiz-Salguero, Iñigo Barandiarán and Julián Flórez.Geometry
Simplification of Open-Cell Porous Materials. Submitted to the
Computers & Graphics Journal.

Journal Arti-
cle / Submit-
ted
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III-C

Medical Imaging
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III-C.1

Curve Fitting Problem

III-C.1.1 Problem Description

The curve fitting problem is present in the segmentation of medical images. The segmentation of
a medical image consists in the partitioning of regions the image into various sets according to
specific criteria ([1]). For example, it can be of interest to segment the pixels that belong to a bone
or tumor. Also, many segmentation tasks consist in determining the boundaries of an organ. In
other words, to recover the planar curves that describe the contours of the organ from a set of 2D
images. In Fig. III-C.1.1 the segmentation of the edge of a vertebra in an ultrasound image is
depicted. In this case, the contour of the vertebra is represented with a smooth parametric curve.

Image 
Acquisition

Ultrasound
probe

Vertebra

Vertebra
Ultrasound Image

Vertebra
Edge Segmentation

Parametric Curve

Figure III-C.1.1: Ultrasound scanning of a vertebra and segmentation of the edge the vertebra in
an ultrasound image.

The usual approach to recover the planar curves is to fit a parametric curve C(u) to the set S
of noisy and unordered point samples of the surface contour in a 2D image. The shape of C(u) is
adjusted by placing the control points P of the parametric curve such that the cumulative unsigned
distance function f between the points S and their approximating curve C(u) is minimized ([2]) as
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shown in Fig. III-C.1.2.

(a) (b)

Figure III-C.1.2: Curve fitting of a noisy point cloud: (a) naive initial guess of C(u) and (b) final
location of control points P (black circles) and resulting C(u).

22



III-C.2

Parametric Curve Reconstruction from Point Clouds

using Minimization Techniques

Oscar E. Ruiz1, Camilo Cortés1, Mauricio Aristizábal1, Diego A. Acosta2 and Carlos A. Vanegas3.

1Laboratorio de CAD CAM CAE, Universidad EAFIT, Carrera 49 No 7 Sur - 50, Medelĺın, Colombia.

2Grupo de Investigación DDP, Universidad EAFIT, Carrera 49 No 7 Sur - 50, Medelĺın, Colombia.

3Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066, USA.

Context

This research work has been conducted in the framework of an internal project of the CAD CAM
CAE Laboratory entitled Computational Geometry and Mechanics 2013, which focuses on the
application of Computational Geometry in 3-D Solid and Surface Modeling for Computational Me-
chanics, Mechanism and Robot Kinematics, and Medical Image processing, among others. This
work presents a novel method for the reconstruction of parametric curves from 2-D noisy points
samples (e.g. Medical Images). This contribution is the result of a collaborative research between
the CAD CAM CAE Laboratory and the DDP Investigation Group from EAFIT University, and
the Department of Computer Science from Purdue University. The Computational Geometry and
Mechanics 2013 project is funded by the EAFIT University.

Citation: Parametric Curve Reconstruction from Point Clouds using Minimization Techniques.
Oscar E. Ruiz, C. Cortes, M. Aristizabal, Diego A. Acosta, Carlos A. Vanegas. Proceedings In-
ternational Conference on Computer Graphics Theory and Applications GRAPP 2013, pp. 35-48,
ISBN: 978-989-8565-46-4. Feb 21-24, 2013, Barcelona, Spain. SCITEPRESS. Conference article.

Indexing: ISI Conference Proceedings Citation Index, dblp, INSPEC, Scopus.
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Abstract

Smooth (C1-, C2-,...) curve reconstruction from noisy point samples is central to reverse engineer-
ing, medical imaging, etc. Unresolved issues in this problem are (1) high computational expenses,
(2) presence of artifacts and outlier curls, (3) erratic behavior at self-intersections and sharp cor-
ners. Some of these issues are related to non-Nyquist (i.e. sparse) samples. Our work reconstructs
curves by minimizing the accumulative distance curve vs. point sample. We address the open issues
above by using: (a) Principal Component Analysis (PCA) pre-processing to obtain a topologically
correct approximation of the sampled curve, (b) Numerical, instead of algebraic, calculation of
roots in point-to-curve distances, (c) Penalties for curve excursions by using point cloud-to-curve
and curve-to-point cloud distances, and (d) Objective functions which are economic to minimize.
The implemented algorithms successfully deal with self-intersecting and / or non-Nyquist samples.
Ongoing research includes self-tuning of the algorithms and decimation of the point cloud and the
control polygon.

Keywords: Parametric Curve Reconstruction, Noisy Point Cloud, Principal Component Analysis,
Minimization.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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III-C.3

Sensitivity Analysis in Optimized Parametric Curve

Fitting

Oscar E. Ruiz1, Camilo Cortés1, Diego A. Acosta2 and Mauricio Aristizábal1.

1 Laboratorio de CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.

2 Grupo de Investigación DDP, Universidad EAFIT, Medelĺın, Colombia.

Context

This research work has been conducted in the framework of an internal project of the CAD CAM
CAE Laboratory entitled Computational Medical 3D Geometry and Robotics, which focuses on the
application of Computational Geometry in: (1) Shape reconstruction from stochastic point samples,
(2) Image acquisition and registration in robot-assisted Surgery, (3) simplification of topology and
geometry of porous materials for computational mechanics, (4) Property estimation for fluids in
porous materials, and (5) Dimensionality reduction of surface point samples and heat transfer in
thin geometries. This work presents a formal sensitivity analysis of the optimized parametric curve
reconstruction method presented in Chapter III-C.2 for uniform-noise 2-D samples (e.g. Medical
Images). This contribution is the result of a collaborative research between the CAD CAM CAE
Laboratory and the DDP Investigation Group from EAFIT University. The Computational Medical
3D Geometry and Robotics project is funded by EAFIT University.

Citation: Sensitivity analysis in optimized parametric curve fitting. Oscar E. Ruiz, Camilo Cortes,
Diego A. Acosta, Mauricio Aristizabal. Engineering Computations, Issue on Advancements in Mod-
elling of Complex Product, Editors Bart H.M. Gerritsen and Imre Horvath, pp. 37-61, volume 32,
number 1, doi: 10.1108/EC-03-2013-0086, ISSN: 0264-4401, 2015. Emerald Group Publishing.
Journal article.

Indexing: ISI (IF:1.5), Scopus, INSPEC, EI Compendex.
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Abstract

Purpose: Curve fitting from unordered noisy point samples is needed for surface reconstruction in
many applications. In the literature, several approaches have been proposed to solve this problem.
However, previous works lack formal characterization of the curve fitting problem and assessment
on the effect of several parameters (i.e., scalars that remain constant in the optimization problem),
such as control points number (m), curve degree (b), knot vector composition (U), norm degree (k),
and point sample size (r) on the optimized curve reconstruction measured by a penalty function
(f). This manuscript aims to discuss these issues.

Methodology: A numerical sensitivity analysis of the effect of m, b, k and r on f and a
characterization of the fitting procedure from the mathematical viewpoint are performed. Also, the
spectral (frequency) analysis of the derivative of the angle of the fitted curve C(u) with respect to
u as a means to detect spurious curls and peaks is explored.

Findings: It is more effective to find optimum values for m than for k or b in order to obtain
good results because the topological faithfulness of the resulting curve strongly depends on m.
Furthermore, when an exaggerate number of control points is used, the resulting curve presents
spurious curls and peaks. The authors were able to detect the presence of such spurious features
with a spectral analysis. Also, the authors found that the method for curve fitting is robust to
significant decimation of the point sample.

Research limitations/implications: The authors have addressed important voids of previous
works in this field. The authors determined, among the curve fitting parameters m, b and k, which
of them influenced the most the results and how. Also, the authors performed a characterization
of the curve fitting problem from the optimization perspective. And finally, the authors devised a
method to detect spurious features in the fitting curve.

Practical implications: This paper provides a methodology to select the important tuning
parameters in a formal manner.

Value: Up to the best of the knowledge, no previous work has been conducted in the formal
mathematical evaluation of the sensitivity of the goodness of the curve fit with respect to different
possible tuning parameters (curve degree, number of control points, norm degree, etc.).

Keywords: Parametric Curve Reconstruction, Noisy Point cloud, Sensitivity Analysis, Penalty
Minimization.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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III-C.4

Geometry Simplification Problem

III-C.4.1 Problem Description

The geometry simplification problem consists on producing a geometric modelM ′ that approximates
an input model M by retaining only its relevant features for the target application ([3]). Within
this work, we address the geometry simplification of digital models of porous materials (Fig. III-
C.4.1) obtained from Computer Tomography (CT) images. In the medicine domain, the modeling
of cellular solids such as bones and advanced materials (used for implants and prostheses) is relevant
for applications in the fields of biomechanics, orthopedics, dentistry, and tissue engineering, among
others ([4–7]).

Pore

Ligament

Figure III-C.4.1: Simplification of the mesh representation of a foam material by using beams with
varying cross-section for finite element analysis.

27



III-C.5

Geometry Simplification of Open-Cell Porous Ma-

terials

Camilo Cortés1,2, Maŕıa Osorno3, David Uribe3, Holger Steeb3, Oscar Ruiz-Salguero1, Iñigo Baran-
diarán2 and Julián Flórez2.

1Laboratorio de CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.

2eHealth and Biomedical Applications, Vicomtech-IK4, Donostia-San Sebastián, Spain.

3Institute of Applied Mechanics, University of Stuttgart, Stuttgart, Germany.

Context

This research work has been conducted in the framework of the project Computational Medical 3D
Geometry and Robotics. This work presents a novel method for the simplification of the geometry
of open-cell foam materials. This contribution is the result of a collaborative research between the
CAD CAM CAE Laboratory of EAFIT University, Vicomtech-IK4 and the Institute of Applied Me-
chanics from the University of Stuttgart. The Computational Medical 3D Geometry and Robotics
project is funded by EAFIT University.

Status: Submitted to the Computers & Graphics Journal.

Indexing: ISI (IF: 0.9), Scopus, INSPEC

Abstract

Estimation of mechanical properties of porous materials is relevant in industrial and medical ap-
plications. However, the massive (e.g. Computer Tomograph -CT-) data size of accurate porous
material geometries makes the numerical estimation of properties impractical. Existing methods for
porous material modeling simulate a given lattice topology and massively replicate it. The material
statistical specifications dictate the lattice geometry. These methods do not seek to preserve local
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material structure. This article presents a simplification method that is faithful to local material
geometry. Our method takes a material CT as input and renders as output a graph - based truss
model of the material. Our approach is based on the extraction and simplification of the Medial
Axis of the CT model, building the basic topology of a truss (truncated cone bars with spherical
nodes). The local geometrical characteristics are identified via optimized fittings. Finite Element
Analysis (FEA) simulations are conducted to compare Truss vs. Full B-Rep representations of the
porous material. The Truss models prove to be significantly more efficient for FEA, departing from
the Full B-Rep FEA by a maximum of 16% in the estimation of equivalent Young, Shear or Pois-
son moduli. Ongoing efforts concentrate on alternative CT Medial Axis synthesis and geometric
algorithms for standardized material testing.

Keywords: Porous Materials, Open-Cell Foams, Geometry Simplification.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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III-D

Image-Guided Surgery
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III-D.1

Patient Registration Problem

III-D.1.1 Problem Description

Consider a domain Ω ⊂ R3 of interest within the human body. A pre-operatory scan of Ω is
conducted, with its own sampling parameters (e.g. coordinate system, patterns, intervals, set size,
etc.). An intra-operatory scan is also conducted on Ω, with similar parameters. Given a subset
of interest of Ω, corresponding to an organ, bone, etc., of interest, the goal is to find a rigid
transformation T that maps the subset of the pre-operatory scan onto the corresponding subset of
the intra-operatory scan with minimal spatial error (Fig. III-D.1.1).

Registration
Method

Registered 
Datasets

(b)

(a) T

Figure III-D.1.1: Rigid registration calculates the rigid transformation T that aligns the pre-
operatory dataset (b) with the intra-operatory dataset (a).
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III-D.2

Robotic Research Platform for Image-Guided Surgery

Assistance

Camilo Cortés1, Iñigo Barandiarán1, Oscar E. Ruiz2 and Alessandro De Mauro1.

1 eHealth and Biomedical Applications, Vicomtech-IK4, Donostia-San Sebastián, Spain.

2 Laboratorio de CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.

Context

This research work has been conducted in the framework of an internal project of Vicomtech-IK4 in
the area of Image-Guided Surgery. This work presents a novel robotic research platform that han-
dles medical image acquisition equipment for medical image registration tasks. This contribution is
the result of a collaborative research between Vicomtech-IK4 and the CAD CAM CAE Laboratory
of EAFIT University.

Citation: Robotic Research Platform for Image-Guided Surgery Assistance. C. Cortes, I. Baran-
diaran, O.E. Ruiz, A. De Mauro. Proceedings of the IASTED International Conference Biomedical
Engineering BioMed-2013, pp. 427–434, doi: 10.2316/P.2013.791-067, ISBN: 978-0-88986-942-4.
Feb 13-15, 2013. Innsbruck, Austria. ACTA Press. Conference article.

Indexing: Scopus, INSPEC, EI Compendex.

Abstract

In the context of surgery, it is very common to face challenging scenarios during the preoperative
plan implementation. The surgical technique complexity, the human anatomical variability and
the occurrence of unexpected situations generate issues for the intervention goals achievement. To
support the surgeon, robotic systems are being integrated to the operating room. However, current
commercial solutions are specialized for a particular technique or medical application, being difficult
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to integrate with other systems. Thus, versatile and modular systems are needed to conduct several
procedures and to help solving the problems that surgeons face. This article aims to describe the
implementation of a robotic research platform prototype that allows novel applications in the field
of image-guided surgery. In particular, this research is focused on the topics of medical image acqui-
sition during surgery, patient registration and surgical/medical equipment operation. In this paper,
we address the implementation of the general purpose teleoperation and path following modes of
the platform, which constitute the base of future developments. Also, we discuss relevant aspects
of the system, as well as future directions and application fields to investigate.

Keywords: Robotic Surgery, Master-Slave Systems, Teleoperation, Image-Guided Surgery.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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III-D.3

Ultrasound Image Dataset for Image Analysis Al-

gorithms Evaluation

Camilo Cortés1,2,3 Luis Kabongo1,3 Iván Maćıa1,3 Oscar E. Ruiz2 and Julián Flórez 1

1 eHealth and Biomedical Applications, Vicomtech-IK4, Donostia-San Sebastián, Spain

2 Laboratorio de CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.

3 Biodonostia Health Research Center, Donostia-San Sebastián, Spain

Context

The Basque project ORXXI focuses on the development of CAD/CAM technologies, intra-operatory
navigation systems and robotics for orthopedic surgery. This work presents a novel Ultrasound im-
age dataset for the testing and design of registration algorithms and other image analysis methods
that was generated by using the robotic platform introduced in Chapter III-D.2. This contribution
is the result of a collaborative research between Vicomtech-IK4 and the CAD CAM CAE Labo-
ratory of EAFIT University. The ORXXI project is funded by the GAITEK program from the
Basque Government.

Citation: Ultrasound Image Dataset for Image Analysis Algorithms Evaluation. Camilo Cortes,
Luis Kabongo, Ivan Macia, Oscar E. Ruiz, and Julian Florez. Conference Innovation in Medicine
and Healthcare INMED-2015, September 11-12. Chapter in Book Series Smart Innovation, Systems
and Technologies, pp. 447-457, volume 45, doi: {10.1007/978-3-319-23024-5 41}, ISBN 978-3-319-
23023-8, 2015, online: August 2015. Kyoto, Japan. Chapter in Book.

Indexing: Scopus, Springerlink.
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Abstract

The use of ultrasound (US) imaging as an alternative for real-time computer assisted interventions
is increasing. Growing usage of US occurs despite of US lower imaging quality compared to other
techniques and its difficulty to be used with image analysis algorithms. On the other hand, it is
still difficult to find sufficient data to develop and assess solutions for navigation, registration and
reconstruction at medical research level. At present, manually acquired available datasets present
significant usability obstacles due to their lack of control of acquisition conditions, which hinders
the study and correction of algorithm design parameters. To address these limitations, we present
a database of robotically acquired sequences of US images from medical phantoms, ensuring the
trajectory, pose and force control of the probe. The acquired dataset is publicly available, and it is
specially useful for designing and testing registration and volume reconstruction algorithms.

Keywords: Ultrasound, Dataset, Registration, Reconstruction, Data Fusion, Tracking, Verifica-
tion, Validation, Evaluation, Medical Images.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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III-D.4

Robust CT to US 3D-3D Registration by using

Principal Component Analysis and Kalman Filter-

ing

Rebeca Echeverŕıa 1,2, Camilo Cortés1,3, Álvaro Bertelsen1, Iván Maćıa 1, Oscar E. Ruiz3 and
Julián Flórez1

1 eHealth and Biomedical Applications, Vicomtech-IK4, Donostia-San Sebastián, Spain.

2 Universidad Pública de Navarra, Pamplona, Spain.

3 Laboratorio de CAD CAM CAE, Universidad EAFIT, Medelĺın, Colombia.

Context

This work is part of the ORXXI project. Here we present a novel registration algorithm for 3-D
Ultrasound and CT images of the spine. This contribution is the result of a collaborative research
between Vicomtech-IK4, the CAD CAM CAE Laboratory of EAFIT University and the Public
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Abstract

Algorithms based on the Unscented Kalman Filter (UKF) have been proposed as an alternative
for registration of point clouds obtained from vertebral ultrasound (US) and CT scans, effectively
handling the US limited depth and low signal-to-noise ratio. Previously proposed methods are ac-
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curate, but their convergence rate is considerably reduced with initial misalignments of the datasets
greater than 30 degrees or 30 mm. We propose a novel method which increases robustness by adding
a coarse alignment of the datasets’ principal components and batch-based point inclusions for the
UKF. Experiments with simulated scans with full coverage of a single vertebra show the method’s
capability and accuracy to correct misalignments as large as 180 degrees and 90 mm. Furthermore,
the method registers datasets with varying degrees of missing data and datasets with outlier points
coming from adjacent vertebrae.

Keywords: Registration, Computerized Tomography, Ultrasound, Principal Component Analysis,
Kalman Filter.

N.B. The publisher owns the Copyright of this chapter. The interested reader may access to the
manuscript at the publisher’s website.
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Motor Neurorehabilitation
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III-E.1

Problem of the Estimation of the Patient Posture

in Neurorehabilitation

III-E.1.1 Problem Description

In the realm of motor neurorehabilitation, the patient posture estimation consist in determining
the angles of the joints of the patient limb that is under treatment. In conventional rehabilitation
therapy, the joint angles of the patient limb are measured with a goniometer ([8]) (Fig. III-E.1.1).
However, goniometry presents the following limitations:

(a) The angle measurements are heavily influenced by the operator visual perspective.

(b) The joint angles cannot be measured continuously.

Figure III-E.1.1: Measurement of the flexion angle of the elbow joint with a goniometer.

In modern rehabilitation platforms, Virtual Reality (VR) and Robotic technologies are being
integrated to boost the rehabilitation results (Fig. III-E.1.2). In such platforms, the proper esti-
mation of the patient limb posture is a fundamental prerequisite for:

(a) Animation of realistic avatars representing the patient in VR scenarios.
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(b) Verification of the compliance of the patient movements with the prescribed exercises of the
therapy.

(c) Acquisition of kinematic data for long-term assessment of the patient improvement.

Hence, alternatives to goniometry are required in modern rehabilitation platforms.

Figure III-E.1.2: Rehabilitation Platform involving Virtual Reality and Robotic Technologies.
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Abstract

New motor rehabilitation therapies include virtual reality (VR) and robotic technologies. In limb
rehabilitation, limb posture is required to (1) provide a limb realistic representation in VR games
and (2) assess the patient improvement. When exoskeleton devices are used in the therapy, the
measurements of their joint angles cannot be directly used to represent the posture of the patient
limb, since the human and exoskeleton kinematic models differ. In response to this shortcoming,
we propose a method to estimate the posture of the human limb attached to the exoskeleton. We
use the exoskeleton joint angles measurements and the constraints of the exoskeleton on the limb
to estimate the human limb joints angles. This paper presents (a) the mathematical formulation
and solution to the problem, (b) the implementation of the proposed solution on a commercial
exoskeleton system for the upper limb rehabilitation, (c) its integration into a rehabilitation VR
game platform, and (d) the quantitative assessment of the method during elbow and wrist analytic
training. Results show that this method properly estimates the limb posture to (i) animate avatars
that represent the patient in VR games and (ii) obtain kinematic data for the patient assessment
during elbow and wrist analytic rehabilitation.

Keywords: Limb Posture Estimation, Virtual Reality, Upper Limb Rehabilitation, Robot-Assisted
Therapy, Stroke.
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Glossary

Clavicle : One of the bones of the shoulder girdle. It is located at the root of the neck
DLS : Damped Least Squares
DOF : Degrees of Freedom
EFE : Elbow flexion/extension
FPS : Forearm pronation/supination
GH : Gleno-Humeral
Humerus : Upper arm bone
IK : Inverse Kinematics
IMMS : Inertial and Magnetic Measurement Systems
OTS : Optical Tracking System
RMSE : Root Mean Square Error
ROM : Range of Motion
Scapula : One of the bones of the shoulder girdle. It connects the humerus with the

clavicle
SEFEFPS : Simultaneous EFE and FPS
VR : Virtual Reality
V-REP : Virtual Robot Experimentation Platform
WFE : Wrist flexion/extension
v : Total number of constraints of the IK problem (v ∈ N)
e : IK error vector (e ∈ Rv)
k : Total DOF of the human kinematic model (k ∈ N)
n : Total DOF of the exoskeleton kinematic model (n ∈ N)
Z : Jacobian matrix of the IK problem (Z ∈ Rv×k)
I : v × v Identity matrix

Wq : Diagonal matrix of joints weights (Wq ∈ R+k×k
)

We : Diagonal matrix of constraints weights (We ∈ R+v×v
)

qHt
: Vector of joint angles of the human kinematic model in instant t (qHt

∈ Rk)
qRt : Vector of joint angles of the exoskeleton kinematic model in instant t (qRt ∈

Rn)
α : Damping factor of DLS method (α ∈ R+)

III-E.2.1 Introduction

Robotic and VR technologies are important components of the modern neuro-rehabilitation systems
for pathologies such as stroke or spinal cord injury [9–11]. In this field, our general research has
two main goals:

(a) To improve the assessment of the rehabilitation progress through precise estimation of the
patient kinematics. This is the focus of this article.

(b) To optimize the rehabilitation processes by using the kinematic (and other) patient models. This
optimization includes hybrid technologies (e.g. robotics, virtual reality, functional electrical
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stimulation [12], etc.). Even though this domain is very important for rehabilitation, we see it
as a natural consequence of (a) and we concentrate on (a) at this time.

In the mentioned scenario, the proper estimation of the patient limb posture is a fundamental
prerequisite for:

1. Design and control of the advanced robotic exoskeletons which provide assistance to the
patient during motor rehabilitation [13,14].

2. Animation of realistic avatars representing the patient in virtual reality (VR) scenarios (e.g.
games, bionics).

3. Acquisition of kinematic data of the patient during the training exercises to assess improve-
ment along the therapy.

This article presents a method for estimation of limb posture from the exoskeleton posture.
Notice that such an estimation is not trivial, since the limb is not rigid, is not standard and has
kinematic topology different from the exoskeleton topology.

Our method delivers limb postures estimates to strengthen and to enable downstream applica-
tions in robotic rehabilitation (among others, using VR [12]).

III-E.2.1.1 Robot-based motor rehabilitation Therapy

The inclusion of robotic devices in motor rehabilitation therapies has been increasing over the last
decade. The robot-assisted therapies complement conventional rehabilitation by providing intensive,
repetitive, task-specific and interactive treatment. All these factors contribute to a more effective
rehabilitation [15–17].

Robot-assisted therapy has shown to improve active movement, strengthening and coordination
in stroke patients [18]. The majority of clinical studies have reported that robot-assisted therapy
can ease impairments and lower disabilities of the affected patient [19]. Moreover, evidence suggests
that task-oriented exercises using robotic devices produce significant improvements in recovering
lost abilities [20].

Combining these exercises with VR games makes the therapy more attractive to the patient,
increasing motivation and treatment effects [12, 21]. It is important that these games are designed
to be consistent with the principles of physical therapy and adjustable to the level of impairment
[22].

A central element in designing a therapy is the feedback that patients receive. To achieve
relatively permanent changes in the capability for producing skilled action, it is crucial to provide
the patient with proper feedback in order to produce a positive impact on the neural mechanism
promoting motor learning [23].

Feedback includes all the sensory information as the result of a movement and it is divided into
two classes: (1) intrinsic or inherent feedback, which is information captured by human sensory
systems as a result of the normal production of the movement, and (2) extrinsic or augmented
feedback, which is information that supplements intrinsic feedback [23,24]. Robot-assisted therapy
with VR games including animated realistic avatars may improve the quality and specificity of
extrinsic feedback that the patient receives.

From the perspective of the therapist, robotic devices can be used to obtain quantitative metrics
for the assessment of the improvement of the patient. The kinematic information of the affected
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limb during the exercises is required to compute several evaluation metrics, such as joint amplitudes,
speeds, movement smoothness and directional control.

III-E.2.1.2 Case Study Armeo Exoskeleton

Our proposed therapy uses the Armeo Spring exoskeleton for the upper limb intervention (Figure
III-E.2.1). We find the following limitations of this system:

1. Currently, the gaming platform provides an elementary assessment of the patient performance
with metrics such as Hand Path Ratio [25] and joint range of motion, which are only available
in certain games of the Armeo proprietary platform. We propose a continuous quantification
of the patient performance along the treatment therapies, involving metrics that are highly
correlated with the functional recovery of the patient.

2. Currently, the games only provide the patient with feedback of his hand position. We propose
to provide a 3-dimensional representation of the arm, which would help the patient to immerse
in the VR environment.

The kinematic data provided by the exoskeleton samples the angular position of its joints. This
information cannot be used directly to represent the human arm, since the patient limb and the
exoskeleton kinematic models differ significantly.

This article presents a method to estimate the posture of the limb by using the kinematic data
provided by the exoskeleton. We propose to solve the limb’s Inverse Kinematics (IK) problem
extended with the kinematic constraints of the exoskeleton fixations on the limb. This extended
problem is solved in real-time with standard robotic libraries. In this manner, we aim to overcome
the limitations of the Armeo system regarding to the feedback and assessment of the patient.

Figure III-E.2.1: Armeo Spring Orthosis.

This paper is organized as follows: Section III-E.2.2 presents a brief literature review. Section
III-E.2.3 addresses the formal statement of the problem and the proposed method to solve it.
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Section III-E.2.4 discusses the implementation of our approach and its use in VR games. Section
III-E.2.5 presents the evaluation methodology of our approach in the realm of motor rehabilitation.
Section III-E.2.6 informs and discusses the results of the experiments conducted using our solution
strategy. Section III-E.2.7 concludes the article and identifies future developments.

III-E.2.2 Literature Review

Several estimation methods and human models have been proposed in the literature to solve the
problem of limb posture estimation. Next, we present a brief review of developments in these areas.

III-E.2.2.1 Limb Posture Estimation

III-E.2.2.1.1 Free Movement Scenario

Most of the existing work in limb posture estimation focuses on free movement scenarios. We define
a free movement scenario as a situation in which the patient limb does not wear an exoskeleton or
interact with any other robotic interface. Under the mentioned conditions, literature that addresses
upper limb posture estimation considers tasks in which the human subject has to reach a desired
object. Therefore, these approaches are designed to estimate the posture of the upper limb based
on a given target position and orientation of the hand.

Statistical [26, 27], IK [28–30] and direct optimization [31–36] methods are the most used ap-
proaches to estimate the limb posture [37].

Statistical or data-based approaches model the human kinematics with regressive models from
empirical data [38]. Factors such as the size of the database of captured motions [39] and the
characteristics of the population involved in the experiments impact the accuracy and usefulness of
these models.

Kinematic approaches model the human limbs with links, joints of different degrees of freedom
and end-effectors [35]. The IK problem is then solved with either closed-form or numerical methods.
The quality of the kinematic model, and the convergence speed and robustness of the approach used
to solve the IK problem directly affect the accuracy of the estimations.

Optimization approaches require a non-trivial function to minimize, which actually leads to the
desired configuration (typically, a minimal energy one [39]). When optimization is used to solve an
IK problem, additional constraints can be easily included in the formulation [34–36].

Approaches combining optimization-based and statistical models have been also proposed to
overcome the individual limitations of optimization and statistical methods [39,40]. Naturally, the
composed method requires a high-quality dataset of motions and the formulation of proper objective
and constraints functions.

III-E.2.2.1.2 Robot-assisted Scenario

There is a shortage of literature addressing posture estimation of the human limb while interacting
with an exoskeleton. Although exoskeletons are designed with the ultimate goal of minimizing their
kinematic differences with human limbs and interact seamlessly with them, the following factors
influence the human motion patterns, and therefore the posture of the limb:

1. The mechanic design of the exoskeleton (inertia, back-drivability, friction, joint motion limits,
etc.).
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2. The type of assistance that the exoskeleton provides (passive, active, assist-when-needed).

3. The performance of the exoskeleton motion controller. Here, using a naive one-to-one mapping
between the joint angles of the human limb and exoskeleton leads to poor positioning results
[41].

References [14, 29] propose the computation of the arm’s IK by using a disambiguation criteria
for its redundancy which chooses a swivel angle such that the palm points to the head region. This
methodology is suitable for real-time implementation and it is used in the control strategy of the
active 7-DOF exoskeleton developed by the authors’ research team [42]. The authors report that
the mean error in the estimation of the swivel angle is less than 5 degrees. The magnitude of the
errors in the estimation of the wrist, elbow and GH-joint angles is not reported.

References [14, 29] do not consider the motions of the clavicle and scapula (which affect the
position of the GH-joint center) in the estimation of the posture of the arm, as they assume the
position of the GH-joint center to be known. Therefore, this approach should not be used in cases
in which the position of the GH-joint center cannot be determined from data provided by the
exoskeleton (e.g. Armeo Spring) or by any additional motion capture system.

Other common methods to estimate the posture of human limbs cannot be used for, or are
impractical in robot-assisted scenarios. For example, Inertial and Magnetic Measurement Systems
(IMMSs) presented in [43, 44] are unusable because the magnetic disturbances produced by the
metallic components of the exoskeleton corrupt the magnetic sensor measurements.

If optical tracking systems are used, arrays of markers need to be attached to the patient in
order to measure the limb joint angles. Occlusions of such markers are frequently produced by the
mechanic structure of the exoskeleton when performing the rehabilitation exercises. To overcome
the occlusions of the markers, a redundant setup is necessary [37]. This limitation makes the use
of optical tracking systems cumbersome for frequent use in the rehabilitation therapy.

III-E.2.2.2 Human Model

A central element in human posture estimation is the human kinematic model itself. Simple models
based on hierarchies of links and lower kinematic pairs can be found in [35,45–48]. These approaches
result convenient for real-time tasks and for implementation. However, more elaborated models
should be used to describe complex kinematic relationships [49], such as the shoulder rhythm [50].
On the other hand, musculoskeletal models reported in [51–53] offer better accuracy for dynamics
computations, since they include forces from muscles and ligaments.

The selection of the human kinematics model rests not only on the kinematic statement of
the problem, but also on the compromise between accuracy and speed required in a particular
application.

III-E.2.2.3 Conclusions of Literature Review

Although the methods designed to estimate the posture of the upper limb (in absence of a robotic
interface) reviewed in section III-E.2.2.1.1 could be used in robot-assisted rehabilitation, we have
not found any actual implementation of them in this context. Usage of these methods without
any change in their design parameters in robot-assisted applications may lead to erroneous posture
estimations, given the influence of the exoskeleton on human motion patterns. Therefore, the valid-
ity of these methods in the robot-assisted scenario remains to be proven. An additional limitation
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of these methods is that only few of them have been validated quantitatively by determining the
errors in their estimations.

On the other hand, the few posture estimation approaches that address limb interaction with
an exoskeleton (section III-E.2.2.1.2) have been designed to specifically solve the arm posture esti-
mation problem, limiting their usability in posture estimation of other human limbs.

In response to the mentioned issues, in this article we present:

1. A method that can be applied, in a general manner, to solve the limb posture estimation
problem using kinematic data provided by the exoskeleton attached to the limb.

2. The implementation of our proposed method for the upper limb posture estimation using the
Armeo Spring exoskeleton.

3. The quantitative validation of our proposed method by determining the estimation errors
during the training of meaningful upper limb rehabilitation exercises.

III-E.2.3 Materials and Methods

III-E.2.3.1 Problem description

In this section, we state the problem of estimating the joint angles of the patient limb during
robot-assisted rehabilitation therapy from the kinematic information provided by the robot. The
elements that are considered inputs to the problem are the following: (1) the geometry and topology
(e.g., the Denavit-Hartenberg parameters [54]) of the exoskeleton and the human limb, (2) a known
configuration of the angles of the joints of the exoskeleton, (3) the kinematic constraints imposed by
the fixations of the exoskeleton over the patient limb (which result from wearing the exoskeleton)
and (4) the constraints that govern the posture of the patient limb while interacting with the
exoskeleton, which are related to mechanical and control factors of the exoskeleton that influence
the patient movement. The goal of the proposed algorithm is to find the approximate joint angles
of the patient limb, such that the mentioned constraints are met.

This problem can be formally stated as follows:
Given:

1. The kinematic model of the exoskeleton R(LR, JR), where LR and JR are sets of links and
joints, respectively.

(a) LR =
{
lR0

, . . . , lRf+1

}
.

(b) JR =
{
jR0 , . . . , jRf

}
.

i. N(jRi
) denotes the degrees of freedom (DOF) of jRi

.

ii. vRi =
{
θ1, . . . , θN(jRi

)

}
is a vector that contains the angles of each DOF of jRi

(i ∈ [0, f ]).

(c) R is an open kinematic chain. Therefore, lRi
and lRi+1

are connected by joint jRi
, where

i ∈ [0, f ].

(d) The vector qR ∈ Rn, n =
∑f

i=0N(jRi), contains the set of independent coordinates that
defines a configuration of R uniquely.
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i. qR =
{
vR0 , . . . , vRi , . . . , vRf

}
.

ii. qRt
represents the state of qR in instant t and its value is known.

2. A human patient with a kinematic model of his limb H(LH , JH), where LH and JH are sets
of links and joints, respectively.

(a) LH =
{
lH0

, . . . , lHg+1

}
.

(b) JH =
{
jH0 , . . . , jHg

}
.

i. N(jHi
) denotes the DOF of jHi

.

ii. vHi =
{
θ1, . . . , θN(jHi

)

}
is a vector that contains the angles of each DOF of jHi

(i ∈ [0, g]).

(c) H is an open kinematic chain. Therefore, (lHi
) and (lHi+1

) are connected by joint (jHi
),

where i ∈ [0, g].

(d) The vector qH ∈ Rk, k =
∑g

i=0N(jHi), contains the set of independent coordinates that
defines a configuration of H uniquely.

i. qH =
{
vH0 , . . . , vHi , . . . , vHg

}
.

ii. The i-th element of qH , θi, is subject to hi(θi) = θmini
≤ θi ≤ θmaxi

(i ∈ [0, k − 1]).

iii. qHt
represents the state of qH in instant t and its real value is unknown.

3. A set of passive mechanisms M = {m0, . . . ,mp} that connect R and H.

(a) mi (i ∈ [0, p]) connects lRa (a ∈ [0, f + 1]) and lHb
(b ∈ [0, g + 1]).

(b) mi imposes a movement constraint of N(mi)-DOF to lHb
with respect to lRa

.

(c) The set C(M) = {c0, . . . , cp} contains vector-valued functions ci(qHt
, qRt

) ∈ RN(mi)

(i ∈ [0, p]) that model the kinematic constraint imposed by mi.

(d) Each ci(qHt
, qRt

) is an equality constraint of the form ci(qHt
, qRt

) = 0.

4. A set of vector-valued constraint functions D = {d0, . . . , ds} that intend to represent the
performance measures that govern the posture of the limb in a specific situation.

(a) Each di(qHt) (i ∈ [0, s]) is an equality constraint of the form di(qHt) = 0.

(b) The dimension of the di vector is denoted by dim(di).

Goal:

1. Find the vector q̃Ht ∈ Rk, which approximates qHt
such that:

(a) ci(qHt , qRt) = 0 ∀i ∈ [0, p]

(b) hj(θj) = θminj
≤ θj ≤ θmaxj

∀j ∈ [0, k − 1].

(c) du(qHt
) = 0 ∀u ∈ [0, s]

To solve this problem, a method based on IK of the limb has been developed. The following
sections describe the methodology implemented.
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III-E.2.3.2 Kinematic Modeling of the Exoskeleton

The Armeo® Spring (Figure III-E.2.1) is a passive exoskeleton (orthosis) that supports the weight
of the arm of the patient. The level of support provided by the system springs can be adjusted,
regulating the effort of the patient arm to overcome gravity. The exoskeleton has a total of seven
angle sensors to measure the position of its rotational joints and one pressure sensor to measure
the gripping force at the hand [55].

Base

Parallel
Linkage

Arm 
Fixation

Forearm 
Fixation

Hand 
Grip

Wrist
Joint

Figure III-E.2.2: Exoskeleton kinematic model.

We built a kinematic model of the Armeo® Spring (Figure III-E.2.2), which contains both
prismatic and revolute joints. The prismatic joints of the exoskeleton allow to adjust it to the
different sizes of the patients, and they remain fixed during the training.

Our implementation models the links and joints of the Armeo exoskeleton and creates a hierar-
chical structure of them.

Although the Armeo exoskeleton presents a parallelogram mechanism in its kinematic chain,
the exoskeleton can be modeled with a serial chain extended with a dependency equation among
the joints used to represent the parallel mechanism.

III-E.2.3.3 Kinematic Modeling of the Human Upper Body

Figure III-E.2.3 shows the kinematic model of the human upper body that we created for this
application. The joints of the model are represented with green color. The upper limb is highlighted
using links in light green color.

Our upper body model (33-DOF) includes joints of the spine, shoulder complex, elbow and wrist.
It is based on the ones presented in [35–37, 46, 47, 56], which have been widely used in the area of
human posture estimation. The main advantages of those models are their easy implementation and
their suitability for solving the posture estimation problem in real-time, which is one of the main
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Figure III-E.2.3: Human upper body kinematic model.

requirements of our application. A weakness of those kinematic models is that the Gleno-Humeral
(GH) joint is modeled with a kinematic chain of three concurrent revolute joints, orthogonal to
each other. In this way, the rotation of the GH joint is parameterized with Euler angles and suffers
from gymbal lock [57]. In order to avoid this limitation, the GH joint is represented in our model
with a spherical joint, such that other rotation parameterizations (e.g., quaternion or exponential
map) can be used.

Although there are more complex and accurate kinematic models of the upper body, the results
obtained in [47], in a scenario where the subject does not interact with an exoskeleton in an
application that is not related to motor rehabilitation, show that posture estimations for the upper
limb can be obtained with a reasonable accuracy by using their original model.

The neutral or rest posture of the arm is defined with the arm fully extended along the body as
in [58]. The range of motion of the joints of the arm obtained in [42] (derived from a motion study
during the execution of activities of daily living) are used as reference to establish the joint limits
of our model, which correspond to the constraint 2(d)ii in the list presented in section III-E.2.3.1.

III-E.2.3.4 Modeling the kinematic constraints of interaction of the up-
per limb and the exoskeleton

The Armeo provides fixations for the human limb. These fixations introduce constraints on the
position and orientation of the coordinate systems attached to the arm, forearm and hand.

There are several factors that affect the satisfaction of the constraints during the execution of
the exercises. This set includes: (1) deformation of the coupling mechanisms and (2) uncertainty or
errors in the modeling of the human upper limb. Therefore, these constraints are exactly met only
under ideal conditions and in practice they do not capture all the details of the real interaction.
However, as we prove, they suffice to obtain a reasonable accuracy in the estimation of the limb
posture.

III-E.2.3.4.1 Arm constraint

The arm fixation imposes a position (3-DOF) constraint on the human arm. The point on the arm
that follows the position of the fixation is determined by a initialization process between the R and
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H kinematic chains (see section III-E.2.3.6).
In our model, the fixations are modeled as rigid bodies. However, the exoskeleton fixations are

made of flexible materials, such that their geometry is deformed when large forces are applied on
them.

The arm fixation suffers significant deformation when the arm is moved towards a horizontal
configuration (e.g., when performing a complete stretching of the arm along the sagittal or frontal
plane). In those cases, the coordinate system at the exoskeleton arm fixation center undergoes a
translation, resulting from the deformation of the fixation mechanism, that is not reproduced by
our model.

To deal with this kind of situations, the weights of constraints representing fixations that suffer
less deformation than other ones are adjusted such that they receive more importance when solving
the IK problem. In this way, the limb posture is estimated meeting the constraints that model with
more fidelity the observed behavior. In this case, the weight of the arm constraint is lower than the
ones belonging to the forearm and arm restrictions.

Mismatch of the positions of the
coordinate systems

Arm fixation
coordinate

system

Arm 
coordinate

system

(a) Small error while meeting the arm fixa-
tion constraint

Match of the positions of the
coordinate systems

(b) Negligible error while meeting the arm
fixation constraint

Figure III-E.2.4: Constraint modeling the interaction of the Armeo’s arm fixation.

Figure III-E.2.4 shows the human arm (blue transparent cylinder) with the fixation of the ex-
oskeleton for the arm (black transparent ring) around it. The constraint imposed by this fixation to
the arm is represented by the matching of (a) human arm (white disk) vs. (b) fixation (yellow disk)
coordinate systems. Figures III-E.2.4(a) and III-E.2.4(b) correspond to unsatisfied and satisfied
constraints, respectively.

III-E.2.3.4.2 Forearm constraint

The forearm fixation imposes a 3-DOF position constraint on the human forearm. The point on
the human forearm that moves together with the fixation is determined in the initializing stage.
Additionally, the fixation is able to rotate around its longitudinal axis, according to the forearm
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pronation/supination movement (1-DOF orientation constraint). The rotation angle is measured
with an encoder. The forearm constraint forces the human wrist flexion/extension axis to be
approximately aligned with the exoskeleton’s wrist joint axis.

III-E.2.3.4.3 Hand constraint

The hand constraint forces the human hand to follow the position and orientation (6-DOF) of
the Armeo hand grip. The patient exercises while grabbing the handle of the exoskeleton. The
mechanic design of the Armeo avoids the slippage of the hand with respect to the axis of the handle
during the execution of the exercises. As with the previous fixations, the point on the hand where
the coordinate system of the hand is located is calculated in the initialization stage.

III-E.2.3.4.4 Shoulder constraint

The shoulder constraint does not belong to the set of movement restrictions imposed by the coupling
mechanisms of the Armeo. Instead, it is related to the restrictions intended to produce a natural
posture of the upper limb considering also the influence of the exoskeleton on the patient movements.
This constraint helps to disambiguate among the multiple configurations of the human kinematic
chain that comply with the other categories of constraints.

Currently, it is implemented to attract the GH joint to a position (3-DOF position constraint)
below the first joint of the Armeo (jR0

joint represented with symbol A in Figure III-E.2.6), which
does not suffer any translation during the training of the patient. By keeping the GH joint near
jR0 comfortable postures for the spine and arm can be achieved.

Figure III-E.2.5 shows that the shoulder constraint prevents the excessive motion of the joints of
the spine, which is a compensatory movement that should be also avoided during the rehabilitation
therapy. The shoulder constraint is central to proper posture estimation during shoulder abduction.

(a) Estimation using the shoulder constraint

Larger lateral 
bending of 
the spine

Uncomfortable 
configuration 

of the shoulder
 complex

(b) Estimation without using the shoulder con-
straint

Figure III-E.2.5: Effect of the shoulder constraint in the upper limb posture estimation.
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III-E.2.3.5 Inverse Kinematics

Given a desired pose (position and orientation) vector Tr ∈ R6 for the end-effector of an open
kinematic chain r, the IK problem is to find the vector of angles of the robot’s joints qr ∈ RN

(where N corresponds to the DOFs of r), such that the difference e = Tr −Xr between Tr and the
actual pose of the end-effector of r, Xr ∈ R6, approaches zero.

There are several approaches to solve this problem, including analytic [59] and numerical meth-
ods [60, 61]. The iterative strategy used to solve the IK problem is based on the Jacobian matrix
of the manipulator Z(qr), which linearly relates the velocity of the end-effector and the joints by:

Ẋr = Z(qr)q̇r (III-E.2.1)

By replacing ∆Xr for e in Eq.III-E.2.2, which is obtained by discretizing Eq.III-E.2.1, the
necessary ∆qr to approximate Tr is obtained.

∆qr = Z(qr)−1∆Xr (III-E.2.2)

Notice that Z(qr) may not be square (consider for example a kinematic chain with more than
6-DOF) or invertible. In those cases, the pseudo-inverse and Damped Least Squares (DLS) methods
(among others) can be used to obtain ∆qr, such that ‖e‖ is minimized. The pseudo-inverse method
is computationally faster than the DLS, but tends to be unstable when the robot approaches to a
singular configuration. The DLS method offers more robustness (specially when Tr is out of reach)
at the cost of a slower convergence [60].

III-E.2.3.5.1 Relation among End-effectors and Targets

The aforementioned strategy to solve the IK problem, can also be used in situations in which
the manipulator has more than one end-effector. In this case, the error vector e is given by
e = {Tr1 −Xr1 , . . . , Tri −Xri , . . . , TrNee

−XrNee
} where Nee is the number of end-effectors of

the robot. Notice that vector ei = Tri −Xri is not necessarily a point ∈ R6. For example, if only
the position (and no the orientation) of the i-th end-effector is specified, ei ∈ R3.

In our application, the formulation of the IK problem with multiple end-effectors and targets
can be used to represent the constraints discussed in section III-E.2.3.4. In this way, each constraint
can be represented by a target and end-effector pair. The coordinate frames of the end-effectors
XHi

(qHt
) (i ∈ [1, . . . , Nee]) are attached to the human limb, so their position and orientation

depend on the current configuration of the limb, qHt
. The coordinate frames of the targets of the

limb THi
(qRt

) (i ∈ [1, . . . , Nee]) are attached to the exoskeleton, such that they are transformed
according to its current configuration qRt

. Then, the IK problem is solved for the limb, finding
qHt such that ei = ‖THi(qRt)−XHi(qHt)‖ ≈ 0 (i ∈ [1, . . . , Nee]). Notice that if ei represents a
kinematic constraint, ei ∈ RN(mi) where i ∈ [0, p]. Otherwise, ei represents a restriction related to
the natural posture of the limb, and therefore ei ∈ Rdim(di) where i ∈ [0, s], and Nee = p+ s+ 2.

Notice that, due to modeling inaccuracies of the kinematic chains or the constraints, it is possible
that for a configuration qRt

some constraints cannot be satisfied within the desired tolerance. That
situation can be interpreted as if some targets THi(qRt) are not reachable. It is important that the
method used to solve the IK problem handles this situation robustly, avoiding oscillations. For this
reason the DLS method was used.
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III-E.2.3.5.2 Joints and Constraint Weights

References [46, 47] state that giving more importance to some of the model joints over others, by
assigning weights to the joints, allows to estimate more accurately the posture of the human limb.

Let us assume that wJi
is the weight of joint JHi

and that joints Jc and Jd can contribute to the
movement of end-effector i to diminish ei. Then, if wJc > wJd

, the displacement that Jc performs
is larger than the one done by Jd. This means that Jc is preferred to be moved over Jd to reach a
desired target.

In our model, the weights of the joints of the upper body were adjusted such that the joints on
the spine of the model perform small displacements in comparison with the movement performed
by the shoulder, elbow and wrist joints.

On the other hand, applying weights to the error vector e gives more importance to reach a
specific target over others. In our approach, this translates into giving some constraints more
importance than others. Let us define with wci (i ∈ [0, p]) the weight of the ci constrain and with
wdu

(u ∈ [0, s]) the weight of du constraint.
In our model, high weights were adjusted for the kinematic constraints imposed by the exoskele-

ton fixations (wci ≈ 1.0). Otherwise, low weights (wdi ≈ 0.2) were assigned to the other type of
constraints.

There are different formulations of the DLS method that incorporate weights for the joints
and error vector (e.g., reference [62]). In V-REP, the following DLS formulation is used to solve
IK problems: The angles of the joints of the human model are given by qHt

=
√
WqqHtw

, where
qHtw

= Z∗wew and Z∗w = Zt
w(ZwZ

t
w + αI)−1. The weighted Jacobian matrix is given by Zw =

Z
√
Wq where Wq = diag {w0, . . . , wk−1}. Here, if wa and wb are related to JHi

(e.g., a joint
with DOFs > 1), wa = wb = wJi . The weighted error vector is given by ew = Wee, where
We = diag {w0, . . . , wv−1} and v =

∑p
i=0N(mi) +

∑s
j=0 dim(dj). If wa and wb are related to the

same ci constraint, wa = wb = wci . This also applies for weights related to constraints du. However,
independent weights can be assigned for the position and orientation components of a constraint.

III-E.2.3.6 Initialization of the kinematic chains

To accurately estimate the limb posture, it is required to properly couple the human and exoskele-
ton kinematic models. To do so, we require to correctly position the end-effectors of the human
kinematic model with respect to the arm, forearm and hand coordinate systems. These end-effectors
must be positioned such that they are able to move together with the coordinate systems of the
fixations of the exoskeleton model (targets). Notice that the position of the end-effectors with
respect to the links of the human model changes according to the actual patient and exoskeleton
dimensions.

Figure III-E.2.6 depicts an state in which the human and exoskeleton models are decoupled.
The correct position and orientation of the coordinate systems of the end-effectors of the human
model have not been calculated, and therefore, they do not match the position and orientation of
the exoskeleton’s fixations coordinate systems.

The initialization of the kinematic chains requires a reference pose of the exoskeleton in which
(a) the human joints angles can be determined accurately and (b) the exoskeleton’s fixations un-
dergo negligible deformation, reducing the uncertainty about the position of the human model
end-effectors.

The pose of the exoskeleton that meets the mentioned requirements is the one in which the
flexion/extension of the shoulder and elbow take place in the sagittal plane (Figure III-E.2.6). In
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Figure III-E.2.6: State of the kinematic chains before the initialization process (notation in Table
III-E.2.1).

Table III-E.2.1: Glossary related to the Figure III-E.2.6.

Symbol Description
A jR0

B jR2

C Arm fixation coordinate system
D Forearm fixation coordinate system
F Armeo hand grip coordinate system
a Human arm end-effector coordinate system
b Human forearm end-effector coordinate system
c Human hand end-effector coordinate system

this pose, the position of the human GH joint with respect to the exoskeleton base can be easily
determined because the joints of the spine and shoulder complex are in their rest position.

The coupling process involves the following steps:

1. Position the exoskeleton model such that the joint jR0
lies above the human GH joint. Adjust

the height of the exoskeleton model such that jR2
is at the level of the human GH joint.

These instructions are prescribed by the manufacturer of exoskeleton to use it with the actual
patient.

2. Compute the arm flexion and abduction angles such that the arm passes through the origin
of the arm fixation coordinate system. Adjust the origin of the arm end-effector coordinate
system to match the origin of the arm fixation.

3. With the position of the elbow joint defined, compute the elbow flexion and the GH internal
rotation angles such that the forearm passes through the origin of the exoskeleton forearm
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fixation. Adjust the origin of the forearm end-effector coordinate system to match the origin
of the forearm fixation.

4. Compute the wrist extension angle such that the human hand is able to grasp the exoskeleton’s
hand grip. Adjust the hand end-effector to match the position of the Armeo’s end-effector at
the hand grip.

5. Calculate the forearm pronation/supination angle such that the wrist’s extension/flexion axis
matches the orientation of the Armeo’s hand grip longitudinal axis with respect to the human
forearm pronation/supination axis.

6. Adjust the human forearm and hand end-effector coordinate systems to match the orientation
of the forearm and Armeo’s end-effector coordinate systems respectively.

The result of the initialization process is depicted in Figure III-E.2.7.

Alignment 
with the 
GH joint

Match
of the 

human
and robot
coordinate
systems

Figure III-E.2.7: Result of the initialization procedure.

III-E.2.4 Implementation

To implement the proposed method the Virtual Robot Experimentation Platform (V-REP) was
used [63], which is an open source robotics simulator. V-REP provides tools to easily and efficiently
create kinematic models of rigid multi-body systems and to solve IK problems. Using the simulator,
a scene was created, which contains both the human upper body and Armeo kinematic models
(Figures III-E.2.2 and III-E.2.3). The weights of the human kinematic model were adjusted (section
III-E.2.3.5.2) and the simulator’s IK module was configured to include the kinematic constraints
(section III-E.2.3.4).
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The source code of the simulator was compiled, modified and integrated into our rehabilitation
platform. Custom classes and functions were programmed to allow easy data exchange among the
Armeo, the rehabilitation game platform and the IK module of the simulator.

The limb posture estimation process consists of the following steps:

1. Obtain the angles of the Armeo’s joints by using hardware and software interfaces provided
by Hocoma [55].

2. Use the obtained angles to update the joints angles of the Armeo’s kinematic model in the
simulator.

3. Retrieve the angles of the joints of the human model computed by the simulator’s IK module.

Computing the inverse kinematics of our upper limb kinematic model, once the Armeo model is
updated in the simulator with the real joint measurements of the exoskeleton, takes less than 4ms
on a 2.13 GHz dual-core CPU. Therefore, the implemented method is suitable for real-time posture
estimation without using high-performance hardware.

After the joint estimates are produced, we use them to update the patient avatar in VR games.
We also store them in a database for a posterior patient assessment.

Figure III-E.2.8 presents an user test of the limb posture estimation algorithm feeding the Armeo
kinematic model in the simulator (in real-time) with the Armeo Spring joint positions measured by
its encoders. This figure presents the posture of the test subject and Armeo Spring in parallel with
estimations of the user posture in the simulator. The test subject performed:

(a) Reaching exercises, in which the subject recreated the postures of his arm to reach and grab
objects that are close to his body (Fig.III-E.2.8(a)). These exercises are frequently practiced
during the arm rehabilitation.

(b) Extreme region exercises, in which the subject positioned his hand in the boundaries of his
arm workspace (Fig.III-E.2.8(b)). These exercises result challenging for the subject and are
less likely to occur during the therapies due to its difficulty.

III-E.2.4.1 VR Games

Currently, we have implemented two types of games for the robot-assisted upper limb rehabilitation
therapy. The first type of games focuses on the rehabilitation of reaching movements. The second
type of games addresses the rehabilitation of analytic movements of the GH, elbow and wrist joints.

III-E.2.4.1.1 Reaching rehabilitation

Reaching rehabilitation is performed by training the movements that are required to reach and
grasp objects with the hand. These exercises involve several joints of the upper limb, and therefore,
they are considered complex.

To train these exercises, we have programmed a game in which the patient controls the movement
of a virtual human arm by moving his own arm (Fig. III-E.2.9(a)). The target of the patient is to
reach a specific object (e.g. cube) in the scene, grab it, and bring it to a releasing area (e.g. green
circle).

58



Figure III-E.2.8: Test subject in parallel with estimations of his posture in the simulator. Subfigure
(a) shows reaching exercises and Subfigure (b) shows extreme region exercises.
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(a) Reaching game

(b) Analytic game (c) Medical Interface

Figure III-E.2.9: Games and Medical Interface.
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III-E.2.4.1.2 Analytic movements rehabilitation

According to motor learning theories, the training of analytic movements constitute the first step
into learning complex motor tasks. In such a step, simple movements involving few DOFs of the
limb are practiced [64–66].

For this scenario, we have programmed a game (Fig. III-E.2.9(b)) in which the patient controls
the position of a spaceship, along the horizontal axis of the screen, by performing 1-DOF movements
with the wrist, elbow or GH joint. The target of the game is that the patient positions the spaceship
under an alien that moves along a vertical path from the top to the bottom of the screen. When
the position of the spaceship is correct, it fires a gun and destroys the alien.

For both games, the limitations of the mobility of the patient are identified in a calibration
phase, guarantying that the target of the games is properly located. Other game parameters
(number of executions, max execution time per task, target size, etc.) are adjusted through the
medical interface (Fig.III-E.2.9(c)). The medical interface allows the physician to select the games
for the training, configure its parameters and review metrics related to the performance of the
patient during a game.

The VR games were programed with the OpenSceneGraph API [67], which allows to animate
deformable virtual objects and create scenes with dynamic simulations using the Bullet Physics
package. The graphic rendering of the VR Game runs at 30 frames per second using a ATI Radeon
HD 4600 GPU, which is a mid-range graphic card.

During the therapy, the patient sees the VR scene. The kinematic models are used for IK
computations and they are not displayed.

III-E.2.5 Evaluation

In order to determine the accuracy of our developed method, the joint angles of 4 voluntary healthy
male test subjects (average age 34 years) were measured by using an optical tracking system and
compared with the angles obtained from our posture estimation algorithm during the execution of
typical (in this case, analytic movements) robot-assisted rehabilitation exercises. As discussed in
section III-E.2.4.1.2, the rehabilitation of analytic movements is a necessary step before addressing
the rehabilitation of complex motor tasks.

The specific exercises performed by the test subjects were:

1. Wrist flexion/extension (WFE)

2. Elbow flexion/extension (EFE)

3. Forearm pronation/supination (FPS)

4. Simultaneous elbow flexion/extension and forearm pronation/supination (SEFEFPS)

The evaluation of our method has been conducted without performing any previous setting or
automatic adjustment of the weights or other parameters of the approach in order to reduce the
estimation errors. However, algorithm training might be used in the future to improve the method’s
performance.
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III-E.2.5.1 Measurement of the upper limb joint angles

A detailed explanation of the method that was used to measure the human joint angles would merit
an additional manuscript. Nevertheless, a basic description of this method is provided next.

In order to measure the limb joint angles of the test subject, we use a Polaris Spectra® optical
tracking system (OTS) [68]. In order to track the limb movements, it is necessary to install on
test subject limb a set of rigid bodies with passive markers. By detecting these passive markers
(reflective spheres), the OTS is able to compute the position and orientation of each rigid body.

One rigid body (reference rigid body) is used as the coordinate system of reference for the
measurements of the OTS. The position and orientation of the other rigid bodies (mobile rigid
bodies) are computed with respect to the reference rigid body.

The reference and mobile rigid bodies are installed on different arm segments (i.e., upper arm,
forearm and hand) according to the joint angle to be measured. Table III-E.2.2 shows the in-
stallation of the reference and mobile rigid bodies for each of the joint angles that we measured.
Fig.III-E.2.10 shows the configuration of the rigid bodies to measure the elbow flexion/extension
angle.

Table III-E.2.2: Installation of the reference and mobile rigid bodies in the evaluation.

Angle to
measure:

Reference rigid body
installed on:

Mobile rigid body
installed on:

WFE Forearm Hand
EFE Upper arm Forearm
FPS Upper arm Forearm

Reference
rigid body

Mobile rigid body

Figure III-E.2.10: Setup for the quantitative assessment of the estimation errors in elbow flex-
ion/extension exercise.

In order to measure the human joint angles, we have adapted the method presented in [69],
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which is originally proposed to be used with IMMSs, to implement it by using an OTS. In [69] it is
proposed to measure the joint angles by following the next steps:

1. Compute a reference coordinate system for the joint of interest. A subset of the axes of the
resulting coordinate system match with the axes of rotation of the joint. The position and
orientation of the joint coordinate system is defined with respect to the reference rigid body.

2. Compute the orientation of the mobile rigid body with respect to the joint coordinate system.

3. Compute the joint angles that result from rotations of the mobile rigid body by using Euler-
angles decomposition. The rotations of the mobile rigid body are caused by the exercising of
the subject joint.

To build an orthogonal right-handed coordinate system of reference for the joint, we identify
each axis of rotation of the joint, as proposed in [69].

To identify each rotation axis of the joint, we use the instant helical axis method described in
[70]. A rotational axis of the joint is computed from the kinematic data of the mobile rigid body
while the subject performs 1-DOF movements of the joint.

In contrast to the proposal presented in [69] to compute the wrist joint coordinate system,
we build this coordinate system by identifying only the flexion/extension axis, given that the ul-
nar/radial deviation cannot be trained with the Armeo Spring.

Accuracy of the limb joint angles measurement method
In motor rehabilitation, goniometry is the standard method to measure the angle at the patient

joints. This is a manual method, and therefore, its efficacy depends on the examiner experience
[71]. One of the limitations of this method is that it provides a resolution (minimal detectable
change) in measuring limb joint angles of about 8 degrees [72]. In other words, this method should
not be used to measure angles smaller than 8 degrees, because in those cases measurements present
large uncertainty.

Alternative approaches to measure the patient limb joint angles are IMMS-based methods. One
of the methods that provide better accuracy than goniometry is presented in [43]. This method
provides a measurement accuracy characterized by a RMSE of less than 3.6 degrees. The authors of
the mentioned work conclude that this accuracy is proper for measuring elbow and shoulder angles
of clinical relevance in ambulatory settings.

In tests with an artificial 1-DOF joint, the method to measure the limb joint angles that we
have adapted from [69], allowed us to estimate the joint angle with a RMSE smaller than 1 degree.
According to a comparison with the accuracy provided by the reviewed methods, we conclude that
the method proposed by [69] to measure the limb posture is valid to determine the accuracy of our
proposed limb posture estimation method.

III-E.2.5.2 Protocol

Table III-E.2.3 summarizes the main features of the evaluation that we have conducted.
For each trial of the evaluation exercises we performed the following steps:

1. Compute the joint coordinate system corresponding to the evaluation exercise (section III-
E.2.5.1).

2. Instruct the subject to perform the corresponding evaluation exercise until the number of
desired joint angle measurements are taken.
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Table III-E.2.3: Summary of main features of the evaluation tests.

Number of test
subjects

Number of
exercises

performed by
each test subject

Number of trials
per exercise

Joint angles
measurements

per trial

4 4 (WFE, EFE,
FPS and

SEFEFPS)

4 2960 at 66.6 Hz

3. Compute the RMSE in the estimation of each joint angle by comparing the measured angle
with the estimation provided by our algorithm.

4. Compute the ROM of the subject movements from the measured angles.

During the execution of the evaluation exercises the amplitude, speed and the number of cycles
of the movements in each trial were left to the discretion of each test subject. In the evaluation,
the VR games were not executed, given that they are not necessary to assess the accuracy of the
posture estimation algorithm. Furthermore, in this way the influence of the VR games on the
subject movement amplitude, speed and repetitions is avoided, which derives in a richer variety of
movement features in the evaluation exercises.

However, it is worth mentioning that the joint limits of the exoskeleton, the need to avoid
occlusions of the passive markers on the rigid bodies attached to the test subject, and the limited
detection volume of the OTS do constraint the subject’s movements.

III-E.2.6 Results and Discussion

In this section, we present the results of the experiments described in section III-E.2.5. Tables
III-E.2.4, III-E.2.6, III-E.2.7 and III-E.2.8 (angles expressed in degrees) present the average RMSE
obtained in the estimation of the angle of interest by using our proposed algorithm. Each table
presents the average ROM of the movement performed by each test subject. The average RMSE
and ROM metrics mentioned previously are obtained from the 4 trials that each subject performed
for each exercise. The last row in the tables presents the average values of each of the computed
metrics for all subjects.

N.B.: in this section we compare our results against freely moving subject cases reported in
literature. We resort to such free movement cases since we found no reports concerning estimations
errors of the wrist or elbow angles in limbs constrained with exoskeletons.

III-E.2.6.1 Wrist Flexion/Extension

Table III-E.2.4 presents angle estimation statistics for Wrist Flexion and Extension. The ROM
exercised by the subjects presents small variability and seems not to correlate with RSME. However,
we did observe that subjects 1 and 2 performed slow movements while subjects 3 and 4 moved fast.
Such a difference reflects on the RMSE values.

To elaborate on this point, we present in Fig.III-E.2.11 the history of the measured vs. estimated
angle, for subjects 1 and 3. The sampling span is 250 (approx. 3.75 seconds). The motion features
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Table III-E.2.4: Estimation errors in wrist flexion/extension exercise (units in degrees).

Subject Average WFE RMSE Average WFE ROM
1 1.137 53.389
2 1.432 54.824
3 3.282 63.869
4 3.555 53.977

Average 2.351 56.265

of the movements shown in Fig.III-E.2.11 are summarized in Table III-E.2.5. In such table, the
time delay aspect refers to the time delay that the estimations provided by our algorithm present
with respect to the measured angles. The time delay is larger when the subject moves fast. This
causes the increment in the RMSE estimation values.

These results suggest that the response speed of our algorithm, given a change in the Armeo
joint angles caused by the movement of the human subject, allows to provide better estimates
when the subject moves slowly (as in rehabilitation therapy). In our algorithm, the response speed
largely depends on the damping constant used in the DLS method to solve the limb’s IK. By using
a smaller damping constant in the DLS method, the response speed can be improved, sacrificing
some stability.

Table III-E.2.5: Motion features for subjects 1 and 3 in WFE exercise.

Aspect Subject 1 Subject 3
Average Angular Speed (deg/s) 26 82

Time Delay (ms) 15 60

850 900 950 1000 1050
Samples

1100
-30

-20

-10

0

10

20

30

D
eg

re
es

Measured Angle
Estimated Angle

(a) Motion of subject 1

850 900 950 1000 1050
Samples

1100
-45

-20

-10

0

10

5

D
eg

re
es

-40

-35

-30

-5

-15

-25

Measured Angle
Estimated Angle

(b) Motion of subject 3

Figure III-E.2.11: Motion patterns of subjects 1 and 3 during a trial of wrist flexion/extension.

Nevertheless, the average RMSE obtained for all subjects shows a better performance of our
method with respect to reference [47], an optimization-based approach which presents errors around
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3.5 degrees. Compared to reference [44], which presents a IMMS-based method to estimate the wrist
angles with a RMSE of less than 3 degrees, our results are slightly better.

III-E.2.6.2 Elbow Flexion/Extension

In flexion and extension of elbow (Fig. III-E.2.12, Table III-E.2.6), involuntary movement along the
pronation/supination axis is not avoided. Therefore, small excursions in this DOF were observed.

For all subjects, our method over-estimates the amplitude of rotational movements about the
flexion/extension axis, when compared against the measured values (see Fig.III-E.2.12(a) for subject
2).

Table III-E.2.6: Estimation errors in elbow flexion/extension exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.636 36.948 0.980 4.148
2 1.553 33.897 1.408 4.921
3 2.815 49.333 2.187 5.216
4 4.381 36.442 1.128 7.160

Average 2.596 39.150 1.426 5.361

Our method performs better than the one in reference [47], in which the reported mean error in
estimating the flexion/extension angle is approximately 14 degrees. Compared to the approach in
reference [43], which uses a IMMS-based method, and presents a RMSE of 3.6 degrees in estimating
elbow and shoulder angles, our method also presents better performance.

We include in Table III-E.2.6 the estimation statistics for pronation/supination angle in order
to illustrate the performance of our method with small angular displacements. Fig.III-E.2.12(b)
displays the estimation and measurement of pronation/supination angle for a trial of subject 2. In
this figure, we observe that there is a under-estimation of the angle. However, it must be taken in
account that estimation errors for small ROMs are in the same order of the measurement method
accuracy (RMSE : 1 degree).

III-E.2.6.3 Forearm Pronation/Supination

Table III-E.2.7 and Fig.III-E.2.13 show the statistics of our method for forearm pronation/supination
angle estimation. We remark that motion in the elbow flexion/extension axis may occur during the
forearm pronation/supination exercise. Therefore, we also report (in Table III-E.2.7 and Fig.III-
E.2.13) the estimation results for the small angular movements around the flexion/extension axis.

The average RMSE in the estimation of the pronation/supination DOF of our method presents
an accuracy similar to the one of reference [43] (RMSE 3.6 degrees).

Figure III-E.2.13 shows the elbow angles estimation results for a trial of the FPS exercise of
subject 1. Fig.III-E.2.13(a) shows that estimations in the flexion/extension DOF, in which small
movements were performed, do not present the oscillations of the measured angle (RMSE 1.175
degrees). On the other hand, Fig.III-E.2.13(b) shows that estimations of the pronation/supination
angle are very close to the measured values.

For the pronation/supination angle, the worse estimations were obtained for subject 4, who
performed short but very fast movements, affecting the estimation accuracy as described in section
III-E.2.6.1.
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Figure III-E.2.12: Estimation results of the elbow angles during flexion/extension for trial of subject
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Figure III-E.2.13: Estimation results of the elbow angles during pronation/supination for a trial of
subject 1.
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Table III-E.2.7: Estimation errors in forearm pronation/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 1.221 5.799 1.965 70.453
2 1.799 7.395 2.639 48.500
3 1.627 9.691 4.147 90.527
4 1.132 2.459 4.568 37.717

Average 1.445 6.336 3.330 61.799

According to results presented here and in section III-E.2.6.2, it seems that for small movements
the estimation approach is slightly more sensitive to movements in the pronation/supination DOF
than on the flexion/extension DOF.

III-E.2.6.4 Simultaneous Elbow Flexion/Extension and Forearm Prona-
tion/Supination

Table III-E.2.8: Estimation errors in simultaneous elbow flexion/extension and forearm prona-
tion/supination exercise (units in degrees).

Subject Av. EFE RMSE Av. EFE ROM Av. FPS RMSE Av. FPS ROM
1 2.224 35.762 2.707 59.878
2 2.773 40.837 3.037 58.441
3 5.212 47.850 4.429 55.228
4 2.679 36.654 2.158 59.673

Average 3.222 40.276 3.083 58.305

The objective of this exercise is to evaluate how simultaneous movements of both DOFs of the
elbow affect the angle estimations for this joint. The results are presented in Table III-E.2.8. In
this table, it is shown that, for both elbow DOFs, the average of the RMSE for all the subjects is
similar to the one presented in [43] (RMSE 3.6 degrees).

This result also suggests that during the performance of a functional rehabilitation exercise,
such as reaching, in which simultaneous flexion/extension and pronation/supination movement is
necessary, the accuracy of the estimations would remain in an adequate range.

Figure III-E.2.14 presents the estimation results of a trial of this exercise of subject 4. In this
figure, it can be observed that estimations follow closely the measured angles.

III-E.2.7 Conclusions and Future Work

This article presents a method that can be applied to estimate the posture of the human limbs
during the interaction with exoskeletons by solving the limb IK problem extended with the kinematic
constraints of the exoskeleton fixations on the limb. The few approaches in the literature that deal
with limb posture estimation in a robot-assisted scenario are specifically designed to estimate the
arm posture. In contrast, the method that we propose provides a general formulation, which is not
specific to any human limb or exoskeleton. Our method is based on inverse kinematics and it can
be implemented using standard robotics libraries.
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Figure III-E.2.14: Estimation results of the elbow angles during simultaneous flexion/extension and
pronation/supination for a trial of subject 4.

In this paper, we have also shown the implementation of the method to provide upper limb
posture estimations, in real-time, using the Armeo® Spring. We have also presented the use of the
resulting limb postures estimations in the animation of avatars in VR rehabilitation games.

We have evaluated the accuracy of the estimations of our method during the performance of
analytic rehabilitation exercises of the wrist and elbow. The obtained results show that our approach
presents an accuracy that is better than the one provided by goniometry, which is the traditional
method to measure the patient angles in motor rehabilitation. Compared to the accuracy provided
by IMMSs-based methods, which are considered enough accurate to measure clinical relevant limb
joint angles in non robot-assisted scenarios, we have obtained very similar results.

Based on the mentioned results, we conclude that our approach can be used to (a) provide
a estimation of the pose of the human upper limb with enough accuracy to be used for avatar
animation in VR games and (b) to obtain the kinematic data for the patient assessment during
analytic training of the elbow and wrist.

Future work includes (a) the exploration of other approaches to model the flexible fixations of
the exoskeleton, (b) the definition of a set of weights for the human model joints that represent the
movement features of a set of human subjects and (c) a quantitative assessment of the performance
of our method in a functional rehabilitation scenario.
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Abstract

Robot-Assisted Rehabilitation (RAR) is an important scenario of treatment of patients affected by
nervous system injuries (e.g., Stroke, Spinal-Cord Injury). The accurate estimation of the joint
angles of the patient limbs in RAR is critical to assess the patient improvement. The economi-
cal prevalent method to estimate the patient posture in exoskeleton-based RAR is to approximate
the limb joint angles with the ones of the exoskeleton. This approximation is rough, since their
kinematic structures differ. Motion Capture Systems (MOCAPs) can improve the estimations, at
the expenses of considerable overload of the therapy setup. Alternatively, the Extended Inverse
Kinematics Posture Estimation (EIKPE) computational method models the limb and exoskeleton
as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the
Wrist and Elbow joints. This article presents the assessment of EIKPE with Elbow - Shoulder
compound movements (i.e. object prehension). Ground truth for estimation assessment is obtained
from an Optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE
rendering good numerical approximation of the actual posture during the compound movement
execution, especially for the Shoulder joint angles. This work opens the horizon for clinical studies
with patient groups, exoskeleton models and movements types.

Keywords: Limb Posture Estimation, Exoskeleton, Rehabilitation Robotics, Estimation Error,
Kinematics.

Glossary

ADL : Activity of Daily Living
CS : Coordinate System
DOF : Degree of Freedom
EFE : Elbow Flexion-Extension
EIKPE : Extended Inverse Kinematics Posture Estimation
GH : Gleno-Humeral
IK : Inverse Kinematics
MOCAP : Motion Capture System
RAR : Robot-Assisted Rehabilitation
ROM : Range of Motion
RMS : Root Mean Square
RMSE : Root Mean Square Error
SAA : Shoulder Abduction-Adduction
SFE : Shoulder Flexion-Extension
SIER : Shoulder Internal-External Rotation
VR : Virtual Reality
w.r.t. : with respect to
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III-E.3.1 Introduction

Robot-Assisted Rehabilitation (RAR) supplements conventional therapy in the treatment of nervous
system injuries (e.g., Stroke, Spinal Cord Injury, etc.), as robots enable repetitive, task-specific,
intensive and interactive treatment ([15–17]). In RAR, the accurate estimation of the patient limb
posture (i.e. determination of joint angles) is a fundamental prerequisite for:

1. The verification of the compliance of the patient movements with the prescribed exercises.
Patient movements must follow the medically prescribed ones, without using the healthy joints
to compensate for treated joints ([73,74]).

2. The long-term assessment of the patient evolution. Objective evaluation methods based on
the analysis of the patient kinematic data have been recently developed ([75–77]) to overcome
the limitations (subjectivity, low sensitivity [78]) of traditional scales (e.g. Barthel Index [79],
Functional Independence Measure [80]) to assess the functionality of a patient.

Traditional motion capture systems (MOCAPs), such as optical, electromagnetic and inertial
ones, have been used in many rehabilitation scenarios to accurately estimate the human posture
([81–83]). However, the use of the currently existing MOCAPs in exoskeleton-based RAR is im-
practical because the exoskeleton body causes optical occlusions and magnetic disturbances in the
MOCAP components. Furthermore, in RAR therapies involving functional electrical stimulation
(e.g. [84]) and / or electromiography the markers or sensors of the MOCAP interfere with the
setup. Even if MOCAP devises can be arranged to coexist with the exoskeleton, the operation is
complex and incompatible with the time and resources available for a typical patient appointment.
Therefore, they can be used in specific assessment sessions but not for daily patient attention.

In exoskeleton-based therapy, the prevalent approach to estimate the limb joint angles is to ap-
proximate them directly with the exoskeleton joint angles (e.g. [77,85–87]). However, the accuracy
of this strategy is limited by the differences between the kinematic structure of the patient limb
and exoskeleton ([75]). In the case of the upper limb (focus of this research), a direct accurate
measurement of the shoulder angles is particularly difficult, since it demands an exoskeleton with
a complex kinematic model that considers the simultaneous motion of the sternoclavicular and
acromioclavicular joints.

Computational methods in [29, 34, 88] for exoskeleton-based therapy estimate the arm swivel
angle, which parametrizes the arm pose ([89]), by solving the arm Inverse Kinematics (IK). In
the mentioned methods, the arm redundancy is solved by estimating a swivel angle that allows
the subject to retract the palm to the head efficiently. Results in [29, 34] are improved in [88] by
considering the effect of the wrist orientation on the swivel angle estimation. These references do
not report how the error in the swivel angle estimation is traced to individual errors in the wrist,
elbow, and Gleno-Humeral (GH) joint angles.

The method in [88] requires: (a) the position of the GH joint center, (b) the pose of the wrist,
(c) the initial position of the elbow and (d) a point in the head neighborhood that minimizes the
swivel angle estimation error. The unavailability of the required inputs in clinical scenarios makes
cumbersome to apply the method in [88] ([89, 90]).

Acknowledging different kinematic structures in limb and exoskeleton, Ref. [90] introduces
the EIKPE (Extended Inverse Kinematics Posture Estimation) method. EIKPE considers the
parallel kinematic chains Limb and Exoskeleton as related through the cuff constraints that fix
them together. EIKPE then solves the IK problem of the parallel chain, therefore finding the limb
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joint angles. The real - time EIKPE accuracy (circa 3 degrees RMS) is reported for (1) Wrist flexion
- extension, (2) Elbow flexion - extension, and (3) Forearm pronation - supination. Limitations of
Ref. [90] are (a) restriction to 1 DOF movements due to constraints in the ground truth reading
equipment, (b) Elbow and Wrist angle estimations.

III-E.3.1.1 Contributions of this article

The present manuscript complements Ref. [90] (see Table III-E.3.1) by addressing the training of
compound movements (simultaneous movement of multiple joints). In particular, it is shown how
EIKPE enhances the accuracy in the estimation of the GH joint angles with respect to (w.r.t.) the
exoskeleton-based approach. Specifically, this article:

(1) Illustrates the capacity of EIKPE in addressing compound movements (i.e. object prehension),
extending the results of Ref. [90], which had individual joint movements. This added com-
plexity requires the usage of (a) more evolved marker and camera sets, (b) a more complex
biomechanical and kinematic model, (c) an optimized posture estimation for full arms.

(2) Computes the error in the GH and elbow joint angles of EIKPE w.r.t. the measurements of a
marker-based optical MOCAP.

(3) Computes the error in the GH and elbow joint angles of the rehabilitation exoskeleton encoders
w.r.t the measurements of the MOCAP.

(4) Applies various statistical measures (RMSE, ROM Error, Box Plots, Significance Test) to assess
the differences between items (3) and (4), showing the feasibility of using EIKPE to enhance
posture estimates from exoskeletons.

Table III-E.3.1 shows further details on the differences and contributions of the present manuscript
when contrasted against related publications.

III-E.3.2 Materials and Methods

This section briefly introduces EIKPE and describes how the Ground-Truth values are used to
assess the accuracy of the angle estimations provided by EIKPE and exoskeleton joints.

III-E.3.2.1 EIKPE Method

Since the purpose of the present manuscript is the experimental assessment of the theoretical
construct in [90], only the key aspects of EIKPE are discussed here.

To estimate the angles of the limb joints of the patient (denoted by vector vH(t)) during RAR,
the human limb and exoskeleton are modeled as a parallel kinematic chain connected by the fixations
of the exoskeleton (Fig. III-E.3.1 (a)).

The elements that are considered inputs to the problem are (Fig. III-E.3.1 (b)):

1. Patient: The human limb kinematic model is denoted by H(LH , JH) (e.g., the Denavit-
Hartenberg parameters [91]), where LH and JH are sets of links and joints, respectively.
The human kinematic model used in EIKPE includes joints of the spine, Scapulo-Clavicular
system and arm. The upper limb is modeled with 9-DOF: 2-DOF of the Scapulo-Clavicular
system, 3-DOF of the GH joint (spherical joint), 2-DOF of the elbow and 2-DOF of the wrist.
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Table III-E.3.1: Contributions of this article w.r.t. closely related works.

Work Method Method Inputs Method Evaluation Metrics
[90] EIKPE ap-

plied to single
1-DOF joint
movements

(a) Exoskeleton and
Human link
lengths

(b) Exoskeleton joint
angles

(1) Studied angles: Elbow and wrist
joint angles

(2) Reference angles: Obtained from
marker-based MOCAP

(3) Movements: Single 1-DOF elbow
and wrist joint movements (wear-
ing the exoskeleton)

RMSE of elbow and
wrist angles

[88] Estimation of
the arm swivel
angle such
that the hand
is efficiently
retracted to-
wards the head
region

(a) Shoulder position

(b) Initial Elbow posi-
tion

(c) Wrist pose

(d) Point on the head
region that mini-
mizes the estima-
tion errors

(1) Studied angles: Arm swivel angle

(2) Reference angles: Obtained from
redundant marker-based MOCAP

(3) Movements: Compound move-
ments of (a) object reaching and
(b) rotation of a doorknob (not
wearing the exoskeleton)

Mean error of the arm
swivel angle

This
article

EIKPE applied
to compound
movements
(multi - DOF
and multi -
joint)

Same as [90]

(1) Studied angles: GH and elbow
joint angles

(2) Reference angles: Obtained from
redundant marker-based MOCAP

(3) Movements: Compound move-
ment of object prehension (wear-
ing the exoskeleton)

(i) RMSE and ROM
Error of the
GH and elbow
angle estimations
provided by the
Exoskeleton and
EIKPE

(ii) Statistical signifi-
cance test of the
results in item (i)
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Figure III-E.3.1: (a) Schematic diagram of the human and exoskeleton kinematic models and their
interaction. (b) Inputs and outputs of the limb posture estimation algorithm.
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2. Exoskeleton: The exoskeleton kinematic model is denoted by R(LR, JR). The exoskeleton
joint angles are denoted by vector vR. The values of vR at any instant t of the therapy (vR(t))
are known. In the rehabilitation platform where EIKPE is implemented the exoskeleton
corresponds to the Armeo Spring ® (Hocoma, AG) ([55]), which has 7-DOF.

3. Set of fixations M : The fixations M are passive mechanisms that connect the exoskeleton and
the patient. C(vH(t), vR(t)) is the set of vector-valued functions that model the kinematic
constraints imposed by the fixations M to the patient limb.

4. Set of ergonomic criteria E: E consists of a set of principles that dominate the posture of the
patient limb while interacting with the exoskeleton (e.g. the preference of the human to put
the limb in a rest posture vHrest). D(vH(t)) is the set of vector-valued functions that model
the kinematic constraints imposed on the patient limb by the set of ergonomic criteria E.

The goal of the implemented algorithm is to find the approximate angles of the joints of the
patient limb ṽH(t), such that the sets of constraints C and D are met.

In order to obtain the estimations ṽH(t), the IK of H(LH , JH) is solved considering the sets
of constraints C and D. The IK solution is obtained in real-time using the V-REP® simulator
(Coppelia Robotics, GmbH) ([63]). The joint angles of the Exoskeleton and EIKPE are sampled
with frequency fs = 60 Hz.

III-E.3.2.2 Ground-Truth Motion Capture and Analysis

III-E.3.2.2.1 Biomechanical Model

The biomechanical model (Fig. III-E.3.2) of the upper limb described in [92] was used as the
reference kinematic model for the assessment of the accuracy of EIKPE. This model was developed
in the software Visual3D� (C-Motion, Inc) ([93]) and presents 6-DOF: 3-DOF of the GH-joint
(spherical joint), 2-DOF of the elbow joint and 1-DOF of the wrist joint. The biomechanical model
can be scaled to match the anthropomorphic measures of each of the test subjects.

The biomechanical model includes virtual markers (gray spheres) that allow to reconstruct the
motion of the limb by using motion data from MOCAPs. In order to do so, the 3D positions of
the real markers (which were installed on the patient and tracked by a MOCAP) are treated as
the desired positions of the virtual markers. Then, the limb joint angles are computed by solving
the IK of the limb such that the position of the virtual markers match the position of the real
markers. The detailed geometry depicted in Fig. III-E.3.2 is only used for visualization purposes
and a simplified version is used in the IK computation. The joint angles obtained by using this
methodology are the ground-truth vH(t) angles.

III-E.3.2.2.2 Marker Placement Protocol

A total of 21 markers are installed on each test subject to precisely track the movement of the upper
limb. The markers are distributed on the subject arm and trunk as described in Table III-E.3.2
and Fig. III-E.3.3.

III-E.3.2.2.3 Motion Capture System

The CODAMOTION ® (Charnwood Dynamics Ltd) [94] is an optical-marker based MOCAP. This
MOCAP uses active markers that emit infrared light, which is detected by 3 sensor units (Fig.
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Figure III-E.3.2: Reference biomechanical model and virtual markers for motion reconstruction
([92]).

Table III-E.3.2: Marker setup for upper limb motion tracking.

Markers on bony landmarks Markers on body segments
Individual markers are located on:

1. Left and right acromion

2. Right iliac crest

3. Lateral and medial epicondyles of the
right elbow

4. Radial and ulnar styloid processes of
the right wrist

5. Third metacarpal head of the right
hand

Marker clusters (groups of 3 markers) are lo-
cated on:

1. Trunk

2. Upper arm

3. Forearm

4. Hand dorsal

Only the hand cluster is not rigid.

77



Rehabilitation 
exoskeleton

Marker 
clusters

Test subject

Individual
markers 

Marker 
batteries

Figure III-E.3.3: Setup of the markers (highlighted in yellow) of the MOCAP system.
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Figure III-E.3.4: Setup for motion capturing in RAR: (a) MOCAP sensor units and (b) their
distribution around the test subject.
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III-E.3.4 (a)). For the accuracy assessment experiments, the MOCAP sensor units are distributed
as depicted in Fig. III-E.3.4 (b). With the described marker setup, the marker position sampling
frequency is fc =200 Hz.

III-E.3.2.2.4 Experimental protocol

2.uObjectureaching1.uInitialization 3.uObjectugrasping

4.uProximalutransport 6.uDistalutransport5.uObjectuholdinguup 7.uObjectureleasing

Figure III-E.3.5: Stages of the prehension ADL. Black arrows indicate the approximate direction
of movement of the hand of the test subject.

The functional task that was chosen to conduct the accuracy assessment is the Activity of Daily
Living (ADL) of prehension, which has its stages shown in Fig. III-E.3.5. Notice that the prehension
task shares movement stages with other ADLs, such as drinking and eating, which are among the
most relevant tasks to rehabilitate ([95]).

The prehension movements are performed with the forearm pronation - supination and the wrist
flexion-extension DOFs blocked in the Exoskeleton in order to avoid marker occlusions during the
ADL movement (such joint blockage does not affect the angle estimation capabilities of the MOCAP
or EIKPE). The joint angles of the blocked DOFs are not studied in this work.

In the setup stage of this protocol, the lengths of the arm and forearm of each test subject
are manually measured and entered into the EIKPE software (as it would be done in a clinical
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application). The Exoskeleton arm and forearm link lengths are adjusted for every subject according
to the device manufacturer instructions. The Exoskeleton link lengths are also entered into the
EIKPE software. Next, the optical markers are installed on the subject and the MOCAP calibration
procedure is conducted.

After the subjects wear the Exoskeleton, they perform some practice trials with the Virtual
Reality (VR) game. In the VR game, the hand positions at the grasping and object holding
up stages are calibrated for each subject. For each test subject, 4 repetitions of the prehension
movement are recorded. Each prehension movement execution is limited to 20 seconds. A total of
4 healthy subjects participate in the movement recordings.

III-E.3.2.2.5 Signal Processing and Analysis

The accuracy assessment presented in this article involves the comparison of the upper limb joint
angle estimates that come from the following sources:

(a) The joint angles obtained from the MOCAP.

(b) The joint angles obtained from EIKPE.

(c) The joint angles obtained from the Exoskeleton encoders.

Table III-E.3.3 summarizes the measured angles of the joints of the upper limb, the methods
and reference coordinate systems (CS) used to compute such joint angles.

Table III-E.3.3: Method to compute the limb joint angles of interest with the various measuring
systems.

Limb
joint

Angle
Method to compute the limb joint angles

MOCAP EIKPE Exoskeleton
GH SFE Euler angle decomposition of

the rotations of the upper arm
marker CS w.r.t. the thorax
marker CS (Fig. III-E.3.3)

Euler angle decomposition of
the rotations of the upper arm
CS w.r.t. the Exoskeleton ref-
erence CS (Fig. III-E.3.6)

Angle of joint 2 (Fig. III-E.3.6)
SAA Sum of the angles of joints 0

and 1 (Fig. III-E.3.6)
SIER Angle of joint 6 (Fig. III-E.3.6)

Elbow EFE Euler angle decomposition of
the rotations of the forearm
marker CS w.r.t. the upper
arm marker CS (Fig. III-E.3.3)

Euler angle decomposition of
the rotations of the forearm CS
w.r.t. the upper arm CS (Fig.
III-E.3.6)

Angle of joint 4 (Fig. III-E.3.6)

In order to compare the various joint angle measurements along the execution of the prehension
movement, the obtained joint angle signals are filtered and synchronized as follows:

(a) Resampling and filtering. The joint angle profiles obtained from the MOCAP are resampled to
match the sampling frequency of the Exoskeleton and EIKPE. Then, a low-pass Butterworth
filter with a 5Hz cuttoff frequency is applied to all the obtained signals. Figs. III-E.3.7 (a-c)
show the angle estimations of the Elbow flexion of one of the trials of a subject after resampling
and filtering.

(b) Signal trimming. The joint angle profiles obtained from EIKPE and Exoskelton are manually
trimmed such that they approximately contain the same movement segment recorded with the
MOCAP. Fig. III-E.3.7 (d) shows the trimmed Exoskeleton and EIKPE estimations of the
movement trial mentioned in the previous step.
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Figure III-E.3.7: Signal synchronization process of elbow flexion angle estimations from a movement
trial.
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(c) Signal reference adjustment. The coordinate systems of reference of the MOCAP, EIKPE and
Exoskeleton are not registered to each other, which impedes to transform the angle estimations
to a common coordinate system to compare them. In order to compare the angle estimations,
they are related to each other by using the steady limb joint angles at the initialization posture
(subjects were asked to remain static in this posture for a few seconds). To do so, the joint
angles measured by the MOCAP at the initial stage of the movement are set as the initial values
for the angle estimations of the Exoskeleton and EIKPE. In this way, the estimations of the
joint movements performed w.r.t. the initialization posture can be compared. Fig. III-E.3.7
(e) shows an example of the result of this step.

(d) Temporal axis offset adjustment. A fine tuning in the aliment of the signals in the temporal
axis is performed by applying a time offset to the EIKPE and Exoskeleton estimations such
that their correlation with the MOCAP measurements is maximized. Fig. III-E.3.7 (f) shows
an example of the result of this step.

After synchronization of the joint angle signals, the following error metrics are computed:

1. Error in the estimation of the ROM. The amplitude of the Exoskeleton and EIKPE joint
angles are compared with the ones of the MOCAP.

2. RMS Error (RMSE) of the joint angle profiles. The RMS of the pairwise differences between
the joint angle profiles of the Exoskeleton and EIKPE w.r.t. the ones of the MOCAP are
computed.

The obtained ROM error and RMSE metrics of the Exoskeleton and EIKPE are compared with
a paired difference test to check if there is an statistically significant difference between their means
(confidence interval 95%).

III-E.3.3 Results and Discussion

The results of the experiments are summarized in Table III-E.3.4. This table presents the average
RMSE and ROM errors (± their standard deviation) of the joint angles measured by the Exoskeleton
and EIKPE for all the trials of the test subjects when compared to the joint angles provided by
the MOCAP (ground-truth). Around 12200 samples were compared to compute each of the RMSE
values presented in Table III-E.3.4. A Wilcoxon signed-rank test ([96]) was performed to check if
there is a statistically significant difference between the mean accuracy of the methods in estimating
the various joint angles and ROMs (by using the SPSS statistical analysis software (IBM Corp.)
[97]). Values in bold in Table III-E.3.4 indicate statistically significant differences between the
accuracy provided by the Exoskeleton and EIKPE.

III-E.3.3.1 Angle estimations of the GH joint

For the GH joint, EIKPE presents small errors in estimating the SFE and SAA angles and ROMs
w.r.t. the measurements of the MOCAP system. In comparison with the results obtained for the
SFE and SAA, a larger error is presented by EIKPE in the SIER angle and ROM estimation. In
order to explain the differences in the accuracy of the mentioned angles, consider that in EIKPE the
SFE and SAA angles can be computed from the movement constraints imposed by the Exoskeleton
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Table III-E.3.4: Error metrics (mean ± std. dev.) of the angle estimations provided by the
Exoskeleton and EIKPE. Values in bold indicate statistically significant differences in the accuracy
of the approaches (p− value ≤ 0.05).

Metric Exoskeleton EIKPE Improvementa

RMSE of SFE angle 8.367 ± 4.652 3.947 ± 0.888 53%
ROM Error of SFE angle 17.984 ± 11.621 5.723 ± 2.756 68%
RMSE of SAA angle 8.195 ± 4.577 3.304 ± 1.909 60%
ROM Error of SAA angle 16.900 ± 10.324 5.567 ± 4.701 67%
RMSE of SIER angle 16.195 ± 6.550 6.500 ± 3.116 60%
ROM Error of SIER angle 17.400 ± 12.608 6.921 ± 5.559 60%
RMSE of EFE angle 6.616 ± 1.370 5.782 ± 2.716 13%
ROM Error of EFE angle 8.756 ± 5.468 5.693 ± 3.698 35%
a Error reduction w.r.t. the Exoskeleton by using EIKPE.

on the upper arm. However, the estimation of the SIER angle involves information of the pose of
the forearm (which also depends on the elbow movement), and therefore is subject to additional
estimation and modeling errors.

In Fig. III-E.3.8, it can be observed that EIKPE joint movement profiles follow closely the
magnitude and direction of the ones estimated with the MOCAP. The movement trial depicted in
Fig. III-E.3.8 is a good example of the large errors in the estimation of the joint angles that are
produced by the misalignment of the axes of the Exoskeleton joints w.r.t. the ones of human joints.
Such misalignment causes under or over estimation of an angle and also failures in the estimation
of the direction of the motion.

Regarding the Exoskeleton accuracy in the estimation of the angles of the GH joint (Table
III-E.3.4), the worst results are for the SIER angle. In Fig. III-E.3.5, it can be observed how the
axis of rotation of the joint 6 of the Exoskeleton (Fig. III-E.3.6) is significantly misaligned with
the longitudinal axis of the upper arm in most of the ADL movement stages. Only in the object
hold up stage the alignment is better and the angle is estimated more accurately. Regarding the
Exoskeleton accuracy in the estimation of SFE and SAA angles, it was noticed that it is strongly
reduced when the subject mobilizes the scapulo-clavicular system.

III-E.3.3.2 Angle estimations of the elbow joint

In the case of the EFE angle accuracy, EIKPE presents a fair accuracy in estimating the angle
magnitude and ROM w.r.t. the measurements of the MOCAP. A source of error in the estimation
of the EFE angle is in the modeling of the elbow joint. Traditionally, the EFE DOF has been
modeled with a revolute joint with its rotation axis normal to both the upper arm and forearm
links ([98]), which is the one used in the EIKPE model. However, the angle between the EFE axis
of rotation and the upper arm and forearm longitudinal axes differs between subjects ([99]) and
even varies with the angle of flexion of the elbow ([100]). In the case of the MOCAP, the mentioned
axis of rotation is estimated by using markers installed on bony landmarks of the elbow at the
calibration stage of the system.

In the case of the Exoskeleton, notice that the axis of rotation of the joint 4 of the Exoskeleton
is always aligned with the vertical axis of the world (Fig. III-E.3.6). For the case of the movement
that the subjects performed, in which the forearm lies on the horizontal plane and reaches the height
of the chest, the angle of joint 4 fairly resembles the EFE angle of the subjects. However, it should
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be remarked that such accuracy will not be maintained when the EFE movement is performed in
other plane, as it occurred in the movement trial in Fig. III-E.3.8 (Object holding up stage).

III-E.3.3.3 Comparison of the accuracy of the Exoskeleton and EIKPE

Regarding the accuracy in the estimation of the GH joint, it can be observed in Table III-E.3.4
that EIKPE provides significantly better estimations for all the angles of the GH joint than the
Exoskeleton. With respect to the RMSE, the EIKPE errors are 50 to 60% less than the ones of the
Exoskeleton. Fig. III-E.3.9 (a) shows that the RMSE variance of EIKPE is significantly lower than
the one of the Exoskeleton for the GH joint angles. Regarding the ROM, the EIKPE errors are 60
to 68% less than the ones of the Exoskeleton (Fig. III-E.3.9 (b)). Statistically significant differences
between the means of the RMSE and ROM errors provided by the Exoskeleton and EIKPE were
found for all the GH joint angles.

With respect to the angles of the elbow joint, it can be observed in Table III-E.3.4 that EIKPE
provides slightly better estimations of the EFE angle and ROM than the Exoskeleton. However,
as shown in Fig. III-E.3.9 (a), the variance of the EIKPE RMSE for the EFE angle is larger
than the one of the Exoskeleton. The difference between the Exoskeleton and EIKPE accuracy is
more pronounced in the ROM where the EIKPE error is 35% less than the one of the Exoskeleton
(Fig. III-E.3.9 (b)). Nevertheless, the difference between the means of the RMSE and ROM errors
provided by the Exoskeleton and EIKPE is small and does not reach statistical significance. Table
III-E.3.5 shows the global RMSE and ROM errors for all the studied joint angles provided by the
Exoskeleton and EIKPE.

Table III-E.3.5: Global estimation accuracy of the studied joint angles and ROMs.

Error Metric Exoskeleton EIKPE Improvementa

Global Angle RMSE (deg) 10.526 5.055 52%
Global ROM Error (deg) 15.260 5.976 60%
a Error reduction w.r.t. the Exoskeleton by using EIKPE.

A visual guide of how the joint angle errors are mapped to the reconstructed pose of the upper
limb is shown in Fig. III-E.3.10. This figure presents a comparison of the reconstructed upper limb
poses at the object holding up stage of the movement trial depicted in Fig. III-E.3.8 with the joint
angle estimations provided by the MOCAP, EIKPE and Exoskeleton.

III-E.3.3.4 Comparison with related works

The conducted literature review did not produce any other citations than [29,34,88,90] in the area
of posture estimation of the upper limb in exoskeleton-based rehabilitation by using computational
methods. We consider that the method in article [88] would be the strongest competitor to EIKPE
(Table III-E.3.1). Notice that the arm swivel angle representation may suffice for the targeted
application in [88]. However, for the application addressed in this work (patient follow-up and
evaluation), the joint angles of the limb are required. A direct comparison of EIKPE with the
method in [88] is not possible because in this reference only the arm swivel angle is reported.

EIKPE accuracy is close to the ones of MOCAPs that deal with the upper limb posture esti-
mation in ambulatory settings (no robotic devices interacting with the subjects are involved). For
instance, the method in [83] presents an average RMSE of 5.5 deg. in the estimation of the angles
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Figure III-E.3.8: Measurement and estimations of the angles of the shoulder and elbow joints of one
of the trials of a test subject. Dashed lines bound the various stages of the prehension movement
(Fig. III-E.3.5).
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Exoskeleton and EIKPE for the assessed joint angles.
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(a) (b) (c)

Figure III-E.3.10: Reconstructed poses of the upper limb at the object holding up stage of the trial
depicted in Fig. III-E.3.8 with the joint angle measurements of the: (a) MOCAP, (b) EIKPE and
(c) Exoskeleton.

of the shoulder and elbow joints by using inertial sensors during the ADL movement of reaching
for a doorknob.

III-E.3.4 Conclusion

This article studied the feasibility of using the EIKPE method for the estimation of the patient
limb posture in the robotic-assisted rehabilitation (RAR) of the compound movement of object
prehension. In order to do so, the comparison of the estimations of the GH and elbow joint angles
provided by (a) EIKPE, (b) the joint encoders of a state-of-the-art commercial exoskeleton (typical
practice in RAR) and (c) an optical motion capture system (ground-truth) was conducted.

The performed test intended to replicate the conditions of use of EIKPE by an end-user. In
this way, the estimation of parameters that affect the method accuracy, such as the ones related to
the kinematic model of the human subject (arm, forearm and hand lengths) and to the exoskeleton
kinematic model (adjustable link lengths) was not optimized in any way.

The obtained results suggest that EIKPE is accurate for the application. The studied joint
angles were estimated with a RMSE of 5.055 degrees with respect to the measurements of the
optical motion capture system. EIKPE accuracy approaches the one of inertial MOCAPs, avoiding
the difficulty of using MOCAPs in RAR.

EIKPE improved markedly the accuracy of the estimations of the GH joint angles provided by
the Exoskeleton. Statistically significant differences were found in the accuracy of the Exoskeleton
and EIKPE for all the angles of the GH joint. EIKPE provided RMSE and ROM errors 52%
and 60%, respectively, smaller than the ones of the Exoskeleton for all the studied angles. This
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suggests that EIKPE may be used to enhance the accuracy in the estimation of the patient posture
in exoskeleton-based rehabilitation platforms.
Future Research Opportunities

The methodology introduced in this manuscript implies the following future activities for inter-
ested researchers: (a) Tests with a statistical significant sample of patients (e.g. Stroke, Spinal-Cord
Injury), (b) tests on other exoskeleton-based platforms, (c) tests with other compound movements.
All of these activities are a natural follow-up given the enhanced posture estimation via the fixture
constraints applied here.
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Abstract

In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the joint angles of the patient
limbs is critical to assess the therapy effectiveness. In RAR, the use of classic motion capture
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systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Gleno-Humeral (GH) joint
angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances.
Besides, the exoskeleton posture does not faithfully reflect the limb posture, as their kinematic
models differ. To address the mentioned limitations in posture estimation, we propose to install the
cameras of an optical marker-based MOCAP on the rehabilitation exoskeleton. Then, by combin-
ing the estimated marker poses and the exoskeleton Forward Kinematics, the GH joint angles are
estimated. Such hybrid system avoids the problems related to marker occlusions, reduced camera
detection volume and imprecise joint angle estimation due to the kinematic mismatch of the patient
and exoskeleton models. This paper presents the formulation, simulation and accuracy quantifi-
cation of the proposed method with simulated human movements. Also, a sensitivity analysis of
the method accuracy to marker position estimation errors, produced by system calibration errors
and marker drifts, is conducted. The results show that, even with significant errors in the marker
position estimation, the method accuracy is adequate for RAR.

Keywords: GH Joint Angle Estimation, Upper Limb Rehabilitation, Rehabilitation Robotics.
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Glossary

Acromion : Region of the scapula bone above the GH joint.
Clavicle : Bone of the shoulder girdle located at the root of the neck.
CS(s) : Coordinate System(s).
COMB : Combination of movements of the GH joint (SAbAd, SFE and SIR).
DOF(s) : Degree(s) of Freedom.
GH : Gleno-Humeral.
Humerus : Upper arm bone.
MOCAP(s) : Motion Capture System(s).
mts : meters.
RAR : Robot-Assisted Rehabilitation.
RMS : Root Mean Square.
Scapula : Bone that connects the humerus with the clavicle.
SAbAd : Shoulder Horizontal Abduction-Adduction.
SFE : Shoulder Flexion-Extension.
SIR : Shoulder Internal Rotation.
VR : Virtual Reality.
V-REP : Virtual Robot Experimentation Platform.
w.r.t. : With respect to.
E : Exoskeleton Kinematic Model.
H : Human Upper Body Kinematic Model.
M = {m0,m1}. Set of planar markers mounted on the patient.
pEG : Position of the GH joint w.r.t. the E CS.
pEelw : Position of the Elbow joint w.r.t. the E CS.
R = {r0, r1}. Set of vision sensors that compose the optical MOCAP.
vHG (t) : 3-tuple of joint angles of the GH joint at instant t.
vE(t) : Tuple of joint angles of the exoskeleton kinematic model at instant t.
TE
mi

: Transformation matrix of marker mi w.r.t. the E base CS.
T ri
mi

: Transformation matrix of marker mi w.r.t. the ri CS.
Tm0

G : Transformation matrix of the GH joint w.r.t. the m0 marker.
Tm1

elw : Transformation matrix of the elbow joint w.r.t. the m1 marker.
Notation xyz : x can be a position, transformation, etc. of object z w.r.t. object y CS.

III-E.4.1 Introduction

The application of Robotics and Virtual Reality (VR) to motor Neurorehabilitation (Fig. III-E.4.1)
has been beneficial for patients, as they receive an intensive, repetitive, task-specific and interactive
treatment ([15–17,101]).

The assessment of: (a) the compliance of the patient movements with the prescribed exercises
and (b) the patient long-term improvement is critical to plan and evaluate the effectiveness of RAR
therapies. In order to obtain the patient motion data to conduct the mentioned assessments, it
is necessary to estimate the patient posture (i.e. the joint angles of the limbs). The methods to
estimate the patient posture need to be practical and easy to set up for the physician, such that
the mentioned assessments can be indeed an integral part of the therapy.
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Figure III-E.4.1: Robotic and VR-based Rehabilitation.

Current methods to estimate the patient posture are cumbersome to use or not enough accurate
in exoskeleton-based therapies. In order to overcome such limitations, we propose a method in
which low-cost RGB-D cameras (which render color and depth images) are directly installed on the
exoskeleton and colored planar markers are attached to the patient limb to estimate the angles of
the patient GH joint, overcoming the individual limitations of each of these systems.

III-E.4.2 Literature Review

Optical, electromagnetic and inertial MOCAPs have been used in many rehabilitation scenarios for
accurate posture estimation ([81]). However, the use of the mentioned MOCAPs in exoskeleton-
based rehabilitation is limited by the factors that are discussed next:

1. Optical marker-based systems (e.g. Optotrack, CODA, Vicon) are considered the most accu-
rate systems for human motion capture ([81]). Ref. [102] reports Optotrack errors of 0.1 - 0.15
mm. However, in the specific case of exoskeleton-based therapy, these systems require redun-
dant sensors and markers to cope with occlusions caused by the exoskeleton body. Therefore,
their specific usage for therapy is limited. Besides, the cost of these systems is high (50K -
300K USD [103]) compared to non-optical MOCAPs.

2. Electromagnetic systems do not suffer from optical occlusions. However, they are easily
perturbed by surrounding metallic objects (e.g. exoskeleton body) and electric / magnetic
fields ([81]). An additional drawback of these systems is their limited detection volume when
compared to optical systems.

3. Inertial and Magnetic Measurement Systems are robust, handy, and economical for full-body
human motion detection (upper limb tracking in [104,105]). With the use of advanced filtering
techniques, the drift errors of inertial sensors is reduced and are able to achieve a dynamic
accuracy of 3 deg. RMS ([81]). However, these systems require performing calibration motions
/ postures, which may not be suitable for patients with neuromotor impairments.

In exoskeleton-based rehabilitation, the prevailing approach to estimate the human limb joint
angles (e.g. [77,85–87]), is to approximate them with the angles of the exoskeleton joints. However,
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misalignment between the axes of the exoskeleton and human joints may produce large estimation
errors ([75, 106]). In particular, the accurate estimation of the GH joint angles is hard to achieve
by using this approach, since it requires an exoskeleton with a complex kinematic structure that
considers the concurrent motion of the sternoclavicular and acromioclavicular joints.

Recognizing the differences in the kinematic structures of the limb and exoskeleton, Ref. [90]
presents a computational method that considers the Limb and Exoskeleton as parallel kinematic
chains related by the cuff constraints that fix them together. Then, the IK problem of the parallel
chain is solved to find the limb joint angles. A limitation of this method is that its performance was
demonstrated only for analytic (1-DOF movements) of the elbow and wrist joints. The accuracy in
the estimation of the GH joint angles remains to be determined.

Ref. [88] presents a computational method based on the estimation of the arm swivel angle
(which parametrizes the arm posture) for exoskeleton-based therapy. The arm IK is solved with
a redundancy resolution criterion that chooses a swivel angle that allows the subject to retract
the palm to the head efficiently. The approach in [88] extends their previous work in [29, 34] by
considering the influence of the wrist orientation on the swivel angle estimation. Although the error
of the swivel angle estimation (mean error ≈ 4 deg.) is reported for compound movements in [88],
the individual errors in the wrist, elbow, and GH joint angles are not indicated.

Ref. [107] extends the method in [88] to estimate the wrist angles and assesses its performance
for compound movements (mean RMSE ≈ 10 deg. in the swivel angle estimation). Ref. [107]
reports the individual errors of the arm joint angles only for the movement task in which the swivel
angle was best estimated (mean RMSE ≈ 5 deg. in the swivel angle estimation). No errors of the
arm joint angles are discussed for the other cases. A limitation of the work in Ref. [107] is that the
MOCAP used to obtain the reference angles to assess their method performance is a custom-made
inertial system with no reported measurement accuracy.

III-E.4.2.1 Conclusions of the Literature Review

We remind the reader that the general context of this article is the estimation of the GH joint
angles.

1. As per our Literature Review, no MOCAPs have been developed for the specific scenario
of exoskeleton-based rehabilitation. Even if current MOCAPs and the exoskeleton could
be arranged to be used simultaneously (e.g. [90, 106]), the setup protocol and operation is
intricate and conflicting with the typical time and resources available for patient treatment.

2. Exoskeleton-based posture estimations present limitations in their accuracy due to the kine-
matic mismatch of the limb and exoskeleton ([90,106]).

3. The accuracy of the estimations of the GH joint angles provided by the computational methods
in [88, 90] is unknown. Ref. [107] extends the work in [88] by estimating the wrist angles.
This work reports the accuracy in the estimation of GH angles for the best-case scenario and
the precision of its ground - truth MOCAP is not indicated.

III-E.4.2.2 Contributions of this Article

In response to the discussed limitations in the estimation of the patient joint angles in exoskeleton-
based therapy (sections III-E.4.2 and III-E.4.2.1), this article proposes, implements and assesses,
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in silico, a methodology to estimate, in real-time, the GH joint angles in RAR by using a hy-
brid approach composed by a low - cost marker-based vision system and the rehabilitation robot,
overcoming the individual limitations of its constitutive subsystems:

(a) Occlusions are minimized, which are a major limitation of optical systems.

(b) Accuracy of joint angle estimation is improved, which is a major limitation of exoskeleton-based
systems.

We consider the following scenarios of application of the proposed method in the RAR domain:

(A) Precise estimation of the GH joint angles during rehabilitation or evaluation sessions of analytic
movements of the GH joint.

(B) Acquisition of movement data of the GH joint that allow the validation and improvement of
other posture estimation methods without using expensive redundant optical MOCAPs.

III-E.4.3 Methods

III-E.4.3.1 Problem Definition

This section presents the problem of estimating the GH joint angles of the patient limb during the
RAR of the GH joint by using the proposed hybrid motion capture system (a detailed version of
the problem definition is presented in Appendix III-E.4.A). This problem can be stated as follows:

Given:

1. Patient: (a) The kinematic model (e.g., the Denavit-Hartenberg parameters [54]) of the human
upper limb (H) (Fig. III-E.4.2(a)).

2. Exoskeleton: (a) The kinematic model of the exoskeleton (E) and (b) the exoskeleton joint
angles at any instant of the therapy (vE(t)) (Fig. III-E.4.2(b)).

3. Marker-based optical motion capture system (R): (a) The color and depth information cap-
tured by the RGB-D cameras installed on the exoskeleton links and (b) the geometry and
color of the markers attached to the patient upper limb (Fig. III-E.4.2(c)).

Goal:
To estimate with minimum error the angles of the GH joint of the patient (vHG (t)) during the

GH joint rehabilitation exercises.

III-E.4.3.2 Kinematic Models

This section discusses the main features of the kinematic models of the human limb and exoskeleton
that were used for the posture estimation method.
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Figure III-E.4.2: Components of the GH joint angles estimation system: (a) Human kinematic
model, (b) Exoskeleton kinematic model, (c) Marker-based optical motion capture system, and (d)
Hybrid GH joint angles estimation system.
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III-E.4.3.2.1 Kinematic Model of the Human Upper Body

The human kinematic model is denoted by H(LH , JH), where LH and JH are the sets of links and
joints, respectively. We use the human upper body model presented in [90] (Fig. III-E.4.2 (a)),
which includes joints of the spine, scapulo-clavicular system and arm. The upper limb is modeled
with 9-DOF: 2-DOF of the scapulo-clavicular system, 3-DOF of the GH joint (spherical joint), 2-
DOF of the elbow and 2-DOF of the wrist (see further details in Appendix III-E.4.A). This model
presents the following advantages:

(a) It can be easily implemented in robotic simulators and similar tools.

(b) It is suitable to simulate the human-robot interaction in real-time ([90]).

(c) The spherical model of the GH joint avoids limitations of other representations of such joint,
such as the Gimbal lock that occurs when using the three concurrent and orthogonal 1-DOF
revolute joints model ([57]).

III-E.4.3.2.2 Kinematic Model of the Exoskeleton

The exoskeleton kinematic model is denoted by E(LE , JE), where LE and JE are the sets of links
and joints, respectively. In this investigation, the rehabilitation exoskeleton that we use is the
Armeo Spring (Fig. III-E.4.2(b)), which is a passive system that supports the weight of the arm
of the patient ([108]) by using springs. The Armeo kinematic structure includes rotational joints
(equipped with encoders [55,109]) and prismatic joints (which allow adjusting the exoskeleton to the
size of each patient). We use the Armeo Spring kinematic model presented in [90], which includes
both types of joints (see further details in Appendix III-E.4.A).

III-E.4.3.3 GH Joint Angles Estimation Method

The objective of the method is to estimate the angles of the GH joint with respect to (w.r.t.) a
coordinate system (CS) attached to the scapulo-clavicular system. Fig. III-E.4.2(d) shows the
proposed system for the GH joint angles estimation. Our approach is based on the estimation of
the upper arm orientation w.r.t. the acromion (Fig. III-E.4.3(a)). According to such requirements,
the rationale to install the markers of the optical MOCAP R is as follows:

(a) Marker m0 is rigidly installed on the acromion, such that the estimated upper arm orientation
can be expressed w.r.t. the m0 CS (and therefore w.r.t. the scapulo-clavicular system).

(b) Marker m1 is rigidly installed on the upper arm, such that all the rotations of the upper arm
are captured by m1. The region that was chosen to attach m1 to the upper arm by using a
custom-made fixation (Fig. III-E.4.2 (d)) is the distal part of the humerus (near the elbow).
The rotations of the elbow do not affect the orientation of m1.

Ref. [110] reports a five-marker installation procedure. This reference explicitly mentions five
markers as an acceptable number for clinical upper limb tracking. In this manuscript, we report
the usage of two markers for upper arm tracking. It is not possible to compare the performance
of the marker placement protocol proposed here with the one in [110] because the work in [110]
addresses: (a) non-RAR scenarios, (b) the tracking of the whole upper limb and (c) the sensitivity
of the protocol w.r.t. its application on the dominant / non-dominant arm and w.r.t. the age of
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Figure III-E.4.3: (a) Schematic diagram of the hybrid GH joint angles estimation system and (b)
high-level operation of the system.

the test subjects. However, the work in [110] helps to establish the number of markers that are
compatible with the clinical application of upper limb tracking.

The cameras of the optical motion capture system R are rigidly attached (by using custom-
made supports) to the links of the exoskeleton such that camera r0 is able to detect marker m0 and
camera r1 is able to detect marker m1 during the GH joint training. Camera r0 is mounted on link
lE0 and camera r1 is mounted on link lE8 (Fig. III-E.4.3(a)).

The cameras used in our system are low-cost. Commercial cameras that present similar spec-
ifications to the ones simulated here (Table III-E.4.1) are: Intel® SR300 (99 USD) [111, 112],
DepthSense® 525 (164 USD) [113,114] and CamBoard picoS (690 USD) [112,115].

Fig. III-E.4.3(b) shows an overview of the operation of the estimation method. In order to
estimate the pose of the upper arm, the poses of the markers need to be expressed w.r.t. a common
CS. A suitable CS to conduct such estimation is the exoskeleton base.

A summary of the steps to estimate the GH joint angles is the following:

1. Estimate the pose of the markers w.r.t. the cameras.

2. Estimate the pose of the cameras w.r.t. the exoskeleton.

3. Estimate the pose of the markers w.r.t. the exoskeleton.

4. Estimate the upper arm pose w.r.t. the exoskeleton.

5. Refer the angles of the GH joint w.r.t. the acromion (marker m0 CS).

The details of the mentioned steps are presented in the following sections.
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III-E.4.3.3.1 Estimation the Pose of the Markers w.r.t. the Cameras

The objective of this step is to estimate the position and orientation of the markers (Fig. III-E.4.4)
w.r.t. the CSs of the cameras by using the color and depth images provided by each camera ri:

(A) The RGB image is Ici (A×B pixels). The pixel coordinates (u, v) take values: 0 ≤ u ≤ A− 1
and 0 ≤ v ≤ B−1. Ci (1 × 3*A*B) contains the RGB color associated to each pixel (u, v) ∈ Ici .

(B) The depth image associated to the scene in Ici is Idi (L×N pixels). L ≤ A and N ≤ B. The
pixel coordinates (u, v) in Idi take values: 0 ≤ u ≤ L− 1 and 0 ≤ v ≤ N − 1. The CS of images
Ici and Idi is coincident. Di (1 × L*N*3) contains the (X, Y, Z) coordinates of the object in
each pixel (u, v) ∈ Idi w.r.t. the ri CS.

The pose estimation of the markers w.r.t. the cameras is based on the reconstruction of the 3-D
position of the colored disks on the markers. The following steps are taken to conduct the marker
pose estimation:

Cameras {r0,r1}

Markers {m0,m1}
mi geometric model 

3. Marker-based 
optical motion 

capture system R
Color images Ici (t)

3D point cloud iD (t)
Estimation 
of the pose 
of markers 

w.r.t.
cameras

Pose of 
markers 

Tri
mi

(t)

Figure III-E.4.4: Schematic diagram of the iterative estimation of the pose of the markers.

(1) Estimation of disk coordinates in color image (Fig. III-E.4.5): The goal of this step is to find the
approximated (u, v) coordinates of the centers of the marker disks in image Ici . The following
steps are conducted:

(a) Color segmentation on image Ici : Image regions containing the colors of the marker disks
are preserved and the remaining regions are assigned with a different color. The resulting
image is defined as Isci .

(b) Blob extraction on image Isci : Blob extraction consists in finding the connected regions in
the image Isci that share the same color and to label them according to their color.

(c) Disk center coordinates estimation: For each j (j = 0, . . . , n) blob extracted from Ici ,

the position p̃
Ic
i

j ∈ Z2 of the center of a bounding box for the blob is obtained. This

point approximates the actual center of disk p
Ic
i

j (Fig. III-E.4.5). The resulting set of the

approximate coordinates of the disks centers in Ici is P̃ Ic
i =

{
p̃
Ic
i

0 , . . . , p̃
Ic
i

j , . . . , p̃
Ic
i

n

}
. The

Z2 center coordinates are referenced w.r.t. the internal image CS. Blobs are extracted
with standard connected-component labeling algorithms.

99



(a) (b) (c)
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Figure III-E.4.5: Estimation of disk coordinates in color image. (a) Simulated RBG image, (b)
result of the color segmentation (zoomed image) and (c) result of the blob extraction (zoomed
image).

(2) Estimation of disk coordinates in the camera ri CS: This step converts disk coordinates in the
internal image CS to the R3 ones w.r.t. the ri sensor CS, as follows:

(a) Convert to the image Idi CS the positions (u, v) of the disk centers in set P̃ Ic
i . The CSs of

images Ici and Idi match. Hence:

p̃
Id
i

j =

( L−1
A−1 0

0 N−1
B−1

)
p̃
Ic
i

j . (III-E.4.1)

(b) Compute the indices a
Id
i

j of the (X, Y, Z) coordinates of point p̃
Id
i

j in array Di, as follows:

a
Id
i

j (x) = 3 ∗ (p̃
Id
i

j (u)) + L ∗ (p̃
Id
i

j (v))

a
Id
i

j (y) = 3 ∗ (p̃
Id
i

j (u)) + L ∗ (p̃
Id
i

j (v)) + 1

a
Id
i

j (z) = 3 ∗ (p̃
Id
i

j (u)) + L ∗ (p̃
Id
i

j (v)) + 2.

(III-E.4.2)

The point p̃rij contains the (X, Y, Z) coordinates of point p̃
Id
i

j w.r.t. the ri CS. The
coordinates of point p̃rij are obtained as follows:

p̃rij (x) = Di[a
Id
i

j (x)]

p̃rij (y) = Di[a
Id
i

j (y)]

p̃rij (z) = Di[a
Id
i

j (z)].

(III-E.4.3)

The approximated marker disk centers detected by camera ri form the set P̃ ri =
{
p̃ri0 , . . . , p̃

ri
j , . . . , p̃

ri
n

}
.

(3) Computation of the markermi CS in the ri camera CS: An SO(3) coordinate frame T ri
mi

=
[
V̂xV̂yV̂zOmi

]
is attached to each marker.
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(a) Make
Omi

= ( 1
n+1 )

∑n
j=0(p̃

ri
j ). (III-E.4.4)

(b) Use the four disk centers in the marker (Fig. III-E.4.5) as follows:

�Vx = ( 12 )((p̃
ri
0 − p̃ri1 ) + (p̃ri2 − p̃ri3 ))

�Vy = ( 12 )((p̃
ri
2 − p̃ri0 ) + (p̃ri3 − p̃ri1 ))

V̂z = V̂x × V̂y.

(III-E.4.5)

The sub-matrix
[
V̂xV̂yV̂z

]
is normalized to guarantee its SO(3) nature. The frame T̃ ri

mi

describes the estimated pose of marker mi w.r.t. the CS of the camera ri.

III-E.4.3.3.2 Estimation of the Pose of the Cameras w.r.t. the Exoskeleton

2. Exoskeleton E
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Pose of 
exoskeleton 
links          TE

lj
E (t)Joint angles 

VE(t)

Pose of 
cameras 

w.r.t. E links 
{    ,     } Tr0

El0 Tr1

El8

Estimation 
of the pose 
of cameras 

w.r.t. 
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Figure III-E.4.6: Schematic diagram of the iterative estimation of the pose of the cameras.

The goal of this step is to find the transformation TE
ri , which expresses the pose of the camera

ri w.r.t. the base of the exoskeleton (Fig. III-E.4.6).

The rigid transformation matrices T
lE0
r0 and T

lE8
r1 ∈ R4×4, which describe the pose of the cameras

ri w.r.t. the CS of the link where they are installed on, are estimated during the calibration of
the system (the calibration matrix can be obtained by detecting with the camera a 2-D / 3-D
calibration object mounted on a known location of the exoskeleton). The poses TE

lE0
and TE

lE8
of the

exoskeleton links lE0 and lE8 w.r.t. to the exoskeleton base CS are computed by using the Forward
Kinematics of exoskeleton E. Then, TE

r0 and TE
r1 are estimated as:

T̃E
r0 = T̃E

lE0
∗ T̃ lE0

r0

T̃E
r1 = T̃E

lE8
∗ T̃ lE8

r1 .
(III-E.4.6)
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Figure III-E.4.7: Schematic diagram of the iterative estimation of the pose of the markers w.r.t.
the Exoskeleton CS.

III-E.4.3.3.3 Estimation of the Pose of the Markers w.r.t. the Exoskeleton

The objective of this step is to estimate the transformation (TE
mi

) that describes the pose of marker
mi w.r.t. the exoskeleton base CS (Fig. III-E.4.7). Transformations TE

mi
are estimated as follows:

T̃E
m0

= T̃E
r0 ∗ T̃

r0
m0

T̃E
m1

= T̃E
r1 ∗ T̃

r1
m1

.
(III-E.4.7)

III-E.4.3.3.4 Estimation of the Upper Arm Pose w.r.t. the Exoskeleton

GH and elbow 
joints pose 

w.r.t. markers 
{       ,      } TG

m0 Telw
m1

1. Patient H

Kinematic 
model H(LH,JH)

Upper arm pose
estimation

   GH Joint
angles      vG

H

Pose of markers TE
mi

(t)

(t)

Figure III-E.4.8: Schematic diagram of the iterative estimation of the upper arm pose.

The purpose of this step is to estimate the upper arm pose (TE
arm) w.r.t. the exoskeleton base

CS by using the marker poses TE
mi

(Fig. III-E.4.8). The upper arm direction vector is computed
from the estimated position of the end-points of the upper arm (GH and elbow joint centers) as
follows (CSs in Fig. III-E.4.9):

(1) Estimate the position of the GH joint center: The rigid transformation matrix Tm0

G , which
expresses the pose of the GH joint CS w.r.t. the m0 CS, is estimated during the calibration
process of the system. Hence, the GH joint center is estimated as follows:
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(a) Estimate TE
G , which is the pose of the GH joint CS w.r.t. the exoskeleton E base CS (Eq.

III-E.4.8).

(b) Extract pEG from TE
G . The point pEG is the position of the center of the GH joint seen from

the E CS.

T̃E
G = T̃E

m0
∗ T̃m0

G . (III-E.4.8)

(2) Estimate the position of the elbow joint center: The rigid transformation matrix Tm1

elw (elbow
joint CS w.r.t. the m1 CS) is estimated during the calibration process of the system. Hence,
the elbow joint center is computed as follows:

(a) Estimate TE
elw, which is the pose of the elbow joint CS w.r.t. the exoskeleton E base CS

(Eq. III-E.4.9).

(b) Extract pEelw from TE
elw. The point pEelw is the position of the center of the elbow joint seen

from the E CS.

T̃E
elw = T̃E

m1
∗ T̃m1

elw. (III-E.4.9)

(3) Estimate the upper arm position:

(a) Estimate the arm direction vector as: V̂arm = (p̃EG − p̃Eelw)/
∥∥p̃EG − p̃Eelw∥∥.

(b) Estimate the origin of the upper arm CS as: p̃Earm = 1/2 ∗
∥∥∥~Varm∥∥∥ ∗ V̂arm + p̃Eelw.

(4) Estimate the upper arm orientation: The estimated orientation of the upper arm is computed
by using Euler angle YXZ decomposition w.r.t. the base CS of exoskeleton E:

(a) Estimate the rotation of the arm around the Y-axis of the E CS by using the projection
of V̂arm on the X-Z plane of the fixed E CS.

(b) Compute the rotation of the arm around the mobile X-axis of E CS from the inner product
of V̂arm with the mobile Z-axis of E CS.

(c) Estimate the rotation of the upper arm around its longitudinal axis ~Varm as the rotation
of the marker m1 around vector V̂arm. This angle is the one between (i) the mobile X-axis
of E CS and (ii) the projection of X-axis of marker m1 CS onto the X-Y plane of E CS.

(5) Express the pose of the upper arm w.r.t. the E base CS as the 4x4 rigid transformation TE
arm.

III-E.4.3.3.5 Refer the Angles of the GH joint w.r.t. the Acromion

Since m0 is rigidly attached to the acromion, the upper arm orientation can be expressed w.r.t. the
acromion by using the inverse of TE

m0
:

T̃m0
arm = T̃m0

E ∗ T̃E
arm. (III-E.4.10)
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(a) (b) (c)

Figure III-E.4.10: GH joint movements: (a) flexion-extension (SFE), (b) horizontal abduction-
adduction (SAbAd) and (c) internal rotation (SIR).

III-E.4.3.4 Implementation and Simulation

The arm posture estimation method was implemented by using the V-REP robotics simulator ([63]).
In the simulator, the scene in Fig. III-E.4.2(d) is created, which includes the models of: (a) a human
patient, (b) an Armeo Spring, (c) the RGB-D vision sensors with the couplings to attach them to
the exoskeleton and (d) the planar markers with the couplings to attach them to the human arm.
The configuration of the simulated vision sensors is summarized in Table III-E.4.1.

Table III-E.4.1: Vision Sensor Features.

Color camera resolution (px): 128×128
Depth camera resolution (px): 128×128

Field of view (deg.): Horizontal= 45 ;Vertical= 45
Minimum sensing distance (meters): 0.05
Maximum sensing distance (meters): 0.3

For the estimation of the coordinates of disk centers P Ic
i in the image Ici , color segmentation

and blob detection algorithms available in the simulator were used. Additional code was written
to sort blob centers by color. All additional code was written in LUA (Lightweight embeddable
scripting language) scripts.

III-E.4.3.4.1 Generation of the Ground-Truth Poses of the Patient Upper Limb dur-
ing RAR

The accuracy of the proposed method is determined by comparing its estimations of the upper arm
poses with the ones of the simulated human patient (ground-truth values of Tm0

arm). To generate
movements of the simulated patient that resemble the ones of therapy, we performed the next steps:

1. Armeo movement generation: We recorded 4 time sequence datasets of the actual Armeo
joint measurements (sampled at 66.6 Hz) while performing the following shoulder movements
(Fig. III-E.4.10): (a) horizontal abduction-adduction (SAbAd), (b) flexion-extension (SFE),
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(c) internal rotation (SIR) and (d) a combination of all the mentioned movements (COMB).
These movement history datasets are used to guide a simulation of the Armeo model.

2. Patient movement generation: The movements of the patient upper limb that correspond to
the recorded movements of the Armeo, are computer-generated with the method in [90]. Such
method provides an estimation of the patient posture given the joint angles of the exoskeleton
by using an inverse kinematics approach.

In this way, four sets (one per movement dataset) of known poses of the upper arm are obtained
by simulating the patient movement and compared here with the ones estimated with our method.
Our method accuracy is assessed without compensating any time offsets between the reference and
estimated angles. In this way, the real-time accuracy of the method is assessed. Table III-E.4.2
presents the approximate amplitudes of the YXZ Euler angle decomposition of the movements of
the GH joint of the simulated patient w.r.t. its local CS.

Table III-E.4.2: Movement Dataset Features.

Movement Dataset: Amplitude (deg) Samples
SAbAd (6◦, 31◦, 10◦) 1000

SFE (31◦, 8◦, 1◦) 1000
SIR (3◦, 3◦, 34◦) 1000

COMB (40◦, 90◦, 60◦) 2000

III-E.4.3.4.2 Measurement of the Estimation Performance

1. Error in the estimation of the markers position: The error in the position estimation of
markers mi is computed as the RMS of expression emi

pos =
∥∥pEmi

− p̃Emi

∥∥, where i ∈ {0, 1}.

2. Error in the estimation of the arm pose: The error in the arm position estimation for a GH
joint movement dataset (earmpos ) is computed as the RMS of ‖pm0

arm − p̃m0
arm‖ for all the samples

in the movement dataset.

To quantify the error in the estimation of the arm orientation (earmori ), the next steps are
conducted:

(a) Compute the matrix of rotation error Roterror = Rotm0
arm ∗

(
R̃ot

m0

arm

)−1

where Rotm0
arm

and R̃ot
m0

arm are the rotation submatrices of transformation matrices Tm0
arm and T̃m0

arm,
respectively.

(b) Express Roterror in exponential map notation ([57]) as ~earmori ∈ R3.

(c) Compute earmori as the RMS of
∥∥∥ ~earmori

∥∥∥ for all the samples in the movement dataset.

III-E.4.3.5 Sensitivity Analysis

A sensitivity analysis is conducted to study the influence of relevant parameters on the method ac-
curacy. Formally, the sensitivity analysis determines the effect of the perturbation of the parameter
Q on the objective function F (Q). The relative sensitivity of F (Q) w.r.t. Q, SF

Q , is given by Eq.
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Figure III-E.4.11: Steps of the sensitivity analysis.
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III-E.4.11 ([116]). The value of SF
Q is the ratio (dimensionless) between the percentual changes in

F and Q.

SF
Q =

∂F/F

∂Q/Q
=
∂ln(F )

∂ln(Q)
. (III-E.4.11)

The upper arm pose accuracy (and therefore, the one of the GH joint angles) relies on the
precise estimation of the position of the centers of the elbow and GH joints (p̃Eelw and p̃EG) (section
III-E.4.3.3.4), which ultimately depend on following the transformations involving the markers:

(a) T̃E
m0

and T̃E
m1

(markers w.r.t. exoskeleton).

(b) Tm0

G and Tm1

elw (GH and elbow joints w.r.t. markers).

The conducted sensitivity analysis focuses on errors in Tm0

G and Tm1

elw, given that errors in the

estimation of T̃E
m0

and T̃E
m1

(section III-E.4.4.2) are small. Possible causes of errors in Tm0

G and Tm1

elw

are:

1. Inaccurate computation of Tm0

G and Tm1

elw during the system calibration.

2. Relative displacement of the markers w.r.t. the GH and elbow joints due to skin movement.

In the sensitivity analysis, translations errors in matrices Tm0

G and Tm1

elw are induced by disturbing
the location of the markers mk (k = [0, 1]) w.r.t. the CSs of the GH and elbow joints. Since
orientation information in Tm0

G and Tm1

elw is not used to estimate the upper arm pose, it is excluded
from the sensitivity analysis.

For the sensitivity analysis (Eq. III-E.4.11), the vector-valued function F (q) quantifies the
estimation error of the arm position and orientation (Eq. III-E.4.12) and the parameter set q
represents the marker translation errors. The parameter set q is defined as q = {q1, q2, q3, q4, q5, q6},
where each qj ∈ q is a scalar representing the magnitude of a translation of a specific marker along
a prescribed direction. Table III-E.4.3 describes the meaning of each parameter in set q.

F (q) =
(
earmpos (q), earmori (q)

)
;F (q) : R6 → R2. (III-E.4.12)

Table III-E.4.3: Parameters of function F (q) (error in the position and orientation estimation of
the upper arm (Eq.III-E.4.12)) to study in the sensitivity analysis.

Parameter: Meaning CS of reference
q1 Translation with magnitude ‖q1‖ of m0 along X axis GH joint
q2 Translation with magnitude ‖q2‖ of m0 along -Y axis GH joint
q3 Translation with magnitude ‖q3‖ of m0 along Z axis GH joint
q4 Translation with magnitude ‖q4‖ of m1 along -X axis Elbow joint
q5 Translation with magnitude ‖q5‖ of m1 along Y axis Elbow joint
q6 Translation with magnitude ‖q6‖ of m1 along -Z axis Elbow joint

The sensitivity analysis procedure (Fig. III-E.4.11) entails the next steps:

1. Load the movement dataset of the GH joint to test (SFE, SAbAd, SIR, COMB).
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2. Select the parameter qj ∈ q to perturb (selection of a marker and a direction of translation).
Marker m0 translates along axes of the GH joint CS. Marker m1 translates along axes of the
elbow joint CS (Fig.III-E.4.12).

3. Apply the translation indicated by qj to the corresponding marker. The marker perturbation
qj is applied for the complete movement dataset.

4. Compute the errors in the estimation of the position and orientation of the upper arm Fi(q) =
(earmpos i

(q), earmori i(q)) as the simulated patient moves according to the chosen movement dataset
of the GH joint. The current iteration of the process is indicated by index i.

5. Compute the position and orientation components of SF
qj as per Eq. III-E.4.11. The derivative

of F (q) w.r.t. qj is given by Eq. III-E.4.13. The required derivatives are computed numerically
([117,118]).

∂F (q)/∂qj = (∂earmpos (q)/∂qj , ∂e
arm
ori (q)/∂qj). (III-E.4.13)

6. Increment qj by ∆q and go to step 3. Repeat the process until the desired number of iterations
i of the procedure are reached.

The complete sensitivity analysis was performed for each movement dataset (SFE, SAbAd, SIR,
COMB). The directions in which marker translations take place (Table III-E.4.3) are chosen such
that the makers do not leave the detection volume of the cameras. Table III-E.4.4 summarizes the
parameters of the sensitivity analysis. Translation units are meters (mts).

GH joint 
CSm0

m1

x

y

z

x

y

z

Elbow joint
CS

Upper
arm

(a) (b)

Figure III-E.4.12: Sensitivity Analysis. Coordinate systems of reference for the translations of (a)
marker m0 and (b) marker m1.
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Table III-E.4.4: Parameters of the sensitivity analysis.

Minimum marker translation qmin (mts) 0
Maximum iterations of the sensitivity analysis imax 10
Increment of marker translation in each iteration ∆q (mts) 0.002
Movement datasets evaluated 4

III-E.4.4 Results and Discussion

This section presents and discusses the results of: (a) accuracy of the estimation of the markers 3D
position, (b) accuracy of the estimation of the upper arm pose, and (c) the sensitivity analysis of
the accuracy of the pose estimation of the upper arm w.r.t. translation errors in Tm0

G and Tm1

elw.

III-E.4.4.1 Results of Marker Position Estimation

Table III-E.4.5 presents the RMS of the errors in the estimation of the position of the markers mi

for each movement dataset. The mean RMS errors of the position estimation of m0 and m1 for all
movement datasets are 0.00083 and 0.00208 mts, respectively.

Fig. III-E.4.13 shows the box plots of the estimation errors in the markers position for all
movement datasets. Larger variation in the accuracy of the position estimation of marker m1, in
comparison to the one of m0, is observed. This is attributed by us to (a) the higher linear and
rotational velocities and (b) the larger translations and rotations that m1 undergoes compared to
m0.

Table III-E.4.5: RMS of errors (and standard deviation in parentheses) in the estimation of the
position of markers mi in the datasets of GH joint movements.

Movement: m0 [mts] m1 [mts]
SAbAd 0.00089 (0.0001) 0.00175 (0.001)

SFE 0.00060 (0.0002) 0.00197 (0.0008)
SIR 0.00088 (0.0001) 0.00135 (0.0007)

COMB 0.00097 (0.0003) 0.00324 (0.002)

III-E.4.4.2 Results of Upper Arm Pose Estimation

The RMS of errors in the estimation of the upper arm pose are presented in Table III-E.4.6. By
averaging the results of all movement datasets, errors of 0.00110 mts. and 0.88921 deg. in the
estimation of the upper arm position and orientation are obtained. Fig. III-E.4.13 shows the box
plots of the estimation errors in the upper arm position and orientation for all movement datasets.

In motor rehabilitation, angular errors in the range of 3 − 5 degrees are considered acceptable
for mobility evaluation of patients ([43, 102, 119]). Fig. III-E.4.13 shows that the accuracy in our
arm orientation estimation is adequate for exoskeleton-assisted rehabilitation.
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Table III-E.4.6: RMS (and standard deviation in parentheses) of errors in the estimation of the
position and orientation of the upper arm in the assessed movement datasets.

Movement: Position [mts] Orientation [deg]
SAbAd 0.00109 (0.0005) 0.92039 (0.4842)

SFE 0.00094 (0.0004) 0.83796 (0.3763)
SIR 0.00091 (0.0002) 0.73465 (0.4156)

COMB 0.00145 (0.0008) 1.0638 (0.5238)
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Figure III-E.4.13: Box plots of estimation errors of the markers position, upper arm position and
upper arm orientation for all movement datasets.

III-E.4.4.3 Results of the Sensitivity Analysis

The results of the sensitivity analysis for each movement dataset of the shoulder are presented in
Figs. III-E.4.14, III-E.4.15, III-E.4.16 and III-E.4.17. In each figure, the following sub-figures are
presented:

(a) Error in upper arm position estimation (earmpos ) vs. total marker translation (qj). This figure
shows the evolution of the absolute error in the upper arm position estimation as the error in
the translation components of matrices Tm0

G and Tm1

elw increases.

(b) Error in upper arm orientation estimation (earmori ) vs. total marker translation (qj). This figure
shows the evolution of the absolute error in the upper arm orientation estimation as the error
in the translation components of matrices Tm0

G and Tm1

elw increases.

(c) Position component of SF
qj vs. total marker translation (qj). This figure shows the evolution of

the relative sensitivity metric corresponding to the error in the upper arm position estimation
as the error in the translation components of matrices Tm0

G and Tm1

elw increases.
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Figure III-E.4.14: Results of the sensitivity analysis with the SAdAd movement dataset (qj : m0 X
movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y movement / m1 -Z
movement).
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(d) Orientation components of SF
qj vs. total marker translation (qj). This figure shows the evolu-

tion of the relative sensitivity metric corresponding to the error in the upper arm orientation
estimation as the error in the translation components of matrices Tm0

G and Tm1

elw increases.

III-E.4.4.3.1 Sensitivity in Arm Position Estimation
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Figure III-E.4.15: Results of the sensitivity analysis with the SFE movement dataset (qj : m0 X
movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y movement / m1 -Z
movement).

Regarding the estimation of the arm position, it can be observed that translations of marker m0

produce larger absolute errors than translations of marker m1. This difference is due to the fact that

the translations of m0 produce a larger change in
∥∥∥~Varm∥∥∥ when compared to the one produced by

translations of m1. Note that, since p̃Earm is computed by using ~Varm, any modification in
∥∥∥~Varm∥∥∥

directly affects the accuracy of p̃Earm.
Observing the behavior of the position component of SF

qj , it can be concluded that all the
translations of the markers m0 and m1 contribute similarly to the error in the estimation of the arm
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position. The obtained curves for the position component of SF
qj resemble a logarithmic function

with an asymptote along the value 1 of the ordinate axis. A value of 1 in the magnitude of
the position component of SF

qj means that a percentual change in the magnitude of the marker
translation produced the same percentual change (also matching the sign) in the magnitude of the
error in the estimation of the arm position.

III-E.4.4.3.2 Sensitivity in Arm Orientation Estimation
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Figure III-E.4.16: Results of the sensitivity analysis with the SIR movement dataset (qj : m0 X
movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y movement / m1 -Z
movement).

In Figs. III-E.4.14, III-E.4.15, III-E.4.16 and III-E.4.17, it can be observed that the translations
of marker m1 produce larger absolute errors in the estimation of the upper arm orientation when
compared to the ones produced by translations of marker m0. Notice that the X and Z axes of
the elbow joint CS are always perpendicular to the upper arm vector (~Varm) (Fig. III-E.4.12 (b)).
When the position of m1 is perturbed along such axes, the angle between (i) the actual upper arm

vector (~Varm) and (ii) the estimated vector of the upper arm (Ṽarm) (which is inaccurate because
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of the perturbation of the marker position) is maximal.
A side effect of the marker position perturbation is that the marker mi suffers modifications of

scale and level of perspective distortion in the images of the camera ri, affecting the accuracy of
the system. This situation can be observed in Figs. III-E.4.14(b), III-E.4.15(b), III-E.4.16(b) and
III-E.4.17(b), where translations of m1 along the Y axis of the elbow joint CS should not produce
variations in the orientation estimation error. However, on the contrary, slight variations in the
accuracy of the orientation estimation are indeed present in the mentioned figures.

III-E.4.4.3.3 Robustness of the Upper Arm Pose Estimation Method
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Figure III-E.4.17: Results of the sensitivity analysis with the COMB movement dataset (qj : m0 X
movement / m0 -Y movement / m0 Z movement / m1 -X movement / m1 Y movement / m1 -Z
movement).

In Figs. III-E.4.14(c) and (d), III-E.4.15(c) and (d), III-E.4.16(c) and (d) and III-E.4.17(c) and
(d) it can be observed that the position component of SF

qj increases faster than the orientation

component of SF
qj . The observed behavior of SF

qj remains across the datasets used. Hence, the
orientation estimation of the upper arm is more robust than the position estimation w.r.t. errors
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in the translational components of matrices Tm0

G and Tm1

elw.
The results of the sensitivity analysis show that the assumption that transformations Tm0

G and
Tm1

elw are rigid is reasonable. Even with maker drifts of 0.02 mts, the GH joint angles can be estimated
with an accuracy (around 3.6 degrees RMS) adequate for the mobility evaluation of patients (in
the range of 3 - 5 degrees).

Marker drifts must be mitigated by the attachments of the markers to the human body. Fur-
thermore, marker attachments should be designed to minimize the effect of errors in Tm0

G and Tm1

elw

on the accuracy of the method. For example, notice how the attachment of marker m1 (Fig. III-
E.4.12(b)) locates marker m1 with an offset w.r.t. the elbow joint center along the direction that
least affects the orientation estimation of the upper arm.

The presented results suggest that our implemented method is a feasible alternative to estimate
the GH joint angles in a RAR scenario.

III-E.4.4.4 Comparison with Related Works

The conducted literature review provided no other references than [29,34,88,90,107] for upper limb
posture estimation (including the GH joint) in exoskeleton-based rehabilitation by using computa-
tional methods. Among the mentioned works, only Ref. [107] reports the errors (mean RMSE 4.8
deg.) in the GH joint angles estimation. Ref. [107] reports RMSE values of the GH joint angles only
for the best-case scenario (swivel angle mean RMSE 5 deg.). For all the movement tasks tested,
the method in [107] presents a mean RMSE of 10 deg. for the swivel angle estimations. Given that
the global errors of the swivel angle double the ones of the best-case scenario, a report of the global
errors of the GH joint angle estimations of the method in [107] is required to conclude about its
suitability to be used in clinical applications.

Table III-E.4.7 summarizes the comparison of our contributions w.r.t. comparable works (i.e.
Ref. [107]).

III-E.4.5 Conclusions and Future Work

In the context of RAR, this article presents the formulation, implementation, and assessment, in
silico, of a novel and accurate method to estimate the patient GH joint angles during therapy. Our
implemented method does not require redundant markers or cameras and relies on simple geometric
relationships and tools of standard robotics and computer vision libraries. These characteristics
make it economical and readily applicable in RAR.

The accuracy and the robustness of our method are evaluated using computer-generated human
movement data corresponding to actual movement datasets of the Armeo Spring. We present a
formal sensitivity analysis of the pose estimation accuracy w.r.t. marker position estimation errors
produced by (a) system calibration errors and (b) marker drifts (due to skin artifacts). This analysis
indicates that even in presence of large marker position errors our method presents an accuracy
that is acceptable for the mobility appraisal of patients.

Future work includes: (a) implementation of the method using commercially available RGB-
D vision sensors, (b) evaluation of the method accuracy with actual human movement data, (c)
adaptation of the method to use only RGB cameras, and (d) extension of our method to address
other limbs.
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Table III-E.4.7: Contributions of this article w.r.t. comparable works.

Work Method Method Evaluation Accuracy of GH
joint angles

[107] IK-based
swivel angle
estimation.

(1) Studied angles: Swivel angle plus the shoulder, elbow and
wrist joint angles.

(2) Reference angles: Obtained from custom-made inertial
MOCAP. Homologation - Calibration of the readings is
not reported.

(3) Movements: Compound movements.

(4) Sensitivity Analysis: No.

mean RMSE: 4.8 deg
(best-case scenario).

This
article

Hybrid
exoskeleton-
optical
MOCAP

(1) Studied angles: Shoulder angles.

(2) Reference angles: Simulated.

(3) Movements: 1-DOF and multi-DOF shoulder movements.

(4) Sensitivity Analysis: Method accuracy w.r.t. marker posi-
tion errors produced by marker drift or calibration errors.

(a) mean RMSE: 0.9
deg. (assuming no
marker drift or cal-
ibration errors).

(b) mean RMSE: 3.6
deg. (with marker
drift or calibration
errors up to 20
mm).
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Appendix

III-E.4.A Problem Statement

Given:

1. A human patient upper body with a kinematic model H(LH , JH) (Fig. III-E.4.2(a)). Re-
marks:

(a) The model is a simplified version of the spine, arm and scapulo-clavicular systems. How-
ever, given that we focus on the study of the upper limb, we describe in detail only the
kinematic model of such limb.

(b) The set of Links is LH =
{
lH0 , . . . , l

H
g+1

}
, which contains the sternum, clavicle, upper

arm, forearm and hand (g = 4).

(c) The set of Joints is JH =
{
jH0 , . . . , j

H
g

}
, which contains the sternoclavicular joint, GH

joint, elbow joint, and wrist joint.

i. Xi denotes the number of DOF of jHi . Xi = 1, 2 or 3 (i = 0, 1, . . . , g).

ii. vHi = (θ1, . . . , θXi) is an Xi-tuple whose k-th component is the angle of the k-th
DOF of joint i-th, jHi (i = 0, 1, . . . , g).

iii. G is the index of the GH joint (0 ≤ G ≤ g). XG = 3 since the GH joint has 3 DOF.
vHG is the 3-tuple containing the values of the DOF of the G (GH) joint.

iv. vHG (t) registers the status, at time t, of the DOF of the GH joint.

(d) H is an open Kinematic Chain, and therefore, lHi and lHi+1 are connected by joint jHi
(i = 0, 1, . . . , g).

2. An exoskeleton with a kinematic model E(LE , JE), which is attached to the patient limb
H and assists the patient when performing the rehabilitation exercises (Fig. III-E.4.2(b)).
Remarks:

(a) The sets of Links is LE =
{
lE0 , . . . , l

E
f+1

}
.

(b) The sets of Joints is JE =
{
jE0 , . . . , j

E
f

}
.

i. Yi denotes the number of DOF of jEi .

ii. vEi = (θ1, . . . , θYi
) is a Yi-tuple whose k-th component is the angle of the k-th DOF

of joint i-th, jEi (i = 0, 1, . . . , f).
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(c) E is modeled as an open Kinematic Chain, and therefore, lEi and lEi+1 are connected by
joint jEi (i = 0, 1, . . . , f).

(d) The vE b-tuple (b =
∑f

i=0 Yi) contains the set of independent coordinates which uniquely
defines a configuration of E.

i. vE =
(
vE0 , . . . , v

E
i , . . . , v

E
f

)
.

ii. vE(t) registers the state, at time t, of the DOF of E, which is known ∀t.
(e) The exoskeleton may be configured to impose specific motion constraints on the patient

by blocking specific joints of the JE set.

3. A marker-based optical tracking system R composed by two RGB-D cameras and two planar
markers (Fig. III-E.4.2(c)). Remarks:

(a) A set M = {m0,m1} of planar markers that are detected by the cameras of R and are
installed on the patient upper limb.

i. All mi present the same 2D square geometry, with a disk on each corner. The
position of each disk w.r.t. the marker CS is known. The set of disks is K =
{k0, . . . , kj , . . . , kn}.
A. kj presents a color sj ∈ S that can be detected by R (Fig.III-E.4.2(c)).

B. The set of colors of the disks mounted on in each mi is S = {s0, . . . , sj , . . . , sn}.
Each sj ∈ R3 is represented with a RGB color code.

C. sj 6= si∀i, j ∈ [0, n] ∧ i 6= j.

ii. m0 is mounted on the acromion with a 0-DOF coupling (Fig. III-E.4.2(d)). A rigid
transformation matrix Tm0

G defines the relative position and orientation of the GH
joint CS w.r.t. the CS of m0.

iii. m1 is mounted on the upper arm with a 0-DOF coupling (Fig. III-E.4.2(d)). A
rigid transformation matrix Tm1

elw defines the relative position and orientation of the
elbow joint CS w.r.t. the CS of m1. Note that to compute the GH joint angles, the
calculation of the elbow joint angles is not necessary with this setup.

iv. The rigid transformation matrices Tm0

G and Tm1

elw ∈ R4×4 are estimated during the
calibration of the system.

(b) A set R = {r0, r1} of low-cost cameras is installed on the exoskeleton.

i. r0 is mounted on exoskeleton link lE0 with a 0-DOF coupling, such that the disks
on m0 are inside its detection volume during the rehabilitation exercises. The rigid

transformation matrix T
lE0
r0 defines the relative position and orientation of the CS of

r0 w.r.t. the lE0 CS.

ii. r1 is mounted on the exoskeleton link lE8 with a 0-DOF coupling, such that it can

detect the disks on m1 (see Fig.III-E.4.2(c)). The rigid transformation matrix T
lE8
r1

defines the relative position and orientation of the CS of r1 w.r.t. the lE8 CS.

iii. The rigid transformation matrices T
lE0
r0 and T

lE8
r1 ∈ R4×4 are estimated during the

calibration of the system.

iv. Remarks on each camera ri:
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A. ri renders a RGB image Ici of A × B pixels. The pixel coordinates (u, v) take
values: 0 ≤ u ≤ A− 1 and 0 ≤ v ≤ B − 1.

B. ri renders a depth image associated to the scene in Ici , defined as Idi , of L ×N
pixels. L ≤ A and N ≤ B. The pixel coordinates (u, v) in Idi take values:
0 ≤ u ≤ L− 1 and 0 ≤ v ≤ N − 1. The CS of images Ici and Idi is coincident.

C. ri presents a truncated square pyramid detection volume parametrized by: the
minimum and maximum detection distances, and the horizontal and vertical field
of view of ri. Table III-E.4.1 presents the model features of the vision sensors
that have been used for the simulations.

v. The system of cameras R produces the following array sequence of each ri:

A. Ci (1 × 3*A*B) contains the RGB color associated to each pixel (u, v) ∈ Ici .

B. Di (1 × L*N*3) contains the (X,Y,Z) coordinates of the object in each pixel
(u, v) ∈ Idi w.r.t. the ri CS.

Goal:

1. Find the values of ṽHG (t) ∈ R3, which approximates vHG (t) such that e =
∥∥vHG (t)− ṽHG (t)

∥∥2
be

minimum ∀t.

(a) ‖x‖ is the Euclidean norm of vector x.
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Part IV

General Conclusions
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This doctoral thesis presents several contributions to the fields of Medical Imaging, Image-
Guided Surgery and Motor Neurorehabilitation by developing and applying techniques from the
area of Computational Geometry.

Medical Imaging:
We contribute with methods for (a) parametric curve reconstruction and (b) geometry simplifica-
tion of porous materials. Our curve reconstruction method effectively deals with self-intersecting
and non-Nyquist 2D noisy points samples. The formal study on the influence of several parameters
on the curve reconstruction method allowed us to devise a strategy to tune such parameters hierar-
chically. We have also explored the use of spectral analysis to detect faulty curve reconstructions.
The automatization of such diagnostic tool is an open opportunity of research.

Our geometry simplification method approximates models of open-cell porous materials with
high fidelity to their geometry and topology. Mechanical simulations show that the simplified model
reasonably approximates the elastic behavior of a reference finite element model, with the advantage
of demanding significantly less computational resources than the reference one. A possible extension
of this work is the adaptation of the simplified model for computational fluid dynamics experiments.

Image-Guided Surgery:
Our contributions to the patient registration problem range from the controlled acquisition of
medical images to a registration algorithm itself, which are key components for the development of
a platform for fully automatic patient registration.

For the controlled acquisition of medical images, we implemented a robotic platform that pre-
cisely handles medical image acquisition devices in teleoperation and path following modes. By
using such robotic platform, we generated an ultrasound image dataset (publicly available) with
ground-truth to test 2D-3D or 3D-3D registration algorithms. The controlled acquisition of the im-
age dataset enables the formal analysis of the design parameters of registration algorithms. Finally,
we developed a 3D-3D US-CT registration method that handles any degree of initial misalignment
between the US and CT datasets, as long as both datasets have an appropriate degree of geomet-
rical similarity.

Motor Neurorehabilitation:
We contribute with two methods for the patient posture estimation in exoskeleton-based therapy.
The first method, EIKPE, estimates the upper limb joint angles solving the limb inverse kinemat-
ics. The assessment of EIKPE with simple and compound movements shows that its accuracy is
adequate for the mobility appraisal of patients and that it enhances the exoskeleton-based posture
estimates significantly. A natural follow-up of this investigation is the assessment of EIKPE with
other upper limb movements and several patient groups.

The second method addresses the shoulder angles estimation by using a system composed by a
low-cost marker-based vision system and the rehabilitation exoskeleton. The accuracy quantification
and sensitivity analysis of the method performance with simulated movement data show its potential
for: (a) patient mobility assessment and (b) acquisition of movement data for the evaluation of other
posture estimation methods. As extensions of this investigation, we envision the implementation
of the method with commercial RGB-D cameras and its assessment with human motion data.
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