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Part I
Introduction
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I.A

Organization of this Document

This document is organized as follows:

• Part I: Introduction. This part states the goal of the Doctoral Final Examination.

• Part II: Academic Trajectory. This part reports the following aspects of the doctoral process:

(a) Summary of the student’s academic history
(b) List of publications and co-authors
(c) Doctoral courses and exams
(d) Personalized special trainings
(e) Attendance to specialized forums
(f) Special advisors provided by the Universidad EAFIT and Vicomtech
(g) Industrial projects undertaken in the scope of the doctoral internship

• Part III: Research Results. This part reports:

(a) An overview of the domains in which the doctoral investigation has been conducted.
(b) The compendium of publications generated in each of the investigated domains.

• Part IV: General Conclusions.
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I.B

Goal of the Final Examination

Under the regulations of the Doctoral Program in Engineering at the Universidad EAFIT, the
purpose of the Final Examination is to assess the thesis work of the doctoral student, which should
reflect the capacity of the student to (I) conduct high-quality scientific research, (II) contribute to
the state of the art, and (III) articulate in novel manners the existing knowledge to advance in the
formulation and solution of theoretical and practical problems in the Engineering domain.

The Final Exam assesses the following aspects:

1. The academic trajectory and opportunities profited by the doctoral student during the doc-
toral studies, in terms of (a) Doctoral courses, (b) Special trainings, (c) Attendance to spe-
cialized forums and industries (d) Equipment, software, accessory materials, (e) Funding
proceedings, (f) Special advisors, etc.

2. The thematically connected results of the research of the student and the doctoral team, and
the endorsement of the international scientific community to these results, in the form of
ranked publications.

The Jury either approves or reproves the thesis work of the doctoral student.
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Part II
Academic Trajectory
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II.A

Academic History
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II.A.1

Summary

Table II.A.1.1: Doctoral student’s academic trajectory. Summary.

Date Academic Status Comment
July 2016 Undergrad student.

Mathematical En-
gineering

Diego Alejandro Montoya Zapata, the Doctorand,
joined the Laboratory of CAD CAM CAE at the
Universidad EAFIT, under the supervision of Prof.
Dr. Eng. Oscar Ruiz Salguero.

Dec. 2016 Undergrad student.
Mathematical En-
gineering

The Doctorand obtained his bachelor’s degree
in Mathematical Engineering at the Universidad
EAFIT.

Jan. 2017 Master student in
Engineering

The Doctorand started his Master in Science stud-
ies in Engineering at the Laboratory of CAD CAM
CAE, Universidad EAFIT, under the supervision of
Prof. Dr. Eng. Oscar Ruiz.

Jan. 2018 -
Dec. 2018

Master student in
Engineering

The Doctorand undertook a research internship at
the Department of Industry and Advanced Manu-
facturing at Vicomtech, Spain, under the mentoring
of Dr. Eng. Jorge Posada (Supervisor) and Dr. Eng.
Aitor Moreno (Daily Supervisor).

Dec. 2018 Master student in
Engineering

The Doctorand obtained his M.Sc. degree in En-
gineering at the Universidad EAFIT. Master thesis
titled: “Compendium of Publications on: Computa-
tional Geometry and Numerical Simulation in Ap-
plications of Computational Mechanics”.

Continued on next page
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Table II.A.1.1 – Continued from previous page
Date Academic Status Comment
Jan. 2019 Doctoral student in

Engineering
The Doctorand started his Doctoral studies in Engi-
neering at the Universidad EAFIT under the men-
toring of Prof. Dr. Eng. Oscar Ruiz, Supervisor
(Universidad EAFIT, Colombia), Dr. Eng. Jorge
Posada, Co-Supervisor (Vicomtech, Spain) and Dr.
Eng. Aitor Moreno, Daily Supervisor (Vicomtech,
Spain).

Jan. 2019 -
Dec. 2022
(projected)

Doctoral student in
Engineering

The Doctorand continued his research internship at
the Department of Industry and Advanced Manufac-
turing at Vicomtech (Spain) as part of his Doctoral
Thesis.

Jan. 2018 -
Dec. 2022
(projected)

Master student in
Engineering (2018).
Doctoral student in
Engineering (2019-
2022)

The Doctorand received collaborative funding as
part of a joint sponsorship provided by the Universi-
dad EAFIT and Vicomtech for his M.Sc. and Ph.D.
studies.
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II.A.2

List of Publications - Doctoral Period

In the framework of the collaborative program between the Universidad EAFIT and Vicomtech, the
student and his doctoral support team achieved several publications. These publications formalized
the doctoral work of the student. The doctoral support team comprises both doctoral supervisors
(Prof. Oscar Ruiz Salguero and Dr. Jorge Posada) and several researchers from the Universidad
EAFIT and Vicomtech. Tables II.A.2.1 and II.A.2.2 report the journal and conference publications
achieved by the student and his support team during the Doctoral period (2019 - 2022).

Table II.A.2.1: List of published and submitted journal articles of the doctoral support team.
Doctoral period. Inverse chronological order.

Item Bibliographic Information Status Indexing
0 Diego Montoya-Zapata, Aitor Moreno, Igor Ortiz,

Jorge Posada, Oscar Ruiz-Salguero. Computer sup-
ported toolpath planning for LMD additive manu-
facturing based on cylindrical slicing. In process of
publication.

In process
of publica-
tion

N/A

1 Diego Montoya-Zapata, Jorge Posada, Piera Alvarez,
Carles Creus, Aitor Moreno, Igor Ortiz and Oscar
Ruiz-Salguero. Experimental and computational as-
sessment of minimizing overfill in trajectory corners
by laser velocity control of laser cladding. Interna-
tional Journal of Advanced Manufacturing Technol-
ogy. Springer London. ISSN: 0268-3768. e-ISSN:
1433-3015. 2022, 119(9), pp. 6393–6411, DOI:
doi.org/10.1007/s00170-021-08641-8

Published JCR(Q2),
SCOPUS(Q1),
Publindex(A1),
Scimago(Q1)

Continued on next page
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Table II.A.2.1 – Continued from previous page
Item Bibliographic Information Status Indexing
2 Diego Montoya-Zapata, Juan M. Rodríguez, Aitor

Moreno, Oscar Ruiz-Salguero and Jorge Posada.
Nonlinear thermal simulation of Laser Metal De-
position. Australian Journal of Mechanical Engi-
neering. Taylor & Francis. ISSN: 1448-4846. e-
ISSN: 2204-2253. 2021, 19(5), pp. 653–668, DOI:
doi.org/10.1080/14484846.2021.1988435

Published SCOPUS(Q3),
JCI(Q3),
Publindex(B),
Scimago(Q3)

3 Diego Montoya-Zapata, Juan M. Rodríguez, Aitor
Moreno, Jorge Posada and Oscar Ruiz-Salguero. 2D
linear finite element simulation of laser metal heat-
ing for digital twins. International Journal for Sim-
ulation and Multidisciplinary Design Optimization.
EDP Sciences. eISSN 1779-6288. 2021, 12, 11, DOI:
doi.org/10.1051/smdo/2021011

Published SCOPUS(Q4),
Publindex(C),
Scimago(Q4)

4 Diego Montoya-Zapata, Carles Creus, Aitor Moreno,
Igor Ortiz, Piera Alvarez, Oscar Ruiz-Salguero and
Jorge Posada. Computational minimization of
over-deposition at corners of trajectories in Laser
Metal Deposition. Manufacturing Letters. Else-
vier. ISSN 2213-8463. 2021, 29, pp. 29-33, DOI:
doi.org/10.1016/j.mfglet.2021.05.001

Published SCOPUS(Q1),
JCI(Q2),
Publindex(A1),
Scimago(Q1)

5 Diego Montoya-Zapata, Diego A. Acosta, Camilo
Cortes, Juan Pareja-Corcho, Aitor Moreno, Jorge
Posada and Oscar Ruiz-Salguero. Approximation of
the mechanical response of large lattice domains us-
ing homogenization and design of experiments. Ap-
plied Sciences. MDPI. ISSN: 2076-3417. 2020,
10(11), 3858, DOI: doi.org/10.3390/app10113858

Published JCR(Q2),
SCOPUS(Q2),
Publindex(A1),
Scimago(Q1)

6 Diego Montoya-Zapata, Aitor Moreno, Juan Pareja-
Corcho, Jorge Posada and Oscar Ruiz-Salguero.
Density-sensitive implicit functions using sub-voxel
sampling in additive manufacturing. Metals.
MDPI. ISSN: 2075-4701. 2019, 9(12), 1293, DOI:
doi.org/10.3390/met9121293

Published JCR(Q1),
SCOPUS(Q2),
Publindex(A1),
Scimago(Q2)
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Table II.A.2.2: List of published conference articles of the doctoral support team. Doctoral
period. Inverse chronological order.

Item Bibliographic Information Status Indexing /
Qualification

1 Diego Montoya-Zapata, Aitor Moreno, Igor Ortiz,
Oscar Ruiz-Salguero and Jorge Posada. (2022).
Cylindrical transform slicing of revolute parts with
overhangs for Laser Metal Deposition. In XXXI
Spanish Computer Graphics Conference (CEIG
2022). July 5-8, Vic, Spain. ISBN: 978-3-03868-186-
1. DOI: doi.org/10.2312/ceig.20221141.

Published Eurographics
Digital Library

2 Juan Pareja-Corcho, Diego Montoya-Zapata, Car-
los Cadavid, Aitor Moreno, Jorge Posada, Ketzare
Arenas-Tobon and Oscar Ruiz-Salguero. (2022).
Synthesis of Reeb graph and Morse operators from
level sets of a boundary representation. In XXXI
Spanish Computer Graphics Conference (CEIG
2022). July 5-8, Vic, Spain. ISBN: 978-3-03868-186-
1. DOI: doi.org/10.2312/ceig.20221140.

Published Eurographics
Digital Library

3 Diego Montoya-Zapata, Carles Creus, Igor Or-
tiz, Piera Alvarez, Aitor Moreno, Jorge Posada,
Oscar Ruiz-Salguero. (2020). Generation of
2.5D deposition strategies for LMD-based addi-
tive manufacturing. Procedia Computer Science.
180, pp. 280-289. ISSN: 1877-0509. Inter-
national Conference on Industry 4.0 and Smart
Manufacturing (ISM 2020). November 23-25, Ha-
genberg, Austria. (Virtual attendance). DOI:
doi.org/10.1016/j.procs.2021.01.165

Published. SCOPUS,
INSPEC

4 Diego Montoya-Zapata, Diego A. Acosta, Camilo
Cortes, Juan Pareja-Corcho, Aitor Moreno, Jorge
Posada and Oscar Ruiz-Salguero. (2020). Meta-
modeling of lattice mechanical responses via de-
sign of experiments. In 2nd International Con-
ference on Mathematics and Computers in Sci-
ence and Engineering (MACISE 2020). January
18-20, Madrid, Spain. pp. 308-317. DOI:
doi.org/10.1109/MACISE49704.2020.00065. ISBN:
978-1-7281-6696-4

Published. SCOPUS, Web
of Science

Continued on next page
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Table II.A.2.2 – Continued from previous page
Item Bibliographic Information Status Indexing /

Qualification
5 Diego Montoya-Zapata, Diego A. Acosta, Aitor

Moreno, Jorge Posada and Oscar Ruiz-Salguero.
(2019). Sensitivity analysis in shape optimization
using voxel density penalization. In XXIX Spanish
Computer Graphics Conference (CEIG 2019). June
26-28, Donostia - San Sebastián, Spain. ISBN: 978-
3-03868-093-2. DOI: doi.org/10.2312/ceig.20191201.

Published Eurographics
Digital
Library,
Web of Sci-
ence, SCOPUS
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II.A.3

List of Publications - Master Period

Tables II.A.3.1 and II.A.3.2 report the journal and conference publications achieved by the student
and his support team during the Master period (2017 - 2018).

Table II.A.3.1: List of published journal articles published. Master period. Inverse chronological
order.

Item Bibliographic Information Status Indexing
1 Diego Montoya-Zapata, Camilo Cortes and Oscar

Ruiz-Salguero. FE-simulations with a simplified
model for open-cell porous materials: A Kelvin cell
approach. Journal of Computational Methods in Sci-
ences and Engineering. IOS Press. ISSN: 1472-7978.
e-ISSN: 1875-8983. 2019, 19(4), p. 989-1000. DOI:
doi.org/10.3233/JCM-193669

Published SCOPUS(Q3),
Publindex(A2),
Scimago(Q3)

2 Diego Montoya-Zapata, Diego A. Acosta, Oscar
Ruiz-Salguero, Jorge Posada and David Sanchez-
Londono. A General Meta-graph Strategy for Shape
Evolution under Mechanical Stress. Cybernetics and
Systems. Taylor & Francis. ISSN: 0196-9722. e-
ISSN: 1087-6553. 2019, 50(1), p. 3-24. DOI:
doi.org/10.1080/01969722.2018.1558011

Published JCR(Q3),
SCOPUS(Q2),
Publindex(A2),
Scimago(Q2)

3 Daniel Mejia-Parra, Diego Montoya-Zapata, Ander
Arbelaiz, Aitor Moreno, Jorge Posada and Oscar
Ruiz-Salguero. Fast analytic simulation for multi-
laser heating of sheet metal in GPU. Materials.
MDPI. e-ISSN: 1996-1944. 2018, 11(11), 2078. DOI:
doi.org/10.3390/ma11112078.

Published JCR(Q2),
SCOPUS(Q2),
Publindex(A2),
Scimago(Q2)
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Table II.A.3.2: List of published conference articles. Master period. Inverse chronological order.

Item Bibliographic Information Status Indexing /
Qualification

1 Juan M. Muñoz-Betancur, Oscar Ruiz-Salguero,
Diego Montoya, Camilo Cortes and Carlos Cadavid.
(2018). Direct Scalar Field - to - Truss Representa-
tion and Stress Simulation of Open Pore Domains.
In Smart Tools and Applications in Graphics (STAG
2018). Eurographics Italian Chapter Annual Event.
October 18-19, Brescia, Italy. ISBN: 978-3-03868-
075-8. DOI: doi.org/10.2312/stag.20181295.

Published EUROGRA-
PHICS Digital
Library, SCO-
PUS

2 Diego Montoya-Zapata, Diego A. Acosta, Oscar
Ruiz-Salguero and David Sanchez-Londono. (2018).
FEA Structural Optimization Based on Metagraphs.
In International Conference on Soft Computing
Models in Industrial and Environmental Applica-
tions (SOCO 2018). June 6-8, Donostia - San Se-
bastián, Spain. ISBN: 978-3-319-94119-6. DOI:
doi.org/10.1007/978-3-319-94120-2_20.

Published SCOPUS, Web
of Science

3 Diego Montoya-Zapata, Oscar Ruiz-Salguero, Juan
Lalinde-Pulido, Juan Pareja-Corcho and Jorge
Posada. (2018). Non-manifold modelling of lat-
tice materials using kinematically constrained FEA.
In Proceedings of the 12th International Symposium
on Tools and Methods of Competitive Engineering
(TMCE 2018). May 7-11, Las Palmas de Gran Ca-
naria, Spain. ISBN: 978-94-6186-910-4.

Published
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II.A.4

List of Co-authors

The reader may notice the thematic continuity of the Doctoral investigation with respect to the
Master’s, as shown by the Doctoral and Master publications reported in Tables II.A.2.1–II.A.3.2.
Because of this close relationship between the Doctoral and Master research topics, the lists of
co-authors of the Doctoral and Master publications are very similar. Table II.A.4.1 reports the
names and affiliations of the co-authors of the articles listed in Tables II.A.2.1–II.A.3.2.

Table II.A.4.1: Co-authors of the articles in the Master and Doctoral periods. Tables II.A.2.1–
II.A.3.2.

Name Affiliation
Prof. Dr. Eng. Oscar
Ruiz Salguero

Laboratory of CAD CAM CAE, Universidad EAFIT

Dr. Eng. Jorge Posada Associate Director, Vicomtech
Prof. Dr. Eng. Diego A.
Acosta

Grupo de Desarrollo y Diseño de Procesos, Universidad
EAFIT

M.Sc. Eng. Piera Alvarez Ikergune A.I.E.
Dr. Eng. Ander Arbelaiz Industry and Advanced Manufacturing, Vicomtech
Eng. Ketzare Arenas To-
bon

Laboratory of CAD CAM CAE, Universidad EAFIT

Prof. Dr. Sc. Math. Car-
los Cadavid

Mathematics and Applications, Universidad EAFIT

Dr. Eng. Camilo Cortés Digital Health and Biomedical Technologies, Vicomtech
Dr. Eng. Carles Creus Industry and Advanced Manufacturing, Vicomtech
Dr. Eng. Juan Guillermo
Lalinde Pulido

High Performance Computing Facility APOLO, Universi-
dad EAFIT

Dr. Eng. Daniel Mejía
Parra

Laboratory of CAD CAM CAE, Universidad EAFIT

Dr. Eng. Aitor Moreno Industry and Advanced Manufacturing, Vicomtech
Eng. Juan M. Muñoz Be-
tancur

Laboratory of CAD CAM CAE, Universidad EAFIT

Continued on next page
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Table II.A.4.1 – Continued from previous page
Name Affiliation
M.Sc. Eng. Juan Pareja
Corcho

Laboratory of CAD CAM CAE, Universidad EAFIT

M.Sc. Eng. Igor Ortiz Ikergune A.I.E.
Prof. Dr. Eng. Juan M.
Rodríguez

Department of Mechanical Engineering, Universidad
EAFIT

M.Sc. Eng. David
Sánchez Londoño

Laboratory of CAD CAM CAE, Universidad EAFIT
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II.A.5

Doctoral Courses

II.A.5.1 Preparatory Courses
According to the regulations of the Universidad EAFIT, the courses that prepare the student to
perform his doctoral thesis are taken during the Master and Doctoral programs. Table II.A.5.1
presents the preparatory courses that the student took:

Table II.A.5.1: Master (2017 to 2018) and Doctoral (2019 to 2021) preparatory courses.

Ph.D. / M.Sc. Course Semester Academic Status
IC0692 - Introduction to the Boundary Element
Method

2017-1 Master student

IC0682 - Advanced Continuum Mechanics 2017-1 Master student
IM0819 - Underlying Mathematics for CAD CAM 2017-1 Master student
ST0920 - Advanced Data Structures and Algorithms 2017-1 Master student
EI0813 - Research Tools 2017-2 Master student
IC0602 - Introduction to the Finite Element Method 2017-2 Master student
IC0695 - Advanced Mathematics for Engineers 2017-2 Master student
IM0923 - Design Optimization 2017-2 Master student
IM0906 - Computer Aided Geometric Design I 2018-1 Master student
IM0904 - Optimization Techniques 2019-1 Doctoral student
PR0902 - Statistics for Researchers 2019-2 Doctoral student
IM0926 - Non-linear Finite Element Method 2020-1 Doctoral student
IM0912 - Numerical Solutions of Differential Equa-
tions

2020-2 Doctoral student

IM0916 - Computational Geometry 2021-1 Doctoral student
IM0929 - Dimensionality Reduction 2021-2 Doctoral student
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II.A.5.2 Qualifying Exams
Table II.A.5.2 reports the doctoral qualifying exams that the student took and approved during the
first and second years of the doctoral program.

Table II.A.5.2: Qualifying exams.

Subject Examiner Result Date
Design of Experiments and
Statistical Methods

Prof. Dr. Eng. Diego An-
drés Acosta Maya, Universi-
dad EAFIT

Approved December
2019

Computational Mechanics Prof. Dr. Eng. Juan Manuel
Rodríguez Prieto, Universi-
dad EAFIT

Approved July 2020

II.A.5.3 Preliminary Exam of Dissertation
During the third year of the doctoral studies, the student prepared, presented and approved the
Preliminary Exam of Dissertation. The Preliminary Examination assessed: (a) the academic tra-
jectory undertaken and opportunities profited by the doctoral student during the first 36 months of
the doctoral studies, (b) the thematically connected results of the research of the student and the
doctoral team in the form of ranked publications, and (c) the closure research activities and goals
of the doctoral student and supporting team for the remaining 12 months (approx.).

On December 15, 2021, the Jury (see Table II.A.5.3) decided to permit the doctoral student to
continue the academic and research activities, in order to prepare and perfect the materials, goals,
publications, etc. for the Final Examination.

Table II.A.5.3: Preliminary exam of dissertation.

Supervisors Jury Result Date
Prof. Dr. Eng. Oscar
E. Ruiz Salguero, Universi-
dad EAFIT

Dr. Eng. Aitor Moreno
Guerrero, Vicomtech

Approved December
15, 2021

Dr. Eng. Jorge L. Posada
Velásquez, Vicomtech

Dr. Eng. Daniel Mejía Parra,
Vicomtech
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II.A.6

Personalized Special Trainings

Table II.A.6.1 presents the trainings undertaken by the student as part of the doctoral formation:

Table II.A.6.1: Personalized special trainings.

Topic Entity Context Date Advisor
Process Plan-
ning for Laser
Metal Deposi-
tion

INZU Group (Ikergune, Tal-
ens, Etxe-tar, Izadi, Macar-
box, and 8 more companies)

(a) Ikergune: R&D unit of
the INZU Group

(b) Talens: Heat and laser
applications

(c) Etxe-tar: Machine tool
manufacturing

(d) Izadi: Machining,
repair and assembly
services for industrial
equipment

(e) Macarbox: Cardboard
product machining
center

Industrial
Collab-
oration
Agreement:

Vicomtech -
INZU Group

Nov. 2019 -
Dec. 2022
(projected)

M.Sc. Eng. Igor
Ortiz

Dr. Chem.
M. Angeles
Montealegre

Dr. Eng. Ale-
jandro Viloria
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II.A.7

Attendance to Specialized Forums - Doctoral Pe-
riod

The student attended the following specialized forums during his doctoral formation:

II.A.7.1 Scientific Conferences - Doctoral Period
1. CEIG 2022 - XXXI Spanish Computer Graphics Conference, July 2022. Vic, Spain.

Presentation and publication of two articles:

(a) “Cylindrical transform slicing of revolute parts with overhangs for Laser Metal Deposi-
tion; Diego Montoya-Zapata, Aitor Moreno, Igor Ortiz, Oscar Ruiz-Salguero and Jorge
Posada”

(b) “Synthesis of Reeb graph and Morse operators from level sets of a boundary representa-
tion; Juan Pareja-Corcho, Diego Montoya-Zapata, Carlos Cadavid, Aitor Moreno, Jorge
Posada, Ketzare Arenas-Tobon and Oscar Ruiz-Salguero”

2. EUROGRAPHICS 2021 - 42nd Annual Conference of the European Association
for Computer Graphics: Organized by the Research Unit of Computer Graphics at TU
Wien. May 3-7, 2021. Virtual attendance.

3. ISM 2020 - International Conference on Industry 4.0 and Smart Manufacturing,
November 2020. Virtual attendance. Presentation and publication of the article “Generation
of 2.5D deposition strategies for LMD-based additive manufacturing; Diego Montoya-Zapata,
Carles Creus, Igor Ortiz, Piera Alvarez, Aitor Moreno, Jorge Posada, Oscar Ruiz-Salguero”.

4. ICONACES 2020 - International Conference on Applications in Computational
Engineering & Sciences, October 2020. Virtual attendance. Presentation of the extended
abstract “2D thermal model for laser heating processes: A finite element approach; Diego
Montoya-Zapata, Juan M. Rodríguez, Aitor Moreno, Jorge Posada, Oscar Ruiz-Salguero”.

5. MACISE 2020 - 2nd International Conference on Mathematics and Computers in
Science and Engineering, January 2020. Madrid, Spain. Presentation and publication of
the article “Meta-modeling of lattice mechanical responses via design of experiments; Diego
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Montoya-Zapata, Diego A. Acosta, Camilo Cortes, Juan Pareja-Corcho, Aitor Moreno, Jorge
Posada and Oscar Ruiz-Salguero”.

6. CEIG 2019 - XXIX Spanish Computer Graphics Conference, June 2019. San Se-
bastián, Spain. Presentation and publication of the article “Sensitivity analysis in shape op-
timization using voxel density penalization; Diego Montoya-Zapata, Diego A. Acosta, Aitor
Moreno, Jorge Posada and Oscar Ruiz-Salguero”.

II.A.7.2 Professional Forums - Doctoral Period
1. Doctoral Internship: Vicomtech. Industry and Advanced Manufacturing. January 2019 to

December 2022 (projected). Donostia - San Sebastián, Spain.

2. M.Sc. Internship: Vicomtech. Industry and Advanced Manufacturing. January 2018 to
December 2018. Donostia - San Sebastián, Spain.

3. Additive Talks 2022. Addit3D - International Fair of Additive Manufacturing and
3D Printing. International Machine-Tool Biennial (BIEMH 2022). Organized by
Bilbao Exhibition Centre and ADDIMAT. June 17, 2022. Bilbao, Spain.

4. PostAdditive 2019: Conferencia sobre Tecnologías de Posprocesado en Fabri-
cación Aditiva (Conference on Postprocessing Technologies for Additive Manu-
facturing). Organized by CIDETEC Surface Engineering. November 6-7, 2019. Donostia -
San Sebastián, Spain.

5. CMH 2019: Congreso de Máquina-Herramienta (Conference on Machine-Tool).
Organized by AFM Cluster for Advanced and Digital Manufacturing. October 23-25, 2019.
Donostia - San Sebastián, Spain.
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II.A.8

Attendance to Specialized Forums - Master Period

The student attended the following specialized forums during his master’s formation:

II.A.8.1 Scientific Conferences - Master Period
1. STAG 2018 - Smart Tools and Applications in Graphics: Presentation and publication

of the article “Direct scalar field-to-truss representation and stress simulation of open pore
domains; Juan M. Muñoz-Betancur, Oscar Ruiz-Salguero, Diego Montoya, Camilo Cortes and
Carlos Cadavid”. October 2018. Brescia, Italy.

2. SOCO 2018 - International Conference on Soft Computing Models in Industrial
and Environmental Applications: Presentation and publication of the article “FEA struc-
tural optimization based on metagraphs; Diego Montoya-Zapata, Diego A. Acosta, Oscar
Ruiz-Salguero and David Sanchez-Londono”. June 2018. San Sebastián, Spain.

3. TMCE 2018 - Twelfth International Symposium on Tools and Methods of Com-
petitive Engineering: Presentation and publication of the article “Non-manifold modelling
of lattice materials using kinematically constrained FEA; Diego Montoya-Zapata, Oscar Ruiz-
Salguero, Juan Lalinde-Pulido, Juan Pareja-Corcho and Jorge Posada”. May 2018. Las Pal-
mas de Gran Canaria, Spain.

II.A.8.2 Scientific Trainings - Master Period
1. PhD School: International School on Graphics and Geometry Processing for Digi-

tal Manufacturing. Organized by the Italian Chapter of EUROGRAPHICS. October 16-18,
2018. Brescia, Italy.
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II.A.9

Special Advisors Provided by the Universidad EAFIT
and Vicomtech

Table II.A.9.1 presents the specialists, besides the two Supervisors, from the Universidad EAFIT
and Vicomtech who advised the student during his doctoral formation:

Table II.A.9.1: Special advisors, besides the two supervisors, provided by the Universidad EAFIT
and Vicomtech.

Name Role Entity Topic
Dr. Eng. Aitor
Moreno

(a) Daily Supervisor
(b) Scientific coordi-

nator and advisor
(c) Head of Ad-

ditiCAM and
AMGLib

Industry and Advanced
Manufacturing, Vi-
comtech, Spain

Computational geome-
try. Path planning
for Additive Manufac-
turing.

Prof. Dr. Eng.
Diego A. Acosta

Scientific coordinator
and advisor

Design and Development
of Processes and Products
Research Group (DDP),
Universidad EAFIT,
Colombia

Optimization tech-
niques. Design of
experiments.

Prof. Dr. Math.
Carlos Cadavid

Scientific coordinator
and advisor

Mathematics and Ap-
plications, Universidad
EAFIT, Colombia

Morse and Reeb theory.

Dr. Eng.
Camilo Cortés

(a) Scientific coordi-
nator and advisor

(b) Head of MAKBY

Digital Health and
Biomedical Technologies,
Vicomtech, Spain

Modeling of lattice
structures. Computa-
tional mechanics.

Dr. Eng. Carles
Creus

Advisor Industry and Advanced
Manufacturing, Vi-
comtech, Spain

Computational geome-
try. C++ program-
ming.

Continued on next page
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Table II.A.9.1 – Continued from previous page
Name Role Entity Topic
Prof Dr. Eng.
Juan G. Lalinde

Scientific coordinator
and advisor

High Performance Com-
puting facility APOLO,
EAFIT, Colombia.

Data structures and al-
gorithms.

Dr. Eng. Daniel
Mejía

Advisor Industry and Advanced
Manufacturing, Vi-
comtech, Spain

Computational geome-
try. Path planning
for Additive Manufac-
turing.

Prof. Dr. Eng.
Juan M. Ro-
dríguez

Scientific coordinator
and advisor

Department of Mechanical
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II.A.10

Industrial Projects Undertaken in the Scope of the
Doctoral Internship at Vicomtech

Table II.A.10.1 reports the participation of the student in projects during his internship at Vi-
comtech. The projects were related to Computational Geometry, CAD CAM CAE, Industry and
Manufacturing:

Table II.A.10.1: Industrial projects undertaken in the scope of the Doctoral internship at Vicomtech.

Code Acronym Title Funding
entity

Comments

AdditiCAM Software
CAD/CAM for
Additive Manufac-
turing

Direct in-
dustrial
contract:
INZU Group

(a) Cross-platform SDK to
support CAD and CAM
in Laser Metal Deposi-
tion manufacturing.

(b) Application of compu-
tational geometry and
graph algorithms for
LMD process planning
in 3D geometry.

(c) Neutral formats trajec-
tory exporting for cus-
tomization to the addi-
tive manufacturing ma-
chine.

KK-
2018/00115

Addisend Cooperación cientí-
fica en fabricación
aditiva para control
robusto de la ca-
dena de valor

Basque Gov-
ernment.
ELKARTEK
program

English title: Scientific coop-
eration in Additive Manufac-
turing for the robust control
of the value chain

Continued on next page
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Table II.A.10.1 – Continued from previous page
Code Acronym Title Funding

entity
Comments

KK-
2018/00071

LangileOK Tecnologías avan-
zadas de apoyo a
los operarios de la
Industria 4.0

Basque Gov-
ernment.
ELKARTEK
program

English title: Advanced
technologies to support the
operators in the Industry 4.0

KK-
2019/00006

B4H Investigación
fundamental co-
laborativa para
la bioimpresión
de constructos
cutáneos aplicados
al tratamiento de
heridas crónicas

Basque Gov-
ernment.
ELKARTEK
program

English title: Collaborative
fundamental research for the
bioprinting of cutaneous con-
structs applied to the treat-
ment of chronic wounds

AMGLib Additive Manufac-
turing Generic Li-
brary

Vicomtech.
Internal
resources

(a) Cross-platform SDK fo-
cused on additive man-
ufacturing.

(b) Geometric operations
for the generation of
CAM (Computer-Aided
Manufacturing) models.

(c) Algorithms for the gen-
eration of 2D and 3D
CAM trajectories.

MAKBY Making Bioprinting
Easy

Vicomtech.
Internal
resources.
Selected in
the com-
petitive
post-covid
internal call

(a) SDK to ease the end-
user’s configuration for
the generation of high-
quality models for bio-
printing.

(b) Configuration of multi-
material models.

(c) Path-planning opti-
mization to minimize
extrusion interruption
and material overlap-
ping.
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III.A

Summary of Contributions

This thesis presents contributions to the field of Computational Geometry Applied to Additive
Manufacturing. Fig. 1 shows an overview of the areas of Computational Geometry addressed in this
thesis: (i) Shape Optimization in Lattice Structures, (ii) Simulation of Laser Metal Depositionand
(iii) Process Planning for Laser Metal Deposition.

Figure 1: Overview of the contributions of this thesis to Computational Geometry and its applica-
tions to Additive Manufacturing.

Table 1 summarizes the contributions to the three areas of Computational Geometry addressed
in this thesis: (i) Shape Optimization in Lattice Structures, (ii) Simulation of Laser Metal Deposi-
tionand (iii) Process Planning for Laser Metal Deposition.
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Table 1: Summary of the contributions of this thesis to Computational Geometry and its applica-
tions to Additive Manufacturing.

Applied Domain Contributions
Shape Optimiza-
tion in Lattice
Structures

(a) Sensitivity analysis of the Solid Isotropic Material with Penaliza-
tion (SIMP) strategy for shape optimization. The SIMP method
seeks a redistribution of local voxel-densities of a part in order to
stand mechanical demands [121].

(b) Explicit realization of lattice structures that follow the distribution
of non-manufacturable density maps prescribed by shape optimiza-
tion algorithms (e.g. SIMP). The produced lattice structures are
successfully manufactured via Additive Manufacturing (fused de-
position modeling, selective laser melting and binder jetting) [127].

(c) Material homogenization of Schwarz Primitive lattice materials
for efficient Finite Element Analysis of large Schwarz lattice do-
mains [119, 120].

(d) Generation of simplified mathematical functions (meta-models)
that relate the stress/strain behavior of the Schwarz lattice do-
mains with the displacements of prismatic domains with diluted
material properties. The meta-model generation follows methods
of Design of Experiments [120].

Simulation of Laser
Metal Deposition

(a) Linear Finite Element simulation of laser heating on a metallic
substrate. The analysis is confined to a 2D cross-section of the
substrate assuming constant and stable process parameters (tool-
head speed and laser power) [130].

(b) Nonlinear Finite Element simulation of Laser Metal Deposition.
The implemented model considers temperature-dependent mate-
rial properties, phase change and radiation. The analysis is con-
fined to a 2D cross-section of the substrate assuming constant and
stable process parameters (tool-head speed, powder deposition rate
and laser power) [129].

Continued on next page
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Table 1 – Continued from previous page
Applied Domain Contributions
Process Planning
for Laser Metal
Deposition (a) Implementation of 2.5D path planning for Laser Metal Deposition

which includes a graph-based algorithm for 2D region avoidance
during the laser repositioning [125].

(b) Implementation of cylindrical slicing and 3D path planning on
cylindrical layers for the manufacturing of overhanging features
of revolution workpieces via laser metal deposition [126].

(c) Development of a computational minimization module for limiting
metal over-deposition in trajectory corners in Laser Metal Deposi-
tion [124, 128].

(d) Experimental validation of the computational minimization algo-
rithm for limiting over-deposition in trajectory corners in Laser
Metal Deposition [128].

(e) Implementation of datum-based registration for dimensional as-
sessment in trajectory corners in Laser Metal Deposition [128].

(f) Methodology for the generation of the Reeb Graph from discrete
level sets (slices) of the boundary representation of a closed 2-
manifold M [138].

Some of the formal scientific concepts relevant to this research are presented in Table 2.

Table 2: Formal scientific concepts relevant to this research.

Mathematical / Computer Science
Concept

Area of Application

Coordinate frames Process Planning for Laser Metal Deposition
Coordinate transformation Process Planning for Laser Metal Deposition
Delaunay triangulation Simulation of Laser Metal Deposition
Design of experiments Shape Optimization in Lattice Structures
Exhaustive search method Process Planning for Laser Metal Deposition
Graph theory, Dijkstra’s algorithm Process Planning for Laser Metal Deposition
Linear/Nonlinear Finite Element
Method

Simulation of Laser Metal Deposition, Shape Opti-
mization in Lattice Structures

Material homogenization Shape Optimization in Lattice Structures
Morse theory, Reeb graph Process Planning for Laser Metal Deposition
Newton-Raphson method Simulation of Laser Metal Deposition

Continued on next page
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Table 2 – Continued from previous page
Mathematical / Computer Science
Concept

Area of Application

Nonlinear optimization Shape Optimization in Lattice Structures, Process
Planning for Laser Metal Deposition

Numerical integration, Gauss quadra-
ture

Simulation of Laser Metal Deposition, Process Plan-
ning for Laser Metal Deposition

Shape optimization Shape Optimization in Lattice Structures
Surface parametrization Process Planning for Laser Metal Deposition
Principal component analysis Process Planning for Laser Metal Deposition
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III.B

Shape Optimization in Lattice Structures
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III.B.1

Sensitivity Analysis in Shape Optimization using
Voxel Density Penalization
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Abstract
Shape optimization in the context of technical design is the process by which mechanical demands
(e.g. loads, stresses) govern a sequence of piece instances, which satisfy the demands, while at the
same time evolving towards more attractive geometric features (e.g. lighter, cheaper, etc.). The
SIMP (Solid Isotropic Material with Penalization) strategy seeks a redistribution of local densities
of a part in order to stand stress / strain demands. Neighborhoods (e.g. voxels) whose density
drifts to lower values are considered superfluous and removed, leading to an optimization of the
part shape. This manuscript presents a study on how the parameters governing the voxel pruning
affect the convergence speed and performance of the attained shape. A stronger penalization factor
establishes the criteria by which thin voxels are considered void. In addition, the filter discourages
punctured, chessboard pattern regions. The SIMP algorithm produces a forecasted density map on
the whole piece voxels. A post-processing is applied to effectively eliminate voxels with low density,
to obtain the effective shape. In the literature, mechanical performance finite element analyses are
conducted on the full voxel set with diluted densities by linearly weakening each voxel resistance
according to its diluted density. Numerical tests show that this approach predicts a more favorable
mechanical performance as compared with the one obtained with the shape which actually lacks
the voxels with low density. This voxel density - based optimization is particularly convenient for
additive manufacturing, as shown with the piece actually produced in this work. Future endeavors
include different evolution processes, albeit based on variable density voxel sets, and mechanical
tests conducted on the actual sample produced by additive manufacture.

Keywords
Applied computing → Computer-aided manufacturing
Computing methodologies → Modeling and simulation

Glossary
Term Description Units
FEA Finite element analysis N/A
η ∈ (0, 1) Fraction of mass to be retained in the final design Adimensional
p ≥ 1 Penalty factor aimed to polarize element relative densities around

0 and 1
Adimensional

R ≥ 0 Filter radius used to discourage chessboard voxel patterns Adimensional
M0 Initial mass of the domain g
M Mass function of the domain g
c Compliance function of the domain µJ

III.B.1.2 Introduction
Shape Optimization usually includes the set up of physical demands (stress, abrasion, vibration,
light, heat, temperature, etc.) on the desired object and a domain evolution (reduction, in most
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publications). Evolution takes place until some constraint domain is satisfied, both in terms of
remaining volume and of responses to the demands.

This paper uses the term shape optimization as encompassing both geometry and topology as-
pects. The reason for this usage is that when voxel densities in one region vanish (geometry change),
a side effect may be the creation of holes or disjoint portions, which are topological changes. There-
fore, topological changes derive in natural form from geometry changes. Fig. III.B.1.1 shows an
example of the application of shape optimization to a fixed beam subjected to a linear distributed
load.

The strategy SIMP (Solid Isotropic Microstructure with Penalization [100, 165]) implies setting
up of a goal percentage of domain volume reduction, the decomposition of the domain in finite
elements, the load and boundary conditions. For the purpose of the present discussion one may
assume that the finite elements are voxels. In each iteration of the algorithm, the density of each
voxel is re-considered to minimize the compliance of the piece, always keeping the piece mass (i.e.
summation of density times voxel volume) below a certain level.

XY

Z

2
c
m

Fixed Faces
F

(a) Design domain and boundary conditions. (b) Example of the application of voxel density algorithms
for shape optimization.

Figure III.B.1.1: Design domain and result of the application of shape optimization.

The voxel density strategy uses a parameter p to polarize the densities of the finite elements
towards 0 and 1. It also uses a filter (parameter R) which discourages puncturing or chessboard
effects that would produce low and high density voxels mixing in a non-dense pattern. The goal is,
therefore, to have voxel - density - homogeneous regions.

This paper studies the influence of the parameters of the density-based algorithm, which is one
of the most used structural optimization algorithms in additive manufacturing. For this purpose,
a case study in the field of solid mechanics is defined. This paper evaluates the impact of the
density-based algorithm parameters, not only in the geometry of the final design, but also in the
structural performance and computation time.

The rest of the paper is organized as follows: Section III.B.1.3 provides a review of the related
literature. Section III.B.1.4 describes the methodology used for testing the influence of the studied
parameters. Section III.B.1.5 presents and discusses the obtained results. Finally, Section III.B.1.6
concludes the work and proposes some potential lines for future research.
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III.B.1.3 Literature Review
Section III.B.1.3.1 shows the development of visualization tools to assist manufacturing processes.
Subsequently, Section III.B.1.3.2 presents the use of structural optimization for additive manu-
facturing. Section III.B.1.3.3 introduces the studies on the effects of the optimization parameters
in the solution given by the voxel density algorithm. Finally, Section III.B.1.3.4 concludes the
literature review and synthesize the contributions of this work.

III.B.1.3.1 Structural Optimization and Visual Computing
Structural optimization may be traced back to the work in Ref. [12] and has evolved rapidly since
the beginning of the 2000’s. Applications in aerospace [170], fluid flow [87] and biomedicine [177]
show the adoption of structural optimization in different fields. The reader is referred to the works
in Refs. [42, 166] for a more detailed review. Section III.B.1.3.2 discusses the use of structural
optimization in manufacturing.

In recent years, different tools of visual computing have started to support structural opti-
mization and manufacturing [107, 110, 196], proving that visual computing is a core technology
of Industry 4.0 [145]. This paper states the mathematical and algorithmic background for the de-
velopment of an interactive and intuitive tool to assist the process of structural optimization in
additive manufacturing.

III.B.1.3.2 Structural Optimization for Additive Manufacturing
Although structural and shape optimization impact diverse manufacturing methods, additive man-
ufacturing is particularly convenient for materializing voxel scale optimization. In the context of
additive manufacturing, optimization is conducted by (a) growing / clipping the shape (i.e. bi-
directional evolutionary structural optimization -BESO [122, 181, 182]), (b) tuning the density
of spatial neighborhoods ([90, 137, 206]), (c) using level sets to determine infill and shell profiles
([63, 99]), and (d) tuning diameters (proportional topology [29]).

Voxel density as tuning parameter has been used along level sets as supports for shape opti-
mization in the context of additive manufacturing ([98]). Voxel density variations are relevant in
various additive manufacturing aspects, such as: (1) minimization of support structures during the
material deposition stages, (2) generation of lattice and porous structures for weight reduction, and
(3) tailoring part designs for additive manufacturing.

Ref. [90] presents neighborhood density optimization which hosts elimination of deposition stage
support structures. Ref. [137] maps density maps onto lattice materials suited for shape optimiza-
tion. Ref. [206] finds voxel density maps which optimize shape, while at the same time integrates
an overhang constraint into the formulation of the shape optimization with additive manufacturing.

III.B.1.3.3 Effect of the Parameters in Voxel-density Algorithms
As shown in the previous section, voxel density algorithms have been used in structural optimization
for different and varied applications. However, it is not clear how the parameters associated to the
optimization process affect, not only the topology and geometry of the final design, but also other
relevant variables, such as the convergence speed, objective function, and structural performance
of the obtained design.
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The impact of the penalization factor p in the geometry of the final design has been widely
studied. It is known that large penalization factors (p > 3) tend to produce black–and–white
designs [5, 38, 70, 100, 165, 189]. However, the influence of the penalization factor on the behavior
of other variables (e.g. compliance and von Mises stress) has not been established.

On the other hand, it is common to use filtering techniques to reduce the checkerboard patterns
that result from numerical instabilities of the density-based methods [14]. In this case, a filtering
radius R must be included. This parameter defines the area of the neighborhood in which the filter
is applied. The larger the filtering radius R, the simpler the geometry of the final shape [67, 70].
However, the impact of this parameter on the compliance, time of convergence and structural
performance is not well studied yet.

Ref. [67] studies the effects of the variation of the goal volume/mass fraction in the geometrical
complexity of the obtained designs. Refs. [5, 52] state that different designs can be obtained by
varying the initial density distribution. Besides, other parameters concerning the finite element
analysis (FEA) are also studied. Ref. [38] shows the advantage of quadratic finite elements over the
linear ones for avoiding checker-board patterns and Ref. [52] exhibits the mesh density dependency
of the geometry of the final solution. However, these analyses mainly focus on the geometry of the
final shape, leaving aside the structural and mechanical performance of the piece.

III.B.1.3.4 Conclusions of the Literature Review
The interest of the additive manufacturing community to advance towards structurally optimal
designs has been shown. Different structural optimization algorithms (e.g. density-based, level set,
evolutionary structural optimization) have been used in the context of additive manufacturing.
However, the success of the optimization is highly dependent on the chosen parameters associated
to the algorithm.

This paper focuses on getting a better understanding on how the parameters of the voxel density
method affect (1) the behavior of the algorithm and, (2) the geometry and structural performance
of the obtained design. This literature review has shown that exist few works that tackle this task.
Most of the studies limit to evaluate only changes on the final geometry.

This work assess (1) the speed of convergence of the algorithm, (2) the final compliance, (3) the
final maximum von Mises stress and, (4) the geometry and manufacturability of the final shape.
As opposed to the found in previous works—in which the tested design is the voxel density map—
measurements are also taken on the final piece.

III.B.1.4 Methodology

III.B.1.4.1 Tuning of Element Density
The objective of the classical structural optimization algorithms is to minimize the amount of
material of a design so that it remains functional. In particular, density-based methods for shape
optimization are heuristic strategies that aim to find the optimal distribution of the relative densities
(xi) of the FEA elements along the domain.

In order to avoid FEA elements with intermediate (gray) densities—i.e. densities that are neither
close to 0 nor 1—, voxel density methods adopt the heuristic rule in Eq. III.B.1.1:

Ei = xpiE0 (III.B.1.1)
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where p is the penalization power for intermediate densities and, Ei and E0 are the elastic moduli
of the i–th element and the raw material, respectively.

The formulation for the minimization of compliance in Eq. III.B.1.2 ([100, 165]) assumes that
the domain is (1) rectangular prismatic, and (2) discretized into N cubic FEA elements (voxels):

minimize
X

c(X) = UTKU

subject to M(X) ≤ ηM0,

KU = F,
0 < xmin ≤ xi ≤ 1, i = 1, . . . , N.

(III.B.1.2)

where X = [x1, . . . , xN ]T is the vector of relative densities, xmin is the minimum value that the
relative density can reach (non-zero to avoid discontinuities that can produce numerical issues),
c(X) is the compliance function, U is the global displacement vector, F is the global force vector, K
is the global stiffness matrix, M0 is the mass of the initial design domain, η is the fraction of mass
that aims to be retained in the final design and M(X) is the mass function (Eq. III.B.1.3),

M(X) =
M0

N

N∑
i=1

xi. (III.B.1.3)

Most of the implementations of the voxel density algorithms also include filtering techniques
to avoid checkerboard patterns and, mesh-dependent solutions [165]. One of the most frequently
used filters is the sensitivity filter, which operates on the derivatives of the compliance function, as
shown in Eq. III.B.1.4 [165]:

∂̃c
∂xi

=

∑
j∈Ni

Hij
∂c
∂xj

xj

xj
∑

j∈Ni
Hij

, (III.B.1.4)

where Ni = {j : dist(i, j) ≤ R} is the neighborhood of the i-th element and R is the filter radius
and, Hij is a weight factor defined in Eq. III.B.1.5:

Hij = R− dist(i, j), (III.B.1.5)

where dist(i, j) is the distance between the centers of the elements i and j (ci and cj , respectively),
divided by the length l of the FEA elements (Eq. III.B.1.6):

dist(i, j) = ||ci − cj ||
l

. (III.B.1.6)

III.B.1.4.2 Conversion of the Voxel Density Map to the Design-for-Man-
ufacturing

The output of the implemented heuristic algorithm is a density map (Fig. III.B.1.2(a)) in which
each voxel i has an associated relative density xi (0 ≤ xi ≤ 1). In general, this design cannot be
manufactured. In order to select the elements to manufacture, this paper employes the algorithm
presented in Ref. [166]. The algorithm finds the minimum density threshold xT that guarantees
the mass constraint for the design-for-manufacturing (also called black-and-white design). The
surviving elements are those for which xi ≥ xT . Fig. III.B.1.2 shows an example of the conversion
of the voxeld density map to the design-to-manufacturing.
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(a) Voxel density map. (b) Black-and-white domain.

Figure III.B.1.2: Conversion of the voxel density map to the design-to-manufacture.

III.B.1.4.3 Sensitivity Analysis
The formula in Eq. III.B.1.7 allows the numerical analysis of the sensitivity of the function F with
respect to the parameter α:

SF
α =

∂ lnF
∂ lnα =

α

F

∂F

∂α
≈ α

F

∆F

∆α
, (III.B.1.7)

where ∆α and ∆F denote small changes in the value of α and F ; and α = α + ∆α/2, F =
(Fα + Fα+∆α) /2.

In this paper, the functions F to analyze are: compliance, maximum von Mises stress and
number of iterations. Likewise, the parameters α to study are p and R.

Relative sensitivity allows to study how slight variations in the value of the parameters can
affect the mechanical performance of the final piece.

Von Mises stress is used in solid mechanics as a failure criterion and it is desirable to minimize
it. Von Mises stress is defined as per Eq. III.B.1.8:

σVM =

√
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2

2
, (III.B.1.8)

where σ1, σ2 and σ3 are the principal stresses.

III.B.1.4.4 Case Study
This paper uses a case study for the analysis of the effects of the algorithm parameters. This section
describes: (1) the domain and material used for the simulations and, (2) the configuration of the
numerical tests.

III.B.1.4.4.1 Domain of Analysis and Material Characterization

The studied domain is a 3D fixed beam with linearly distributed load applied in the center of the
top face (see Fig. III.B.1.1(a)). The beam has size 140.0mm x 20.0mm x 20.0mm and the magnitude
of the total applied load is 1.1N. The material employed for the simulations is a PLA filament of a
commercial brand. The properties of this material are presented in Table III.B.1.1.

38



Table III.B.1.1: Properties of the PLA filament used for the simulations.

Property Value
Young’s modulus 1230 MPa [23]
Poisson’s ratio 0.33 [59]
Density 1.24 g/cm3 [23]

The domain in Fig. III.B.1.1(a) is symmetric to the planes depicted in Figs. III.B.1.3(a) and III.B.1.3(b).
Therefore, it can be simplified to the domain in Fig. III.B.1.3(c). The equivalent load case is shown
in Fig. III.B.1.4.

In order to show the equivalence of the load cases presented in Figs. III.B.1.1(a) and III.B.1.4,
a FEA simulation is executed for each domain, using F = 1.1N. Results of the simulations are
presented in Fig. III.B.1.5. Notice how the displacements of the two load cases are equivalent.
This result allows to execute the simulations of the shape optimization algorithm on the simplified
domain.

Symmetry Plane

X = 7 cm

XY

Z

(a) Symmetry w.r.t. X = 7 cm.

Symmetry Plane

Y = 1 cm

XY

Z

(b) Symmetry w.r.t. Y = 1 cm.
XY

Z

2
cm

Domain to

Analyze

(c) Simplified domain.

Figure III.B.1.3: Simplification of the domain in Fig. III.B.1.1(a).
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Figure III.B.1.4: Design domain and boundary conditions. Simplified domain.
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(a) Original domain. X displacement.
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(b) Simplified domain. X displacement.
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(c) Original domain. Z displacement.
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(d) Simplified domain. Z displacement.

Figure III.B.1.5: Comparison of the X and Z displacements for the original and simplified domain.

III.B.1.4.5 Set-up of Numerical Experiments
This paper conducts studies of the effects of p (density polarization) and R (region homogenization)
parameters upon the piece geometry and mechanical performance, in the scenario of voxel density
optimization methods. Table III.B.1.2 presents the set of different simulations used for the study
of each parameter. The measured variables for each simulation are: (1) compliance, (2) maximum
von Mises stress and, (3) convergence speed, measured by the number of iterations. The authors
implemented the heuristic voxel density optimization method in C++. The implementation uses
the optimality criteria for updating the variables within the optimizer [13].

To execute the FEA simulations, the domain in Fig. III.B.1.4 is discretized into 1750 voxels
(35x5x10). Subsequently, the FEA mesh is obtained by converting every voxel into a regular
hexahedral (cubic) FEA element.

III.B.1.5 Results and Discussion
Sections III.B.1.5.1 and III.B.1.5.2 discuss the influence of the penalty factor p and the filter radius
R in the manufacturability, compliance and maximum von Mises stress of the final design, so as the
convergence speed of the algorithm. Measurements are executed on both the voxel density map and
the black-and-white design. Subsequently, Section III.B.1.5.3 presents a sensitivity analysis of the
studied variables with respect to p and R. Finally, Section III.B.1.5.4 shows some of the specimens
generated using different parameter configurations.
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III.B.1.5.1 Influence of the Penalty Factor in the Geometry, Manufac-
turability and Mechanical Performance of the Design

To evaluate the influence of the penalty factor p in the geometry and structural performance of the
final design, 14 simulations were executed varying the value of p between 1.0 and 7.5, as shown
in Table III.B.1.2. Figs. III.B.1.6(a), III.B.1.6(b) and III.B.1.6(c) show the resultant density field
for p = 1.0 (no penalty), p = 3.0 and, p = 7.0. Histograms in Figs. III.B.1.6(d), III.B.1.6(e)
and III.B.1.6(f) depict the frequency distribution of the density values. Notice that for p = 1.0,
density distribution is concentrated in the interval (0.0, 0.2). On the other hand, for p = 3.0 and
p = 7.0, the largest bars are for xi = 0.0 and xi = 1.0. These density distributions show the action
of the penalty factor to eliminate the intermediate densities.

Table III.B.1.2: Values of the parameters used for the numerical simulations.

Analyzed
parameter

Parameter value
p R η M0

p {1.0, 1.5, . . . , 7.5} 1.0 0.1 17.4 g
R 3.0 {0, 1, . . . , 5} 0.1 17.4 g

Figs. III.B.1.6(g), III.B.1.6(h) and III.B.1.6(i) display the black-and-white design for p = 1.0,
p = 3.0 and, p = 7.0. The design for p = 1.0 is composed by multiple non-connected parts and
cannot be manufactured. The differences in the designs for p = 3.0 and p = 7.0 show that larger
values of p tend to produce simpler geometries.
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(a) Gray domain. Density field for
p = 1.0.

(b) Gray domain. Density field for
p = 3.0.

(c) Gray domain. Density field for
p = 7.0.
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(d) Histogram of densities for p =
1.0.
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(e) Histogram of densities for p =
3.0.
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(f) Histogram of densities for p =
7.0.

(g) Black-and-white domain (red)
for p = 1.0.

(h) Black-and-white domain (red)
for p = 3.0.

(i) Black-and-white domain (red) for
p = 7.0.

Figure III.B.1.6: Impact of the penalty factor in the geometry and manufacturability.

Fig. III.B.1.7(a) shows the compliance of the gray and black-and-white designs of the 14 sim-
ulations varying p. For p = 1.0 and p = 1.5, the black-and-white domains are not connected and,
therefore, compliance is not reported. Notice that for the gray domain, compliance tends to increase
as p increases. However, for the black-and-white design, compliance converges to a value close to
4.0 µJ.

Fig. III.B.1.7(b) displays the maximum von Mises stress for the gray and black-and-white do-
mains. So as in the case of compliance, maximum von Mises stress has a different behavior for the
gray and black-and-white designs. In the case of the gray domain, maximum von Mises stress tends
to increase, even for p ≥ 2.0. On the other hand, for the black-and-white domain, maximum von
Mises stress oscillates around 100 kPa.

For the studied gray domains, the compliance and maximum von Mises stress attain their lowest
values when p = 1.0 and p = 1.5. However, for these values of p, the respective black-and-white
domains cannot be manufacture. It exhibits that the results for the black-and-white domain are not
necessarily in concordance with the results for the gray domain. It demonstrates the importance of
analyzing the black-and-white domain, which is the one to be manufactured.

In Fig. III.B.1.7(c) can be seen the number of iterations that the algorithm needed to converge
for every value of p. The reader can see that, for the domains that can be manufactured (p > 2.5),
large values of p tend to accelerate the convergence of the algorithm.
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Figure III.B.1.7: Impact of the penalty factor in the convergence speed and mechanical performance.

III.B.1.5.2 Influence of the Filter Radius in the Geometry, Manufactura-
bility and Mechanical Performance of the Design

To study the influence of the filter radius R, it was varied between 0.0 and 6.0. Figs. III.B.1.8(a),
III.B.1.8(b) and III.B.1.8(c) show the resultant density field for R = 0.0 (no filtering), R = 1.0
and, R = 3.0. Figs. III.B.1.8(d), III.B.1.8(e) and III.B.1.8(f) show the corresponding histograms of
the density maps: when R increases, the density is distributed more evenly along the domain and,
therefore, more intermediate densities appear.

The black-and-white domains forR = 0.0, R = 1.0 and, R = 3.0 are displayed in Figs. III.B.1.8(g),
III.B.1.8(h) and III.B.1.8(i). Complex and detailed geometries are attained for small values of
R. However, the geometrical complexity stimulates the appearance of non-manufacturable sub-
domains. Fig. III.B.1.12(c) show that for R = 0.0 appear voxels that are connected by a single
edge, which impedes the correct manufacturing (even using additive manufacturing technologies) of
the piece. The occurrence of these chessboard patterns are associated to numerical errors that may
be caused by the voxel discretization and the type of FEA element used for the simulations [144].
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(a) Gray domain. Density field for
R = 0.0.

(b) Gray domain. Density field for
R = 1.0.

(c) Gray domain. Density field for
R = 3.0.
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(d) Histogram of densities for R =
0.0.
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(e) Histogram of densities for R =
1.0.
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(f) Histogram of densities for R =
3.0.

(g) Black-and-white domain (red)
for R = 0.0.

(h) Black-and-white domain (red)
for R = 1.0.

(i) Black-and-white domain (red) for
R = 3.0.

Figure III.B.1.8: Impact of the radius filter in the geometry and manufacturability.

The compliance and maximum von Mises stress are shown in Figs. III.B.1.9(a) and III.B.1.9(b).
For R = 5.0, compliance and maximum von Mises stress are not reported for the black-and-white
domain because the domain is not connected. The increase of the compliance for the gray domain
(Fig. III.B.1.9(a)) for increments in R is noticeable. However, the value of R does not affect the
compliance of the black-and-white domain.

So as in the previous section, the behavior of the compliance and maximum von Mises stress
is different for the black-and-white and gray domains. The mechanical performance of the gray
domain is merely illustrative and does not represent a real piece. Therefore, it is necessary to check
the performance of the piece for manufacturing. This finding shows the relevance of a stage of
validation in the pipeline of structural optimization.

Fig. III.B.1.9(b) shows that larger values of R produce structures with larger maximum von
Mises stress for the black-and-white domain. This result agrees with the result for the gray domain
when R ≤ 3.0. However, for R ≥ 4.0, the maximum von Mises stress of the gray domain decays. It
is related to the more even distribution of the relative densities in the volume.

Fig. III.B.1.9(c) shows the convergence speed of the algorithm depending on the value of R. No
filtering and large filter radii contribute to a faster convergence. However, the final design may not
be manufacturable. Therefore, intermediate values of R should be selected.
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Figure III.B.1.9: Impact of the filter radius in the convergence speed and mechanical performance.

III.B.1.5.3 Sensitivity Analysis
Fig. III.B.1.10 presents the relative sensitivity of the compliance, maximum von Mises stress and
number of iterations with respect to the parameter p. To calculate these values, R was fixed to 1.0.
It is noticeable that for p > 4.0, the compliance and the maximum von Mises stress are not affected
by the value of p. On the other hand, the convergence speed of the algorithm is very sensitive to
the value of p.

-2.0

-1.0

0.0

1.0

2.0

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Penalty factor (p)

Rel. Sensitivity of Compliance w.r.t. p

Gray domain Black-and-white domain

R = 1.0

(a) Sensitivity of compliance.

-1.0

-0.5

0.0

0.5

1.0

1.5

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Penalty factor (p)

Rel. Sensitivity of Max. von Mises

stress w.r.t. p

Gray domain Black-and-white domain

R = 1.0

(b) Sensitivity of maximum von
Mises stress.

-6

-1

4

9

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Penalty factor (p)

Rel. Sensitivity of Number of

iterations w.r.t. p

R = 1.0

(c) Sensitivity of the number of iter-
ations.

Figure III.B.1.10: Relative sensitivity of the compliance, maximum von Mises stress and convergence
speed w.r.t. p.

Fig. III.B.1.11 displays the sensitivity analysis of the parameter R for the studied variables: com-
pliance, maximum von Mises stress and convergence speed. From Figs. III.B.1.11(a) and III.B.1.11(b)
can be infered that R does not have much influence on the compliance and maximum von Mises
stress of the final design. However, R does impact the mechanical performance of the voxel density
map, specially for larger values of R. Convergence speed is also affected when R ≥ 2.0.
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Figure III.B.1.11: Relative sensitivity of the compliance, maximum von Mises stress and convergence
speed w.r.t. R.

III.B.1.5.4 Evaluation of the Manufacturability and 3D Printed Pieces
Additive manufacturing allows the production of complicated geometries that cannot be manufac-
tured using other technologies. To evaluate the feasibility of the designs produced by the voxel
density algorithm, three resultant domains of Sections III.B.1.5.1 and III.B.1.5.2 were selected.
Figs. III.B.1.12(a)–III.B.1.12(c) show the corresponding STL model of each design. The domain
in Fig. III.B.1.12(c) has neighborhoods in which the voxels are connected only by an edge, which
compromises the manufacturability of the piece.

Figs. III.B.1.12(d)–III.B.1.12(f) show the 3D printed pieces obtained from the STL models in
Figs. III.B.1.12(a)–III.B.1.12(c). Notice that for the first two domains, the geometry of the shape
can be reproduced accurately. However, due to the single edge’s connections in the third design,
some sub-domains disconnect when support material is removed. In order to improve the manu-
facturability of the final piece, different solutions for suppressing these punctured or chessboard-
looking regions have been proposed. Filtering techniques (as the implemented in this work), the
use of higher–order FEA elements and the deletion of single-edge or single vertex connections [144]
are some of the plausible solutions. Other possible solution is to smooth the voxel design. This
work uses the Marching Cubes algorithm to smooth the surface associated to the voxel domain.
Figs.III.B.1.13 show the obtained STL models after smoothing the domains in Fig. III.B.1.12 and
the corresponding 3D-printed pieces.
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(a) STL model for p = 3.0, R = 1.0. (b) STL model for p = 7.0, R = 1.0. (c) STL model for p = 3.0, R = 0.0.

(d) Printed version of model in
Fig. III.B.1.12(a).

(e) Printed version of model in
Fig. III.B.1.12(b).

(f) Printed version of model in
Fig. III.B.1.12(c).

Figure III.B.1.12: 3D printed designs obtained using the voxel density algorithm.

(a) Smoothed model for p =
3.0, R = 1.0.

(b) Smoothed model for p =
7.0, R = 1.0.

(c) Smoothed model for p = 3.0, R =
0.0.

(d) Printed version of model in
Fig. III.B.1.13(a).

(e) Printed version of model in
Fig. III.B.1.13(b).

(f) Printed version of model in
Fig. III.B.1.13(c).

Figure III.B.1.13: Smoothed designs using Marching Cubes algorithm and the corresponding 3D
printed pieces.

III.B.1.6 Conclusions
This paper presents analysis of the effects of the parameters of the heuristic voxel density algorithms
in (1) the geometry and structural performance of the final design and, (2) the convergence speed
of the algorithm. For the study, the authors use one set-up, therefore conclusions on the detailed
behavior of the parameters may not be drawn. However, results show that (a) extreme values of
the parameters may affect the manufacturability and mechanical performance of the designs and
(b) mechanical analyses must be executed on the domain-to-manufacture and not in the optimal
voxel density map given by the algorithm.
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Shape optimization is an intermediate step in the work-flow of the design-to-manufacturing. In
this realm, it is important to understand how the shape optimization algorithms work and how
their parameters affect the obtained design. This work can be a worthy tool for many designers
and engineers that use commercial software that implements density-based methods.

III.B.1.6.1 Limitations
This work studies the effects of the penalty power p and the filter radius R independently. It may
be interesting to understand the interaction between these two parameters. Future research should
address the analysis of simultaneous changes in the values of p and R. Moreover, other parameters
(e.g. mass fraction η) can be investigated. Physical experimentation is also required for testing the
correctness and exactitude of the numerical results.

III.B.1.6.2 Future Work
The authors look forward to generate an interactive tool to assist the design process in additive
manufacturing. The tool would allow designers to visualize different different pieces and their
mechanical performance. It has to be capable of generating different configurations for the domain,
loads, constraints and parameter configurations for shape optimization.

It is necessary to validate the conclusions drawn in this work. In that sense, there are three lines
of research that are open for further work: (1) the simulation of other domains with different load
cases, (2) the analysis of interactions between p and R and (3) physical tests to confirm numerical
results.
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Abstract
In the context of lattice–based design and manufacturing, the problem of physical realization of
density maps into lattices of a particular family is central. Density maps are prescribed by de-
sign optimization algorithms, which seek to fulfill structural demands on a workpiece, while saving
material. These density maps cannot be directly manufactured since local graded densities cannot
be achieved using the bulk solid material. Because of this reason, existing topology optimization
approaches bias the local voxel relative density to either 0 (void) or 1 (filled). Additive manufactur-
ing and 3D printing open possibilities to produce graded density individuals belonging to different
lattice families. However, voxel–level sampled boundary representations of the individuals produce
rough and possibly disconnected shells. In response to this limitation, this article uses a sub–voxel
sampling (largely unexploited in the literature) to generate lattices of graded densities. This sub–
voxel sampling eliminates the risk of shell disconnections and renders better surface continuity.
The manuscript devises the function to produce Schwarz cells that materializes a given relative
density. This article illustrates a correlation of continuity against stress concentration by simulat-
ing C0 and C1 inter-lattice continuity. The implemented algorithm produces implicit functions and
thus lattice designs which are suitable for metal additive manufacturing and able to achieve the
target material savings. Additional work is required in the modeling of the mechanical response
(stress/strain/deformation) response of large lattice sets (with arbitrary geometry and topology)
under working loads.

Keywords
3D printing; topology optimization; Schwarz Primitive; lattice structure

III.B.2.2 Introduction
Additive manufacturing (also called 3D printing) makes feasible the production of complex and
intricate geometric features. However, the high production costs limit the application range of
this technology. In this context, topology optimization plays a major role in the production of
lightweight parts that reduce material usage and, consequently, production costs. Existing topology
optimization algorithms deliver density maps as the result of the optimization. These density maps
cannot be directly manufactured since the density of a bulk solid material cannot be locally graded.
In order to overcome this limitation, additive manufacturing takes advantage of its geometrical
freedom to enable the physical realization of these density maps into real pieces, using lattice
structures.

Lattice structures are families of repetitive architectures whose distribution of void/filled sections
can be controlled. Moreover, the attractiveness of lattice structures lies on its ability to retain
good mechanical properties (e.g. high strength–to–weight ratio, energy absorption) while saving
material. Current works aim to use surface lattice materials for converting density maps into
manufacturable workpieces. Surface lattices are a particular family of lattice structures that can be
generated as isosurfaces of an implicit function that controls the shape of the structure. However,
the materialization of density maps into surface lattice structures poses different challenges: (a)
a procedure to control the density of surface lattice structures must be established, (b) the mass
of the given density map must be preserved, and (c) stress concentration in terms of inter–lattice
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continuity is to be considered.
Initially, the paper presents how to generate surface lattice structures of variable density from

a general perspective. Then, the paper addresses, in a formal and intuitive manner, the prob-
lem of controlling the density of the variable–density surface lattices, so that the arrangement of
the void/filled regions of the lattice structure resembles the given density map. This is achieved
by deriving the relationship between the iso–value (necessary to produce the isosurface) used to
generate the surface lattice and its corresponding density for the family of Schwarz lattices. The
produced structures are effectively manufactured via three processes of additive manufacturing:
fused deposition modeling, binder jetting and selective laser melting.

With the aim of guiding the reader through the paper, the basic terminology is graphically
presented here. Figure III.B.2.1(a) shows the initial or rectangular prismatic design domain (Ω),
of width w, depth d and height h. The domain Ω is partitioned into two different sets. One
corresponds to the finite element mesh, built by cubic finite elements or voxels (Fig. III.B.2.1(b)).
On the other hand, the domain is also divided into cubic lattices that are larger than voxels. In
this sense, a lattice is composed by an array of k x k x k voxels (Fig. III.B.2.1(c)). Finally, the
space occupied by a cubic lattice becomes a Schwarz Primitive cell. So, the final surface lattice
domain can be seen as the union of all the produced Schwarz Primitive cells (Fig. III.B.2.1(d)).
It is important to clarify that (a) Fig. III.B.2.1(c) is merely illustrative and, in reality, it is usual
that k ≥ 10, and (b) the triangular mesh or full boundary representation (B–Rep) for the domain
is generated by devising an overall piecewise implicit Schwarz family function and then by making
the mesh explicit using a Marching Cubes algorithm.
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(a) Design domain Ω. (b) Finite element or voxel.

(c) Cubic lattice or lattice. (d) Schwarz Primitive cell and surface lattice do-
main.

Figure III.B.2.1: Geometric entities.

The remainder of this article is organized as follows: Section III.B.2.3 provides a review of
the relevant related work. Section III.B.2.4 describes the methodology to generate surface lattice
structures and presents the algorithm to convert density maps into lattice materials with controlled
density. Section III.B.2.5 presents and evaluates the results obtained following the presented ap-
proach. Advantages and limitations of the implemented algorithm are discussed. Section III.B.2.6
concludes the manuscript and presents potential research lines to extend this work.

III.B.2.3 Literature Review

III.B.2.3.1 Topology Optimization in Additive Manufacturing
Additive manufacturing offers more geometrical freedom than traditional subtractive manufacturing
techniques. This geometrical flexibility gives to additive manufacturing/3D printing the capacity
to exploit and materialize the complex results of topology optimization [65, 97].

There are three mainly used topology optimization algorithms used in additive manufacturing
applications [98]. The first is Solid Isotropic Material with Penalization (SIMP) or density–based
topology optimization, which iteratively adjusts the density of localized neighborhoods [121, 165].
The second strategy acts by removing and adding material in different locations of the domain. It
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is called bi–directional evolutionary structural optimization [122, 182]. Finally, the third approach
only modifies the boundary of the domain, which is represented by level set functions [99].

Topology optimization in additive manufacturing seeks to (1) design of light–weight and func-
tional pieces [121, 122], (2) suppress or minimize the amount of support structures needed during the
manufacturing stage [90, 188], and (3) define optimal infill strategies for existing designs [137, 196].

III.B.2.3.2 Lattice Structures in Additive Manufacturing
Besides being lightweight and keeping a high strength-to-weight ratio, lattice structures possess
important characteristics which make them appropriate in engineering. Among these properties
are: energy absorption [79], heat transfer [105], and vibration and acoustic damping [203]. Authors
also evaluate specific mechanical characteristics. References [91, 123] study the elastic properties
of surface–based and Kelvin lattices, respectively. Reference [56] analyzes the feasibility of surface–
based lattices for acoustic isolation by obtaining their vibration bandgaps. Applications of lattice
structures can be found in bioengineering, automotive, aeronautic, and aerospace [78].

Regarding additive manufacturing, lattice structures are beneficial because they save material
and time, reduce material wasting on supports and diminish energy expenses during manufac-
turing [78]. In particular, surface–based lattices serve in biomedical [8, 113] or industrial appli-
cations [94, 137]. Surface–based structures are also employed as supports during the building
process [173]. Research also focuses on the characterization of surface–based lattice structures fab-
ricated via additive manufacturing. Reference [1] investigate the elastic and plastic deformation
under compression of polymer surface–based lattices. Besides, Ref. [201] assesses manufacturability
and mechanical performance of metal surface–based lattices.

III.B.2.3.3 Explicit Realization of the Results of Topology Optimization
into Surface–based Lattices

As stated before, density–based topology optimization is commonly used in additive manufacturing
applications. The outcome of this kind of algorithms is a density map onto the finite element
mesh. The drawback then is that this density map does not have a direct physical realization, due
to the density of a material cannot be graded. Since the filled–void proportion of lattices can be
manipulated, lattices have emerged as a plausible alternative to solve this issue.

In order to adapt the results of topology optimization into a lattice domain, the related literature
relies in the concept of controlling the density (filled–void relation) of the lattice structure, so that
it resembles the density map of topology optimization. In this realm, Refs. [24, 168, 208] propose
solutions using different 2D lattice structures and Ref. [4] introduces a density mapping using 3D
trusses. Likewise, surface lattices are also adopted for this task. References [94, 102, 137, 160, 208]
employ surface lattices to materialize the results of topology optimization. Nevertheless, these
works have some limitations: (1) the lack of a formal definition of the problem of mapping the
densities of topology optimization into surface lattices, (2) the size of the finite elements affects the
geometrical quality of the obtained surface (except for Ref. [208]), and (3) the mass of the produced
lattice structure differs from the mass determined by the given density map.
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III.B.2.3.4 Conclusions of the Literature Review
The literature review has shown that the development of topology optimization is one of the key
points for the progress of additive manufacturing. Different topology optimization techniques
(namely SIMP, evolutionary structural, and level set–based) are used to exploit the geometrical
versatility brought by additive manufacturing. However, the problem of materializing the output
of topology optimization into a manufacturable (printable) model is still an open research question.

In order to solve this problem, different authors propose to convert the results of the SIMP
optimization algorithm into lattice domains, particularly surface–based lattices. However, there are
three aspects that need to be revised: (1) the formalization of the problem of mapping the densities
of topology optimization into surface lattices, (2) the generation of surface lattice domains whose
quality is not restricted by the mesh used for the optimization, and (3) the preservation of the mass
dictated in the optimization stage.

This paper focuses on the formalization of the problem in an accurate and intuitive manner. The
proposed solution to the stated problem detaches the geometrical resolution of the generated surface
lattice from the initial mesh used for the optimization. Likewise, this paper proposes a solution for
the problem of mass preservation by considering the characteristics of the surface lattices during
the optimization stage.

III.B.2.4 Methodology

III.B.2.4.1 Formulation of SIMP
Structural optimization aims to minimize the amount of material of a design while keeping its
functionality. SIMP–based (also called density–based) methodology seeks the optimal distribution
of the relative density (xi) along the domain.

The classic formulation of density–based topology optimization methods targets the minimiza-
tion of the compliance c(X), which is a measure of the total strain energy. SIMP relies on finite
element analysis (FEA) to perform the simulations. Equation III.B.2.1 presents the problem of com-
pliance minimization for a rectangular prismatic domain Ω, meshed with N cubic FEA elements
(also called voxels) [100, 165]:

minimize
X

c(X) = UTKU = UTF

subject to V (X) ≤ ηV0,

KU = F,
0 < xi ≤ 1, i = 1, . . . , N.

(III.B.2.1)

where X = [x1, . . . , xN ]T are the relative densities associated to the FEA elements, U is the global
displacement vector, F is the global force vector, K is the global stiffness matrix, V0 is the initial
domain volume, η is the maximum proportion of volume of the optimal design and V (X) is the
domain volume, calculated as per Eq. III.B.2.2,

V (X) =
V0
N

N∑
i=1

xi. (III.B.2.2)

The formulation of density–based topology optimization adopts the rule in Eq. III.B.2.3:
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Ei = xpiE0 (III.B.2.3)

where Ei and E0 are the elastic moduli of the i–th element and the raw material, respectively, and
p is a penalization parameter that makes xi tends to either 0 or 1.

The outcome of density–based topology optimization is a density (xi) map onto the FEA el-
ements, with 0 ≤ xi ≤ 1. Intuitively, xi = 1 represents the presence and xi = 0 the absence of
material. However, intermediate densities—i.e. densities that are not 0 or 1— do not have a phys-
ical meaning and cannot be manufactured. In this realm, the junction of additive manufacturing
and lattice materials offers a practical solution: the relative density (occupied volume) of the lattice
structure can be adjusted to tailor the density map obtained from topology optimization.

This paper assesses, formulates and describes the process of explicitly realizing the density map
given by topology optimization into variable–density surface lattice structures. Therefore, this
paper does not need to correct intermediate densities and chooses p = 1.0 (no penalization).

III.B.2.4.2 Morphology of Schwarz Primitive Lattice Structures
Schwarz Primitive cells are an instance of surface–based lattice structures that have been used
in engineering applications [137]. One of the main advantages of Schwarz Primitive cells is that
they are stiffer [108] than other surface–based lattices (e.g. gyroid). Uniform–density Schwarz
Primitive lattice structures are generated as isosurfaces of the function shown in Eq. III.B.2.4, in
which L denotes the length of the cell [192]. This article studies two types of Schwarz Primitive
lattices: network–phase and matrix–phase cells (Fig. III.B.2.2). The volume enclosed by the surface
associated to the iso–value t (inequality in Eq. III.B.2.5) produces network–phase cells. On the other
hand, the volume between the isosurfaces −t and t (inequality in Eq. III.B.2.6) delivers matrix–
phase cells. Figures III.B.2.2(a) and III.B.2.2(b) show Schwarz Primitive network-phase cells for
t = 0.6 (S1) and t = −0.6 (S2). Figure III.B.2.2(c) shows the matrix–cell associated to t = 0.6 (S3).
From Fig. III.B.2.2, the reader may notice that S3 is the result of the Boolean difference between
S1 and S2 (S3 = S1\S2).

F (x, y, z) = cos
(
2π

L
x

)
+ cos

(
2π

L
y

)
+ cos

(
2π

L
z

)
(III.B.2.4)

F (x, y, z) ≤ t, −3 ≤ t ≤ 3 (III.B.2.5)

− t ≤ F (x, y, z) ≤ t, 0 ≤ t ≤ 3 (III.B.2.6)
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(a) Network–phase. Iso–value
t = 0.6.

(b) Network–phase. Iso–value
t = −0.6.

(c) Matrix–phase. Iso–value t = 0.6.

Figure III.B.2.2: Geometry of Schwarz Primitive triply periodic surface.

The relative density ρ (or volume fraction) of a lattice cell is the ratio of its volume and the
volume of the lattice

(
L3
)
. Figure III.B.2.3 shows five samples of network–phase Schwarz Prim-

itive cells. Each sample is associated to a different iso–value t, reported in the figure. Notice
that the larger the value of t, the higher the relative density. The cell corresponding to t = −1.2
(Fig. III.B.2.3(a)) is totally contained within the depicted cube and would not have connections
with neighbor cells. Therefore, it cannot be used for the explicit realization of density maps into sur-
face lattice structures. This phenomenon appears when the iso–value is lower than −1 (t < −1.0),
which corresponds to a relative density ρ = 0.21.

Figure III.B.2.4 reproduces five examples of matrix–phase cells. As in the case of network–
phase cells, a larger t produces cells with larger relative density. On the other hand, for every
t > 0, there is a region of the cell that allows the connectivity with their neighbors. In this case,
the manufacturing technique and its capacity to produce fine details dictate the minimum value of
t suitable for manufacturing. However, when t > 1.0 (Figs. III.B.2.4(d) and III.B.2.4(e)) appears
an internal cavity in the cell. This cavities would trap the raw material in processes as powder
bed fusion, but do not represent an issue in processes where the raw material is deposited, such as
directed energy deposition or fused deposition modeling.
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(a) t = −1.2, ρ = 0.17. (b) t = −0.9, ρ = 0.24. (c) t = 0.6, ρ = 0.67.

(d) t = 0.9, ρ = 0.76. (e) t = 1.8, ρ = 0.92.

Figure III.B.2.3: Geometry of Schwarz Primitive network–phase cells.

(a) t = 0.1, ρ = 0.06. (b) t = 0.3, ρ = 0.17. (c) t = 0.6, ρ = 0.34.

(d) t = 1.5, ρ = 0.77. (e) t = 2.1, ρ = 0.91.

Figure III.B.2.4: Geometry of Schwarz Primitive matrix–phase cells.
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III.B.2.4.3 Relation between the Iso–value and the Relative Density of
Schwarz Primitive Cells

In order to control the relative density of the generated surface lattice domain, it is necessary to
express the iso–value t as a function of the relative density ρ. This section addresses this task for
the network and matrix–phase Schwarz Primitive cells.

III.B.2.4.3.1 Network–phase Cells

Network–phase Schwarz Primitive cells are generated using an iso–value t ∈ [−3, 3]. To determine
the relationship between t and ρ, the interval [−3, 3] may be discretized (sampled) and the relative
density associated to each value of t must be inspected. In this paper, the selected size of the sample
was 19. That is, 19 network–phase cells were generated using different values of t in Eq. III.B.2.5.
The iso–values were t = −2.7,−2.4, . . . , 0.0, . . . , 2.4, 2.7. The corresponding relative density ρ of
each cell was measured. The results are shown in Fig. III.B.2.5(a). Moreover, for ρ = 0.0, t = −3.0
and for ρ = 1.0, t = 3.0.

The reader may observe that (1) there is a linear behavior for t ∈ [−1, 1] and a non–linear
behavior out of this range, (2) for ρ = 0.5, t = 0.0, and (3) the graph is symmetric with respect to
the point (ρ = 0.5, t = 0.0). Considering these findings and the relationship between t and ρ for the
studied specimens, a function is adjusted to the data. The function has the form of Eq. III.B.2.7,
with a linear zone and two non–linear portions. The values of the parameters {a, b, c, d} are listed
in Table III.B.2.1. Figure III.B.2.5(b) compares the experimental data and the fitted curve. No-
tice that the obtained function tN(ρρρ) has two properties that are indispensable for the current
application: (1) it is continuous, and (2) it is monotonically increasing.

tN(ρρρ) =


−be−c[ρρρ−(1−d)] − (1− b) , 0.0 ≤ ρρρ ≤ (1− d)

aρρρ− a
2 , (1− d) < ρρρ ≤ d

bec(ρρρ−d) + (1− b) , d < ρρρ ≤ 1.0

(III.B.2.7)
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(a) Network–phase Schwarz Primi-
tive cells. Iso–value t vs. relative den-
sity ρ.
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(b) Network–phase Schwarz Primi-
tive cells. Fitted curve.
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(c) Matrix–phase Schwarz Primitive
cells. Fitted curve.

Figure III.B.2.5: Establishment of the relation between the iso–value t vs. and the relative density
ρ for Schwarz Primitive cells.
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Table III.B.2.1: Parameters of the fitted functions in Eqs. III.B.2.7 and III.B.2.9.

Parameter Value
a 3.5549
b 0.2225
c 10.5214
d a+2

2a ≈ 0.7813

III.B.2.4.3.2 Matrix–phase Cells

Matrix–phase cells can be generated with the Boolean difference among two network–phase cells.
Therefore, the relative density ρM of a matrix–phase cell associated to the iso–value t may be
written in terms of the relative density of two network–phase cells (ρN), as follows:

ρM(t) = ρN(t)− ρN(−t) (III.B.2.8)
The relationship stated in Eq. III.B.2.8 and the function fitted for the network–phase cells

(Eq. III.B.2.7) are used to construct a function that associates t with ρ for the matrix–phase Schwarz
Primitive cells. The function tM in Eq. III.B.2.9 shows the obtained result. Figure III.B.2.5(c)
shows the concordance between the fitted function and the experimental relative density measured
for some samples of matrix–phase cells.

tM(ρρρ) =

{
a
2ρρρ , 0.0 ≤ ρρρ ≤ (2d− 1)

be
c
2 [ρρρ−(2d−1)] + (1− b) , (2d− 1) < ρρρ ≤ 1.0

(III.B.2.9)

The two function in Eqs. III.B.2.7 and III.B.2.9 allow to retrieve the iso–value that produces
a Schwarz Primitive cell with a prescribed relative density 0 ≤ ρ ≤ 1. The reader may refer to
Section III.B.2.4.4 to find a more detailed explanation on how tN and tM were inferred.

III.B.2.4.4 Lattice Iso–value as Function of the Relative Density
To establish the relationship between the iso–value t and the relative density ρ of Schwarz Primitive
cells, it was necessary to fit the functions tN and tM (Eqs. III.B.2.7 and III.B.2.9). The following
sections give more insights on how these functions were constructed.

III.B.2.4.4.1 Network–phase Cells

For the network–phase Schwarz Primitive cells, a sample of 19 specimens was generated. Every
specimen was associated to a different value of t ∈ [−3, 3] (see Fig. III.B.2.5(b)). According to
the experimental results, the fitted function tN had to fulfill the following criteria: (1) linearity
for t ∈ [−1, 1] and non–linearity for t ∈ [−3,−1) ∪ (1, 3], (2) symmetry with respect to the point
(ρ = 0.5, t = 0.0), (3) tN(0.5) = 0.0, and (4) tN(0.0) ≈ −3.0 and tN(1.0) ≈ 3.0.

Considering criteria (2) and (3), Eq. III.B.2.10 was deduced. Moreover, using the symmetry
stated in criterion (2), only the relationship for t ∈ [0, 3] was analyzed.

t(ρ) = −t(1− ρ), 0 ≤ ρ ≤ 1 (III.B.2.10)
Criteria (1) and (4) were used to obtain the piece–wise continuous function t(ρ) (0.5 ≤ ρ ≤ 1),

shown in Eq. III.B.2.11. The values of the parameters {a, b, c, d} are listed in Table III.B.2.1.
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Figure III.B.2.6: Fitting of the iso-value t as a function of ρ (0.5 ≤ ρ ≤ 1) for the network–phase
Schwarz Primitive cell.

Figure III.B.2.6 compares the experimental data and the fitted curve. Notice that, for the obtained
function: (1) t(0.5) = 0, (2) t(1.0) ≈ 3.0, (3) it is continuous, and (4) it is monotonically increasing.

The reader may notice that the functions tN and t are equal for 0.5 ≤ ρ ≤ 1 (Equations. III.B.2.7
and III.B.2.11). Moreover, the left piece of tN for 0 ≤ ρ < 0.5 was obtained using Equa-
tions III.B.2.10 and III.B.2.11, by replacing ρ→ 1− ρ and then multiplying by −1.

t(ρρρ) =

{
aρρρ− a

2 , 0.5 ≤ ρρρ ≤ d

bec(ρρρ−d) + (1− b) , d < ρρρ ≤ 1.0
(III.B.2.11)

III.B.2.4.4.2 Matrix–phase Cells

Since the matrix–phase cell with iso–value t can be generated as the Boolean difference between
the network–phase cells of iso–values t and −t, the relative density ρM of a matrix–phase cell is
given by the difference of the relative densities of the network–phase cells (Eq. III.B.2.12), where
ρM(t) = t−1

M (ρ) and ρN(t) = t−1
N (ρ).

ρM(t) = ρN(t)− ρN(−t) (III.B.2.12)

On the other hand, it can be shown that ρN(−t) = 1 − ρN(t). Hence, Eq. III.B.2.12 may be
written as per Eq III.B.2.13,

ρM(t) = 2ρN(t)− 1, (III.B.2.13)

which is equivalent to Eq. III.B.2.14.

ρN(t) =
ρM(t) + 1

2
(III.B.2.14)

Hence, the function tM (Eq. III.B.2.9) was obtained by replacing ρ→ (ρ+1)/2 into Eq. III.B.2.11.

III.B.2.4.5 Generation of Variable–density Surface Lattice Structures
The paper has discussed how to generate surface lattice structures (such as Schwarz Primitive) of
uniform density. This section introduces how to develop variable–density Schwarz Primitive lattice
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structures. This procedure can be applied to several types of surface lattice structures (e.g. Schwarz
Primitive or gyroid) that are approximated with implicit functions, as the one in Eq. III.B.2.4.

In order to generate surface lattice structures with variable density, let

G(x, y, z) = F (x, y, z)− T (x, y, z), (III.B.2.15)

where F (x, y, z) is a function that defines the shape of the lattice structure (as the given in
Eq. III.B.2.4) and T (x, y, z) is an iso–level function that fulfills −3 ≤ T (x, y, z) ≤ 3. The function
T is the one that determines the relative density of the structure.

Figure III.B.2.7 depicts a diagram to describe the generation of variable–density surface lattice
structures in network–phase for a prismatic rectangular domain Ω. The process is divided into
three steps:

1. Generation of the point grid: the first step is to sample Ω, given its dimensions and the
grid sampling rate in which Ω must be sampled. The output of this step is a point grid.

2. Evaluation of the function G(x, y, z): the functionG is evaluated in the point grid obtained
in the previous step. Apart from the point grid, it is necessary to provide (1) the size of the
cell (L in Eq. III.B.2.4), and (2) the iso–level function T . The outcome of this step is the
scalar field G(x, y, z).

3. Extraction of the isosurface G(x, y, z) = 0: the final step is to retrieve the isosurface G = 0
from the scalar field generated in step 2 using Marching Cubes algorithm. This algorithm
returns a triangular mesh that approximates the required isosurface.

To generate matrix–phase cells, the process must be performed twice, using the functions
G1(x, y, z) = F (x, y, z) − T (x, y, z) and G2(x, y, z) = F (x, y, z) + T (x, y, z). Additionally, T must
be non–negative, that is, 0 ≤ T (x, y, z) ≤ 3.
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Figure III.B.2.7: Work-flow for the generation of variable-density surface lattices. Images are merely
illustrative. The surface lattice was generated with a denser point grid.

III.B.2.4.6 Explicit Realization of a Density Field into Variable-density
Surface Lattice Structures

The previous section described how to generate variable–density Schwarz Primitive cells. However,
it has not been yet shown how to transform a given density field (as the obtained with topology
optimization) into a surface lattice structure. Intuitively, and using the knowledge acquired in
Section III.B.2.4.5, this section shows how to construct an iso–level function T that resembles a
given density map. The key point is to generate a function T that serves as the input of the second
step of the procedure to create variable–density surface lattice domains. The problem is stated
using the following Given/Goal scheme:
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Figure III.B.2.8: Work-flow for the explicit realization of density maps into surface lattice structures.
Images are merely illustrative. The generated surface lattice structure correspond to a denser FEA
mesh and a denser point grid.
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Given

1. A prismatic rectangular domain Ω ⊂ R3.

2. An FEA mesh M = (E,Q) that discretizes Ω, where Q is the set of nodes and E is the set of
cubic elements.

3. A density map ρE defined on E. Let E = {e1, e2, . . . , eN}, then ρE : E → [0, 1], where ρE(ei)
represents the relative density of the i–th element.

Goal

1. To generate a surface lattice structure over Ω, whose density mimics the density map ρE .
That is, to find the iso–level function T : R3 → R such that for each point p ∈ Ω, if p ∈ ei
and tp = T (p), then ρ(tp) ≈ ρE(ei), where ρ(t) (ρ : R → [0, 1]) denotes the relative density of
a uniform–density Schwarz Primitive cell generated with the iso–value t.

This paper proposes a procedure for constructing the iso–level function T using the known
functions tN and tM (Eqs. III.B.2.7 and III.B.2.9). The proposed method is divided into two main
phases: (I) the construction of the iso–level function T and (II) to use to generate a variable–density
surface lattice structure. Figure III.B.2.8 summarizes the steps of the whole process.

The first phase of the proposed method has three stages. The output of this phase is an iso–
level function T that enables the generation of a surface lattice structure of variable and controlled
density. A detailed explanation of each stage follows.

1. Calculation of the nodal densities: in this step, the densities of the nodes of the mesh are
computed. Let n ∈ Q be a node of the mesh that belongs to the elements {e(n)1 , e

(n)
2 , . . . , e

(n)
q }.

The density ρQ of n is defined in Eq. III.B.2.16.

ρQ(n) =
1

q

q∑
i=1

ρE

(
e
(n)
i

)
(III.B.2.16)

2. Estimation of the densities of the points in the grid: once the nodal densities are
calculated, these can be used to estimate the density of every point p ∈ Ω. Assuming (1){
n
(i)
1 , n

(i)
2 , . . . , n

(i)
8

}
are the nodes of element ei, (2)

{
λ
(i)
1 , . . . , λ

(i)
8

}
are the nodal densities

and (3) p ∈ ei, the relative density of the point p is given by ρi(p) = H
(
p;λ

(i)
1 , . . . , λ

(i)
8

)
,

(ρi : ei → R), where H is an interpolation function. This paper uses trilinear interpolation
for the simulations.

3. Transformation of the relative densities into iso–values: the relative density of each
point of the grid must be transformed into its corresponding iso–value. The function tN (or
tM) in Eq. III.B.2.7 (or Eq. III.B.2.9) is used for this task. Therefore, the iso–level function
of element ei is Ti(p) = tN(ρi(p)). The obtained iso–level function T is:

T (p) =


T1(p), p ∈ e1

...
TN (p), p ∈ eN

(III.B.2.17)
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It is important to remark that the function in Eq. III.B.2.17 is a piece–wise continuous func-
tion.

The second phase of the process is to use the provided function T (phase I) to generate a
variable–density surface lattice structure, following the procedure described in Section III.B.2.4.5
to generate the isosurface G = 0 and obtain a triangulated mesh of the surface lattice domain.

III.B.2.5 Results

III.B.2.5.1 Density Field into Surface Lattice Structures. Applications
in Topology Optimization

A rectangular prismatic domain Ω of size 12cm x 4cm x 4cm was used to test the algorithm described
in Section III.B.2.4.6 for the explicit realization of density maps into surface lattice structures of
variable density. The generated density maps correspond to the results of topology optimization
on Ω. The domain Ω was discretized into the mesh M , composed by 60x20x20 cubic elements and
61x21x21 nodes. The size of each element was 0.2cm x 0.2cm x 0.2cm.

First, the SIMP algorithm was applied to optimize Ω under the loads in Fig. III.B.2.9(a). The
selected volume fraction to run SIMP was η = 0.5, therefore, the target volume of the optimized
domain was 96cm3. Since the key point was to test the performance of the algorithm for converting
a density map into surface lattice structures, it was not necessary to force the SIMP algorithm
to produce relative densities close to 0 or 1. Therefore, the value of the penalization factor was
set to p = 1.0, which means that no penalization was imposed on the intermediate densities. The
retrieved density map with the optimal density distribution dictated by the SIMP algorithm is
shown in Fig. III.B.2.9(b). Notice that this density map is defined over the densities of Ω and,
therefore, it is not continuous.

After SIMP delivered the density map over the elements of M , it was necessary to construct
the iso–level function T to generate the equivalent surface lattice domain, using the algorithm
in Section III.B.2.4.6. Therefore, a grid of 121x41x41 points was generated. Then, the element
densities were converted into nodal densities and tri–linear interpolation was used to obtain the
density associated to each point of the grid. The outcome of this stage is shown in Fig. III.B.2.9(c).
In this figure can be seen that, in contrast with the element densities, the point densities generate
a continuous variation of the density along the domain.

The density of each point of the grid was converted into the corresponding iso–value using the
function tN (Eq. III.B.2.7). In this sense, the iso–level function T was generated. Due to the
limitation of network–phase Schwarz Primitive cells to deal with small densities, all point densities
below 0.3 were set to this value. The resultant iso–level function T is depicted in Fig. III.B.2.9(d).
Then, using the result of the previous step and the characteristic function F of Schwarz Primitive
cells (Eq. III.B.2.4), the scalar field G = F − T was produced. The size of the cells was defined as
L = 2.0cm. In Fig. III.B.2.9(e) can be seen the scalar field G. Finally, the isosurface G = 0 was
generated using ParaView [2]. The resultant network–phase domain is depicted in Fig. III.B.2.9(f).
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(a) Domain and boundary conditions. (b) Density map obtained using
SIMP with p = 1 and target vol-
ume η = 0.5.

(c) Point density obtained by in-
terpolating the nodal densities.

(d) Iso–level function T from the
given density map.

(e) Scalar field G to gener-
ate the corresponding network–
phase Schwarz Primitive cells.

(f) Network–phase Schwarz Primitive
lattice structure.

Figure III.B.2.9: Explicit realization of the results of topology optimization into surface lattice
structures. The procedure was applied over a point grid of 121 x 41 x 41 points.

Following a similar procedure, the density map given by SIMP in Fig. III.B.2.9(b) was used to
generate other two Schwarz–modified lattice structures. Figure III.B.2.10 shows the three lattice
structures generated from the density map in Fig. III.B.2.9(b). In contrast to the network–phase
lattice in Fig. III.B.2.10(a), the lattice structure in Fig.III.B.2.10(b) was generated using a grid of
61x21x21 points, which coincide with the nodes of the mesh M . It can be seen that the surface
generated with the denser point grid is smoother, that is, surface in Fig. III.B.2.10(a) is smoother
than surface in Fig.III.B.2.10(b). It shows the advantage of implementing an algorithm that allows
the presence of points in the grid that do not coincide with the FEA nodes (i.e. sub–voxel sampling).
It represents a main difference with most of the algorithms found in the literature, where the nodes
of M are used as the point grid to generate the surface lattice domain.

On the other hand, Fig. III.B.2.10(c) displays a matrix–phase lattice structure that resembles the
density map in Fig. III.B.2.9(b). Despite matrix–phase Schwarz cells are well–suited for mapping
low density values, in order to avoid numerical issues when computing the corresponding isosurface,
densities below 0.05 were set to this value. Table III.B.2.2 lists the volume of the three lattice
domains. It can be seen that the volume of the two network–phase domains exceeded in more than
13% the target volume. This behavior was principally caused by the threshold of 0.3 imposed to
the low densities.
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Table III.B.2.2: Volumes of the generated surface lattice domains.

Domain Figure
number

Volume
(cm3)

Percentage of over
volume (%)

Network–phase from original
SIMP

III.B.2.10(a) 108.8 13.33%

Network–phase from origi-
nal SIMP and point grid of
61x21x21

III.B.2.10(b) 108.8 13.33%

Matrix–phase from original
SIMP

III.B.2.10(c) 97.2 1.25%

Network–phase from modi-
fied SIMP with xmin = 0.3

III.B.2.11(b) 100.8 5.00%

Matrix–phase from modified
SIMP with xmin = 0.3

III.B.2.11(c) 96.8 0.83%

(a) Network–phase domain obtained with a
grid point of 121 x 41 x 41 points.

(b) Network–phase domain obtained with a
grid point of 61 x 21 x 21 points.

(c) Matrix–phase domain obtained with a grid
point of 121 x 41 x 41 points.

Figure III.B.2.10: Schwarz–modified Primitive domains obtained from density map in
Fig. III.B.2.9(b).

It is common in the literature [137, 208] the use of arbitrary thresholds for suppressing small
values of densities produced by SIMP (as the previously used 0.3). Nevertheless, results have
shown that this approach generates surface lattice domains with volumes much larger than the
target volume. For this reason, this paper evaluated a simple approach in which the thresholds for
low densities are included directly in the optimization stage. In this sense, the topology optimization
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algorithm generates a density field that does not contain small density values.
In order to produce density maps without densities below 0.3, the formulation of SIMP was

modified, so that the range of xi in Eq. III.B.2.1 is [xmin, 1] (instead of (0, 1]), where xmin > 0 is the
minimum permitted value of density. Figure III.B.2.11(a) shows the resultant density field when
xmin = 0.3. In comparison with the results produced by the non–modified SIMP algorithm, it can
be seen that the density distribution is similar but small densities (xi < 0.3) disappeared.

The new density map was used to generate the lattice domains in Figure III.B.2.11. Fig-
ures III.B.2.11(b) and III.B.2.11(c) exhibit the resultant network and matrix versions of Schwarz
Primitive lattice domains, respectively. In Table III.B.2.2 can be seen the volume of these two sur-
face lattice domains. The volumes of the network and matrix–phase domains are 5% and 1% larger
than the target domain. These small discrepancies between the target volume and the volume of
the surface lattices may be due to (1) the fitting process of tN and tM, and (2) numerical issues
when computing the isosurfaces.

(a) Density map obtained using SIMP. (b) Network–phase domain.

(c) Matrix–phase domain.

Figure III.B.2.11: Schwarz–modified Primitive domains obtained from density map in
Fig. III.B.2.11(a), which has minimum density of xmin = 0.3.

III.B.2.5.2 Physical Realization of the Devised Lattice Structures
The manufacturing of an overall domain of our implicit Schwarz–modified continuous B–Rep
(Fig. III.B.2.11) would be unfeasible using traditional subtractive techniques (e.g. CNC machin-
ing). However, this domain is natural in additive manufacturing. As proof of manufacturabil-
ity, our full lattice domains (Fig. III.B.2.11) were 3D–printed using Fused Deposition Modeling.
Two lattice types were printed: (a) network–phase (without cavities), and (b) matrix–phase (with
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cavities). In addition, partial lattice domain B–Reps (Fig. III.B.2.13(a)) were additively manu-
factured using Binder Jetting (Figs. III.B.2.13(b) and III.B.2.13(d)), and Selective Laser Melting
(Figs. III.B.2.13(c) and III.B.2.13(e)).

Table III.B.2.3: Experimental set–up for additive manufacturing (3D printing) tests.

Domain Figures Size
(cm x cm x cm)

Technology Bulk material

Network–phase
domain in
Fig. III.B.2.11(b)
(without cavities)

Fig. III.B.2.12(a) 12 x 4 x 4 Fused Deposi-
tion Modeling

PLA (Polylac-
tic acid)

Matrix–phase
domain in
Fig. III.B.2.11(c)
(with cavities)

Fig. III.B.2.12(b) 12 x 4 x 4 Fused Deposi-
tion Modeling

PLA (Polylac-
tic acid)

Portion of the
matrix–phase domain
in Fig. III.B.2.13(a)

Figs. III.B.2.13(b)
and III.B.2.13(d)

6 x 2 x 2 Binder Jetting 17–4PH stain-
less steel

Portion of the
matrix–phase domain
in Fig. III.B.2.13(a)

Figs. III.B.2.13(c)
and III.B.2.13(e)

6 x 2 x 2 Selective
Laser Melting

SS316L stain-
less steel

(a) Network–phase domain (without cavities). (b) Matrix–phase domain (with cavities).

Figure III.B.2.12: Explicit realization of the results of topology optimization. 3D printed Schwarz
Primitive domains using Fused Deposition Modeling.
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(a) 3D printed subdomain.

(b) Binder jetting. View 1. (c) Selective laser melting. View 1.

(d) Binder jetting. View 2. (e) Selective laser melting. View 2.

Figure III.B.2.13: Metal additive manufacturing of the matrix–phase Schwarz–modified structures
produced from topology optimization.

III.B.2.5.3 Stress Concentration in Variable-density Surface Lattice Struc-
tures

Previous Sections III.B.2.5.1 and III.B.2.5.2 have shown how discrete density maps can become
physical objects using surface lattice functions. The first phase of this process involves the gener-
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ation of a continuous iso–level function T from the given discontinuous density map. Herein, this
article shows the importance of producing a continuous iso–level function. Three surface lattice
structures were generated using a (1) discontinuous (T1), (2) C0 continuous (T2), and (3) C1 smooth
(T3) iso–level function. The corresponding surface lattice domains and the respective iso–level func-
tions can be seen in Fig. III.B.2.14. The size of the domain was 20mm x 20mm x 20mm and the
cell size was L = 10mm.

The only difference in the generation of the three lattice domains was the iso–level function T
used for each one. The reader may notice that the iso–level function not only determines the density
distribution, but also establishes the characteristics of continuity and smoothness of the obtained
surface lattice domain. In Fig. III.B.2.14(f) can be seen that the the smooth function T3 generated
a smooth surface. Likewise, Fig. III.B.2.14(e) shows that the continuous and non–smooth function
T2 generated a continuous domain where some abrupt changes of curvature in the points where
the partial derivatives of T2 are not continuous. On the other hand, sharp corners appeared in the
lattice domain generated with the discontinuous function T1 (Fig. III.B.2.14(d)) at x = 10, that
coincides with the discontinuity of T1.

The sharp corners in the domain generated with T3 tend to concentrate the mechanical stress
and favor material failure. In order to analyze the effect of the sharp corners, the simulation shown
in Fig. III.B.2.15(a) was executed. All domains were subjected to a tension load in x direction
of 12kN. The material for the simulations was Ti-6Al-4V of Young’s modulus E = 114GPa and
Poisson’s ratio 0.33.
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(a) Non–continuous iso–level func-
tion T1.
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(c) Smooth iso–level function T3.

(d) Lattice domain generated from
function T1.

(e) Lattice domain generated from
function T2.

(f) Lattice domain generated from
function T3.

Figure III.B.2.14: Variable–density Schwarz Primitive domains generated from different analytic
iso–level functions.

Figures III.B.2.15(b), III.B.2.15(c) and III.B.2.15(d) show the stress in x direction for the three
domains. In all cases, the maximum stress is reached at x = 10. Moreover, the three domains
have the same cross-sectional area, since T1 = T2 = T3 = 0.5 at x = 10. The maximum stress for
the domains generated with continuous functions T2 and T3 is 480MPa. On the other hand, the
maximum stress for the domain generated with the discontinuous function is 980MPa, which doubles
the stress of the other two domains. It is noticeable that the stress in completely concentrated in
the sharp corners. This results show the relevance of using

As stated in Section III.B.2.4.6, the iso–level function that generates the algorithm proposed
in this article is continuous. However, its partial derivatives are not continuous in the intersection
of the FEA elements. Therefore, its behavior is analogous to the behavior of T2. The executed
experiments have not shown any effects on the mechanical stress of the non–smooth transitions
of the generated lattice domains. However, numerical and physical tests should be done in the
future to test the mechanical response of the surface lattice structures generated with the proposed
methodology.
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(a) Domain and boundary condi-
tions.

(b) X stress for the domain in Fig. III.B.2.14(d).

(c) X stress for the domain in
Fig. III.B.2.14(e).

(d) X stress for the domain in
Fig. III.B.2.14(f).

Figure III.B.2.15: FEA analysis and stress concentration in variable–density Schwarz Primitive
domains.
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III.B.2.6 Conclusions
This paper presents a procedure to effectively transform density maps (as generated by topology
optimization algorithms) into manufacturable surface lattice structures, such as Schwarz Primitive
architectures. The results show that the generated surface lattice domains (1) effectively resem-
ble the given density map and (2) can be fabricated using additive manufacturing/3D printing
techniques. The results also reveal that the network–phase (architecture without internal cavities)
lattice structures have limitations to map small density values, due to the generation of disconnec-
tions in the boundary of the cells. On the other hand, matrix–phase (architecture with internal
cavities) structures have the capacity to map along the range of densities (0, 1]. In this case, the
minimum density that can be represented is dictated by the manufacturing technology and the
limitations associated to the machine (minimum detail that can be accurately reproduced).

Our implementation removes the limitation of the SIMP algorithm which polarizes the FEA
relative densities to either 0 or 1 by allowing a real number in the interval (0, 1]. These intermediate
densities are achievable by using the sub–voxel implicit functions used in our implementation. The
smoothness in the spatial element density field is important because abrupt changes of density may
lead to high stress concentrations.

This study also contributes the derivation of a function that expresses the Schwarz Primitive
iso–value as a function of the relative density. This function allows to control the relative density
of the Schwarz Primitive domain and may be used in future applications of Schwarz Primitive cells.

Future research is needed in the modeling of mechanical response
(stress/strain/deformation) of large sets of lattices under working loads, with arbitrary topology and
geometry of the lattice–based workpiece. Likewise, further efforts are required in the mechanical
characterization of physical surface lattice samples produced by additive manufacturing techniques.

Author Contributions: D.M-Z., A.M. and O.R-S. conceptualized the algorithm. D.M-Z.and J.P-
C. carried out and validated the simulations A.M, J.P. and O.R-S. supervised the Computational
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to the writing of the article.
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III.B.2.7 Abbreviations

FEA: Finite element analysis.
SIMP: Solid isotropic material with penalization, which is a topol-

ogy optimization algorithm.
c: c(X), c : Rn → R, denotes the compliance or total strain

energy of a domain with vector of relative densities X (J).
p ≥ 1: Penalty factor aimed to polarize element relative densities

around 0 and 1.
η ∈ (0, 1): Fraction of volume to be retained (or target volume) in the

final design.
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V : V (X), V : Rn → R, denotes the volume of a domain with
vector of relative densities X (mm3 or cm3).

V0: Volume of the design domain Ω (mm3 or cm3).
E0: Young’s modulus of the bulk material (Pa).
Ei: Young’s modulus of the i–th element of the mesh (Pa).
L: Length of the surface lattice cell (mm or cm).
0 ≤ ρ ≤ 1: Relative density or volume fraction of a Schwarz Primitive

cell of uniform density (mm or cm).
ρ(t): The function ρ : R → [0, 1] returns the relative density of a

Schwarz Primitive cell generated with an iso–value t.
ρN(t) (or ρM(t)): The function ρN : R → [0, 1] (or ρM : R → [0, 1]) returns

the relative density of a network–phase (or matrix–phase)
Schwarz Primitive cell generated with an iso–value t.

ρE(e) (or ρP(n)): The function ρE : E → [0, 1] (or ρn : P → [0, 1]) gives the
relative density of an element e ∈ E (or node n ∈ P ) of the
mesh.

t ∈ R: Iso–value to generate a Schwarz Primitive cell of uniform
density.

t(ρ): The function t : [0, 1] → R returns the iso–value that gen-
erates a Schwarz Primitive cell of relative density ρ.

tN(ρ) (or tM(ρ)): The function tN : [0, 1] → R (or tM : [0, 1] → R) returns
the iso–value that generates a network–phase (or matrix–
phase) Schwarz Primitive cell of relative density ρ.

F (x, y, z): F : R3 → R is the implicit function that characterizes the
Schwarz Primitive surfaces.

T (x, y, z): The iso–level function (T : R3 → R) used to produce
variable–density surface lattice structures. The function
T is the generalization of the value t.

G = F + T : Scalar field G : R3 → R that is evaluated to generate
variable–density surface lattice structures.

Ω ⊂ R3: Rectangular prismatic subset of R3, which represents the
design domain.

w, d, h: Width, depth and height of Ω (mm or cm).
M = (E, V ): Finite element mesh associated to the design domain, that

is, a discretization of Ω. The set E = {e1, e2, . . . , eN}
denotes the elements of the mesh and the set P =
{n1, n2, . . . , nl} ⊂ R3 denotes the nodes of the mesh.

H: Interpolation function. In this paper H(p;λ1, . . . , λ8) refers
to tri–linear interpolation of point p given the values
λ1, . . . , λ8.

X = [x1, . . . , xn]: Vector of relative densities of the N elements of the mesh
M .
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III.B.2.8 Appendix A. Iso–level Functions
The iso–levels functions used in Section III.B.2.5.3 are presented in Table III.B.2.4. The explicit
version of the function is associated to the corresponding figures where it is employed. The value
of the cell size is L = 10mm.

Table III.B.2.4: Iso–level functions used in Section III.B.2.5.3.

Figure numbers Iso–level function

III.B.2.14(a) and III.B.2.14(d) T1(x, y, z) =

{
−0.5 , 0 ≤ x ≤ L

0.5 , L < x ≤ 2L

III.B.2.14(b) and III.B.2.14(e) T2(x, y, z) =


− 5

2

(
3x
2L

)2
+ 2 , 0 ≤ x ≤ 2L

3
39
20Lx− 9

5 , 2L3 < x ≤ 4L
3

− 99
20Lx+ 37

5 , 4L3 < x ≤ 2L

III.B.2.14(c) and III.B.2.14(f) T3(x, y, z) = 3
(
x
L − 1

)2 − 1
2 , 0 ≤ x ≤ 2L
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Approximation of the Mechanical Response of Large
Lattice Domains Using Homogenization and Design
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Abstract
Lattice-based workpieces contain patterned repetition of individuals of a basic topology (Schwarz,
ortho-walls, gyroid, etc.) with each individual having distinct geometric grading. In the context
of the design, analysis and manufacturing of lattice workpieces, the problem of rapidly assessing
the mechanical behavior of large domains is relevant for pre-evaluation of designs. In this realm,
two approaches can be identified: (1) numerical simulations which usually bring accuracy but limit
the size of the domains that can be studied due to intractable data sizes, and (2) material ho-
mogenization strategies that sacrifice precision to favor efficiency and allow the simulation of large
domains. Material homogenization synthesizes diluted material properties in a lattice, according
to the volume occupancy factor of such a lattice. Preliminary publications show that material
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homogenization is reasonable in predicting displacements, but is not in predicting stresses (highly
sensitive to local geometry). As a response to such shortcomings, this paper presents a methodology
that systematically uses Design of Experiments (DOE) to produce simple mathematical expressions
(meta-models) that relate the stress/strain behavior of the lattice domain and the displacements of
the homogeneous domain. The implementation in this paper estimates the von Mises stress in large
Schwarz Primitive lattice domains under compressive loads. The results of our experiments show
that (1) material homogenization can approximate efficiently and accurately the displacements field
even in complex lattice domains and (2) material homogenization and DOE can produce rough es-
timations of the von Mises stress in large domains (more than 100 cells). The errors in the von
Mises stress estimations reach 42% for domains of up to 24 cells. This result means that coarse
stress / strain estimations may be possible in lattice domains by combining DOE and homogenized
material properties. This option is not suitable for precise stress prediction in sensitive contexts
where high accuracy is needed. Future work is required to refine the meta-models to improve the
accuracy of the estimations.

Keywords: Design of Experiments, Lattice Structures, Homogenization, Schwarz Primitive, Me-
chanical Characterization, Modeling and Simulation.

Glossary

AM: Additive manufacturing.
CCF: Central composite face-centered design.
DOE: Design of experiments.
FEA: Finite element analysis.
Ω,ΩQ: Subsets of R3 that represents the lattice domain and the equivalent ho-

mogeneous domain, respectively
(
Ω,ΩQ ⊂ R3

)
.

E,EQ: Young’s moduli of the bulk and equivalent material, respectively (Pa).
ν, νQ: Poisson’s ratio of the bulk and equivalent material, respectively.
σVM : Von Mises stress (Pa).
L: Length of the Schwarz Primitive cell (L > 0).
ρ: Relative density or volume fraction of a Schwarz Primitive cell (0 ≤ ρ ≤

1).
t: Iso-value used to generate the Schwarz Primitive cell (t ∈ [−3, 3]).

III.B.3.2 Introduction
New emerging technologies in the context of Industry 4.0 such as digital twins pose new challenges
in the design and simulation in the industrial and biomedical ecosystems. The interactive nature of
the processes of Industry 4.0 requires fast simulation methods that enable real-time decision making
and digital twin’s continuous update with the physical world [145].

Lattice materials have multiple applications in engineering (e.g. energy absorption) and biomedicine
(e.g. implants and scaffolds) [78]. However, the simulation of large lattice domains is in many cases
unfeasible because: (1) the meshing of these domains is a time consuming process that involves
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human intervention and (2) the size of the produced meshes is intractable due to the geometric
complexity associated to these domains [36, 184].

This manuscript implements a methodology that combines material homogenization and design
of experiments (DOE) to estimate the stress/strain response in large lattice domains. The main
advantage of this methodology is its inferior computational expense in comparison to finite element
analysis (FEA). We apply this approach to approximate the von Mises stress in lattice structures
of the type Schwarz Primitive. This manuscript is an extension of the work in [119] which presents
a methodology to develop the meta-models using DOE but does not integrate them with material
homogenization to produce stress/strain estimations in large lattice domains.

The remainder of this article is organized as follows: Section III.B.3.3 provides a review of
the relevant related work. Section III.B.3.4 describes the proposed methodology to estimate the
stress/strain response in lattice domains using material homogenization and DOE. Section III.B.3.5
presents and evaluates the results of the implementation of our methodology. Section III.B.3.6
concludes the manuscript and suggests future extensions of the article.

III.B.3.3 Literature Review

III.B.3.3.1 Lattice Structures and Material Homogenization
Lattice structures are generally composed by replicas of a unit cell that are continuous, uniformly
distributed and fill the space. The reason why lattice structures attract the attention of engineers is
its ability to retain a good mechanical performance while reducing material usage and weight. For
this reason, lattice structures are used for energy absorption, heat transfer and vibration damping
applications [78]. Additive manufacturing (AM) has also widen the application range of lattice
structures. The manufacturing freedom of AM has promoted the use of lattice structures for
materializing the results of structural optimization [94, 127, 137, 197] and for biomedical applications
in orthopedics and tissue engineering [8, 113].

Material homogenization seeks the equivalent Young’s modulus and Poisson’s ratio to produce
a homogeneous structure that resembles the displacements field of the lattice domain. Material
homogenization suppresses the geometrical complexity associated to lattice domains. Therefore,
lighter FEA meshes are obtained and, consequently, the computational cost and time of FEA
simulations are reduced [29, 94].

Apart of predicting macro-mechanical properties (Young’s and Poisson’s moduli), material ho-
mogenization has allowed the study of periodic strut-like lattice structures built via AM, consid-
ering the defects caused during the manufacturing with AM and the stiffening in the joints of the
structure [101, 139]. These studies are however limited to strut-like lattice structures. Material ho-
mogenization has also been successfully integrated with topology optimization to produce optimal
designs of lattice structures suitable for AM [29, 94]. However, since the homogeneous and lattice
domains have notorious geometrical differences and stresses/strains depend on the geometry, the
stress/strain behavior of the homogeneous domain does not resemble the one of the lattice domain.

III.B.3.3.2 Modeling and Simulation of Lattice Structures
The numerical analysis of the mechanical behavior of large lattice structures is challenging due
to the high computing (memory and time) requirements [184]. Large lattice structures demand
heavy FEA meshes formed by solid elements. Sometimes solid FEA meshes can be simplified using
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simpler and lighter FEA elements (beams or shells). This approach has allowed the simulation
of relatively large domains of a few hundred of cells [21, 92, 123, 184]. However, this technique
cannot be applied to surface-type lattice structures like Schwarz Primitive lattices, since this kind
of architecture cannot be synthesized into long struts or thin plates.

Regarding the joint use of FEA and DOE, we found that they have been combined in several
applications in non-lattice structures. The current work can be divided in three groups: (i) material
or mechanical properties evaluation, including metallic [187], resins [86] and composite materials
[136], (ii) shape optimization on mechanical parts, including medical devices [141] and automobile
parts [161], and (iii) generation of meta-models to estimate the stress-strain response in small
lattice domains using DOE [119]. However, the produced meta-models are not used for any further
analysis with large lattice domains. To the best of our knowledge, the works in the literature do
not implement a methodology that integrates systematically material homogenization and DOE for
stress/strain estimation in the field of lattice materials.

Monte Carlo methods [103, 114] use random samples in the domains of input variables for an
experiment. The experiment is run under the prescribed combination of input variables, and the
resulting output values recorded. The model mathematical model for the system or cause/effect
is computed on the basis of maximal likeness. In our case, the expenses of running each test are
significant since each test requires the preparation and setup of the FEA experiment, the execution
itself and its post-processing, along with the analysis of results. This high cost is common to almost
all experiments, and leads to choose a minimal (and as possible orthogonal) set of samples of the
input set, leading to DOE. This DOE, more economical than the Monte Carlo trials, was chosen
for the present work.

III.B.3.3.3 Conclusions of the Literature Review
In our literature survey, we found that the geometry of lattice structures implies the use of small FEA
elements which produces intractable FEA meshes. Consequently, the numerical analysis of large
lattice structures is a complex (sometimes unfeasible) process, limited by its elevated computational
cost.

To alleviate the computational burden of the simulation of lattice structures, material homog-
enization is applied to produce regular domains that mimic the lattice domain. Following this
approach, one can obtain fast and accurate approximations of the displacements field of the lattice
domain. However, the stress/strain response cannot be directly obtained due to the geometric
dissimilarities between the lattice and the homogeneous domains.

Our goal with this paper is to contribute to the problem of the estimation of the stress/strain
response in large lattice domains. For this purpose, we propose a methodology that integrates
material homogenization and DOE. We use the DOE-based methodology in [119] to devise sim-
ple mathematical expressions (meta-models) to characterize the stress/strain of Schwarz Primitive
lattice domains. The inputs of the produced meta-models are displacement-based features that
can be efficiently calculated using material homogenization instead of full FEA simulations. The
meta-models developed in this article are not intended to be suitable in high precision contexts,
but to produce rough and efficient estimations of the von Mises stress that allow fast pre-evaluation
of designs.

Particularly, we apply our methodology to estimate the von Mises stress under compressive
loads for large (more than 100 cells) Schwarz Primitive lattice structures. The meta-models use
the strains of the boundary of the lattice cell to relate the displacement field of the homogeneous
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domain with the von Mises stress of the lattice domain.

III.B.3.4 Methodology

III.B.3.4.1 Schwarz Primitive Lattice Structures
Schwarz Primitive lattice structures are obtained by calculating isosurfaces of the real valued func-
tion F : R3 → R in Eq. III.B.3.1:

F (x, y, z) = cos

(
2π

L
x

)
+ cos

(
2π

L
y

)
+ cos

(
2π

L
z

)
, (III.B.3.1)

where L is the desired length of the cell [192].
Schwarz Primitive lattice structures are employed in topology optimization for AM. The result

of some common methods in topology optimization is a density map that is impossible to manufac-
ture. The problem of converting that density map into a manufacturable domain does not have an
exact solution. The mathematical structure of Schwarz Primitive lattice allow to find approximate
solutions to that problem, providing manufacturable designs with smooth transitions in the connec-
tions of multiple cells, preventing stress concentration [127]. Moreover, Schwarz Primitive lattice
structures are stiffer than other lattice structures (such as the gyroid) [108]. These properties make
Schwarz Primitive structures attractive for engineering and biomedical applications [108, 127, 137].

In order to show the geometry of the Schwarz Primitive cell, we obtained the isosurfaces for the
isovalues t = −0.87, 0.0, 0.87, that is, we found the surfaces that solved the equation F = t. The
corresponding relative density ρ (i.e. the ratio of the volume of the cell and L3) of each cell was
ρ = 0.25, 0.5, 0.75, respectively. Figure III.B.3.1 displays the cells along with their corresponding
isovalues and relative densities.

(a) t = −0.87, ρ = 0.25 (b) t = 0, ρ = 0.50 (c) t = 0.87, ρ = 0.75

Figure III.B.3.1: Geometry and relative density of Schwarz Primitive cells for different isovalues.

III.B.3.4.2 Methodology to Estimate the Stress/Strain Response of Lat-
tice Structures

In this paper, we propose a methodology for the efficient estimation of the stress/strain response of
large lattice structures. The proposed algorithm relies on two main concepts: material homogeniza-
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tion and DOE. The algorithm is divided into four stages: (1) material homogenization of the lattice
structure, (2) numerical simulation of the load case using the homogeneous domain, (3) extraction
of displacement-based features, and (4) the application of meta-models to estimate the response
variable based on the features extracted in (3). Below, we describe every step of our algorithm.
Figure III.B.3.2 presents a graphical summary of the proposed methodology, with the inputs and
outputs of each phase of the process.

Figure III.B.3.2: Work-flow for the estimation of the mechanical response of lattice domains using
material homogenization and DOE.

III.B.3.4.2.1 Material Homogenization

This process seeks to obtain a simplified regular (homogeneous) domain ΩQ that approximates the
heterogeneous lattice structure Ω. The goal is to find an equivalent material

(
EQ, νQ

)
so that the

regular domain equipped with the equivalent material
(
EQ, νQ

)
resembles the displacement field

of the original lattice domain. We implemented the numerical homogenization method presented
in [172], which has been applied in the context of lattice structures in [29, 94]. In Section III.B.3.4.3,
the reader can find more details on the foundations of material homogenization.

III.B.3.4.2.2 FEA Simulation of the Homogeneous Domain

At this stage, the load case is simulated on the homogeneous domain ΩQ using analogous boundary
conditions. The result of this stage is the displacement field on ΩQ, which is an approximation of
the displacement field on the lattice domain Ω.
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III.B.3.4.2.3 Feature Extraction

Characteristic features of every cell of the lattice domain Ω are extracted using the displacement
field over the homogeneous domain ΩQ obtained in the previous step. These displacement-based
features extracted at this stage are used as inputs of the meta-models to estimate the stress/strain
response of every cell. The definition of these features is central to obtain reliable meta-models and
is highly dependent to the expertise of the modeler.

The extracted features condense (or characterize) the deformation of the cell and must provide
information about the variable of interest. In this work, we use as features the average normal
strain at the flat faces of the boundary of the Schwarz Primitive cells, which can be obtained
directly from the displacements on the homogeneous domain ΩQ. A discussion on how to generate
the meta-models using DOE is presented in Section III.B.3.4.4.

III.B.3.4.2.4 Meta-model Execution

A meta-model is a simple mathematical expression (i.e. function) that relates the features extracted
in the previous stage and the response variable. In other words, the features extracted in the
previous stage (denoted by XXX = [x1, . . . , xn]

T ) are used to feed a function f : Rn → R that
gives an estimation of the response variable for every cell of the lattice domain. In this article, the
meta-models are developed using DOE techniques (see Section III.B.3.4.4).

III.B.3.4.3 Material Homogenization
Material homogenization seeks to represent a heterogeneous material with a simple homogeneous
material. In the case of lattice structures, a lattice unit cell can be treated as a composite material
formed by solid (with bulk properties E and ν) and void (with properties E0 and ν0) zones [29, 94].
Material homogenization aims to find the material properties (EQ and νQ) that make a filled cube
behaves like the unit lattice cell (see Fig. III.B.3.3).

Figure III.B.3.3: Graphical representation of material homogenization.

We implemented the numerical homogenization method proposed in [172]. This method finds
the elasticity matrix CCCQ:
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CCCQ =


c1 c2 c2 0 0 0
c2 c1 c2 0 0 0
c2 c2 c1 0 0 0
0 0 0 c3 0 0
0 0 0 0 c3 0
0 0 0 0 0 c3

 , (III.B.3.2)

that relates stresses and strains in the homogeneous material as σσσ = CCCQεεε. The corresponding
Young EQ and Poisson νQ moduli are provided by the following equations:

EQ =
c21 + c1c2 − 2c22

c1 + c2
, (III.B.3.3)

νQ =
c2

c1 + c2
. (III.B.3.4)

In this work, we selected the Titanium alloy Ti-6Al-4V as bulk material with properties:
Young’s modulus E = 114 GPa and Poisson’s ratio ν = 0.33. We applied the homogenization
procedure to obtain the diluted properties of Schwarz Primitive cells for the relative densities
ρ ∈ {0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Table III.B.3.2 displays the results obtained. Table III.B.3.2
also includes the case in which the density is ρ = 1.0. Notice that the properties of the homoge-
neous domain coincide with the bulk properties (as expected). When needed, the properties of
intermediate densities were obtained via linear interpolation.

Table III.B.3.2: Results of numerical homogenization of Schwarz Primitive cells: Young’s modulus
and Poisson’s ratio.

Relative density (ρ)
Equivalent Young’s
modulus

(
EQ
) Equivalent Poisson’s

ratio
(
νQ
)

0.25 7.5 GPa 0.05
0.3 14.0 GPa 0.09
0.4 24.0 GPa 0.13
0.5 35.0 GPa 0.17
0.6 48.0 GPa 0.21
0.7 61.0 GPa 0.23
0.8 81.0 GPa 0.27
0.9 97.0 GPa 0.29
1.0 114 GPa 0.33

III.B.3.4.4 Generation of Meta-models using DOE
DOE is a traditional and effective methodology based on statistical techniques that supports the
analysis of complex processes and systems. DOE allows to establish in a systematic way how
changes in the parameters of a system or function affect their outcome, minimizing the uncertainty
and the number of required experiments to complete such characterization. DOE covers the whole
spectrum, from the planing of the experiments to the statistical analysis of the results [22, 134]. We
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used DOE techniques to develop meta-models to estimate the von Mises stress in Schwarz Primitive
lattice structures.

The von Mises stress σVM is a material failure criterion used in the design and analysis of
lattice structures in various works (e.g. [151, 153, 205]). The von Mises stress is defined as per
Eq. III.B.3.5:

σVM =
√
σ2
1 + σ2

2 + σ2
3 − (σ1σ2 + σ1σ3 + σ2σ3), (III.B.3.5)

where σ1, σ2, σ3 are the principal stresses. The criterion states that, for preventing failure, the
von Mises stress must be below the tensile strength of the material. However, failure in lattice
materials is also governed by buckling instabilities that occur before material failure [101]. For the
sake of demonstration of the methodology, this work is limited to the estimation of the von Mises
stress, although a more complete failure criterion for lattice structures should consider buckling
phenomena.

The procedure to devise meta-models using DOE is summarized into three phases: (1) identifica-
tion of potential features (also called factors) that may affect the variable of interest, (2) selection
of the most influential (main) factors, and (3) development of simple mathematical expressions
(meta-models) that relates the main factors and the response variable.

We applied DOE to develop meta-models for the von Mises stress in Schwarz Primitive lattice
structures of different relative densities. In an ideal case, we should have attained a meta-model
for each relative density ρ ∈ (0, 1). This computing resource demand makes this option unfeasible.
Since we were only seeking approximations of the von Mises stress, we found meta-models for the
relative densities ρ = 0.25, 0.50, 0.75, 1.0. To find the four meta-models, we used lattice domains
formed by a single unit cell of the mentioned relative densities. Below, we describe in detail every
stage of the procedure.

III.B.3.4.4.1 Factors Identification

The goal at this stage was to detect features (or factors) FV = {f1, f2, · · · , fn} that (1) were related
to the von Mises stress and (2) could be controlled. Additionally, the features had to be based on
the displacements over the lattice, so that they could be retrieved from the FEA simulation over
the homogeneous domain ΩQ.

Our set of factors were initially the strains at the flat faces (extreme faces) of the boundary
of each unit cell of the Schwarz Primitive lattice domain. For convenience, the flat faces of the
boundary were denoted as {X,−X,Y,−Y, Z,−Z}. {−X,−Y,−Z} were the flat faces at x = 0, y =
0, z = 0. {X,Y, Z} were the flat faces at x = L, y = L, z = L. We defined the strains at the flat
faces as:

εij = sgn(i) · Uij − U−jj

L
,

i = ±X,±Y,±Z, j = x, y, z,
(III.B.3.6)

where Uij represented the average displacement in j direction of the face i. For instance, U−Xx

was the displacement in x direction of the flat face at x = 0. The normal strains at the flat faces
corresponded to {ε−Xx, εXx, ε−Y y, εY y,
ε−Zz, εZz}. However, from Eq. III.B.3.6, ε−Xx = ε−Y y = ε−Zz = 0, which prevented the introduc-
tion of false strains due to pure translation of the Schwarz Primitive cell.
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In Eq. III.B.3.5 we can see that the von Mises stress depends on the shear stress and, therefore,
it is influenced by the shear strain. We conducted preliminary tests considering shear strains at the
flat faces of the cell but our results overestimated the von Mises stress by a large factor. We found
that the shear strain interaction is not fully understood at the level of DOE. Consequently, our set
of factors was reduced to the normal strains at the flat faces of the cell {εXx, εY y, εZz}.

III.B.3.4.4.2 Factors Selection

In the context of DOE, the goal at this stage is to reduce the number of considered factors, selecting
those factors that affect the most the response variable. Mature techniques do exist for this task,
such as full or fractional factorial or Plackett-Burman designs [22, 134]. However, we considered
only 3 factors, so we decided to develop the meta-models using all of them.

III.B.3.4.4.3 Meta-model Development

The goal at this stage was to develop efficient and simple mathematical expressions that expressed
the von Mises stress in Schwarz Primitive lattice domains in terms of {εXx, εY y, εZz}.

We used Response Surface methodologies, specifically central composite face-centered design
(CCF), to efficiently devise the meta-models. The shape of the devised meta-models for Schwarz
Primitive cells of relative densities ρ ∈ {0.25, 0.5, 0.75} was

ŷ =

β0 +∑
i≤j

βijεiiεjj

2

, (III.B.3.7)

and the shape of the meta-model for ρ = 1.0 was

ŷ =

√√√√√β0

∑
i

ε2ii −
∑
i<j

εiiεjj

. (III.B.3.8)

We used R [147] to perform the regression analysis to estimate the coefficients (βi, βij) of the
meta-models (see Table III.B.3.3).

To evaluate the meta-models, we ran 100 random simulations for each of the four domains and
compared the experimental (result of FEA) and predicted (result of the meta-model) von Mises
stress. The values of the Young’s modulus and Poisson’s ratio used for the simulations with the
homogeneous domains were the ones reported in Table III.B.3.2. For the cell of density ρ = 0.75, we
used EQ = 71.0 GPa and νQ = 0.25, which resulted by interpolating the corresponding moduli of
the cells of densities ρ = 0.7 and ρ = 0.8. We used the displacements on the homogeneous domains
to calculate the normal strains at the flat faces εij and used them as inputs for the meta-models in
Eqs. III.B.3.7 and III.B.3.8.

The boundary conditions imposed on the four domains were prescribed displacements in the
normal direction of the flat faces of the domains. The size of the cell used was L = 1.0 cm, so that
the imposed displacements were equivalent to normal strains at the flat faces (εij).

Our analysis was limited to the elastic zone of the material. The range of the variables was
εij ∈ 10−5×[−1.0, 1.0]. The value of the variables was coded in the range [−1, 1] to be in concordance
with the procedures found in the literature [134]. To ensure that the strains in the flat faces
were in the working range

(
εij ∈ 10−5 × [−1.0, 1.0]

)
and to explore it evenly, the values of the
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Table III.B.3.3: Values of the coefficients β in the fitted meta-models. Average and maximum
relative errors between FEA and our approach for 100 random simulations.

Relative
density β0 β12 β13 β23 β11 β22 β33

Average
relative
error

Max.
relative
error

0.25 0.0438 0.0010 0.0013 0.0005 0.0089 0.0075 0.0067 19% 370%
0.50 0.0369 0.0019 0.0021 0.0019 0.0076 0.0073 0.0074 20% 298%
0.75 0.0419 0.0041 0.0039 0.0036 0.0089 0.0098 0.0091 21% 255%
1.0 0.4036 N/A N/A N/A N/A N/A N/A 0% 0%

imposed normal strains at the flat faces were generated from a uniform distribution in the interval
(−1.0× 10−5, 1.0× 10−5).

Figure III.B.3.4 displays the aforementioned comparison for each cell. We can see that the meta-
models for the densities ρ ∈ {0.25, 0.50, 0.75} tend to overestimate the von Mises stress at low stress
conditions. This is due to the term β0 in Eq. III.B.3.7, which impedes the meta-model to predict
small values of von Mises stress. Table III.B.3.3 gives the average and maximum relative error of the
predicted vs. the experimental von Mises stress. The maximum relative errors are associated to low
stress conditions, mainly influenced by the value of β0 in Eq. III.B.3.7 (as previously discussed).
It is clear that the meta-models are not well-suited for low stress conditions. The average and
maximum relative errors in the estimations show that this methodology is not applicable in very
sensitive processes where high accuracy is required.

III.B.3.5 Results

III.B.3.5.1 Validation of the Proposed Methodology
To evaluate our methodology, we compared the results of the FEA simulation and our methodology
for six Schwarz Primitive lattice domains. Three of the six domains (Figs. III.B.3.5(a)–III.B.3.5(c))
were formed by 8 unit cells of uniform density ρ = 0.25, 0.50, 0.75, respectively. The other three
domains were formed by unit cells of graded density, that is, the isovalue t was not a constant but a
function t : R3 → R. The resultant surfaces are the solutions to the equation F (x, y, z) = t(x, y, z)
(see Eq. III.B.3.1). The domain of 24 unit cells in Fig. III.B.3.5(f) was taken from Ref. [127] and
corresponded to the result of mapping the results of topology onto Schwarz Primitive cells [127].
The domains of 8 cells displayed in Figs. III.B.3.5(d)–III.B.3.5(e) were also taken from [127]. The
isovalue functions associated with these two domains are:

t(x, y, z) =


− 5

2

(
3x
2L

)2
+ 2 , 0 ≤ x ≤ 2L

3 , y, z ∈ R
− 1

2 , 2L3 < x ≤ 4L
3 , y, z ∈ R

3
2Lx− 5

2 , 4L3 < x ≤ 2L, y, z ∈ R
(III.B.3.9)

t(x, y, z) = 3
( x
L

− 1
)2

− 1

2
, 0 ≤ x ≤ 2L., y, z ∈ R (III.B.3.10)

The six domains were subjected to uniaxial compression (see Fig. III.B.3.5). The magnitude
of the load was such that the resultant strains in the flat faces of the boundary of the cells lied
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(a) Relative density ρ = 0.25. (b) Relative density ρ = 0.50.

(c) Relative density ρ = 0.75. (d) Relative density ρ = 1.0.

Figure III.B.3.4: Evaluation of the meta-models to estimate the von Mises stress in Schwarz Prim-
itive lattices. Fitted values vs. Experimental values.

in the range of analysis εij ∈ 10−5 × [−1.0, 1.0]. First, we compared the displacements field of
the lattice and homogeneous domain (Section III.B.3.5.1.1). Secondly, we applied our DOE-based
methodology using the displacement results from the homogeneous domain to get the maximum
von Mises stress in every cell. Finally, we compared the maximum von Mises stress obtained via
(1) direct FEA of the lattice domain and (2) our proposed methodology (Section III.B.3.5.1.2).
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(a) 8 cells. Uniform density ρ =
0.25.

(b) 8 cells. Uniform density ρ =
0.50.

(c) 8 cells. Uniform density ρ =
0.75.

(d) 8 cells. Graded density as per
Eq. III.B.3.9.

(e) 8 cells. Graded density as per
Eq. III.B.3.10.

(f) 24 cells. Graded density as per
Ref. [127].

Figure III.B.3.5: Studied domains and boundary conditions. Schwarz Primitive lattice structures
of uniform and non-uniform (graded) density.

III.B.3.5.1.1 Material Homogenization in Schwarz Primitive Lattice Structures

The FEA simulations of the lattice and homogeneous domains were executed in ANSYS. The lattice
models were meshed in ANSYS using tetrahedral elements (SOLID285). The material properties
of the lattice models correspond to the bulk material properties (ρ = 1.0 in Table III.B.3.2). On
the other hand, given the regular shape of the homogeneous domains, we used cubic elements
(SOLID185) for the respective meshes. Each cubic sub-domain was isotropic and its material prop-
erties were assigned according to its relative density and the properties reported in Table III.B.3.2.
The homogeneous domain was then a regular 3D array of isotropic cubic sub-domains. Since
the properties of each sub-domain could be different, the homogeneous domain resulted to be
anisotropic.

FEA simulations were executed using different hardware settings and different operative sys-
tems, therefore, it was not possible to compare execution times between different simulations in
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equal conditions. To overcome this difficulty, we used the number of elements in the mesh as a
measurement of computational expense in each domain. The number of elements required for each
lattice and homogeneous domain are reported in Fig. III.B.3.6 and Table. III.B.3.4. It is noticeable
that the FEA meshes of lattice domains required more elements than the homogeneous domains.
Another important aspect to highlight is that the number of elements of the homogeneous domain
only depend on the number of cells (particularly, we chose a mesh of 10 × 10 × 10 elements per
unit cell). On the other hand, the number of elements for the lattice domains does not completely
depend on the number of cells. Notice that 5 out of the 6 domains are conformed by 8 unit cells.
However, the number of elements (Fig. III.B.3.6 and Table. III.B.3.4) is different for each domain.
These variations are mainly influenced by the shape of the domain, which affects the corresponding
meshing algorithms of the FEA software (ANSYS).

After conducting the FEA simulations, we proceeded to compare the resultant displacements
of the lattice and homogeneous domains. Figure III.B.3.8 (1) contrasts the nodal displacement
in the load direction X for the six load cases and (2) shows the absolute difference between the
X displacement predicted by the lattice and homogeneous approaches. The reader may observe
the similarity in both the distribution and magnitude of the displacements field of the lattice and
homogeneous domains. Figure III.B.3.8 also shows that the maximum value of the absolute error is
in all cases approximately 10 times smaller than the maximum displacement. From these results we
conclude that material homogenization is an accurate tool to estimate the displacements in lattice
structures and its efficiency allow its application in large lattice domains.

III.B.3.5.1.2 Comparison between FEA and Our Methodology

We used the displacements on the homogeneous domains obtained in the previous stage to extract
the inputs of our meta-models: the normal strains on the boundary of each cell. Then, we used
the meta-models presented in Section III.B.3.4.4 to estimate the maximum von Mises stress in
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Figure III.B.3.6: Number of elements in the FE meshes of lattice and simplified homogeneous
domains.
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(a) ρ = 0.25. Min. displacement:
−1.1× 10−4 cm.

(b) ρ = 0.25. Min. displacement:
−1.1× 10−4 cm.

(c) ρ = 0.25. Absolute error.

(d) ρ = 0.50. Min displacement:
−2.3× 10−4 cm.

(e) ρ = 0.50. Min displacement:
−2.2× 10−4 cm.

(f) ρ = 0.50. Absolute error.

(g) ρ = 0.75. Min displacement:
−1.2× 10−4 cm.

(h) ρ = 0.75. Min displacement:
−1.1× 10−4 cm.

(i) ρ = 0.75. Absolute error.

Figure III.B.3.7: Cont.
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(j) Graded density Eq. III.B.3.9.
Min displacement: −1.6× 10−4 cm.

(k) Graded density Eq. III.B.3.9.
Min displacement: −1.6×10−4 cm.

(l) Graded density Eq. III.B.3.9.
Absolute error.

(m) Graded density Eq. III.B.3.10.
Min. displacement: −1.6 × 10−4

cm.

(n) Graded density Eq. III.B.3.10.
Min. displacement: −1.3 × 10−4

cm.

(o) Graded density Eq. III.B.3.10.
Absolute error.

(p) Graded density Ref. [127]. Min
displacement: −1.8× 10−4 cm.

(q) Graded density Ref [127]. Min
displacement: −2.0× 10−4 cm.

(r) Graded density Ref [127]. Abso-
lute error.

Figure III.B.3.8: Results of X compression test. X displacement. Comparison of lattice ((a), (d),
(g), (j), (m), (p)) vs. homogeneous ((b), (e), (h), (k), (n), (q)) domains. Absolute error distribution
((c), (f), (i), (l), (o), (r)). Domains of 8 cells (a)-(o). Domain of 24 cells (p)-(r).
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Table III.B.3.4: Number of elements in FE meshes of lattice and simplified homogeneous domains.

Domain Figure number No. of elements in
Lattice domain

No. of elements
in Homogeneous
domain

8 cells. Uniform density with ρ = 0.25 Fig. III.B.3.5(a) 149090 8000
8 cells. Uniform density with ρ = 0.50 Fig. III.B.3.5(b) 132710 8000
8 cells. Uniform density with ρ = 0.75 Fig. III.B.3.5(c) 260610 8000

8 cells. Graded density as per Eq. III.B.3.9 Fig. III.B.3.5(d) 27863 8000
8 cells. Graded density as per Eq. III.B.3.10 Fig. III.B.3.5(e) 66890 8000

24 cells. Graded density as per Ref. [127] Fig. III.B.3.5(f) 163080 24000
112 cells. Graded density as per Eq. III.B.3.12 Fig. III.B.3.11(a) N/A 112000

each cell. To apply the meta-models, we calculated the average relative density of each cell of the
non-uniform (graded) density domains. Since we had only meta-models for the relative densities
ρ ∈ {0.25, 0.50, 0.75, 1.0}, we used linear interpolation to do the approximations for the intermediate
values of density ρ. For instance,

(
σ
(0.4)
VM

)
, the von Mises stress for a relative density ρ = 0.4 is

approximated as

σ
(0.4)
VM =

2

5
σ
(0.25)
VM +

3

5
σ
(0.5)
VM , (III.B.3.11)

where σ
(0.25)
VM and σ

(0.50)
VM denote the von Mises stresses for the cells of densities ρ = 0.25 and

ρ = 0.50. σ(0.25)
VM and σ

(0.50)
VM are retrieved using Eq. III.B.3.7 with the corresponding coefficients of

Table III.B.3.3.
Figures III.B.3.9 and III.B.3.10 show (i) the von Mises stress of the FEA simulation, (ii) the

maximum von Mises stress of every cell retrieved from the FEA simulation of the lattice domain,
and (iii) the maximum von Mises stress of every cell calculated with our methodology. In addi-
tion, Table III.B.3.5 lists, for each domain, the global maximum von Mises stress using (a) FEA
simulation of the lattice domain and (b) our methodology. We measured the relative error of our
methodology with respect to the FEA simulation of the lattice domain. These results are reported
also in Table III.B.3.5.

In Figures III.B.3.9 and III.B.3.10, we can see that the maximum von Mises stress given by our
methodology (third column of the figures) is very uniform along all the cells. When compared with
the maximum von Mises stress of the FEA methodology (second column of the figures), it is clear
that our methodology is not able to capture all the variation of the maximum von Mises stress per
cell (see Figs. III.B.3.10(h) and III.B.3.10(i)). However, we can see the correspondence between the
most stressed zones using FEA simulation and our methodology. Note that our implementation
often predicts the most stressed cell.

In terms of the accuracy of our methodology, we can see in Table III.B.3.5 that (1) the error in
the estimations with our methodology is between 16% and 42% and (2) our methodology tends to
underestimate the maximum von Mises stress. These results show that our methodology can only
do rough estimations (with errors above 20%) of the maximum von Mises stress in Schwarz lattice
structures.

We have identified three critical aspects that can improve the accuracy of our methodology:

1. To consider more displacement-based features located inside the cell, not only on the boundary
of the cell.
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2. To develop meta-models for more relative densities. Currently, it is limited to meta-models
of density ρ ∈ {0.25, 0.50, 0.75, 1.0}.

3. To enlarge the range of analysis of the displacement-based features, since in a single load case,
the magnitude of the deformation of the lattice domain varies in every zone. Currently, the
allowed normal strains are currently limited to the interval 10−5 × [−1.0, 1.0].

Table III.B.3.5: Maximum von Mises stress values of direct FEA of the lattice domain vs. our
methodology.

Domain Figure number Max. σVM :
FEA (MPa)

Max. σVM : our
method (MPa) Rel. error

8 cells. Uniform density with
ρ = 0.25

Fig. III.B.3.5(a) 3.6 2.4 33%

8 cells. Uniform density with
ρ = 0.50

Fig. III.B.3.5(b) 4.5 3.6 20%

8 cells. Uniform density with
ρ = 0.75

Fig. III.B.3.5(c) 3.4 2.4 29%

8 cells. Graded density as
per Eq. III.B.3.9 Fig. III.B.3.5(d) 3.1 3.6 16%

8 cells. Graded density as
per Eq. III.B.3.10 Fig. III.B.3.5(e) 3.4 2.8 17%

24 cells. Graded density as
per Ref. [127] Fig. III.B.3.5(f) 3.1 1.8 42%
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(a) Lattice domain, ρ = 0.25. Von
Mises stress.

(b) Lattice domain, ρ = 0.25. Max.
von Mises stress per cell.

(c) Homogeneous domain, ρ = 0.25.
Max. von Mises stress per cell.

(d) Lattice domain, ρ = 0.50. Von
Mises stress.

(e) Lattice domain, ρ = 0.50. Max.
von Mises stress per cell.

(f) Homogeneous domain, ρ = 0.50.
Max. von Mises stress per cell.

(g) Lattice domain, ρ = 0.75. Von
Mises stress.

(h) Lattice domain, ρ = 0.75. Max.
von Mises stress per cell.

(i) Homogeneous domain, ρ = 0.75.
Max. von Mises stress per cell.

Figure III.B.3.9: Comparison of the maximum von Mises stress in direct FEA (lattice) and our
methodology for Schwarz Primitive structures. 8 cells domains of uniform density. Detailed results
in Table III.B.3.5. 96



(a) Lattice domain. Graded density
Eq. III.B.3.9. Von Mises stress.

(b) Lattice domain. Graded den-
sity Eq. III.B.3.9. Max. von Mises
stress per cell.

(c) Homogeneous domain. Graded
density Eq. III.B.3.9. Max. von
Mises stress per cell.

(d) Lattice domain. Graded density
Eq. III.B.3.10. Von Mises stress.

(e) Lattice domain. Graded den-
sity Eq. III.B.3.10. Max. von Mises
stress per cell.

(f) Homogeneous domain. Graded
density Eq. III.B.3.10. Max. von
Mises stress per cell.

(g) Lattice domain. Graded density
Ref. [127]. Von Mises stress.

(h) Lattice domain. Graded density
Ref. [127]. Max. von Mises stress
per cell.

(i) Homogeneous domain. Graded
density Ref. [127]. Max. von Mises
stress per cell.

Figure III.B.3.10: Comparison of the maximum von Mises stress in direct FEA (lattice) and Our
Methodology (homogeneous) for Schwarz Primitive domains of graded density. Domains of 8 cells
(a)-(f). Domain of 24 cells (g)-(i). Detailed results in Table III.B.3.5.
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III.B.3.5.2 Application of Our Methodology to Large Lattice Domains
To demonstrate the potential of our methodology to be applied in the roughly estimation of the
von Mises stress in larger lattice structures, we generated a domain of 112 (7×4×4) cells of graded
density. We tested it under uniaxial compression in X direction (Fig.III.B.3.11(a)). The isovalue
function associated to this domain is:

t(x, y, z) = 2.5− 0.3

L
(x+ y). (III.B.3.12)

First, we produced the homogeneous domain and conducted the FEA simulation. The number of
elements of the mesh was 112000 (10×10×10 elements per cell). Secondly, using the displacements
field (Fig. III.B.3.11(b)), we extracted the normal strains on the boundary of each of the 112
cells. Finally, we used the meta-models of Section III.B.3.4.4 along with linear interpolation to
estimate the maximum von Mises stress in each cell. The results of this estimation are shown in
Fig. III.B.3.11(c).

Due to the large number of cells (117), the FEA directly on the lattice domain was unfeasible.
However, it is possible to show the computational efficiency of our approach: to mesh a lattice
domain of 24 cells, 160k elements were required (6.6k elements per cell), while for the homogeneous
domain of 112 cells, 112k elements were used (1.0k elements per cell). This example has shown the
computational efficiency of our approach in comparison with direct FEA simulation. It shows that
our approach has the potential to be employed in the estimation of the stress/strain response of
large lattice domains.

(a) Lattice domain. Boundary con-
ditions.

(b) Homogeneous domain. Dis-
placement in X direction.

(c) Homogeneous domain. Max.
von Mises stress per cell.

Figure III.B.3.11: Application of our methodology to a large Schwarz Primitive domain of 112 cells
of graded density as per Eq. III.B.3.12.

III.B.3.6 Conclusions
In this article we present a methodology that integrates material homogenization and design of
experiments (DOE) to estimate the stress/strain response in large lattice domains reducing the
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computational cost with respect to direct FEA simulation. On the one hand, material homogeniza-
tion is used to efficiently approximate the displacements on the lattice domains. On the other hand,
DOE is applied to produce simple mathematical expressions to express the stresses in the lattice
as functions of the displacements obtained through homogenization. In comparison with related
approaches, this methodology is easy to implement, can be applied with different families of lattices
(strut or surface based) and offers an efficient alternative to retrieve the stress/strain response of
complex lattice domains. However, it is less accurate and produces only rough estimations.

We implemented the proposed methodology to estimate the von Mises stress in Schwarz Prim-
itive lattice structures. Material homogenization proved its suitability for the approximation of
the displacements in large lattice domains. Results have also shown that the proposed method-
ology is an efficient tool with potential applications in the coarse estimation of the von Mises
stress in large lattice domains. The average errors in the estimations are between 20% and
40%, which are not acceptable in sensitive processes where high accuracy is required. However,
these results are encouraging when it is considered that we estimated meta-models for only four
densities (ρ ∈ {0.25, 0.50, 0.75, 1.0}) for a narrow range of strains on the boundary of the cells
10−5 × [−1.0, 1.0]. Our methodology has shown potential for the pre-evaluation of designs, where
less precision is needed.

The methodology presented in this paper can be applied to other types of lattice structures
(different to the Schwarz Primitive). It would be necessary to develop meta-models for the lattice
structure of interest and, consequently, to perform material homogenization to obtain the Young’s
and Poisson’s moduli associated to the relative density.

III.B.3.6.1 Future Work
Future work is needed to improve the accuracy of the estimations of the von Mises stress. Efforts
should be focused on the fitting of more robust meta-models that use more information from the
displacements field obtained via material homogenization.

This paper considers the von Mises stress as a failure criterion for lattice domains. However,
lattice structures at low densities experience buckling instabilities. This phenomenon should be
considered to analyze failure in lattice structures.
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III.C.1.1 Context
Diego Montoya-Zapata, Juan M. Rodríguez, Aitor Moreno, Jorge Posada and Oscar Ruiz-Salguero.
2D linear finite element simulation of laser metal heating for digital twins. International Journal
for Simulation and Multidisciplinary Design Optimization, EDP Sciences, (eISSN 1779-6288), 2021,
12(11), 11; (This article belongs to the Special Issue Computation Challenges for engineering prob-
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lems). url= https://www.ijsmdo.org/articles/smdo/full_html/2021/01/smdo210017, doi=
https://doi.org/10.1051/smdo/2021011, Published online: 22 July 2021.

Indexing: SCOPUS(Q4), Publindex(C)

Abstract
In the context of laser-based additive manufacturing, the thermal behavior of the substrate is
relevant to define process parameters vis-à-vis piece quality. The existing literature focuses on two
process variables: (a) lumped laser power and (b) process speed. However, this literature does
not consider other variables, such as those related to the laser power distribution. To fill this
vacuum, this manuscript includes the laser power spatial distributions (Gaussian, uniform circular
and uniform rectangular) in addition to (a) and (b) above in 2D linear substrate heating simulations.
The laser energy is modeled as a time dependent heat flux boundary condition on top of the domain.
The total laser delivered power was identical for all spatial distributions. The results show that the
laser intensity spatial distribution strongly affects the maximum temperature, and the depth and
width of the heat affected zone. These 2D finite element simulations prove to be good options for
digital twin based design environments, due to their simplicity and reasonable temperature error,
compared to non-linear analysis (considered as ground truth for this case). Future publications
address non-linear finite element simulations of the laser heating process (including convection and
radiation and temperature dependent substrate properties).
Keywords: numerical simulation, heat transfer, finite element method.

Glossary

AM Additive manufacturing.
HAZ Heat affected zone.
LMD Laser metal deposition.
Ω ⊂ R2 Studied domain with boundary ∂Ω
xxx ∈ Ω Coordinates to represent the position of Ω [m]
T (xxx, t) Temperature at xxx ∈ Ω in the instant t [K]
qqq(xxx, t) Heat flux into or out of the medium at xxx ∈ Ω at time t [W / m2]
s(xxx, t) Volumetric heat sources at xxx ∈ Ω in the instant t [W / m3]
nnn(xxx) Outward unit normal to the boundary at xxx ∈ Ω
ρ Density of the material [kg / m3]
Cp Specific heat capacity of the material [J / (kg K)]
κ Thermal conductivity of the material [W / (m K)]

III.C.1.2 Introduction
Metal Additive Manufacturing (AM) has enabled the fabrication of complex geometries that could
not be build using traditional manufacturing techniques [45]. Laser-based AM has also grown up
because of its applications in repair, reconditioning, coating and remanufacturing of high-valued
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industrial pieces [93]. However, the characterization of the laser-based AM is still a matter of
research.

In this manuscript, we present an analysis of the influence of the laser intensity distribution,
laser radius and process speed on the thermal behavior of the substrate. The analysis is carried
out via numerical simulations of a 2D thermal model using the finite element method. The energy
contributions of the laser into the substrate are modeled as time dependent heat flux (or Neumann)
boundary conditions. We study the effects of three types of laser intensity distributions: Gaussian,
uniform circular and uniform rectangular. In our simulations, we do not consider the addition of
material, the phase change nor non-linear phenomena.

The remainder of this article is organized as follows: Section III.C.1.3 provides a review of the
relevant related work. Section III.C.1.4 describes the governing equations, numerical scheme, and
the materials used for the simulations. Section III.C.1.5 presents and discusses the results obtained.
Section III.C.1.6 concludes the manuscript and makes suggestions for future work.

III.C.1.3 Literature Review

III.C.1.3.1 Numerical Studies of Process Parameters in Additive Manu-
facturing

In recent years, there has been an increasing amount of literature on the study of laser-based AM.
Several studies have shown that the temperature history has a significant impact in the quality and
mechanical properties of the parts manufactured via laser-based AM [28, 37, 77, 149].

Physical experimental studies have been executed to assess the influence of the process parame-
ters on the geometry of parts produced by laser metal deposition (LMD). Most of the research has
focused on these three parameters: laser power, process speed and material feeding rate. Refer-
ences [35, 72, 186, 200] analyzed the effects of the process speed, laser power and material feeding
rate on the geometry of the melt-pool (with, depth and burn-in shape) and on the dilution ratio.
References [34, 200] studied the impact of these three process parameters in the clad geometry
(width, height and angle of repose).

Numerical models have also been developed for this purpose. Pure thermal [35, 200] and thermal-
fluid [6, 186] were implemented to model the influence of the laser power, process speed and material
feeding rate on the geometry and thermal history of the melt-pool and the clad bead. In all of these
works, the power intensity distribution of the laser beam was modeled using a Gaussian function.
However, other beam spots shapes have been used in physical contexts (e.g. rectangular beam
spot [96]).

III.C.1.3.2 Digital Twins in Additive Manufacturing
In the context of Industry 4.0, the concept of digital twin is key in the manufacturing environ-
ment [145]. In few words, a digital twin is a virtual representation of a real system. This virtual
representation resembles as much as possible the real system, allowing the knowledge transfer be-
tween the real and cyber-physical worlds [68]. Therefore, simulation over the virtual entity plays a
major role, since the gained information can be fed into the real system.

Digital twins for AM are still at early stages of development. Some research has focused on the
identification of the main features that should be included in the cyber-physical world (e.g. thermal
behavior, melt-pool dynamics, distortions, geometry prediction) [43, 64]. However, one of the major
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limitations of the current models is the large amount of computational resources associated to their
use, which make them impractical for real-time or interactive applications [43].

Reference [202] presented an approach that integrated real data obtained by sensors and the-
oretical results in the context of smart manufacturing. Reference [64] used the prior approach to
develop a model for AM that used numerical simulations and real data to detect manufacturing
defects and deviations. Reference [85] presented a digital twin for AM that integrated some main
features related to resemble the real process (e.g. obtained geometry, temperature history, cooling
rates, microstructure). The main contribution was the assembly of those features, which are are
commonly studied independently. A further review on the related works on digital twins for AM
can be found in [207].

III.C.1.3.3 Conclusions of the Literature Review
In the currently existing literature, metal laser heating is addressed by considering, in addition to
the material properties, lumped laser power input at the material boundary and laser speed. The
spatial distribution of the laser power follows a Gaussian profile. This manuscript addresses the
role of the laser power spatial distribution on the temperature field at the metal substrate. This
temperature distribution is located at the substrate cross section normal to the laser trajectory.
Our linear 2D initiative is obviously less precise than the 2D non-linear counterparts. However, we
contend that it has value for approximate simplified purposes, e.g. digital twin applications, which
require a reasonable appraisal of the substrate temperatures, at early design-stages.

III.C.1.4 Methodology

III.C.1.4.1 Problem Description
Laser Metal Deposition (LMD) is a manufacturing process in which a high-power laser beam is
used to melt a metallic material while it is being deposited on the surface of a metallic substrate.

In this work, we aim to analyze the thermal behavior of an LMD process consisting of several
parallel linear deposition tracks (see Fig. III.C.1.1). Along each track, we assume that the laser
speed, laser power and material feeding rate are constant. Given these conditions, the process can
be considered stable for points far enough of the start/end of the tracks. Therefore, we follow the
approach presented in [200], in which the domain Ω for the thermal analysis is a 2D cross-section
of the substrate with thickness ∆z. The considered cross-section is perpendicular to the deposition
tracks.

Despite the previous assumptions (constant speed, power and feeding rate), the process is still
complex to model since it is affected by the properties of the laser beam, the properties of the
deposited material and the substrate and the thermal conditions in which the process is executed.
Therefore, we make the following simplifications:

1. The addition of material and the phase change (melting) are not taken into account. The
analysis is limited to the thermal history of the substrate for temperatures below the melting
point.

2. Heat loss is not considered. The following phenomena are not considered: convection be-
tween the air and the substrate, thermal radiation, conduction between the substrate and its
supporting floor.
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3. The properties of the substrate (specific heat, density and thermal conductivity) are assumed
to be constant.

4. Heat phenomena in Z direction are neglected, including the conduction produced when the
laser heats a neighborhood close to Ω in Z (see Fig. III.C.1.1).

The process studied in this paper can be applied to other laser-aided processes, such as powder-
bed laser additive manufacturing.

Figure III.C.1.1: Simulation of the deposition of four parallel deposition tracks (Track 1, ..., Track
4). Graphical representation of the domain, reference frame and parameters involved.

III.C.1.4.2 Governing Equations
Let Ω denote our 2D domain of analysis (see Fig. III.C.1.1). Let T = T (xxx, t) denote the temperature
at position xxx ∈ Ω at time t. The temperature function satisfies the partial differential equation

ρCp
∂T

∂t
+∇ · qqq = s in Ω× [0, tmax] (III.C.1.1)

where ρ and Cp are the density and specific heat capacity of the material, qqq = qqq(xxx, t) is the heat
flux and s = s(xxx, t) is the body heat source. The heat flux qqq satisfies the following constitutive
relation given by Fourier law

qqq = −κ ∇T (III.C.1.2)

where κ is the thermal conductivity of the material. In general, the thermal conductivity κ is a
second-order tensor. However, we assume that the material is isotropic and, therefore, treat κ as a
scalar.

To complete the mathematical formulation of the thermal problem, it is still necessary to define
the initial and the boundary conditions. The initial temperature field is given by

T (xxx, 0) = T0(xxx) (III.C.1.3)
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where T0(xxx) = 300 K is the prescribed temperature at time t = 0. Temperature (Dirichlet) and
flux (Neumann) conditions are imposed on the boundary of Ω as

T (xxx, t) = T (xxx, t), xxx ∈ ∂ΩT (III.C.1.4)
qqq(xxx, t) ·nnn(xxx) = q(xxx, t), xxx ∈ ∂Ωq (III.C.1.5)

where T (xxx, t) and q(xxx, t) are known scalar functions, nnn(xxx) is the unitary outward normal to the
boundary at xxx. In addition, ∂ΩT ∩ ∂Ωq = ∅ and ∂ΩT ∪ ∂Ωq = ∂Ω, where ∂Ω denotes the boundary
of Ω. The initial and boundary conditions we imposed are detailed in Section III.C.1.4.7.

III.C.1.4.3 Galerkin Weak Form
Given the constitutive relation in Eq. III.C.1.2, the boundary conditions in Eqs. III.C.1.4 and III.C.1.5,
and applying the Galerkin method on Eq. III.C.1.1, the problem is stated as follows [80]:

Find Th ∈ Sh ⊂ H1(Ω) such that for all wh ∈ Vh ⊂ H1(Ω):∫
Ω

whρCp
∂T h

∂t
dV +

∫
Ω

∇wh ·
(
κ∇Th

)
dV =

∫
Ω

whsdV −
∫
∂Ωq

whqdA (III.C.1.6)

where

Sh = {Th : Th(xxx, t) = T (xxx, t),xxx ∈ ∂ΩT } (III.C.1.7)
Vh = {wh : wh(xxx, t) = 0,xxx ∈ ∂ΩT } (III.C.1.8)

and, if ∆z is the thickness of Ω, the differential elements of volume and area in Eq. III.C.1.6 become
dV = ∆zdA when integrating over Ω and dA = ∆zdL when integrating over ∂Ωq.

The function Th aims to approximate the exact solution T and wh is a weighting function.
Notice that Th satisfies the Dirichlet boundary conditions and wh vanishes where Dirichlet boundary
conditions are applied.

III.C.1.4.4 Finite Element Discretization
The domain Ω is partitioned in finite elements Ωe such that

Ω =
⋃
e

Ωe (III.C.1.9)

where Ω denotes the closure of Ω. After using an isoparametric formulation, we obtain the semi-
discrete form of Eq. III.C.1.6:

MMMṪTT +KKKTTT = fff (III.C.1.10)
where TTT (t) is the vector of the nodal temperatures at time t, Ṫ̇ṪT (t) is the vector of the nodal
derivatives of the temperature w.r.t. time: Ṫa = ∂Ta/∂t, MMM and KKK denote the global mass and
conductivity matrices, and fff is the global force vector. The components of the corresponding
element (local) mass and conductivity matrices are

Me
ab =

∫
Ωe

ρCpNaNb∆zdA (III.C.1.11)

Ke
ab =

∫
Ωe

∇Na · (κ∇Nb)∆zdA (III.C.1.12)
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where Me
ab and Ke

ab are the components of the mass and conductivity matrices that relate nodes a
and b in the finite element e, and {Na} are the shape functions. We use 3-node linear triangular
finite elements, therefore the functions {Na}, a = 1, 2, 3 are linear.

The components of the element force vector are given by

fea =

∫
Ωe

Nas∆zdA−
∫
∂Ωe

q

Naq̄∆zdL−
∑
b∈BT

[
Me

abṪ b −Ke
abT b

]
(III.C.1.13)

where fea is the component associated to the node a of the force in the element e and BT = {b :
xxxeb ∈ ∂Ωe

T } represents the nodes in the element e with Dirichlet boundary conditions. The symbol
xxxeb denotes the coordinates of the node b in element e.

The reader may notice that in Eq. III.C.1.10, the vectors TTT and ṪTT are continuous functions
with respect to time. To complete the numerical scheme it is still necessary to perform the time
discretization.

III.C.1.4.5 Time Discretization
To execute the time discretization, the time interval [0, tmax] is divided into N sub-intervals of
length ∆t: [t0, t1], [t1, t2], . . . , [tN−1, tN ], such that tN − tN−1 = ∆t, t0 = 0 and tN = tmax. The
goal in this section is to obtain the solution at time ts+1 given the solution at time ts.

Let sTTT = TTT (ts) and sṪ̇ṪT = Ṫ̇ṪT (ts) for s = 0, 1, 2, . . . , N . We approximate the time derivative Ṫ̇ṪT at
s+ 1 using the backward Euler method, as follows [80]:

s+1Ṫ̇ṪT =
s+1TTT − sTTT

∆t
(III.C.1.14)

Assuming that MMM , KKK and fff are time-independent quantities, Eq. III.C.1.14 is replaced into
Eq. III.C.1.10 to obtain

MMM

(
s+1TTT − sTTT

∆t

)
+KKK s+1TTT = fff (III.C.1.15)

From Eq. III.C.1.15 can be obtained an expression for s+1TTT :

s+1TTT = (MMM +∆t KKK)
−1

(∆tfff +MMM sTTT ) (III.C.1.16)

III.C.1.4.6 Modeling of the Heat Provided by the Laser
The energy provided by the laser is modeled as a time dependent heat flux boundary condition.
At every time step, we calculate the total influx through the boundary of each element on top (i.e.
maximum Y direction) of the domain Ω.

Assume the elements on top of the domain are e1, e2, . . . , eL. Let ∂Ωei
q be the edge of the element

ei, i = 1, 2, . . . , L that lies on top of the domain. To calculate the influx energy on each of the ∂Ωei
q

we measure the total power provided by the laser in a region Rei
q which is the result of extruding

the edge ∂Ωei
q half of the thickness in +Z and −Z directions (see Fig. III.C.1.2), as shown in the

following equation:
P ei =

∫
R

ei
q

I(x, z)dA (III.C.1.17)

107



where I(x, z) is the function that describes the laser intensity distribution and P ei is the total
power acting on the edge ∂Ωei

q . Since the integration region is restricted to Rei
q , only the power

that acts on the 2D domain is considered.

Figure III.C.1.2: Calculation of the inner heat flux provided by the laser at every finite element.
Only the laser power that lies inside Ω (dotted lines) is considered.

Hence, to find the heat flux qei at ∂Ωei
q due to the action of the laser, we divide P ei by the area

of the integration region, as shown below:

qei =
1

∆z

P ei

|∂Ωei
q |

(III.C.1.18)

where |∂Ωei
q | denotes the length of the segment. Fig. III.C.1.2 shows a scheme of the process and the

entities involved in it. In this figure, a Gaussian intensity function is depicted, but other intensity
functions can be considered.

Since the laser is moving, the function I(x(t), z(t)) is also a function of time. Therefore, the
previous procedure must be repeated at every time step of the simulation. Fig. III.C.1.3 shows an
example of the heat fluxes qei calculated for the elements on top of the domain Ω, considering a
Gaussian intensity function for the time sequence t1, . . . , ti, ti+1, . . . , tN .
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Figure III.C.1.3: Curves of the inner heat flux through the top side of Ω for the time sequence
t1, t2, . . . , ti, ti+1, . . . , tN .

(a) Gaussian distribution (b) Uniform circular distribution (c) Uniform rectangular distribution

Figure III.C.1.4: Surfaces that describe the laser power distributions for (a) Gaussian, (b) uniform
circular and (c) uniform rectangular beams. Laser power P = 500 W and laser radius R = 2.5 mm.

III.C.1.4.7 Finite Element Mesh and Boundary Conditions
Fig. III.C.1.5 presents the initial and boundary conditions imposed on our 2D domain for the
thermal analysis. The initial temperature was 300 K over all the domain. We set constant ambient
temperature of 300 K on the left and right hand sides of our domain. The bottom boundary
was subjected to an adiabatic boundary condition, i.e. the heat flux was zero. Regarding the top
boundary, as mentioned in Section III.C.1.4.6, the laser energy input was model as a heat flux
(Neumann) boundary condition. Therefore, those elements that interacted with the laser were
subjected to a non-zero flux boundary condition. On the other hand, the elements that did not
interact with the laser were under adiabatic boundary conditions (zero flux).
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Figure III.C.1.5: Initial and boundary conditions for the simulations.

Fig. III.C.1.6 shows the finite element mesh used for the simulations. The mesh was formed
by 3671 linear triangular elements and 1922 nodes. The mesh was refined at the center of the
top boundary, since it was the zone that interacted directly with the laser beam. The changes in
the temperature obtained with a finer mesh or a smaller time step were negligible for the analysis
performed in this work.

Figure III.C.1.6: Finite element mesh used for the simulations. Mesh refined at neighborhood of
laser spot.

III.C.1.4.8 Material Properties and Process Parameters for the Numer-
ical Simulation

For the numerical simulations, we used the AISI 4140 steel. The material properties (thermal
conductivity, density, specific heat and melting point) are given in Table III.C.1.1 [200].

Table III.C.1.1: Material properties of the AISI 4140 steel used in the numerical simulations [200].

Property Value
Thermal conductivity (κ) 45 W/(m K)

Density (ρ) 7800 kg/m3

Specific heat (Cp) 500 J/(kg K)
Melting point 1689 K
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Table III.C.1.2: Domain size and process parameters used for the numerical simulations.

Parameter Value
Width (size in X) of the domain (W in
Fig. III.C.1.1)

100 mm

Height (size in Z) of the domain (H in
Fig. III.C.1.1)

30 mm

Thickness of the domain (∆z in Fig. III.C.1.1) 5 mm
Length of the tracks (LT in Fig. III.C.1.1) 100 mm
Separation distance between tracks (dT in
Fig. III.C.1.1)

3.5 mm

Laser power (P ) 500 W
Laser radius (R) 2.5 mm (except in

Sec. III.C.1.5.2)
Laser speed (v) 13 mm/s (except in

Sec. III.C.1.5.3)
Laser intensity distribution Gaussian (except in

Sec. III.C.1.5.1)
Transition time between tracks 2 s
Total simulated time 34 s
Time step (∆t) 0.0769 s
Initial position of the laser [44.75, 30,−6]

We executed seven numerical simulations in which we studied the influence of different laser
intensity distributions, laser radii and process speeds. The simulations aimed to represent the
deposition of four parallel tracks (as shown in Fig. III.C.1.1). The domain configuration and process
parameters used for the simulations are listed in Table III.C.1.2. For a graphical representation of
these parameters, we refer the reader to Fig. III.C.1.1.

III.C.1.5 Results

III.C.1.5.1 Influence of the Laser Intensity Function
We executed three simulations to study the influence of the laser intensity distribution function
on the thermal behavior of the substrate. The intensity distributions used were (1) Gaussian in
Eq. III.C.1.19, (2) uniform circular in Eq. III.C.1.20 and (3) uniform rectangular in Eq. III.C.1.21.
Fig.III.C.1.4 shows the corresponding laser intensity distributions to a laser power P = 500 W and
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a laser radius R = 2.5 mm.

IGauss(x, y) =
2P

πR2
exp

(
−2(x2 + y2)

R2

)
(III.C.1.19)

ICirc(x, y) =

{
P

πR2 , x2 + y2 ≤ R2

0, otherwise
(III.C.1.20)

ISq(x, y) =

{
P

(2R)2 , −R ≤ x, y ≤ R

0, otherwise
(III.C.1.21)

Fig. III.C.1.7 shows a comparison of the temperature distribution of the Gaussian intensity
distribution (on the left) vs. the uniform circular intensity distribution (on the right). The figure
presents the temperature at time t = 8∆t for the region of the substrate most affected by the laser.
We can see that the temperature values and the shapes of the heat affected zone (HAZ) are similar.
However, the maximum temperature in the case of the Gaussian distribution is 1210 K while in
the case of the uniform circular distribution is 1141 K. This temperature difference is caused by
the peak that we can observe in the Gaussian distribution (Fig III.C.1.4) which causes an energy
concentration on the center of the HAZ.

Fig. III.C.1.8 presents the comparison of the temperature distributions between the Gaussian
(on the left) and the uniform rectangular (on the right) intensity distributions. It is noticeable
that the HAZ of the uniform rectangular laser has a larger width and a smaller depth. Likewise,
the maximum temperature in the case of the uniform rectangular intensity distribution is 1014 K,
almost 200 K less than for the Gaussian intensity distribution.

Figure III.C.1.7: Substrate temperature. (i) Gaussian (left) vs. (ii) uniform circular (right) laser
power distributions. t = 8∆t.

To obtain a measure of the energy that goes into the domain along the points of the X axis,
we calculated the power per unit of length (IL) corresponding to each laser intensity function, as
given by Eq. III.C.1.22.

IL(x) =

∫ ∞

−∞
I(x, z)dz (III.C.1.22)

The resulting functions are shown in Fig. III.C.1.9. It is noticeable the relation between the
temperature distributions in Figs. III.C.1.7, III.C.1.8, and III.C.1.9. The peak of the Gaussian
distribution for IL is reflected in the large value for the maximum temperature. Likewise, the
larger width in the HAZ corresponding to the rectangular laser beam is explained by the larger
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Figure III.C.1.8: Substrate temperature. (i) Gaussian (left) vs. (ii) uniform rectangular (right)
laser power distributions. t = 8∆t.

width of its corresponding IL. It is important to remark that the areas under the three curves in
Fig. III.C.1.9 are equal to the total power of the laser (P = 500 W).
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Figure III.C.1.9: Comparison of the functions of laser power per unit of length IL for the (i)
Gaussian, (ii) uniform circular and (iii) uniform rectangular laser power distributions. Laser power
(area under the curve) P = 500 W and laser radius R = 2.5 mm.

Fig. III.C.1.10 shows the thermal history of the point at the top of the domain along the
second track (see Fig. III.C.1.1) for the three simulations executed with different laser intensity
distributions. In this figure, we can observe that the maximum temperatures are reached when
the laser describes the trajectory of the second track. We can see that the maximum temperature
corresponds to the simulation performed with the Gaussian intensity distribution. However, before
and after the temperature peak, the resulting temperatures for the three laser intensity distributions
are very similar. This can be explained by the fact that during these phases, the thermal behavior
is determined by the material properties.
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Time [s]

Figure III.C.1.10: Temperature history at x0 (Fig. III.C.1.1). (i) Gaussian, (ii) uniform circular
and (iii) uniform rectangular laser power distributions.

III.C.1.5.2 Influence of the Laser Radius
To study the influence of the laser radius, we performed three simulations using a Gaussian intensity
distribution with laser radii R = 2.0 mm, R = 2.5 mm and R = 3.0 mm. Fig. III.C.1.11 compares
the temperature distributions between the simulations with R = 2.5 mm (left) and R = 2.0 mm
(right). On the other hand, Fig. III.C.1.12 compares the temperature distributions between the
simulations with R = 2.5 mm (left) and R = 3.0 mm (right). The two figures present the temper-
ature at time t = 8∆t for the region of the substrate most affected by the laser. In both figures,
we can observe that the simulation with the smallest laser radius produces the largest temperature
and depth of the HAZ. Since the delivered power of the laser is kept constant, a smaller radius
means that the power is more concentrated at the center of the beam. This power concentration
provokes the temperature differences.

We also calculated the amount of power per unit of length (IL) along the points on the X
axis (Eq. III.C.1.22). The resulting functions are depicted in Fig. III.C.1.13. It is noticeable how
the peak of the function at the center of the laser beam (X = 0) increases while the laser radius
decreases.
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Figure III.C.1.11: Substrate temperature. Gaussian laser power distribution. (a) R = 2.5 mm
(left), (b) R = 2.0 mm (right). t = 8∆t.

Figure III.C.1.12: Substrate temperature. Gaussian laser power distribution. (a) R = 2.5 mm
(left), (b) R = 3.0 mm (right). t = 8∆t.
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Figure III.C.1.13: Gaussian laser power distribution. Power per unit length IL. (i) R = 2.0 mm,
(ii) R = 2.5 mm and (iii) R = 3.0 mm. Laser power (area under the curve) P = 500 W.
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Fig. III.C.1.14 shows the thermal history of the point at the top of the domain along the second
track (see Fig. III.C.1.1) for the simulations performed with different laser radii. The behavior is
similar to the observed in our previous analysis of the impact of the laser intensity distribution:
when the laser beam is close to the studied point, temperature differences are noticeable. However,
when the laser beam is not close, the thermal behavior is determined by the material properties
and the temperatures obtained for the three simulations become very similar.

Time [s]

Figure III.C.1.14: Temperature history at x0 (Fig. III.C.1.1). Gaussian laser power distribution.
(i) R = 2.0 mm, (ii) R = 2.5 mm, (iii) R = 3.0 mm.

III.C.1.5.3 Influence of the Process Speed
To study the influence of the process speed, we executed three simulations using a Gaussian intensity
distribution with process speed v = 13.0 mm/s, v = 10.4 mm/s and R = 15.6 mm/s.

Fig. III.C.1.15 presents the temperature distribution of the simulations with v = 13 mm/s (left)
at time t = 8∆t and v = 10.4 mm/s (right) at time t = 10∆t. The figures show the configurations
with maximum temperature on the first track. First, notice that, since the initial point of the laser
was the same (see Table III.C.1.2), the maximum temperature for the simulation with v = 13 mm/s
was reached before than the one in the case of v = 10.4 mm/s (t = 8∆ vs. t = 10∆t).

Fig. III.C.1.16 compares the temperature distributions between the simulations with v = 13 mm/s
(left) at time t = 8∆t and v = 15.6 mm/s (right) at time t = 7∆t. As in the previous case, those
images correspond to the configuration of maximum temperature for the first track.

In Figs. III.C.1.15 and III.C.1.16, the maximum temperatures of the simulations with v =
10.4 mm/s, v = 13 mm/s and v = 15.6 mm/s were 1276 K, 1210 K and 1160 K, respectively. When
the process speed is lower, the interaction time between the laser beam and the domain is larger.
Therefore, the energy delivered by the laser (heat influx through the top boundary) is larger for
lower process speeds. Consequently, larger temperatures and depths of the HAZs are obtained for
lower process speeds.
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Figure III.C.1.15: Substrate temperature. Gaussian laser power distribution. Laser speed: (i)
v = 13.0 mm/s (left), (ii) v = 10.4 mm/s (right).

Figure III.C.1.16: Substrate temperature. Gaussian laser power distribution. Laser speed: (i)
v = 13.0 mm/s (left), (ii) v = 15.6 mm/s (right).

Figure III.C.1.17: Temperature history at x0 (Fig. III.C.1.1). Gaussian laser power distribution.
(i) v = 10.4 mm/s, (ii) v = 13.0 mm/s, (iii) v = 15.6 mm/s.
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Fig. III.C.1.17 shows the thermal history of the point at the top of the domain along the second
track (see Fig. III.C.1.1) for the simulations performed with different process speeds. The observed
peaks of maximum temperature coincide with the previous analysis: lower process speed generates
larger maximum temperatures. On the other hand, since the starting point of the laser is the same
in the three simulations, we observe that the peaks of maximum temperature occur at different time.
It occurs because the point of analysis is reached by the laser at different times, as a consequence
of the process speed. The reader may notice that the larger the process speed, the faster the
appearance of the temperature peak.

III.C.1.5.4 Comparison with Non-linear Simulations
In order to assess the suitability of the linear model in digital twin environments, we compared the
simulations with a non-linear model that included radiation (Eq. III.C.1.24) and natural convection
((Eq. III.C.1.23)) heat losses:

qconv = hc (T − T∞) . (III.C.1.23)

qrad = εσ
(
T 4 − T 4

∞
)

(III.C.1.24)

where hc is the natural convection coefficient, ε is the thermal emissivity, σ ≈ 5.67 × 10−8

W m−2 K−4 is the Stefan-Boltzmann constant and T∞ is the ambient temperature. These two
processes were included as Neumann boundary conditions on the top boundary (red boundary in
Fig. III.C.1.5). The details of the implementation of the non-linear model are out of the scope of
this manuscript.

We executed the same simulations that in Section III.C.1.5.1 with the Gaussian, circular and
rectangular laser intensity distributions, but including convection and radiation. The value of the
parameters for the simulations are reported in Tables III.C.1.1–III.C.1.3. Since the non-linear model
includes heat losses, the temperature calculated are consistently lower than for the linear model.
The temperature difference at every time step was below 5% in all cases, using the non-linear model
as ground truth.

Table III.C.1.3: Thermal properties for the non-linear simulations [110].

Property Value
Convection coefficient (hc) 20 W/(m2 K)

Emissivity (ε) 1.0
Ambient temperature (T∞) 300 K

III.C.1.6 Conclusions and Future Work
This manuscript presents an analysis of the influence of the laser intensity distribution, the laser
spot radius and the process speed on the thermal history of a substrate that is heated by the action
of the laser. For the analysis, we implemented a 2D linear transient thermal model using the finite
element method. The energy provided by the laser was represented as a time/space dependent heat
influx (Neumann) boundary condition.

We executed simulations with three types of intensity distribution functions, namely Gaussian,
uniform circular and uniform rectangular. Likewise, we performed simulations with laser radius
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R = 2.0 mm, R = 2.5 mm and R = 3.0 mm. In all the simulations, the total laser delivered power
was identical and equal to P = 500 W. Results showed that these two parameters (the type of the
intensity distribution function and the laser radius) strongly affect the shape (width and depth) of
the HAZ and the maximum temperature.

The comparison of the linear and non-linear models proved that the linear simulations are
good options for digital twin based design environments, due to their simplicity and reasonable
temperature error. Apart of convection and radiation, further work is required to include important
aspects to resemble the real process such as phase change and temperature dependent material
properties.

Implications and Influences
In the context of laser-based additive manufacturing, the thermal behavior of the substrate is
relevant to define process parameters vis-à-vis piece quality. This manuscript studies the laser
power spatial distributions (Gaussian, uniform circular and uniform rectangular) in addition to
the laser power and process speed in 2D linear substrate heating simulations. The laser energy
is modeled as a time dependent heat flux boundary condition on top of the domain. The results
show that the laser intensity spatial distribution strongly affects the maximum temperature and
the depth and width of the heat affected zone. These 2D finite element simulations prove to be
good options for digital twin based design environments, due to their simplicity and reasonable
temperature error, compared to non-linear FEA (considered as ground truth for this case). Future
efforts must address non-linear finite element simulations of the laser heating process.
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Abstract
Simulation of Laser Metal Deposition (LMD) is central to the planning of Additive Manufacturing
processes. This manuscript presents the computational implementation of a 2D-plus-thickness non-
linear thermal simulation of LMD, which considers: (i) temperature-dependent material properties,
(ii) heat losses due to convection and radiation, (iii) geometrical update during material deposition,
(iv) phase change and (v) the interaction between the laser and the substrate. The implementa-
tion computes the history of the temperature field at a cross-cut normal to the laser trajectory
and the history of the bead accumulation. The material deposition model is based on the spatial
distribution of the delivered powder. This manuscript presents the mathematical and numerical
foundations to execute an efficient local re-meshing of the growing bead. The numerical estimation
of the bead geometry is compared with experimental results found in the existing literature. The
present model shows reasonable accuracy to predict the bead width (15% error) and bead height
(22% error). This implementation is an in-house one, which allows for the inclusion of additional
physical effects. Additional work is needed to account for the particle (thermo) dynamics over the
substrate, responsible for a significant material and energy waste, which in turn leads to the actual
temperature and molten depth being over-estimated in the executed simulations.
Keywords: laser metal deposition, additive manufacturing, nonlinear finite element method.

Glossary

AM Additive manufacturing.
FEA Finite element analysis.
FEM Finite element method.
LMD Laser metal deposition.
PL Piecewise linear.
Ω ⊂ R2 2D-plus-thickness FEA domain.
∂Ω 1D border of domain Ω.
M = (V, T ) FEA triangular mesh defined by the set of nodes V and the set of

triangles T .
∆z ∈ R Thickness of the domain Ω [mm]
∆t ∈ R Time increment for the FEM simulation [s]
T (xxx, t) : R2 × R → R Temperature at xxx ∈ Ω in the instant t [K]
Th(xxx, t) : R2 × R → R Approximated temperature function at xxx ∈ Ω in the instant t [K].

It is the result given by the finite element method.
θθθ(t) : R → RNnodes Global vector of nodal temperatures at time t [K].
θθθs ∈ RNnodes Global vector of nodal temperatures at time ts [K].
θθθs,k ∈ RNnodes Global vector of nodal temperatures at time ts and iteration k in

the Newton-Raphson scheme [K].
MMM(xxx, t) : R2 × R →
RNnodes × RNnodes

Global mass matrix in the FEM formulation [J/K].

MMMs(xxx, t) : R2 × R →
RNnodes × RNnodes

Global mass matrix at time ts [J/K].
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KKK(xxx, t) : R2 × R →
RNnodes × RNnodes

Global conductivity matrix in the FEM formulation [W/K].

KKKs(xxx, t) : R2 × R →
RNnodes × RNnodes

Global conductivity matrix at time ts [J/K].

fff(xxx, t) : R2 × R →
RNnodes

Global force vector in the FEM formulation [W].

fffs(xxx, t) : R2 × R →
RNnodes

Global force vector at time ts [W].

T 0(xxx) : R2 → R Initial (at t = 0) temperature at xxx [K]
T (xxx, t) : R2 × R → R Temperature function at the region with Dirichlet boundary con-

ditions [K]
q(xxx, t) : R2 × R → R Heat flux function at the region with Neumann boundary condi-

tions [W/m2]
R System of nonlinear equations associated to the semi-discrete

FEM formulation.
qqq(xxx, t) : R2 × R → R2 Heat flux into or out of the medium at xxx ∈ Ω at time t [W/m2]
s(xxx, t) : R2 × R → R Volumetric heat sources at xxx ∈ Ω in the instant t [W/m3]
nnn(xxx) : R2 → R2 Outward unit normal to the boundary at xxx ∈ Ω
ρ(T ) : R → R Density of the material [kg/m3] as a function of the temperature.
κ(T ) : R → R Thermal conductivity of the material [W/(m K)] as a function of

the temperature.
C(T ) : R → R Specific heat capacity of the material [J/(kg K)] as function of the

temperature.
Ceq(T ) : R → R Equivalent specific heat capacity of the material [J/(kg K)], used

to incorporate phase change into the simulation.
N1(ξ, η), N2(ξ, η), N3(ξ, η) :
R2 → R

Shape functions in the FEM formulation for 3-node triangular
elements. Interpolation functions inside the triangular elements.

Nq
1 (ξ), N

q
2 (ξ) : R → R Shape functions in the FEM formulation for the edges of 3-node

triangular elements. Interpolation functions along the edges with
Neumann boundary conditions.

I(x, z, t) : R2 × R → R Laser energy intensity distribution [W/mm2]
PL ∈ R Laser nominal power [W]
RL ∈ R Laser beam radius [W]
[Ts, Tl] ⊂ R Melting range of the material [K].
µ ∈ R Material flow rate [kg/s]
f(x, z, t) : R2 × R → R Powder particle distribution projected by the nozzle onto the sub-

strate at time t [kg/(mm2 s)].
H(x, z, t) : R2×R → R Height of the bead at time t [mm].
L ∈ R Latent heat of fusion [J/kg].
hc ∈ R Convection coefficient [W/(m2 K)].
ε ∈ R Material thermal emissivity.
σ ∈ R Stefan-Boltzmann constant [W/(m2 K4)].
T∞ ∈ R Ambient temperature [K].
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III.C.2.2 Introduction
Laser Metal Deposition (LMD) is an additive manufacturing process in which metal powder is
delivered on top of a substrate while a laser melts the added material to produce a new layer. LMD
has gained importance during the last several years because of its applications in the repair, coating
and manufacturing of high-valued industrial parts [93].

This manuscript presents the implementation of a nonlinear 2D-plus-thickness thermal model
for the simulation of LMD. The simplification is justified under the assumption of process stability
along the direction of movement of the tool head. The laser energy source is modeled as a flux
boundary condition. The present implementation considers the following aspects: (1) the variation
of the material properties with respect to the temperature, (2) convection and radiation heat losses
and (3) the dynamic evolution of the domain due to material deposition.

This manuscript reports the implementation of the Finite Element Method (FEM) for 2D tri-
angular elements. This manuscript discusses the corresponding FEM matrices of the considered
phenomena (heat equation, temperature-dependent material properties, radiation, and convection).
A model for the representation of the material addition based on the spatial distribution of the de-
livered powder is formulated. Its theoretical foundations and its integration into the Finite Element
Analysis (FEA) analysis pipeline are also presented in this manuscript.

The remainder of this article is organized as follows: Section III.C.2.3 provides a review of the
previous works. Section III.C.2.4 presents the governing equations, numerical schemes and the
methods to model material deposition. Section III.C.2.5 presents and discusses the results of the
implementation. Section III.C.2.6 concludes the manuscript and suggests potential future work.

III.C.2.3 Literature Review

III.C.2.3.1 Simulation of Laser Metal Deposition
Within LMD, recent studies [34, 55, 72, 133, 135] have employed physical experimentation and
statistical techniques (e.g. design of experiments and ANOVA) to devise empirical models that link
the process parameters with the final bead geometry. These studies have focused on the influence
of the laser power, tool-head speed and mass feed rate on the height, width and dilution ratio of
the final bead.

In LMD, the substrate and bead thermal histories are relevant because they allow the prediction
of the mechanical properties, the microstructure and residual stresses of the workpiece [28, 37, 77,
115, 130, 149]. Authors have relied on numerical simulation to represent complex phenomena
involved in the modeling of LMD. Pure thermal models [35, 115, 200] have allowed the prediction
of the thermal history of the melt-pool during deposition. Ref. [200] presents a 2D thermal model
that considers convection, radiation and phase change. The model is fed with the powder efficiency
to estimate the final bead geometry and thermal history during deposition. The research in [115]
confirms the importance of considering convection and radiation heat losses to obtain accurate
temperature estimations. Thermal models have also been used to study the impact of the process
parameters on the resulting workpiece. In this regard, Ref. [35] uses a 2D thermal model to study
the influence of the material flow rate, nozzle speed and laser power on the melting depth in the
substrate.

Thermo-fluid models [6, 106, 186] have incorporated fluid flow effects into the thermal simula-
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tions to study the dynamics of the melt-pool. Apart from the temperature, thermo-fluid models
predict the velocity field in the melt-pool. Models in Refs. [6, 106] include Marangoni and capillary
effects, which produce more accurate temperature predictions than pure thermal models. Ref. [186]
uses a 2D thermal-fluid model to study the effects of the material flow rate and the laser power on
the shape of the melt-pool.

Thermo-mechanical approaches [25, 60, 171] have calculated residual stresses and distortions by
estimating the temperature and displacements during deposition. Refs. [60, 171] consider the same
phenomena as pure thermal models: radiation, convection, temperature-dependent properties and
phase change phenomena. However, they include the effects of thermal expansion to execute solid
mechanics analysis via the estimation of the displacement field. Ref. [60] studies the residual stress
in several contiguous single-layer tracks. Ref. [171] analyzes the residual stress and distortion of
multi-layer cylindrical geometries.

Most of the approaches mentioned above have been executed on commercial software and the
implementation has not been discussed. More comprehensive literature reviews on the simulation
of LMD can be found in [143, 180].

III.C.2.3.2 Assessment of Temperature Predictions and Computational
Resources

The experimental measurement of the temperature in the LMD process is a very challenging task.
The high-temperature conditions of LMD make unfeasible the temperature measurement within the
melt-pool. Researchers have used non-contact devices (e.g. infrared cameras and pyrometers) to
gather temperature data of the melt-pool surface. The accuracy of the measurements of non-contact
devices is affected by several conditions, such as (i) the interference of the laser and the powder
metal, (ii) non-constant (unknown) thermal emissivity of the melt-pool and (iii) the calibration
of the sensing devices [30, 183]. As an alternative, other authors have used metallography as an
indirect method to infer the temperature history in the LMD process [6, 25, 35, 186]. Metallography
is a destructive technique, which requires the cross-sectioning of the workpiece.

The authors in Refs. [6, 25, 35, 171, 186, 200] do not report the execution times of the numerical
simulation. The lack of this data is related to the use of commercial software. Commercial software
does not inform the execution time of each sub-process of the simulation (e.g. remeshing, powder
metal and laser interaction, and thermal/fluid/mechanical FEM solution). Ref. [115] informs the
execution time of the simulation. However, the scope of the simulation and the mathematical
models are different in each work. It is, therefore, unfeasible to compare the execution time of the
simulation or its sub-process with other related studies.

III.C.2.3.3 Representation of the Bead Geometry
One of the main tasks in the numerical simulation of LMD is the representation of the deposited
material. In the literature, two approaches can be identified. The first one pre-defines the cross-
section of the final bead geometry. Several functions are used: circular and elliptical [55, 133,
135, 210], sinusoidal [25, 133, 135] and parabolic [186, 200]. This approach does not represent the
intermediate states of the bead geometry during the deposition.

In the second approach, the bead geometry is induced by the spatial (3D) distribution of the
delivered metal powder delivered on top of the substrate. The powder metal distribution is modeled
as a function of the process parameters (powder spatial flow rate profile and nozzle velocity) and
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material properties (density). Authors have used two functions: Gaussian [6, 55, 130, 178, 179] and
circular [55]. These models give a complete description of the amount and distribution of material
on top of the substrate, which can be used to describe the evolution of the bead geometry during
the deposition.

III.C.2.3.4 Conclusions of the Literature Review
This literature survey has identified the following numerical approaches to calculate the thermal
history during the deposition in LMD: pure thermal, thermo-fluid and thermo-mechanical models.
These approaches exploit the capabilities of numerical simulation to include complex phenomena,
such as melt-pool dynamics, phase change, variation of the material properties with respect to the
temperature, and radiation/convection/conduction heat losses. Many of these publications report
the use of commercial software. Therefore, the discussion of the numerical implementation of the
mathematical models is missing.

This manuscript presents an in-house implementation of a 2D-plus-thickness nonlinear simula-
tion of LMD. Since no commercial FEA software is used, (i) it is flexible and extensible, (ii) it is
particularized to LMD and (iii) the mathematical models are thoroughly presented and discussed.
This manuscript reports a thermal model which considers: (i) temperature-dependent material
properties, (ii) convection and radiation heat losses, (iii) material deposition and (iv) phase change.
The energy input to the system is modeled as a boundary condition of the type flux. This flux
occurs at the upper border of the FEA mesh, which contains both substrate and bead elements.
This manuscript thus discusses the interaction among physical, mathematical, and numerical con-
siderations in LMD simulation.

This manuscript also reports the remeshing strategy used between time frames. The addition of
material causes a (constrained Delaunay) remeshing, which is confined to the bead domain alone.
This strategy saves resources both for geometry and temperature field re-computing at successive
time steps.

The implemented method does not model (i) laser and metal powder flight interaction, (ii)
powder evaporation (c) powder scattering away from bead due to the gas jet dynamics, (d) fluid
dynamics within the molten material.

III.C.2.4 Methodology

III.C.2.4.1 Problem Description
This work aims to study the geometry and temperature evolution of a linear track of the Laser Metal
Deposition process, as shown in Fig. III.C.2.1. This work considers that the process parameters
(tool-head cruise speed, powder deposition rate and laser power) remain constant throughout the
deposition. This study is limited to a 2D cross-section (plus thickness ∆z). Features of the computer
simulations follow.

1. Material deposition is considered. As a result, the bead cross cut and its FE mesh evolve as
the time domain increases. This manuscript discusses the theoretical and numerical aspects
of the material deposition model.

2. The energy delivered by the laser is modeled as a flux boundary condition that acts on the
top of the domain.
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3. The physical properties (density, specific heat and conductivity) of the substrate and the
cladding materials are functions of the temperature. The simulation also contemplates the
phase-change (from solid to liquid and vice-versa) of the substrate and cladding materials.

4. Heat loss due to radiation and convection is included.

5. The Newton-Raphson method is used to execute the nonlinear computation of temperature-
dependent material properties, radiation / convection / conduction heat migration, and phase
change.

6. This work does not consider molten metal fluid dynamics nor energy attenuation due to the
interaction between the laser beam and the powder.

Figure III.C.2.1: Simulation of the deposition of LMD. Graphical representation of the domain,
reference frame and parameters involved.

III.C.2.4.2 Governing Equations
The present work uses the heat equation to describe the temperature distribution T (xxx, t) in the 2D
domain Ω:

ρC
∂T

∂t
−∇ · (κ ∇T ) = s (III.C.2.1)

where ρ,C and κ denote the density, specific heat and thermal conductivity, respectively. This
work considers that the material properties depend on the temperature. The function s = s(xxx, t)
represents the heat source (which in this case is equal to 0).

At the beginning of the simulation, the domain is at room temperature (300 K):

T (xxx, 0) = T 0(xxx) = 300 (III.C.2.2)

Temperature (Dirichlet) and flux (Neumann) conditions may be imposed on the boundary of Ω
(∂Ω). The regions of ∂Ω with imposed Dirichlet and Neumann boundary conditions are denoted as
∂ΩT and ∂Ωq, respectively. They fulfill the following conditions:

∂ΩT ∪ ∂Ωq = ∂Ω; ∂ΩT ∩ ∂Ωq = ∅ (III.C.2.3)
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The boundary conditions are formally stated as follows:

T (xxx, t) = T (xxx, t), xxx ∈ ∂ΩT ; qqq(xxx, t) · nnn(xxx) = q(xxx, t), xxx ∈ ∂Ωq (III.C.2.4)

where T and q are known scalar functions, and nnn is the normal vector that points outwards. The
heat flux qqq satisfies the Fourier law qqq = −κ∇T .

III.C.2.4.2.1 Weak Form and Finite Element Discretization

The weak form of the problem stated in Eqs. III.C.2.1-III.C.2.4 is given by:∫
Ω

wρC
∂T

∂t
dV +

∫
Ω

∇w · (κ∇T ) dV =

∫
Ω

wsdV −
∫
∂Ωq

wqdA (III.C.2.5)

where w is a weighting function. The differential elements of volume and area in Eq. III.C.2.5
become dV = ∆zdA and dA = ∆zdL where ∆z is the thickness of Ω.

To find an approximate solution of the temperature field T , the domain Ω is partitioned into (3-
node) triangular finite elements Ωe. Say Th is the approximated solution for T . The interpolation
of Th in the triangular element Ωe is given by:

Th(xxx, t) =
3∑

a=1

Na(xxx)eθa(t), xxx ∈ Ωe (III.C.2.6)

where eθa(t) is the temperature at node a of the element Ωe. The functions N1, N2 and N3 are
the shape functions for the triangular FEA elements. They also define the mapping between a
reference triangle Ωξ with vertices {(0, 0), (1, 0), (0, 1)} and any element Ωe in the FEA mesh (see
Fig III.C.2.2(a)):

N1(ξ, η) = 1− ξ − η; N2(ξ, η) = ξ; N3(ξ, η) = η; ξ, η ∈ [0, 1] (III.C.2.7)

After the spatial discretization, the semi-discrete (discrete in space and continuous in time) formu-
lation for Eq. III.C.2.5 is obtained:

MMMθ̇̇θ̇θ +KKKθθθ − fff = 0 (III.C.2.8)

where the vector of nodal temperatures θθθ(t) is a continuous function of time. The components of
the mass and conductivity matrices, MMM(t) and KKK(t), are:

eMab =

∫
Ωe

ρCNaNb∆zdA; a, b = 1, 2, 3 (III.C.2.9)

eKab =

∫
Ωe

∇Na · (κ∇Nb)∆zdA; a, b = 1, 2, 3 (III.C.2.10)

Let ∂Ωe
q be the edge of the element Ωe that is subjected to flux boundary conditions. The interpo-

lation for the temperature along the edge Th(xxx, t) is given by:

Th(xxx, t) =
2∑

a=1

Nq
a (xxx)eθa(t); xxx ∈ ∂Ωe (III.C.2.11)
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The functions Nq
1 and Nq

2 are the shape functions for the mapping between a reference segment ∂Ωξ

with vertices {(0, 0), (1, 0)} and any triangle segment ∂Ωe
q in the FEA mesh (see Fig III.C.2.2(b)):

Nq
1 (ξ) = 1− ξ; Nq

2 (ξ) = ξ (III.C.2.12)

The components of the local force vector efff(t) are:

efa =

∫
Ωe

Nas∆zdA−
∫
∂Ωe

q

Nq
a q̄∆zdL; a = 1, 2 (III.C.2.13)

The simulations in the present work does not consider heat sources (s = 0). The function q : q(xxx, t)
accounts for the flux boundary conditions that are consider: the energy input of the laser ql,
radiation qrad and convection qconv. The corresponding functions associated to each flux boundary
condition are described in detail in the following sections.

Temperature (Dirichlet) boundary conditions are applied at the bottom of the domain. The
temperature in this region is set to T = 300 K during all the simulation.

(a) Triangle mapping. (b) Edge mapping.

Figure III.C.2.2: Mapping between the reference entities (triangle/edge) and the ones in the FEA
mesh.

III.C.2.4.2.2 Time Discretization and Newton-Raphson Scheme

To obtain the fully discrete formulation of Eq. III.C.2.8 it is still necessary to execute the time dis-
cretization. The simulation time interval [0, tmax] is divided intoN sub-intervals: [t0, t1], [t1, t2], . . . , [tN−1, tN ],
such that t0 = 0 and tN = tmax.

The vector θθθs = θθθ(ts) denotes the nodal temperatures at ts. The backward Euler method is
used for the time discretization by approximating the time derivative θ̇̇θ̇θs as follows [80]:

θ̇̇θ̇θs ≈ θθθs − θθθs−1

∆t
(III.C.2.14)

Eq. III.C.2.14 is inserted into Eq. III.C.2.8. The reader may notice that, since ρ,C, κ and q depend
on the temperature, MMMs, KKKs and fffs are functions of the temperature (see Eqs. III.C.2.9, III.C.2.10
and III.C.2.13). Therefore, at every instant ts, one obtains a system of nonlinear equations R in
which the variables are the nodal temperatures θθθs:

R(θθθs) =MMMs
(
θθθs − θθθs−1

)
+∆tKKKs θθθs −∆t fffs = 0 (III.C.2.15)
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The Newton-Raphson scheme is used to solve this system of equations. The characteristics of this
method requires several iterations to solve for θθθs at every time instant ts. Let θθθs,k be the nodal
temperature at iteration k. The Newton-Raphson updating rule for iteration k is given by

θθθs,k = θθθs,k−1 + uuu; uuu = − dR
dθθθs

∣∣∣∣
θθθs,k

R(θθθs,k) (III.C.2.16)

The matrix dR
dθθθs is known as the tangent matrix. It is equal to:

dR
dθθθs =

dhhhs

dθθθs −∆t
dfffs
dθθθs (III.C.2.17)

where hhhs is the following vector:

hhhs =MMMs
(
θθθs − θθθs−1

)
+∆tKKKs θθθs (III.C.2.18)

In the following sections, the components of the matrix dR
dθθθs are discussed.

III.C.2.4.3 Model of the Energy Provided by the Laser
The energy of the laser is modeled as a flux (or Neumann) boundary condition that acts on the top
boundary of the domain Ω. This work uses the approach in Ref. [25] to calculate the corresponding
heat flux. The function I(x, z) [W/mm2] describes the energy distribution of the laser on the plane
XZ, parallel to the substrate surface.

Let Ωe be an FE element whose edge ∂Ωe is at the top boundary. Let ∂Ωe
proj be the projection

of ∂Ωe onto the plane XZ. Let Re be the extrusion in direction Z, with thickness ∆z, of ∂Ωe
proj

(see Fig. III.C.2.3). The input power P e [W] and the corresponding heat flux qel [W/mm2] at ∂Ωe

are
P e =

∫
Re

I(x, z)dA; qel =
1

∆z

P e

|∂Ωe
proj|

. (III.C.2.19)

Since the laser moves in Z direction, the laser intensity function I is also a function of time.
Therefore, the heat flux over each edge must be calculated at every time step of the simulation.

The present work uses a Gaussian laser energy distribution:

I(x, z, t) =
2λPL

πR2
L

exp
(
−−2((x− Px(t))

2
+ (z − Pz(t))

2
)

R2
L

)
(III.C.2.20)

where PL is the laser power, λ is the laser absorption efficiency, RL is the laser beam radius and
PPP = (Px, Py) is the laser position. Fig. III.C.2.3 shows a graphical representation of the process to
compute the input heat flux associated to the energy provided by the laser.
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Figure III.C.2.3: Calculation of the laser heat flux. Only the laser power that lies inside Ω (dotted
lines) is considered.

III.C.2.4.4 Temperature-Dependent Material Properties
This work considers that the material thermal properties ρ,C and κ depend on the temperature.
This section provides the framework to include this consideration into the numerical scheme.

Recalling Eq. III.C.2.18, the component of the local vector ehhhs at node a is:

ehs
a =

3∑
b=1

eMs
ab

(
eθsb − eθs−1

b

)
+∆t

3∑
b=1

eKs
ab

eθsb ; a = 1, 2, 3 (III.C.2.21)

The corresponding contribution to the tangent matrix dR
dθθθs (Eq. III.C.2.17) is given by:

∂ehs
a

∂eθsc
=e Ms

ac +

3∑
b=1

∂eMs
ac

∂eθsc

(
eθsb −e θs−1

b

)
+∆t

(
eKs

ac +

3∑
b=1

∂eKs
ac

∂eθsc

eθsb

)
; a, c = 1, 2, 3

(III.C.2.22)
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Recalling Eqs. III.C.2.9 and III.C.2.10:

∂ehs
a

∂eθsc
= eMs

ac +

3∑
b=1

(∫
Ωe

∂(ρC)

∂eθsc
NaNb∆zdA

)(
eθsb −e θs−1

b

)
+

∆t

(
eKs

ac +

3∑
b=1

(∫
Ωe

2∑
i=1

∂Na

∂xi

∂κ

∂eθsc

∂Nb

∂xi
∆zdA

)
eθsb

)
(III.C.2.23)

= eMs
ac +

3∑
b=1

(∫
Ωe

(
ρ
∂C

∂T
+ C

∂ρ

∂T

)
NaNbNc∆zdA

)(
eθsb −e θs−1

b

)
+

∆t

(
eKs

ac +

3∑
b=1

(∫
Ωe

2∑
i=1

∂Na

∂xi

∂κ

∂T
Nc

∂Nb

∂xi
∆zdA

)e

θsb

)
(III.C.2.24)

The present work uses numerical integration (Gauss quadrature) to evaluate the integrals described
above.

III.C.2.4.5 Phase Change
The present work uses the equivalent specific heat method [15] to model the change of state (from
solid to liquid and vice-versa). In this approach, the phase change is modeled by modifying the
specific heat of the material C. The new function is called the equivalent specific heat Ceq and it
must add the energy of the latent heat of fusion L [J/kg] into the specific heat of the material in
the temperature range T ∈ [Ts, Tl] where the phase change occurs.

This work uses the following equivalent specific heat Ceq [109] function:

Ceq(T ) = C(T ) +
2L√
π∆T

exp
(
−
(
T − Tm
∆T/2

)2
)

(III.C.2.25)

where Tm = (Ts + Tl)/2 and ∆T = Tl − Ts

III.C.2.4.6 Convection and Radiation Heat Losses
This work considers heat losses due to convection and radiation during the cladding process. Both
radiation and convection are included into the model as flux (Neumann) boundary conditions. The
regions of the domain subjected to heat loss considerations are the top, left- and right-hand sides
of the domain.

Given the convection coefficient hc and the ambient temperature T∞, the convection heat loss
is accounted as qconv = hc (T − T∞). Using the interpolation of the temperature (Eq. III.C.2.11)
along the edge with flux boundary condition:

qconv = hc

(
2∑

b=1

Nq
b (xxx)

eθb(t)− T∞

)
, (III.C.2.26)

Given the thermal emissivity ε and the Stefan-Boltzmann constant σ ≈ 5.67× 10−8 [W/(m2 K4)],
the radiation heat loss is represented by qrad = εσ

(
T 4 − T 4

∞
)
. Applying Eq. III.C.2.11 for the
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temperature interpolation:

qrad = εσ

( 2∑
b=1

Nq
b (xxx)

eθb(t)

)4

− T 4
∞

 , (III.C.2.27)

To ease the readability of the Eqs. III.C.2.28-III.C.2.31, one may drop the indices e and s of
the components of the vector of nodal temperatures eθθθs = [θ1, θ2]

T of the edge ∂Ωe
q subjected to

radiation and convection.
Eq. III.C.2.13 is applied to calculate the local force vector associated to the convection and

radiation boundary conditions:

efffsconv =
∆z

∣∣∂Ωe
q

∣∣ hc
6

[
2 1
1 2

] [
θ1
θ2

]
−

∆z
∣∣∂Ωe

q

∣∣ hc
2

[
T∞
T∞

]
(III.C.2.28)

efffsrad =
∆z

∣∣∂Ωe
q

∣∣ εσ
30

[
5 4 3 2 1
1 2 3 4 5

]
θ41
θ31θ2
θ21θ

2
2

θ1θ
3
2

θ42

−
∆z

∣∣∂Ωe
q

∣∣ hc
2

[
T 4
∞
T 4
∞

]
(III.C.2.29)

The contributions of the radiation and convection to the local tangent matrix are:

defffsconv
deθθθs

=
∆z

∣∣∂Ωe
q

∣∣ hc
6

[
2 1
1 2

]
(III.C.2.30)

defffsrad
deθθθs

=
∆z

∣∣∂Ωe
q

∣∣ εσ
30

[
5 4 3 2 1
1 2 3 4 5

]
4θ31 0
3θ21θ2 θ31
2θ1θ

2
2 2θ21θ2

θ32 3θ1θ
2
2

0 4θ32

 (III.C.2.31)

where
∣∣∂Ωe

q

∣∣ is the length of the edge.

III.C.2.4.7 Material Deposition
During the deposition stage, the shape of the bead is induced by the distribution of powder particles
delivered by the nozzle. The function f(x, z, t) [kg/(mm2 s)] represents the powder particle density
projected by the nozzle on top of the substrate. The present model assumes f follows a Gaussian
distribution:

f(x, z, t) =
2µ

πR2
L

exp

−2
(
(x− Px(t))

2
+ (z − Pz(t))

2
)

R2
L

 (III.C.2.32)

where µ is the material flow rate [kg/s] and PPP (t) = (Px(t), Pz(t)) is the laser position at time t.
The height H [mm] at time t is given by:

H(x, z, t) =
1

ρp

∫ t

0

f(x, z, ξ)dξ. (III.C.2.33)
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where ρp is the density of the cladding material
Given Eq. III.C.2.33, the height grow rate is obtained:

∂H(x, z, t)

∂t
=

1

ρp
f(x, z, t) (III.C.2.34)

Eq. III.C.2.34 approximates the height change ∆H for the given time increment ∆t. Material is
added if the temperature on the top boundary is higher than the melting point of the deposited
material.

Figure III.C.2.4: FEA mesh of the substrate.

III.C.2.4.8 Remeshing Strategy
In the implementation reported, there are two meshes: substrate mesh and bead mesh. The sub-
strate mesh remains constant with respect to the time evolution. However, the substrate mesh
variates with respect to the space. The mesh is finer in the neighborhoods of the laser impact point
(Fig. III.C.2.4).

The bead mesh, on the other hand, must be updated at every time step. Fig. III.C.2.5 shows
the proposed procedure to conduct the bead remeshing. A description of this procedure follows:

1. Calculation of the bead grow: Let XXXtop =
{
x1, x2, . . . , xT

}
, xk ∈ R, be the x-coordinates

of the FEA nodes on top of the substrate (see Fig. III.C.2.6(a)). Eq. III.C.2.34 is used to
calculate the height grow ∆H at z = 0 for every xk(k = 1, . . . , T ). The information required
to execute this step is: (i) the nozzle position PPP = (Px, Pz), (ii) the material feed rate µ
[kg/s], (iii) the powder particle distribution function f(x, z, t) [kg/(m2 s)], (iv) the density of
the powder material ρp [kg/m3] and (v) the time increment ∆t [s].

2. Calculation of the top boundary of the bead: Let Mi = (Vi, Ti), with Vi as the set of
nodes and Ti as the set of triangles, be the bead mesh at time step i. Given the mesh Mi

and the height grow ∆H, the piecewise linear (PL) curve BBB =
[
bbb1, bbb2, . . . , bbbM

]
, bbbk ∈ R2, that

describes the top boundary of the new mesh is calculated. The x-coordinate of every vertex
bbbk = (bkx, b

k
y) ∈ BBB belongs to XXXtop(bkx ∈ XXXtop). Fig. III.C.2.6(b) shows an example of the

resulting PL curve BBB.
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Figure III.C.2.5: Remeshing strategy. Workflow for the generation of the bead mesh at every time
step.

134



3. Generation of the FEA nodes: Let Vi+1 denote the set of nodes of the bead mesh at time
step i+ 1. Firstly, Vi+1 contains the nodes of the previous mesh Vi and the vertices of BBB:

Vi+1 ⊃ Vi ∪
{
bbb1, . . . , bbbM

}
. (III.C.2.35)

Given the goal edge length l [m], new nodes are added to Vi+1 when: (i) the height grow is
large (∆H(xk, z = 0) > l) and (ii) the segments of BBB are long (||bbbk+1 − bbbk|| > l), as shown in
Fig. III.C.2.6(b).

4. Mesh generation: A mesh M∗
i+1 = (Vi+1, T

∗
i+1) is generated using constrained Delaunay

triangulation [26, 154]. The constraints of the triangulation are given by the edges of the
bead boundary BBB. The triangulation may contain spurious triangles that do not belong to
the bead (see Fig. III.C.2.6(c)). These spurious triangles are removed to produce the bead
mesh for time step i+ 1: Mi+1 = (Vi+1, Ti+1), Ti+1 ⊂ T ∗

i+1, as shown in Fig. III.C.2.6(d).
In this work, triangular elements are preferred over other topologies (e.g. quadrilateral) be-
cause they straightforwardly adapt to the geometry of the growing bead. The quadrangular
elements present singularities when 2 nodes coincide, which is unavoidable in corners whose
geometry –topology is triangular.

III.C.2.4.8.1 Evaluation of the Remeshing Strategy

The time complexity of the proposed remeshing method is dictated by the time complexity of the
Delaunay triangulation. The time complexity of the Delaunay triangulation is O(N logN) [57, 163],
where N is the number of nodes in the triangulation. In this case, N corresponds to the number of
nodes in the bead mesh. Table III.C.2.1 presents the time complexity of other relevant methods used
for 2D FEA remeshing: (i) advancing-front methods, (ii) Delaunay-based methods, (iii) Laplacian
smoothing and (iv) spring-based smoothing. Methods (i)-(ii) are pure meshing procedures while
methods (iii)-(iv) are smoothing procedures used in the context of remeshing.

The proposed remeshing method has the same time complexity (O(N logN)) as the other two
pure meshing methods. Smoothing methods, on the other hand, have lower time complexity (O(N))
but produce lower quality meshes [57].

The proposed approach avoids nodes removal or node repositioning. It is advantageous compared
to other remeshing approaches because (i) it is confined to the bead domain alone and (ii) the
temperature field must not be re-computed when the bead mesh is updated. Since nodes are not
repositioned, the representation of the deposited material requires additional nodes. Therefore, the
number of nodes in the bead mesh increases at every time step, which leads to higher simulation
time at every time step.
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(a) Calculation of height grow using
Eq. III.C.2.34.

(b) Calculation of the bead top boundary.

(c) Constrained Delaunay triangulation. Mesh
with spurious triangles.

(d) Resulting FEA mesh of the bead.

Figure III.C.2.6: Graphical description of the stages of the remeshing strategy.
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Table III.C.2.1: Meshing and remeshing methods. Time complexity.

Method Time com-
plexity

Advantages Limitations

Proposed method O(N logN)
[57, 163]

(i) Good mesh quality and
(ii) avoids temperature re-
computing

High computational cost

Advancing-front
method

O(N logN)
[57]

Very good mesh quality Requires temperature re-
computing

Delaunay-based
method

O(N logN)
[57]

Very good mesh quality Requires temperature re-
computing

Laplacian smooth-
ing method

O(N) [169] Computational efficient (i) Mesh quality is com-
promised and (ii) requires
temperature re-computing

Spring-based
smoothing method

O(N) [9] Computational efficient (i) Mesh quality is com-
promised and (ii) requires
temperature re-computing

III.C.2.4.9 Material Properties for the Computational Simulations
Ref. [35] executed several LMD experiments with an IPG Photonics YLS-6000 fiber laser of wave-
length 900 nm. Ref. [35] used S355 carbon steel as substrate and AISI 316L stainless steel as
cladding material. These same materials were used for the numerical simulations. The physical
properties of S355 and AISI 316L are listed in Table III.C.2.2. The thermal conductivity κ and spe-
cific heat C are considered as functions of the temperature [117, 211], as shown in Figs. III.C.2.7(a)
and III.C.2.7(b). The equivalent specific heat is calculated using Eq. III.C.2.25. The resulting
functions are shown in Fig. III.C.2.7(c). In order to compare the numerical results with the ex-
perimental results in Ref. [35], the simulations use the same domain size and process parameters
reported in [35].

Table III.C.2.2: Material properties of the substrate material (S355) [211] and cladding material
(AISI 316L) [117] used in the numerical simulations.

Property S355 AISI 316L
Density ρ 7840 kg/m3 7950 kg/m3

Thermal conductivity κ See Fig. III.C.2.7(a) See Fig. III.C.2.7(a)
Specific heat Cp See Fig. III.C.2.7(b) See Fig. III.C.2.7(b)

Latent heat of fusion L 2.7× 104 J/K 2.7× 104 J/K
Solidus temperature Ts 1673 K 1658 K
Liquidus temperature Tl 1778 K 1723 K

Melting point Tm 1725.5 K 1690.5 K
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Figure III.C.2.7: Material properties of the substrate material (S355) and cladding material (AISI
316L). Figures built using the data in References [117, 211].

III.C.2.5 Results
Regarding LMD simulation, the present implementation computes the time history of bead geome-
try and temperature field as well as the substrate temperature field. These computations are carried
out in a substrate cross cut ∆x×∆y (with thickness ∆z) which is normal to the laser velocity (vz).
The powder feed µ, laser power PL and laser cruise speed vz are constant during the simulation.
The parameters used in the numerical simulation are listed in Table III.C.2.3. The time increment
∆t between time steps was constant during the simulation. This parameter was empirically set to
guarantee the convergence of the Newton-Raphson method, and to avoid abrupt changes in the
geometry and temperature of the domain.
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Table III.C.2.3: Domain size and process parameters used for the numerical simulations.

Parameter Value
Width (size in X) of the substrate ∆x 30 mm
Height (size in Y ) of the substrate ∆y 10 mm
Thickness of the domain ∆z 4.6 mm
Laser power PL 2800 W
Laser absorption efficiency λ 0.6
Laser radius RL 2.3 mm
Laser speed vz 10 mm/s
Powder flow rate µ 0.3× 10−3 kg/s
Initial position of the laser [0, 0,−4.6]
Ambient temperature T∞ 300 K
Convection coefficient hc 20 W/(m2 K)
Emissivity ε 0.5
Total simulation time 2.44 s
Number of time steps 90
Time increment (∆t) 0.027 s

Fig. III.C.2.4 displays the FEA mesh of the substrate domain, which remained constant along the
time-axis simulation. The mesh presents increased levels of detail in the neighborhoods receiving
the metal powder and the laser impact. Preliminary simulations without considering material
addition were conducted to determine the size of the FEA elements. The substrate mesh used for
LMD simulation shown in Fig. III.C.2.4 has 17213 triangular elements. The average edge length
in the most detailed zone is 0.05 mm, which is in concordance with the values reported in the
literature [186, 200]. The aspect ratio is lower than 2 for 98% of the triangles, and lower than 3 for
100% of the triangles. Thus, this substrate mesh presents very good quality.

III.C.2.5.1 Computational Results
The implementation of the FEM, Newton-Raphson and material deposition model was executed
in MATLAB. Figs. III.C.2.8(a)-III.C.2.8(f) show the evolution of the bead geometry in the time
interval that the laser spot requires to engage, to heat and to leave behind the relevant cross
section. In this simulation, the deposition takes place from the time in which the substrate reaches
the material melting point (circa t = 12∆).

Fig. III.C.2.8(f) depicts the final shape of the domain. The FEA mesh of the final domain has
21862 triangular elements. Almost all the triangles in the FEA mesh had aspect ratio lower than 3
at all times in the simulation. In particular, in the final mesh 98.20% and 99.97% of the triangles
have aspect ratio lower than 2 and 3, respectively.

Fig. III.C.2.8(f) shows that the final bead height and width are 1.22 mm and 3.68 mm, re-
spectively. For a physical experiment with the same materials and conditions of this simulation,
Ref. [35] reported a bead height of 1.067 mm and a bead width of 4.697 mm. Fig. III.C.2.9 shows a
graphical scheme of the geometrical involved in the comparison between the numerical and exper-
imental results in [35]. The relative errors between the simulated and the experimental [35] bead
height and width are 14.4% and 21.7%, respectively.
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(a) Bead shape at t = 0. Triangles with aspect
ratio < 3: 100%.

(b) Bead shape at t = 13∆t. Triangles with
aspect ratio < 3: 100%.

(c) Bead shape at t = 16∆t. Triangles with as-
pect ratio < 3: 100%.

(d) Bead shape at t = 19∆t. Triangles with
aspect ratio < 3: 100%.

(e) Bead shape at t = 22∆t. Triangles with as-
pect ratio < 3: 100%.

(f) Bead shape at t = 25∆t. Triangles with as-
pect ratio < 3: 99.97%.

Figure III.C.2.8: Evolution of the shape of the bead during deposition. Finer mesh resolution in
the deposition region.

Figure III.C.2.9: Sketch on the semantics of the geometrical parameters in Ref. [35]. (Contains
typical names used in the related literature).

Figs. III.C.2.10(a)-III.C.2.10(i) depict the substrate and bead temperature fields. While the laser
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energy is being delivered at this particular cross section, the highest temperature appears at the top
of the bead. This trend is expected, as this neighborhood directly receives the molten metal and
the laser energy. Figs. III.C.2.10(f)-III.C.2.10(i) correspond to the metal dispenser nozzle no longer
delivering energy or material at this particular cross section. Between t = 25∆t (Fig. III.C.2.10(f))
and t = 34∆t (Fig. III.C.2.10(i)), the temperature of the bead decreases whereas the temperature
in the substrate does not suffer large variations.

Fig. III.C.2.11 displays the temperature history at four locations: (1) the top point of the bead,
(2) the top of the substrate, (3) 0.3 mm depth in the substrate and (4) 0.6 mm depth in the substrate.
The top of the bead and the top of the substrate coincide until the start of the deposition. The
temperature of the substrate increases rapidly while it interacts directly with the laser. It stabilizes
during the deposition stage and decreases once the bead cools down. The results of the simulation
show that 0.6 mm is the largest depth at which the substrate melts. Experimentally, Ref. [12]
reports a melting depth of 0.36 mm. This discrepancy is discussed in Section III.C.2.5.2.

The temperature of the top of the bead increases in the presence of the laser and quickly decreases
in the absence of it. The heat in the bead dissipates due to (1) conduction to the substrate, and
(2) radiation and convection. The temperature plateau registered at the top of the bead around
Tm = 1690.5 K corresponds to a phase change. An amount of energy is released by the system due
to the solidification of the powder while temperature remains constant. The maximum temperature
is close to 4000 K. Other numerical simulations report similar temperature values for stainless steel
under comparable ratios of power per powder deposition rate [200].
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(a) Temperature at t = 10∆t. (b) Temperature at t = 13∆t. (c) Temperature at t = 16∆t.

(d) Temperature at t = 19∆t. (e) Temperature at t = 22∆t. (f) Temperature at t = 25∆t.

(g) Temperature at t = 28∆t. (h) Temperature at t = 31∆t. (i) Temperature at t = 34∆t.

Figure III.C.2.10: Temperature field of the cladding zone during deposition.

III.C.2.5.2 Discussion
This section discusses the discrepancies between the numerical predictions of the non-linear 2.5D
implementation reported here and experimental work by other investigators. The comparison is
carried out with respect to Ref. [35]. It represents, with this manuscript, two prongs of a common
initiative.

An important remark about experimental measurements in LMD is that direct temperature
measurement is not feasible within the bead and substrate and very difficult on the bead surface
at the melting time. Experimental investigations resort to the after-process cross-sectioning of the
bead and substrate and indirect inference of the temperatures reached by observation of the metal
micro-structures [30, 183].

There are several experimental effects that are not accounted for in the in-house non-linear FEA
implementation:

1. An important portion (near 50%) of the powder metal delivered by the nozzle and heated
by the laser does not reach the bead and deforms the space distribution of the powder and
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Figure III.C.2.11: Temperature history at the top of the bead and substrate depths 0 mm, 0.3 mm
and 0.6 mm.

power input [143, 200]. The present implementation does not consider this effect, therefore
over-estimating the power input in the energy balance. A consequence of this neglect is the
over-estimation of molten depth (67% error) and bead temperature.

2. A significant portion of the laser power is lost to the environment by direct radiation, con-
vection, and reflection by the powder.

3. Metal powder vaporization produces mass and energy losses. Proposals have been pub-
lished [11, 73, 167] to account for such losses in LMD and AM (e.g. powder bed fusion).
Required parameters include vaporization rate, boiling point and latent heat of vaporization.

4. Molten powder fluid dynamics transforms part of the thermal energy in fluid friction. Param-
eters required include molten metal viscosity and surface tension.

The present implementation uses two 2D radial Gaussian distributions, mathematically defined
in a plane (x, z) parallel to the substrate surface: (i) laser power and (ii) metal powder distribution.
The experiments show that the Gaussian distributions incorrectly emphasize power and powder
deliver at the laser axis, thus predicting a sharper deposition (i.e. smaller spot). In reality, the bead
height is lower and the bead extent is wider than in the prediction. This result is also influenced
by effect (1) above.

The absorption coefficient (λ) in the literature [6, 171, 186] expresses the portion of the laser
power actually delivered to the bead-substrate domain. This parameters must be calibrated via
experimentation. Likewise, all of the effects mentioned above imply the use of new experimentally
calibrated parameters. This manuscript does not intend to contribute in this realm.

Table III.C.2.4 summarizes the numerical and experimental results for the bead height, bead
width and melting depth. The relative error in Table III.C.2.4 measures the deviation of the
numerical result with respect to the experimental result. The error in the estimation of the melting
depth is related to an over-estimation of the temperature field during simulation. The causes for
the temperature over-estimation and bead width under-estimation are the ones discussed above.
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Table III.C.2.4: Comparison between the numerical simulation and the experimental results re-
ported in Ref. [35].

Parameter Numerical result Experimental result Relative error
Bead height 1.22 mm 3.68 mm 14.4%
Bead width 1.067 mm 4.697 mm 21.7%

Melting depth 0.6 mm 0.36 mm 66.7%

III.C.2.6 Conclusions
This manuscript presents the implementation of a nonlinear thermal simulation to model the Laser
Metal Deposition (LMD) process. The implementation considers temperature-dependent material
properties, phase change, radiation and convection. The energy of the laser is represented as an
energy flux boundary condition. The manuscript details the mathematical derivation of the FEM
implementation. The nonlinear iterations inherent to each particular time step are executed using
the Newton-Raphson method. The nonlinear FEM implementation is written for triangular 2D-
plus-thickness elements. The LMD model is dictated by the delivery rate of powder (feed rate µ
[kg/s]) and its associated Gaussian function of the radii from the nozzle axis. The model does not
assume a particular geometry (parabolic, circular, sinusoidal, etc.) for the bead cross-section, as
some previous works do.

Computer simulations are conducted using material and process parameters whose experimental
counterpart is already reported in Ref. [35]. The results show reasonable accuracy to predict bead
geometry (width error 15%, height error 22%). The model over-estimates the temperature at
the domain and the maximal depth, in the substrate, at which melting occurs. The absorption
coefficient (λ), which expresses the portion of the laser power input to the bead-substrate domain
requires further investigation. It is affected by phenomena not yet understood or even identified.
It is not the intention or capacity of this manuscript to contribute in this realm. Future work is
also needed to account for the particle (thermo) dynamics over the substrate, responsible for a
significant material and energy waste.
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Abstract
Additive manufacturing is a key technology of Industry 4.0. In the context of Laser Metal Depo-
sition (LMD), the problem of automating the generation of the layer-by-layer deposition strategies
is relevant because the laser path pattern and the process parameters determine the mechanical
quality of the resulting part and the efficiency of the process. Many of the existing approaches
rely on path planning strategies created for subtractive manufacturing. However, these techniques
generate path patterns not suitable for LMD. This manuscript presents deposition strategies which
are specific for LMD processes, including the laser path and the process parameters at selected
control points. This manuscript considers diverse infill patterns for general polygonal regions. This
manuscript also reports the implementation of a 2D region avoidance algorithm, used to reposition
the laser head between regions and between layers. These transitions are important because current
hardware maintains the material feeding while the laser is OFF. Our implementation is validated
by the fabrication and verification of actual metallic parts using our algorithms in an LMD process.
Future work is required on optimization of material savings and overall process performance.

Keywords: additive manufacturing, path-planning, laser cladding, Industry 4.0.

Glossary

AM Additive Manufacturing
LMD Laser Metal Deposition
Laser Source of the LMD system that provides the energy for the melting

process
Nozzle Spout component of the LMD system that deposits the metal

powder onto the build area
2.5D LMD Laser Metal Deposition process in which the machine effector is

able to translate in three linear axes but can perform the melting
process only in two axes

Ω ⊂ R2 Polygonal region in R2 which constitutes a 2D slice of the work-
piece

∂Ω ⊂ R2 Subset of R2 that represents the boundary of Ω
{Li} Family of equidistant parallel lines in R2, Li ⊂ R2, i ∈ Z
pi ∈ R2 Point that belongs to the line Li

û ∈ R2 Unitary vector that gives the direction of the family of lines {Li}
(director vector)

n̂ ∈ R2 Unitary vector orthogonal to the family of lines {Li}
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Si ⊂ R2 Set of segments that results from the intersection between the
polygonal region Ω and the line Li

S ⊂ R2 Set of segments that results from the intersection between the
polygonal region Ω and the family of lines {Li}

P1 P2 Segment with endpoints P1 and P2

III.D.1.2 Introduction
The Industry 4.0 paradigm has revolutionized the industrial ecosystem by integrating smart sys-
tems in the production lines. Among all these new technologies, additive manufacturing (AM)
has emerged as a crucial one, as it enables the fabrication of complex parts and the use of new
materials [45, 145]. It also allows new production scenarios for personalized, lot-1 series, and a very
high flexibility to produce quite different components with the same system. In particular, Laser
Metal Deposition (LMD) plays a major role in the industry because of its applications in the re-
inforcement, reconditioning and repairing of high value components or the fabrication of industrial
parts with complex and novel structures [62]. However, CAD-CAM design and other digital tools
are still oriented to traditional manufacturing and do not match the fast-paced technical evolution
of AM and LMD.

In this manuscript, we present a methodology for the generation of path planning for LMD
in 2.5D, i.e. we consider that the machine effector translates in three linear axes but can execute
the cladding process only in two axes. Particularly, due to typical hardware limitations in LMD
real-world systems, we consider the case in which the metal dispensing through the nozzle is not
interrupted at any time, while the other process parameters (e.g. process speed and laser power) can
vary between metal melting stages. For this reason, we develop a 2D region avoidance algorithm to
execute the transition movements, so that unmelted metal powder does not adhere on the surface
of the part that is being built when the laser is OFF. The methodology is evaluated via physical
experimentation using a fiber laser IPG YLS-6000 and stainless steel 316L as powder material.

We present in Section III.D.1.3 a systematic review of the related work. We describe the
approach for the generation of path planning for 2.5D LMD and display the results of its imple-
mentation in Sections III.D.1.4 and III.D.1.5, respectively. Finally, we conclude the manuscript
and make suggestions for further work in Section III.D.1.6.

III.D.1.3 Literature Review

III.D.1.3.1 Path Planning in Laser Metal Deposition
Path planning in LMD tackles two problems in the manufacturing process: 1) the generation of the
trajectory that the laser must follow and 2) the determination of the process parameters (e.g. laser
power, process speed, powder flow) at every point of the trajectory.

The temperature history has a significant impact in the mechanical and structural properties of
the built parts manufactured by LMD. In this context, path planning plays a major role in LMD,
since the temperature history is intrinsically linked to the tool trajectory and process parameters [77,
149].

Path planning strategies in AM are mainly based on the more mature path planning techniques
used for subtractive manufacturing. It is often necessary to adapt these techniques, so that they are
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suitable for AM [20, 46]. However, in the context of metal AM, previous research is mainly focused
on Wire Arc Additive Manufacturing (WAAM) [46, 47, 95, 116] and few works address LMD
[3, 20, 54].

III.D.1.3.1.1 2D Infill Geometries

Ding et al. [46] summarize the principal infill strategies used in the context of AM, namely raster,
zig-zag, contour-offset and spiral. Related works propose variations of these four strategies that
overcome some difficulties associated with each one. Flemmer et al. [61] propose a zig-zag infill that
uses the medial axis of the 2D region instead of straight lines, which reduces the number of turning
points. Xiong et al. [198] present a novel infill based on the level-set method that eliminates the
voids that appear in traditional contour-offset infill. Ding et al. [46] and Jin et al. [81] consider a
hybrid approach in which the contour-offset and zig-zag strategies are used together to reduce the
geometrical inaccuracies that may appear when only zig-zag patterns are used.

Other works focus on the solution of particular problems related to the path-planning process.
Liu et al. [95], Routhu et al. [155] and Xiong et al. [198] address the problem of material accumu-
lation due to the sharp corners that appear on zig-zag or contour-offset patterns. Ding et al. [46]
present a path-planning based on a divide-and-conquer approach by decomposing the polygonal
zones in every slice into convex polygons which are simpler to fill. Michel et al. [116] show a so-
lution in which the process parameters can vary in different zones of a continuous path. Thus, an
experienced user can configure special process parameters in zones with a challenging geometry.
However, far too little attention has been paid to process parameters configuration during path
planning. Likewise, apart from Ding et al. [46], there is a general lack of research in the problem
of connecting paths in the layer (intra-layer) and between layers (inter-layer).

III.D.1.3.2 Conclusions of the Literature Review
In our literature survey we have found that the path planning for AM is mainly based on subtractive
manufacturing strategies. In general terms, subtractive manufacturing strategies are the core of
path planning in LMD. However, it is also clear that these techniques should be adapted to meet
the constraints of LMD.

We have found active research lines that tackle the particular issues (such as voids appearance
and material accumulation in sharp corners) that arise from the direct use of subtractive man-
ufacturing techniques in LMD. However, few studies consider the following two important needs
properly: 1) continuous process parameters configuration during deposition and 2) the generation
of intra- and inter-layer connections paths that fulfill the requirements of LMD. We present in this
article a methodology that explicitly addresses both issues.

III.D.1.4 Methodology

III.D.1.4.1 Workflow of the Generation of Trajectories in 2.5D
In this work, we focus on the generation of the path planning for an LMD system restricted to 2.5D,
i.e. the machine effector is able to translate in three linear axes but can perform the deposition
process only in two axes. The procedure we follow is divided into four steps (see Fig. III.D.1.1):
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1. Polygon decomposition: The polygonal domain Ω ⊂ R2 defines the area to be filled. The
polygonal domain Ω may contain holes, i.e. areas that should not be filled. We decompose Ω
into simple polygons and organize them in a tree hierarchy. Fig. III.D.1.1b shows the resulting
tree for the polygonal region in Fig. III.D.1.1a. Notice that each simple polygon in this tree
can represent either a portion of material to be filled or a hole in its parent polygon. The
strategy followed implies that in each particular slice (i.e. Z level) we hierarchically decompose
the existing polygonal regions. This decomposition allows for the accommodation of polygons
with holes that may exist inside other polygons (and so on). This tree-like representation also
allows for the inclusion of orientation (clockwise or counter-clockwise) for external or internal
polygon borders.

2. 2D infill generation: The goal at this stage is to obtain a geometrical representation of
the path lines in which material has to be deposited. Here, we process those polygons that
represent areas to be filled. Fig. III.D.1.1c shows that, when generating the infill for these
polygons, we also consider that their holes should be avoided. Further details for the infill
pattern implemented in this work are given in Section III.D.1.4.2.

3. Local 2D trajectory generation: At this stage, the trajectory of every layer is generated
(see Fig. III.D.1.1d). It is important to remark that a trajectory includes both geometrical
and processing aspects: process speed, laser power, powder flow and all the other processing
variables are defined at this stage. More details on the trajectory generation can be found in
Section III.D.1.4.3.

4. Global trajectory generation: After the generation of the trajectory for each layer, it is still
necessary to connect consecutive layers. Current available hardware maintains the material
feeding when the laser is OFF. Unmelted powder particles on the surface of the previously
deposited layers can affect the quality of the next layers. Thus, the inter-layer connection
paths must avoid the previously deposited layers to prevent the deposition of metal powder
on the surface of the building part. More details on how we generated valid connection paths
are given in Section III.D.1.4.4. An example of a global trajectory is shown in Fig. III.D.1.1e.

Figure III.D.1.1: Workflow for the path planning for prismatic parts in 2.5D.
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III.D.1.4.2 2D Infill Generation
The infill generation marks the places in which the metal powder will be deposited and fused. It
means that only geometrical considerations are considered at this stage. In this work, we imple-
mented a pattern formed by uniformly separated parallel lines, that is suitable for raster and zig-zag
trajectories.

In order to implement the parallel-lines infill pattern, we first solved the following problem: to
find the intersection of a line with a 2D polygonal region. The problem was formalized using the
traditional Given-Goal approach following the main idea in [190].

Given

1. 2D closed and bounded polygonal region Ω ⊂ R2, that may contain holes.

2. A line Li, with unitary director vector û ∈ R2.

3. A point pi ∈ R2 that belongs to Li (pi ∈ Li).

Goal
To find the set of segments of Li that lie inside or on the boundary of Ω, that is, to find the set

Si:

Si = {(s0, sf ) : s0 = pi + α0û ∈ ∂Ω, sf = pi + αf û ∈ ∂Ω, pi + αû ∈ Ω, α0 < α < αf}.

Our implemented pattern is formed by intersecting a family of parallel lines {Lj} (j ∈ Z) with
the polygonal region Ω. The set {Lj} can be uniquely defined with:

1. a unitary director vector û which denotes the direction of the lines,

2. a point p0 that belongs to L0 (p0 ∈ L0),

3. a parameter d > 0 which denotes the separation between the lines.

The resulting set S of the intersection segments between the family of lines {Lj} and the
polygonal region Ω can be obtained by solving several times the formerly posed problem:

S =
⋃
j∈Z

Sj ,

where pj ∈ Lj are obtained using the following expression:

pk = p0 + (kd)n̂,

where n̂ is orthogonal to û and k ∈ Z. A graphical representation of the involved entities and the
expected output is given in Fig. III.D.1.2(a).
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(a) Infill of polygon with holes using a family of par-
allel lines.

(b) Idle return (raster) trajectory.

(c) Active return (zig-zag) trajectory. (d) Continuous trajectory (currently
only for boundaries).

Figure III.D.1.2: Implemented methods for path planning in 2D. (a) Infill generation and (b)–(d)
trajectory strategies.

III.D.1.4.3 CAM Trajectory Generation
The path planning encompasses two main aspects: the determination of the path that the tool
follows and the process parameters at each point of the defined path. The geometrical aspects of
the deposition path are determined in the previous stage of the workflow (infill generation). There
are two questions that remain to be solved: 1) how to traverse the generated infill pattern and 2)
how to connect the independent regions without affecting the quality of the workpiece.

In comparison with previous works, we dedicated special attention to the second issue, which
refers to the movements of the laser head while it is OFF. Since current hardware maintains the
material feeding along all the building process, it was important to prevent the deposition of powder
particles on top of the surface of the workpiece with the laser OFF. Section III.D.1.4.4 describes
our approach to generate them. We refer henceforth to these subsets of the trajectory as idle paths.
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We implemented three types of trajectories to traverse the infill patterns: 1) raster or idle return,
2) zig-zag or active return, and 3) continuous (only implemented for polygon contours), which are
shown in Fig. III.D.1.2. Figs. III.D.1.2(b)– III.D.1.2(d) exhibit red and green regions, which denote
different process parameters configurations. The reader may observe that the green regions (Process
config. 2) mark challenging zones where the deposition process must be adjusted (e.g. the presence
of holes or corners). Although Figs. III.D.1.2(b)– III.D.1.2(d) show only two process configurations,
the implemented software allows several configuration adjustments on a deposition segment.

III.D.1.4.4 Generation of Idle Paths
One of the main differences between LMD and subtractive manufacturing is in the generation of
the idle trajectories. In contrast to subtractive manufacturing, the idle paths affect the quality of
the final part. The main reason is that for many LMD systems, the powder is supplied during all
the process, even when the laser is OFF. It is known that unmelted material can cause structural
defects [146]. Therefore, we included the restriction to avoid the building piece when generating
the idle paths.

We used a graph-based approach to deal with this problem. Fig. III.D.1.3(a) shows a geometric
configuration in which the segment P1P2 invades the building piece. In order to find a feasible
solution, we construct an undirected weighted graph G using the bounding box of the building
piece:

1. P1, P2 are added as nodes of the graph G (nodes 1 and 2 in Fig. III.D.1.3(c)).

2. The corners of the bounding box are added as nodes of the graphG (nodes 3–6 in Fig. III.D.1.3(c)).

3. Axis-aligned escape routes are found from P1 and P2 to reach the bounding box without
invading the building piece. The points in the bounding box belonging to these escape routes
are added as nodes of the graph G (nodes 7–14 in Fig. III.D.1.3(c)).

4. The edges that connect the nodes in the graph G are generated. Only axis-aligned edges are
considered (see Fig. III.D.1.3(b)).

5. The distance between the nodes of the graph is assigned as the weight of each edge, except
for those edges that invade the building piece. In that case, the weight is set to infinity.
The resulting graph is shown in Fig. III.D.1.3(c), where di,j denotes the Euclidean distance
between nodes i and j.

We implemented Dijkstra’s algorithm to find the shortest path that connected P1 and P2. It is
important to remark that the resulting path given by the Dijkstra’s algorithm is the shortest path
in the generated graph, which does not imply it is the shortest path in the geometric configuration.
On the other hand, when only infinite-length paths exist, P1 and P2 are connected directly.
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(a) Entities involved in the poly-
gon avoidance problem.

(b) Trajectories which use a 2D
bounding box to join P1 and P2.

(c) Graph expenses of the orthogo-
nal trajectories in (b).

Figure III.D.1.3: Traversal strategy to reposition metal dispenser nozzle (while laser is OFF) be-
tween working stages.

III.D.1.5 Results

III.D.1.5.1 CAM Trajectory Generation
One of the keys of our proposed methodology is the decomposition of the polygonal region into
simple polygons. Fig. III.D.1.4(a) shows a complex polygon region in which one can identify three
disjoint zones where the material is to be deposited. The decomposition of this complex region into
simpler polygons allows the generation of a custom infill for each polygon in a natural manner.

Figs. III.D.1.4(b)–III.D.1.5(a) present the path planning to build two solid (filled) parts and
Fig. III.D.1.5(b) shows the path planning for a thin-wall structure. Fig. III.D.1.4(b) shows the
resulting path to build a solid piece without holes. The path is generated using a zig-zag strategy
and the laser head only moves upwards in layer-to-layer transitions (i.e. the X and Y coordinates
of the end point of layer i coincide with the start point of layer i+ 1).

Figs. III.D.1.4(c) and III.D.1.5(a) show two trajectories to build a solid part with a hole. The
deposition lines are traversed using the zig-zag trajectory. In contrast to the Fig. III.D.1.4(b), in
this case the laser head must be repositioned in inter-layer transitions, since the start point of each
layer is the same (X and Y coordinates). In Fig. III.D.1.4(c) is observed that the repositioning path
line (green line) crosses the polygon. On the other hand, the repositioning path in Fig. III.D.1.5(a)
goes around the polygon, preventing that unmelted powder material adheres to the surface of the
building part. This path was obtained using the graph-based approach for polygon avoidance.

As mentioned in the methodology, another important aspect in our approach is to include
transition points in the design of the trajectory so that the process parameters are adapted to
enhance the quality of the final piece. In Figs. III.D.1.4(c) and III.D.1.5(a) it can be observed that
when building solid pieces, transition points are added in the neighborhood of the hole. On the
other hand, Fig. III.D.1.5(b) shows that transition points are added at the sharp corners (angles less
than 90◦) of the thin-wall pieces, since the material tends to accumulate at these zones. However,
the location of the transition points as well as the value of the process parameters at these points
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are still subjects of research.
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(a) Tree-based hierarchical decomposition of 2D region, with diverse infill patterns.

(b) Inter-layer positioning of nozzle using diverse transition (X,Y ) resting points.

(c) Inter-layer positioning of nozzle using a constant transition (X,Y ) resting
point. Idle-laser trajectory crosses the workpiece slice.

Figure III.D.1.4: Cont.
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(a) Inter-layer positioning of nozzle using a constant transition (X,Y ) resting
point. Idle-laser trajectory does not cross the recently executed workpiece slice
by using the graph-based method for polygon avoidance.

(b) Process parameters control in boundary sharp corners due to redundant ma-
terial delivery.

Figure III.D.1.5: Some resulting implementation features for LMD.

III.D.1.5.2 Experimental Validation
In order to validate the presented approach, we performed three tests using a powder-fed LMD
machine. The powder material used for the experiments was AM 316L (EN 1.4404), from Höganäs.
The experiments were performed using a high power fiber laser (IPG YLS-6000), with wavelength
of 1070 nm, and guided to the optical head by means of a 1000 µm core diameter optical fiber. The
optical head was mounted in a 3 linear axis system.

Metallic powder particles were delivered to the process zone through a coaxial nozzle, using
Nitrogen as carrier gas. Also, that gas was used to generate a protective atmosphere during the
deposition process. A schematic layout of the used LMD system is shown in Fig. III.D.1.6(a).
Table III.D.1.2 reports the LMD process parameters (consulted from Ref [3]) used in producing the
actual workpieces in our experiments.
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Table III.D.1.2: Process parameters used for the physical experiments [3].

Parameter Value Units
Process speed 13 mm/s
Laser power 2500 W
Powder flow 25 g/min
Overlap percentage 30% N/A

The results of the experimental tests can be observed in Fig. III.D.1.6. The path planning for
each test was calculated using the presented approach. We also automatically generated the instruc-
tions that served as input for the machine (in G-Code format). Figs. III.D.1.6(b) and III.D.1.6(c)
show the resulting parts after using a zig-zag strategy to fill 2D areas with and without holes.
The two tests were satisfactory, since the final pieces represent adequately the expected geometry.
However, some height variations can be observed in the boundaries (internal and external), where
the deposition starts or ends.

Fig. III.D.1.6(d) depicts a thin-wall structure produced using a continuous strategy. An excess
of deposited material is present at the junctions of straight nozzle trajectories. The quantification,
explanation and correction of such an effect is the matter of another manuscript by the research
team.

III.D.1.6 Conclusions
In this manuscript we presented a methodology for the generation of 2.5D path planning for LMD.
The presented approach considered not only the geometrical aspects of the toolpath generation but
also (1) incorporated a graph-based region avoidance algorithm to alleviate hardware limitations
and (2) provided the user the control to use several process parameters in a single deposition
segment.

We implemented (1) the raster and zig-zag trajectories to fill a 2D polygonal zone that may
contain holes and (2) a continuous trajectory to be used for thin-wall structures. These approaches
were validated via physical experimentation using a powder-fed LMD system. The results of this
study showed that subtractive manufacturing path planning methods can be used to LMD, even
though it is necessary to adapt them to fulfill the particular constraints of LMD. Further work
is needed to implement and validate additional infill strategies, such as spirals. It would also be
interesting to seek approaches that minimize idle time and material waste.
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(a) Schematic layout of the coaxial laser
cladding system [3].

(b) Polygonal region without holes filled with
continuous-line hatching pattern.

(c) Polygonal region with holes filled with
continuous-line hatching pattern.

(d) Thin-wall structures.

Figure III.D.1.6: Actual workpieces from powder-fed LMD hardware, using the software imple-
mented and reported in this manuscript.
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Abstract
In the context of Laser Metal Deposition (LMD), temporary support structures are needed to
manufacture overhanging features. In order to limit the need for supports, multi-axis machines
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intervene in the deposition by sequentially repositioning the part. Under multi-axis rotations and
translations, slicing and toolpath generation represent significant challenges. Slicing has been par-
tially addressed by authors in multi-axis LMD. However, tool-path generation in multi-axis LMD
is rarely touched. One of the reasons is that the required slices for LMD may be strongly non-
developable. This fact produces a significant mismatch between the tool-path speeds and other
parameters in Parametric space vs. actual Euclidean space. For the particular case of developable
slices present in workpieces with cylindrical kernel and overhanging neighborhoods, this manuscript
presents a methodology for LMD tool path generation. Our algorithm takes advantage of existing
cylindrical iso-radial slicing by generating a path in the (κ, z) parameter space and isometrically
translating it into the R3 Euclidean space. The presented approach is advantageous because it
allows the path-planning of complex structures by using the methods for conventional 2.5-axis AM.
Our computer experiments show that the presented approach can be effectively used in manufac-
turing industrial/mechanical pieces (e.g., spur gears). Future work includes the generation of the
machine g-code for actual LMD equipment.

Keywords
Applied computing → Computer-aided manufacturing
Computing methodologies → Modeling and simulation, Shape modeling

III.D.2.2 Introduction
Laser Metal Deposition (LMD) uses the power of a laser beam to melt a jet metal powder and add
it to a workpiece. As opposed to other Additive Manufacturing (AM) processes, LMD does not
allow the addition of support structures to build overhanging features. To answer this limitation,
researchers are developing multi-axis LMD machines. However, 2.5-axis AM process planning does
not apply for the multi-axis case.

III.D.2.2.1 Scope
The kernel, K, of a polygon Q is the convex subset of Q from which all the points in the boundary
of Q are visible. This manuscript addresses 3D solid geometries B for which there is an axis
L ⊂ R3 such that all cross-sections of B perpendicular to L: (i) are connected, (ii) have non-null
kernel intersecting L, and (iii) have kernel containing a disk of radius R > 0 whose center is in L.
These facts imply that L is a common rotation axis for the whole workpiece such that the material
dispenser radial position and the angular position of the in-process workpiece can be synchronized
so the dispenser is able to deliver the material in all points of the instantaneous periphery of the
in-process cross-sections without hitting an already built portion of the workpiece.

Workpieces in which all cross-sections in one direction have kernel but there is no intersection of
the projections of the kernels may still be manufactured, but an instantaneous mobile pivot point of
the rotation axis will be needed (with its direction ray being constant). This requirement demands a
multi-axis milling machine instead of a lathe and will not be considered in this manuscript. We also
ignore workpieces for which there exists no vector n ∈ R3 such that every workpiece cross-section
(normal to n) contains kernel.
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III.D.2.3 Literature Review
In multi-axis AM, the 3D solid may be decomposed into a sequence of simpler workpieces, along
with the rigid transformations which re-position the growing workpiece in the multi-axis machine.
These 3D set partition algorithms use geometrical and optimization heuristics in order to reduce
the usage of ancillary support structures. Refs. [156, 195] use 1D simplifications (skeletons) of the
3D solid to perform the decomposition. The branches in the skeleton define the sub-solids of the
decomposition. Ref. [48] identifies the zones of higher surface curvature to segment the given solid.
Refs. [66, 194] divide the solid with cutting planes. The placement of the cutting planes minimizes
the area (or volume) of the overhanging geometry.

Multi-axis AM allows the deposition of non-planar layers. Ref. [39] discretizes the solid into
voxels to compute synchronized 5-axis non-planar toolpaths that considerably reduce the need
for support structures. Refs. [162, 199] define scalar fields (geodesic distance [162] and tempera-
ture [199]) over the volume of the 3D solid. The slices correspond to isolevel surfaces of these scalar
fields. Ref. [53] presents support-minimizer slicing LMD method to fabricate gas exhaust manifolds.
Refs. [49, 209] use cylindrical coordinate transforms to perform cylindrical-based slicing for revolute
workpieces. The aforementioned publications do not present a discussion on the generation of tool
paths.

III.D.2.3.1 Conclusions of the Literature Review
In the existing literature, several approaches aim to reduce the usage of support structures in
AM by using multi-axis machines. Refs. [49, 209] use coordinate transforms to execute the slicing.
The toolpath generation for these slicing methods is still an open research question.This manuscript
presents a method to efficiently compute the slices and the toolpaths for 3D solids B with a rotation
axis that allows radial access to all borders of B cross-sections. The toolpath generation method
uses isometric (i.e., distance-preserving) parametrization along with conventional 2.5-axis toolpath
generation [125, 128, 129] algorithms. This article shows that the presented algorithm can be used
for the manufacturing of industrial workpieces, such as spur gears.

III.D.2.4 Methodology
Figure III.D.2.1 shows the procedure used to slice the B-Rep (skin) of the workpiece and to generate
the tool paths to materialize the solid slices. The procedure applies to a workpiece having a
revolution axis common to all its axial cuts’ kernels. For slicing: (i) apply to the B-Rep a cylindrical
transform which maps the revolute workpiece into a prismatic one (in the cylindrical coordinate
system). (ii) slice with planes (in the cylindrical coordinate system) the prismatic B-Rep. For
tool path generation in each iso-radial flat slice: (a) correct for length warping by computing (in
this case) linear re-parametrization particular to each iso-radial slice, (b) apply the algorithms for
flat slice tool-path planning, and (c) map tool paths in the cylindrical coordinate system back to
Euclidean space iso-radial slices.
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Figure III.D.2.1: Workflow for the slicing and toolpath generation.
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(a) Dataset. Spur gear. (b) Gear tooth to be manu-
factured.

(c) Gear tooth in cylindri-
cal coordinates.

(d) Planar slicing in cylin-
drical coordinates.

(e) Corresponding slicing
in Cartesian coordinates.

Figure III.D.2.2: Cylindrical-based slicing using coordinate transformation and planar slicing.
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III.D.2.4.1 Cylindrical-Based Slicing for Overhanging Geometry
The map from cylindrical (θ ∈ (−π, π], ρ > 0, z) to Cartesian coordinates (x, y, z) is given by:

f(θ, ρ, z) = (x, y, z) = (ρ cos(θ), ρ sin(θ), z) (III.D.2.1)

The map from Cartesian to cylindrical coordinates is given by:

g(x, y, z) = (θ, ρ, z) =
(

atan2(y, x),
√
x2 + y2, z

)
; (III.D.2.2)

atan2(y, x) =
{

arccos(x/ρ); y ≥ 0

− arccos(x/ρ); y < 0
(III.D.2.3)

The representation of a cylinder of radius R, CR, in Cartesian coordinates is:

CR =
{
(x, y, z) : x2 + y2 = R2

}
; (III.D.2.4)

which in cylindrical coordinates is the plane:

CR = {(θ, ρ, z) : ρ = R} . (III.D.2.5)

Therefore, a slice ρ = R of the prismatic B-Rep in cylindrical coordinates amounts to a cylindrical
slice in Cartesian coordinates.

III.D.2.4.2 Toolpath Generation Using Isometric Parametrization
The distance on a plane in cylindrical coordinates does not match the distance on a cylinder in
Cartesian coordinates. Therefore, we transform the iso-radial slices in cylindrical coordinates onto
the space (κ,Ri, z) which is isometric (i.e., distance-preserving) to the Euclidean space.

Given the slice Si, which represents the intersection with the plane ρ = Ri in cylindrical coor-
dinates, we apply the following transformation to Si, w : Si →Mi ⊂ R3, where Mi is a plane:

w(θ,Ri, z) = (Riθ,Ri, z); w−1(κ,Ri, z) = (κ/Ri, Ri, z). (III.D.2.6)

This transformation stretches the θ-coordinate as given by the cylinder radius Ri. The map from
coordinate (κ, z) to Cartesian coordinates is h = f ◦ w−1:

h(κ,Ri, z) = f(w−1(κ,Ri, z)) (III.D.2.7)
= f(κ/Ri, Ri, z) (III.D.2.8)
= (Ri cos(κ/Ri), Ri sin(κ/Ri), z). (III.D.2.9)

Notice h maps planes in the coordinate system (κ,Ri, z) to cylinders of radius Ri in Cartesian
coordinates (x, y, z). The magnitude κ is the arc length measured on the cylinder surface.

Now, we show that the function h is an isometry (i.e., distance-preserving) and a bijection
from planes onto cylinders. Let B1 be the plane defined by the equation y = R. Consider the
parametrization σ1 for B1:

σ1(u, v) = (u,R, v) (III.D.2.10)
Let B2 be a cylinder of radius R centered at the origin with parametrization σ2:

σ2(u, v) = (R cos(u/R), R sin(u/R), v) (III.D.2.11)
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Consider the function h : B1 → B2:

h(x,R, z) = (R cos(x/R), R sin(x/R), z) (III.D.2.12)

(i) σ2(u, v) = h(σ1(u, v)) and (ii) I1 = I2, where Ii is the first fundamental form of Bi. Therefore,
h is an isometry.
(ii) follows from:

J1 =

1 0
0 1
0 0

 J2 =

− sin(u/R) 0
cos(u/R) 0

0 1

 ; Ii = JT
i Ji (III.D.2.13)

I1 =

[
1 0
0 1

]
= I2 (III.D.2.14)

where J1 and J2 are the Jacobians of B1 and B2, respectively.
Notice that we apply the same map h to the whole slice Si in cylindrical coordinates, that is,

no local mapping is necessary for each planar patch on Si.
For all revolution workpieces, the approach in this manuscript cannot be applied when the

rotation radius of the deposition spot nears zero. This limitation includes (but is not limited to)
cylindrical and conical workpieces. In order to apply our approach, it is necessary to previously
build, using traditional additive manufacturing, a cylindrical cob with a minimal finite radius.
After this cob is available, our method may proceed. Notice that for cones, there is no finite radius
different from 0 at the apex. This would be a theoretical limitation of our proposition. However,
conical pieces with a sharp apex are discouraged at the level of mechanical or product design. It is
common to introduce a bevel or spherical smoothing at the cone apex.

III.D.2.5 Results
To demonstrate the potential of our approach to manufacture industrial workpieces, we apply our
method to the LMD path-planning of one tooth of a spur gear.

Fig. III.D.2.2(a) displays the geometry of the spur gear that we use for demonstration. Fig. III.D.2.2(b)
shows the tooth to which we apply our slicing and tool-path planning its manufacturing via LMD.

Fig. III.D.2.2(c) shows the prismatic solid associated to the gear tooth in cylindrical coordinates.
We apply conventional planar slicing over this prismatic solid in cylindrical coordinates.

Fig. III.D.2.2(d) displays the flat slices resulting from the planar slicing. We map the flat
slices back to Cartesian coordinates using Eq. III.D.2.1 to show that each flat slice in cylindrical
coordinates corresponds to a cylindrical slice in Cartesian coordinates.

Fig. III.D.2.2(e) shows the cylindrical slices in Cartesian coordinates. The distance D between
the flat slices in Fig. III.D.2.2(d) is the same as the distance between the cylindrical slices in
Fig. III.D.2.2(e).

Fig. III.D.2.3 presents the tool-path generation for one of the slices obtained at the previous
stage. We use the function w (Eq. III.D.2.6) to map the flat slices obtained in cylindrical coordinates
onto planar patches isometric to cylindrical patches in Cartesian coordinates. We use the spiral
infill pattern for the tool-path planning, although other 2D infill patterns may be used. Finally, we
map the obtained tool-path onto the cylinder surface in Cartesian coordinates using the function
h (Eq. III.D.2.9).
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Figure III.D.2.3: Toolpath for cylindrical slice using isometric parametrization.
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It is important to remark that the function h preserves the distance d between deposition lines.
It is relevant because it allows the tool-path generation on a 2D planar polygonal region (where
robust path planning algorithms already exist) instead of on a 3D curved surface. The reader may
also notice that one must apply a different transformation to each slice since the function w depends
on the cylinder radius R.

As stated in Section III.D.2.4, our method is suitable for a particular set of revolute workpieces
with a cylindrical 3D core. In addition, to meet the condition of self-support, the sub-solids adhered
to the cylindrical kernel cannot have prominent overhang features in the radial direction.

III.D.2.6 Conclusions
This manuscript presents a process planning method for Laser Metal Deposition (LMD) of revolute
parts. These parts consist of a 3D (informally called cylindrical) kernel with overhanging features.
Our method maps the B-Rep of the revolute workpiece to cylindrical coordinate space, producing
a prismatic B-rep. This prismatic shape is sliced and its slices processed for LMD using 2D path
planing tools. The tool paths are corrected for constant velocity and mapped back to Euclidean
space thus producing the revolute part. This method is successful for generation of LMD tool paths
for spur gear teeth. Future work addresses the actual gear manufacturing.
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Abstract
Avoidance of over-deposition at trajectory corners is relevant in Laser Metal Deposition (LMD)
for Additive Manufacturing. Currently available LMD hardware only allows constant material
feed (g/s). Therefore, gliding speed of the material dispenser is the remaining tuning variable
for controlling metal over-deposition at corners. Existing literature reports trial-error physical
experiments, addressing only particular corner angles. In response, this manuscript reports the
implementation of a voxel-based simulator of the bead geometry, taking into consideration bead
profile, dispenser velocity, material feed, and bead curve geometry. We use it to evaluate two
constant-feed tailored-velocity strategies for minimizing material over-deposition at corners.
Keywords: additive manufacturing, laser cladding, optimization.

III.D.3.2 Introduction
Laser Metal Deposition (LMD) employs a laser beam to melt a jet of metal powder and to deliver
it onto a workpiece. This promising Additive Manufacturing (AM) technique is used in workpiece
coating, repairing and re-manufacturing [93, 125]. However, over-deposition of metal on curved or
sharp-corner beads is a standing challenge for LMD.

In this manuscript, we present the implementation of a voxel-based simulator of the bead geom-
etry, taking into consideration bead cross profile, nozzle velocity, variable material feed, and bead
curve geometry. Our simulator allows for time-varying material feed (g/s), although this feature
is an open research topic at the present time. We couple our bead geometry simulator with two
variable speed strategies, used to minimize material over-deposition in corners.

III.D.3.3 Literature Review
AM uses Piecewise Linear (PL) trajectories. Two factors reinforce metal over deposition at cor-
ners: (a) overlapping deposition zone (Fig. III.D.3.1(a)) and (b) nozzle deceleration. The proposed
methods in the literature to reduce over-deposition at the corners are (1) the control of the process
parameters (e.g. speed, power and material flow) [193], (2) corner smoothing [58, 71, 140] and (3)
a combination [32, 33] of (1) and (2). Corner smoothing is only acceptable if accuracy is not a
priority. The authors [193] that aim only to control the process parameters (e.g. speed, power,
material flow) do not use numerical methods to study the influence of the parameters in the corner
deposition. Instead, they employ costly physical trial-error experimentation and limit their studies
to right (90◦) angles.

We identified two approaches to model computationally the bead geometry in LMD. The first
assumes a pre-defined bead cross-section, namely circular [25, 55, 133, 135], elliptical [25, 210],
parabolic [25, 133, 135, 186, 200], sinusoidal [25, 133, 135]. Other researchers [89, 193] model bead
width and height as functions of process parameters.

In the second method, the bead geometry is not pre-defined but it is induced by the distribution
of the delivered material which depends on the process parameters [6, 55, 178, 179]. We consider
that, under conditions of full melting of the powder jet, the variation in nozzle velocity or material
feed are more immediate factors to control over-deposition. Mainly two types of delivered material
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functions have been studied: Gaussian [6, 55, 178, 179] and uniform [55]. Our simulator accepts
any material distribution function f : R2 → R.

III.D.3.3.1 Conclusions of the Literature Review
In the existing literature, sharp corners deposition in LMD is addressed by smoothing the corner
geometry and expensive trial-and-error experimentation. This manuscript presents an implemen-
tation of a material deposition geometric simulator which considers: bead geometry induced by
modesl of delivered material distribution, PL trajectories, nozzle velocity (mm/s) and feed rate
(g/s).

III.D.3.4 Methodology

III.D.3.4.1 Geometry Deposition Model
III.D.3.4.1.1 Powder Delivery Density

The function I(x, y, t) (g/(s mm2)) reflects, given a time t, the metal particle density projected by
the nozzle at the workpiece surface. Coordinate z is parallel to the jet. Eq. III.D.3.1 represents a
Gaussian example of this distribution, with coordinates (x, y) already measured on the workpiece
surface. Our simulator accepts any density function of (x, y):

I(x, y, t) =
2f(t)

πR2
exp

−2
(
(x− Px(t))

2
+ (y − Py(t))

2
)

R2

 . (III.D.3.1)

f is the material feed rate (g/s), R is half of the nominal bead width (mm), PPP (t) = [Px(t), Py(t)]
T

is the nozzle position (mm, mm) at time t.
Given the function I, the material density ρ and the total deposition time T , one can obtain

the bead height H as:

H(x, y) =
1

ρ

∫ T

0

I(x, y, ξ)dξ. (III.D.3.2)

III.D.3.4.1.2 Nozzle Trajectory

C = [p0, .., pN ] is a PL approximation of the nozzle trajectory. fk and vk are the feed and velocity
levels at point pppk. Acceleration is assumed constant when velocity changes. Let tk (0 ≤ k ≤ N) be
the time at which the dispenser reaches point pppk, with t0 = 0 and tN = T . Each tk is a function of
the speeds v0, v1, . . . , vk. We numerically compute the bead height as per Eq. III.D.3.3:

H(x, y) =
1

ρ

N∑
k=1

∫ tk

tk−1

I(x, y, ξ)dξ. (III.D.3.3)

III.D.3.4.2 Minimization of Material Overfill in Corners
We define an ideal corner as the one in which incoming and outgoing beads are free from over- and
under-deposition. The ideal bead profile H0 in Eq. III.D.3.4 corresponds to the steady state in a
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linear nozzle trajectory. For the purpose of computing H0, we may consider this trajectory on the
X axis and therefore H0(x, y) = H0(y).

H0(x, y) =

∫ ∞

−∞
I(x, y, t)dt =

√
2f

ρ
√
πRv

exp
(
−2y2

R2

)
. (III.D.3.4)

The ideal or goal corner corresponds to an assembly of incoming and outgoing beads. They are
completely symmetrical w.r.t. a plane bisecting the corner angle (Fig. III.D.3.1).

(a) Double-deposition zone of the two cor-
ner segments.

(b) Example of goal bead corner Hθ
G

for θ = 45◦ (parameters in Ta-
ble III.D.3.1).

(c) Domain discretization
into the voxel-grid of vertices
(xi, yj). Corner discretization
into the point pppk.

Figure III.D.3.1: Trajectory corner. Parameters, goal bead and discretization.

Considerations for corners in LMD are: (a) Over-deposition is reinforced by (i) overlapping zones
in incoming and outgoing beads (Fig III.D.3.1), (ii) mandatory deceleration to reach null velocity
at the corner itself. (b) Current LMD hardware is unable to produce variable feed (g/s) within
the trajectory [7, 50, 193], leading to an overall constant feed. Because of these considerations, we
proceed to use the nozzle cruise velocity as variable to minimize material over-deposition at corners.

The tuning variables for the over-deposition minimization are the nozzle speeds V = (v0, . . . , vN )
at each vertex pppk of the corner discretization. We define the optimization problem assuming the
domain is discretized into a rectangular grid G with vertices (xi, yj), (1 ≤ i ≤ G1, 1 ≤ j ≤ G2), as
shown in Fig. III.D.3.1(c). The optimization problem is stated as follows:

find V = (v0, . . . , vN )

to minimize Ek(V ) =
1

G1G2

G1∑
i=1

G2∑
j=1

ek(xi, yj)
2

subject to 0 ≤ vi ≤ vmax, i = 0, 1, . . . , N

∥aaa(t)∥ ≤ amax, t ∈ [0, T ]

(III.D.3.5)

aaa(t) = [ax(t), ay(t)]
T is the nozzle acceleration. vmax and amax are the maximal speed and accelera-

tion permissible for the AM hardware or the process, respectively. ek : R2 → R is an error function
that measures the deviation of the actual (given the speeds V ) height w.r.t. the goal height. We
consider two error functions:
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1. Direct comparison between the actual and the goal height:

e1(x) =
∣∣H(x)−Hθ

G(x)
∣∣ (III.D.3.6)

2. A more permissive function to diminish underfill due to nozzle acceleration:

e2(x) =


∣∣H(x)−Hθ

G(x)
∣∣ , H(x) < Hθ

G(x), i.e. underfill
0, Hθ

G(x) ≤ H(x) ≤ max(Hθ
G), i.e. permissible overfill

H(x)− max(Hθ
G), H(x) > max(Hθ

G), i.e. overfill
(III.D.3.7)

where max(Hθ
G) = H0(x, 0) =

√
2f

ρ
√
πRv

.

III.D.3.5 Results
For the purpose of illustration, we produce the results of minimizing over-deposition with corner
angles θ ∈ {30◦, 60◦, 90◦} and use the conditions of Table III.D.3.1. The material properties specific
for LMD used in the simulation correspond to AISI 316L stainless steel in [3].

Table III.D.3.1: Simulation set-up. Parameters for the optimization of material overfill at the
corners deposition. Values based on Refs. [3, 7, 142].

Parameter Value
Material AISI 316L
Density ρ = 7900 kg/m3 [142]

Clad radius R = 2.3 mm
Nozzle cruising speed vc = 13 mm/s

Material feed rate f = 0.42 g/s
Maximal speed vmax = 2vc = 26 mm/s

Maximal acceleration amax = 600 mm/s2 [7]

Our model parametrizes the magnitude of the dispenser cruise speed in terms of the distance
d from the corner tip. We approximate the optimal speed function V O by a 4-stage PL function
(see Table III.D.3.2). The stages of V O are nonlinear functions of d. Given consecutive checkpoints
(di, vi) and (di+1, vi+1) the velocity between them is given by:

V O(d) =
√

2a(d− di) + v2i , d ∈ [di, di+1], (III.D.3.8)

where a is the constant acceleration in the stage.
The minimization uses the exhaustive search method to find the optimal velocity histories for

error accountancy methods e1 and e2. This method is expensive in computing time. Therefore,
this optimization is to be used at the stage of process-planning and not in real time during the
manufacturing itself. The resulting speed profiles for each studied value of the corner angle θ are
presented in Table III.D.3.2. For each angle, we found speed profiles V O

e1 and V O
e2 as per the error

e1 and e2 functions in Eqs. III.D.3.6 and III.D.3.7.

173



The (decreasing) distance to the next corner presents velocity plots which occur in the negative
horizontal axis. However, notice that the entry and exit velocity histories are, under the current
assumptions, symmetrical with respect to the distance to the corner spot. These considerations
lead to Table III.D.3.2 presenting the dispenser velocity at the exit from the corner and not in
the entry phase. Both, V O

e1 and V O
e2 show similar behavior: (a) large acceleration near the corner,

reaching the maximal value vmax, (b) constant speed, and (c) deceleration to reach the cruise
speed vc. The sharper the corner, the smaller the angle θ and (as expected) the more abrupt the
acceleration or deceleration near the corner spot. Error accountancy methods e1 and e2 call for
the same acceleration (or deceleration) to depart from (or reach to) null velocity at the corner.
However, the transition to cruise speed takes longer with method e1. Therefore, the average speed
of V O

e1 is greater than the one of V O
e2 .

Table III.D.3.2 shows the height functions for θ ∈ {30◦, 60◦, 90◦} associated to (1) the optimal
speed functions V O

ei (i = 1, 2) and (2) a simulation with a constant speed function Vvc (which would
require infinite acceleration/deceleration at the corner spot).

In Table III.D.3.2, (1) we can observe the material over-deposition at constant speed Vvc is
evident for all θ ∈ {30◦, 60◦, 90◦}. Additionally, over-deposition increases when the angle decreases.
(2) In the cross-section views for θ = 30◦, we can note that V O

e1 produces more underfill than V O
e2 .

Since the average speed of V O
e1 is greater than the one of V O

e2 , the amount of deposited material is
lower.

The values of the objective functions (i.e. sum of squared errors in Eq. III.D.3.5) for the optimal
velocity functions V O

e1 and V O
e2 , and for the constant (uncontrolled) velocity function Vvc

are depicted
in Fig III.D.3.2. The difference of the objective functions between the optimal (V O

e1 , V
O
e2 ) and

uncontrolled (Vvc) velocity functions is noticeable. The values under uncontrolled speed are at
least 10 times greater than for the optimal solutions (Ei(Vvc

)/Ei(V
O
ei ) > 10, i = 1, 2). We can also

observe that, for every value of θ ∈ {30◦, 60◦, 90◦}, the minimal value of E1 is attained by V O
e1

(analogously for E2 and V O
e2 ).

III.D.3.6 Conclusions
In this manuscript, we have presented the implementation of a voxel-based geometric simulator for
Laser Metal Deposition (LMD). On this simulator, we have mounted and solved a minimization
of the material over-deposition at corners in LMD. Results for the corner angle instances θ ∈
{30◦, 60◦, 90◦} show a reduction of over 90% of the over-deposition present at corners with no
nozzle velocity control. An exhaustive search strategy is used for minimization. This strategy is
expensive in computing time. Therefore, our method is to be used for the process planning stage.
Further study of heuristics for cutting computing time expenditures are required for in-process
applications.
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Table III.D.3.2: Row 1: Optimal speed profiles V O
e1 , V

O
e2 for errors e1 and e2. Corner angles θ ∈

{30◦, 60◦, 90◦}. Rows 2-6: Resulting bead geometries. Row 2: no velocity control. Rows 3-4: Beads
with optimal velocity, given errors e1 and e2, respectively. Rows 5-6: Bead cross-section Y = 0
with optimal velocity, given errors e1 and e2, respectively.

θ = 30◦ θ = 60◦ θ = 90◦

Optimal speed
histories. Errors
e1 and e2

Bead geometry
for constant
velocity Vvc

Optimized bead
geometry. Opti-
mal velocity V O

e1

Optimized bead
geometry. Opti-
mal velocity V O

e2

Optimized bead
cross-section
Y = 0. Optimal
velocity V O

e1

Optimized bead
cross-section
Y = 0. Optimal
velocity V O

e2

175



(a) Corner angle θ = 30◦. (b) Corner angle θ = 60◦. (c) Corner angle θ = 90◦.

Figure III.D.3.2: Over-deposition consolidated estimators E1 and E2 (Eq. III.D.3.5) for velocity
profiles {Vvc , V O

e1 , V
O
e2 } and corner angles {30◦, 60◦, 90◦}. e1 and e2: deposition punctual error

methods (Eqs. III.D.3.6 and III.D.3.7, respectively).
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Abstract
In the context of Laser Metal Deposition (LMD), the problem of avoiding unintentional mate-
rial accumulation in bead corners or bends is central. Most of the existing approaches to limit
such an accumulation are expensive trial-and-error ones. This manuscript presents the experi-
mental verification of a recently reported computational method for minimizing material overfill
in corners in LMD. The verification consisted in the deposition of single-layer corners with angle
θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦} with (i) constant and (ii) controlled (as dictated by the computational
minimization) tool-head velocity. The term controlled velocity in this manuscript refers to the fact
that the nozzle velocity can be adjusted in advance with predefined parameters resulting from the
simulations of variable velocities. The comparison between the predicted and experimental bead
topographies cannot be executed via standard registration methods because these methods mini-
mize the distance between the registered datasets. In response to this limitation, this manuscript
presents a registration method that avoids overall distance minimization. This registration method
is based on the sequential matching of datums between the experimental and predicted datasets.
The results of the experiments revealed that (i) the computational minimization strategy is effective
for reducing material overfill in LMD and (ii) near 40% of the metal powder delivered by the nozzle
is wasted. This powder loss is a constant feature across LMD implementations and is not caused by
the minimization of metal overfill at corners. These facts show that (i) voxel-based modeling is an
effective tool for bead topography and mass/area-based bead computations and (ii) LMD is useful
for the cladding stage but not for the production of the bulk piece. Additional work is required to
appraise the effective (i.e., not nominal) powder rate deposited at the bead. Future efforts will be
dedicated to extend the material overfill minimization strategy to multi-layer deposition.

Keywords: Laser metal deposition, Additive manufacturing, Computational optimization, Mesh
registration, Physical experiments, Trajectory corners, Bead geometry.

Glossary

AM Additive Manufacturing.
CG Center of gravity.
ICP Iterative Closest Point.
LMD Laser Metal Deposition.
XCT X-ray Computer Tomography.
SO(3) Special Orthogonal Group of dimension 3. A matrix RRR (n× n) is

SO(n) (i.e. is a rotation) if RRRT ∗RRR = RRR∗RRRT = I and det(RRR) = +1.
CCC(u) =
[Cx(u), Cy(u)]

T
Planar parametric curve that represents the tool-path.

CCCPL (ccc0, . . . , cccN ) Piecewise linear curve with vertices ccck ∈ CCC, (k = 0, . . . , N) that
approximates CCC(u).

I(x, y, t) : R2×R →
R

Profile of powder delivery [kg/(s mm2)] of a given nozzle at time
t. (x, y): local nozzle coordinates.
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H(x, y, t) : R2 ×
R → R

Bead height [mm] at the point (x, y) of the substrate plate at time
t.

H0(x, y) : R2 → R Bead height [mm] at plate point (x, y) under constant nozzle ve-
locity direction and magnitude, and material flow rate.

Hθ
G(x, y) : R2 → R Bead height [mm] of an ideal (or goal) corner with angle θ.

f(t) : R → R Powder flow rate [kg/s] at nozzle exit.
feff Powder flow rate [kg/s] integrated at the bead.
η ∈ [0, 1] Material efficiency ratio feff/f .
V (t) : R → R Tool-head or nozzle velocity [mm/s] at time t.
V (d) : R → R Tool-head or nozzle velocity [mm/s] as a function of the signed

distance d (measured in plant view along the bead) to the corner
tip.

P Laser power [W].
vc Tool-head cruise velocity [mm/s].
vmax Maximal tool-head cruise velocity [mm/s].
W Bead width [mm].
R =W/2 Half of the bead width [mm].
ρ Density of the powder cladding material [kg/m3].
MMM ∈ R4 × R4 Rigid transformation (rotation and translation) matrix resulting

from the corner registration.
[XXXw,YYY w,ZZZw,OOOw] World coordinate system. Basis vectors {XXXw,YYY w,ZZZw} and origin

OOOw ∈ R3.

III.D.4.2 Introduction

III.D.4.2.1 Research target
This manuscript reports the experimental validation of the method in Ref. [124] that minimizes
the overfill of metal in trajectory corners in Laser Metal Deposition (LMD) by varying the cruise
velocity of the metal dispenser nozzle. In assessing the deviation between experimental vs. pre-
dicted metal beads, the usual registration methods bias the appraisal. To avoid such a bias, this
manuscript presents a datum-based sequential registration developed by the authors. This regis-
tration progressively matches reliable datums of the LMD (e.g. substrate plane, bead axes, etc.)
between the experimental and predicted datasets. The results show that the variable nozzle veloc-
ity strategy significantly reduces the metal overfill at corners, thus approximating the ideal LMD
beads.

III.D.4.2.2 Context
LMD is a manufacturing method that employs the power of a laser to manufacture medium to
large-scale industrial parts. It is one of the Additive Manufacturing (AM) technologies with higher
potential to be adopted at industrial scale due to its applications in repairing, coating, and manu-
facturing of high-value parts (Ref. [93]). One of the main challenges in LMD is the construction of
sharp corners since they are prone to unwanted material accumulation.
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The computational approach recently presented in Ref. [124] minimizes the material overfill at
corners in LMD by adjusting the tool-head velocity at the process-planning stage. The present
manuscript reports the experimental validation of this computational minimization method for
single-layer trajectory corners of angle θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦}. For each angle, the method in
Ref. [124] is used to find the tool-head velocity that minimizes the material overfill. The experi-
ment consists in the deposition of single-layer corners at controlled (as dictated by the method in
Ref. [124]) and constant tool-head velocity. The term controlled velocity in this manuscript refers
to the fact that the nozzle velocity can be adjusted in advance with predefined parameters resulting
from the simulations of variable velocities.

The resulting workpieces are optically scanned. The scanned data is aligned using a datum-
based sequential registration developed by the authors. The results of the experiments show that the
computational minimization method in Ref. [124] successfully produces tool-head velocity profiles
that reduce the material overfill in trajectory corners in LMD. Side findings of the experiments show
that around 40% of the powder material is wasted. This waste is inherent to the LMD, regardless
of the existence or absence of bead corners. This manuscript does not intend to contribute to the
prediction of material waste in LMD. The velocity variation strategy assessed in this manuscript
will be integrated into the industrial AM Process Planning system previously reported in Ref. [125].

The remainder of this article is structured as follows: Section III.D.4.3 reviews the relevant exist-
ing literature. Section III.D.4.4 describes the methods and materials related to the experiment. Sec-
tion III.D.4.5 displays and discusses the computational and experimental results. Section III.D.4.6
concludes the manuscript and suggests potential extensions of the work.

III.D.4.3 Literature review

III.D.4.3.1 Minimization of material overfill in trajectory corners
In the context of LMD, path planning algorithms generate piecewise linear tool-paths. Material
overfill occurs at the tool-path corners due to the following facts: (i) the tool-head reduces its
velocity in the vicinity of the corner and (ii) there is an overlap (or double deposition) zone which is
larger for sharper corners. The proposed solutions in the literature focus on adjusting three process
parameters: laser power, powder flow rate, and tool-head velocity.

The approaches in Refs. [124, 140, 193] variate the tool-head velocity in the vicinity of the
corner. Ref. [140] executes several experimental trials to find adequate levels of smoothing of right-
angle (90◦) corners. The material overfill is limited because the smoothed corner is traversed at a
higher speed. However, the smoothing compromises geometry accuracy. Ref. [193] fits a regression
model to predict the bead height as a function of the tool-head velocity, laser power, and powder
flow rate. This model is used to modify the tool-head velocity to build right-angled corners. The
main drawback of both approaches (Refs. [140, 193]) is that they are limited to trial-and-error
experimentation for 90◦ angles. Ref. [124] (precursor of the present one) presents a computational
approach to minimize material overfill for several corner angles. This method solves a minimization
problem to find a tool-head profile that limits material overfill at the corner. The results reported
in Ref. [124] are purely computational, and the experimental validation is missing.

Ref. [10] presents an online controller to adjust the laser power during trajectory corners depo-
sition. The reported experiments showed the capability of the system to reduce material overfill
at corners. However, this approach changes the bead material properties. It also requires a more
expensive Computer Vision hardware and software to sense the melt-pool during the deposition.
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Ref. [7] presents a control system to regulate the material flow rate. The limitation of this method
is the large response time of the powder flow systems. This delay impedes the synchronization of
the powder rate decrement with the power or tool-head velocity and position near corners.

The problem of material deposition at corners is common in other AM technologies, such as fused
filament fabrication. Refs. [32, 33] implement a computational fluid dynamics model to study the
effects of corner smoothing, tool-head velocity, and material feed rate in fused filament fabrication.
Numerical results show that synchronizing the feed rate with the tool-head velocity reduces the
defects around the corner. However, current hardware limitations hinder the application of this
approach in LMD.

Table III.D.4.1: Summary of the approaches to limit LMD-corner material overfill.

Reference Tuning
variable

Studied
angle(s) Advantages Disadvantages

Ref. [124] Tool-head
velocity

30◦, 60◦,
90◦

Avoids trial-and-error
experimentation

No experimental valida-
tion
Single-layer deposition

Ref. [140] Tool-head
velocity 90◦

Multi-layer deposition:
50 layers, 25 mm height

Test only with 90◦ angle
Corner smoothing
Trial-and-error experi-
mentation

Ref. [193] Tool-head
velocity 90◦

Multi-layer deposition:
70 layers, 11.5 mm
height

Test only with 90◦ an-
gle Trial-and-error exper-
imentation

Ref. [10] Laser
power 30◦

Fast response time of
laser power control
hardware

Single-layer deposition
Requires specialized vi-
sion hardware
Test only with 30◦ angle
Changes bead material
properties

Ref. [7] Powder
feed rate 90◦

Significant reduction of
overfill

Slow response time of the
powder rate controller
Single-layer deposition
Test only with 90◦ angle

This work Tool-head
velocity

15◦, 30◦,
45◦, 60◦,
75◦

Avoids trial-and-error
experimentation
Several angles studied

Single-layer deposition
May lead to underfill

III.D.4.3.2 Registration for dimensional inspection
The main techniques for non-destructive dimensional inspection in AM are contact-measurement
machines, X-ray Computer Tomography (XCT), and 3D scanning (Ref. [27]).

Ref. [152] and Ref. [82] use contact-measurement machines to assess the geometrical accuracy
in parts produced by powder bed fusion and fused filament fabrication, respectively. Contact-
measurement machines are the most accurate devices for dimensional inspection in parts manufac-
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tured by subtractive methods. However, the surface irregularities in the parts produced via AM
disturb the measurements of these machines.

XCT is used in Ref. [83] to measure the porosity and in Ref. [185] to evaluate the internal
features in AM-manufactured parts. However, the scanning time of XCT is very high (Ref. [83]).
In addition, the voxel format of the XCT method requires additional processing to deliver surface
measurement readings.

3D scanning is advantageous because it (i) provides detailed information of the workpiece surface,
(ii) offers short data gathering time, and (iii) avoids having contact with the workpiece (Ref. [27]).
Ref. [88] uses structured-light scanning to examine the surface roughness and thickness distribution
in flat pieces built via Wire-and-Arc AM. Ref. [131] uses 3D scanning to estimate the volume and
the surface roughness of thin plate-based structures also manufactured with Wire-and-Arc AM.
Ref. [204] uses structured-light scanning to analyze the accuracy of dental models fabricated via
several AM techniques such as, digital light processing, multi-jet printing, and stereolithography.
Ref. [84] applies 3D laser scanning to reverse - engineer a metal impeller.

For the analysis of dimensional accuracy, the data acquired via 3D scanning must be registered
(i.e., aligned) with a reference coordinate system. The standard registration approaches (e.g. Itera-
tive Closest Point (ICP) and feature identification) statistically minimize the distance between the
scanned data and a reference (target) model.

The ICP method iteratively applies rigid transformations over the scanned data. These rigid
transformations minimize the overall distance between the scanned data and the target model
(Ref. [212]). The feature identification method in Ref. [159] processes some particular entities
(features) of the workpiece (e.g. planes, spheres, and cones). In this method, an experienced user
selects the geometrical features to register between the scanned data and the target model. An
overall distance minimization is then applied to simultaneously align all the selected features.

Both conventional and additive manufacturing employ distance-based registration. For example,
Ref. [44] uses ICP to measure the deviation of workpieces built via fused filament fabrication, while
Ref. [112] uses ICP for in-line dimensional inspection of warm forged workpieces. However, for the
purpose of this work, overall distance-based registration methods cannot be used. The reason is
that, when several datums are to be extracted from a point cloud sample, the overall registration
moves the sampled points to an equidistant position to all the datums simultaneously. This even-
handed approach dramatically biases the sampled data thus disabling any subsequent conclusions
about deviation of individual features. In particular, in the scenario of LMD bead overfills, the
assessment of a specific corner feature would be impossible. In particular, overall registrations
would impede the evaluation of the strategy in Ref. [124] to minimize material overfill of bead
corners in LMD.
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Figure III.D.4.1: Prediction vs. Experiment assessment. Minimization of bead corner overfill by
using variable tool-head velocity (follow up from Ref. [124]).

III.D.4.3.3 Bead topography models
Existing literature shows two main trends in bead geometry modeling. In the first strategy, the bead
cross-section is approximated by a predefined function. Refs. [25, 135] study the ability of parabolic,
sinusoidal, and elliptical profiles to model the bead cross-section in LMD. Ref. [25] considers only
single-track deposition. Ref. [135] considers multi-track and multi-layer deposition. In both studies
(Refs. [25, 135]), the parabolic profile provides the best fit with respect to experimental data.
Refs. [186, 200] use parabolic cross-section profile in the simulation of 2D finite element thermal [200]
and thermo-fluid [186] models. Ref. [210] develops an analytical model to measure the laser power
attenuation due to the interaction with the metal powder particles and uses an elliptical cross-
section. All the previous approaches only model the bead cross-section. They do not address the
spatial evolution of the bead geometry under instantaneous changes in the tool-head velocity or
material flow rate.

In the second strategy, the distribution of the delivered material on the substrate surface governs
the bead geometry. This approach links the bead geometry with instantaneous variations in the
tool-head velocity and powder flow rate. Ref. [178] concludes that, for coaxial nozzles, the powder on
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the substrate surface follows a Gaussian distribution. Ref. [55] shows that the Gaussian distribution
induces good approximations at the bead centerline but not at the sides of the bead cross-section.
Refs. [6, 179] use the Gaussian profile in the 3D finite element simulation of a thermo-fluid model.
The model is used to estimate the evolution of the temperature of the melt-pool and the bead
geometry.

As a conclusion, the literature survey indicates that, with the current LMD hardware, the tool-
head velocity is a popular mean to diminish overfill in LMD bead corners. However, most of the
works that attempt to tailor the tool-head velocity are based on trial-and-error experimentation,
which is costly in time and materials. Ref. [124], a precursor of the present manuscript, reports a
computational approach to adjust the tool-head velocity to reduce the material overfill at corners
in LMD.

Table III.D.4.1 summarizes the existing approaches to limit material overfill in LMD trajectory
corners.

The present work focuses on the experimental validation of the method presented in Ref. [124].
The experiment consists in the deposition of single-layer corners with angles θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦}
built with and without using the tool-head velocity variation in Ref. [124]. It must be remarked that
such a validation entails the development and application of a datum-based sequential registration
of LMD samples for dimensional inspection.

This manuscript does not intend to predict the portion of the metal powder that does not
integrate into the bead. Notice that the powder loss occurs independently of the existence or
absence of trajectory corners. Powder loss and bead overfill are both present at LMD trajectory
corners. This manuscript addresses only the minimization of corner bead overfill.

III.D.4.4 Methodology
This manuscript reports the experimental validation of the computational method presented in
Ref. [124]. Fig. III.D.4.1 shows the procedure followed in this work to assess the deposition of
single-layer corners of angles θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦}. For each corner angle, four results are
generated:

1. Corner predicted by simulating the deposition with constant nozzle velocity.

2. Corner predicted by simulating the deposition with variable nozzle velocity (Ref. [124]).

3. Corner physically built with constant nozzle velocity.

4. Corner physically built with the same nozzle velocity as in item (2) above (variable nozzle
velocity provided by the method in Ref. [124]).

Observe that datasets (1), (2), (3) and (4) must be expressed in the same coordinate system in
order to permit comparison. This conversion is called registration and it is implemented via a rigid
transformation M. M is synthesized as the most plausible function that matches specific datums
or features in those datasets.

The following sections discuss in detail how the predicted and the experimental corners are
generated.
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Figure III.D.4.2: Plant view of the overlapping region in the vicinity of the corner.

Figure III.D.4.3: Geometric simulation of material deposition. The function I(x, y, t) represents
the powder concentration [kg/(mm2 s)] at the substrate surface.

III.D.4.4.1 Material overfill in trajectory corners in LMD
In LMD of corners, the following circumstances are present to compound metal overfill:

1. Geometrical overlap: Fig. III.D.4.2 shows that material is redundantly deposited in the inter-
section region around the corner. Unwanted material accumulation in this overlapping region
increases with sharper corner angles.

2. Tool-head deceleration: The tool-head must decelerate to draw the corner. Since the pow-
der feed rate remains basically constant, this deceleration concentrates more material in the
vicinity of the corner.

3. Hardware limitations: Current hardware does not offer real-time variation of the powder flow
rate. Although the material feed rate can be adjusted, the response of the feed system is slow,
rendering a basically constant rate (Refs. [10, 50, 193]).

185



4. Software limitations: Current software for process planning in AM does not consider material
overfill at corners during the generation of the nozzle trajectory.

III.D.4.4.2 Geometry deposition simulator
This manuscript follows the procedure in Ref. [124] to simulate the deposited geometry in the LMD
process. A description of this procedure follows.

Let the planar curveCCC(u) = [Cx(u), Cy(u)]
T
, 0 ≤ u ≤ 1, be the tool-head path (see Fig. III.D.4.3).

The function I(x, y, t) denotes the powder concentration [kg/(mm2 s)] at the substrate surface where
the nozzle is depositing the powder. The function I describes variable powder feed rate [kg/s] and
tool-head velocity [mm/s]. In this manuscript (as in Ref. [124]), I follows a Gaussian distribution:

I(x, y, t) =
2f(t)

πR2

exp

−2
(
(x− px(t))

2
+ (y − py(t))

2
)

R2

 ,

(III.D.4.1)

where ppp(t) = [px(t), py(t)] ∈ CCC is the nozzle position, f(t) [kg/s] is the powder flow rate and R [mm]
is half of the bead width W [mm].

As an example of the physical meaning of the function I, assume the tool-head is at ppp = [0, 0]
and it remains static. Also let the bead width be W = 2 mm (R = 1 mm) and the powder flow
rate f be constant. The mass M [kg] deposited on a region D ⊂ R2 on the substrate surface is:

M =

∫ t

0

∫
D

I(x, y, t) dx dy dt

=
2f∆t

π

∫
D

e−2(x2+y2) dx dy

(III.D.4.2)

where ∆t [s] is the time span. The total mass delivered by the nozzle is MT = f ∆t.
Consider the two circular regionsD1 andD2 on the substrate surface in Eqs. III.D.4.3 and III.D.4.4.

The center of D1 is at the same position as the tool-head. The center of D2 is 0.8 mm away from
the tool-head position. D1 and D2 have the same area.

D1 = {(x, y) : x2 + y2 ≤ 0.12} (III.D.4.3)
D2 = {(x, y) : (x− 0.8)2 + y2 ≤ 0.12} (III.D.4.4)

Recalling Eq. III.D.4.2, the mass deposited on D1 is M1 ≈ 0.02MT . The mass deposited on D2 is
M2 ≈ 0.006MT . This result shows that, assuming a Gaussian I, the powder concentration is larger
at the center point of the laser.

III.D.4.4.2.1 Computational simulation

Eq. III.D.4.1 implies that the bead height H at time t, with material density ρ [kg/m3], is:

H(x, y, t) =
1

ρ

∫ t

0

I(x, y, ξ)dξ. (III.D.4.5)
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In order to numerically estimate the bead height H in Eq. III.D.4.5, the substrate surface is
discretized into a rectangular grid (Fig. III.D.4.4) with vertices (xi, yj). The tool-path curve CCC is
approximated by the piecewise linear curve CCCPL = [ccc0,ccc1, . . . ,cccN ] ,ccck ∈ CCC. The tool-head velocity
and the powder flow rate at ccck ∈ CCCPL are vk and fk, respectively.

Let tk be the instant at which the nozzle is at ccck. The height Hij at the grid vertex (xi, yj) is
approximated as in Ref. [124]:

Hij = H(xi, yj) =
1

ρ

N∑
k=1

∫ tk

tk−1

I(xi, yi, ξ)dξ (III.D.4.6)

The integral in Eq. III.D.4.6 is solved using numerical integration.

Figure III.D.4.4: Piecewise linear approximation of the tool-path. Voxel discretization of the sub-
strate surface. The tool-path discretization is not constrained to the grid vertices.

III.D.4.4.3 Minimization of material overfill at corners in LMD
The present work follows Ref. [124] to minimize the metal overfill at trajectory corners in LMD.
This optimization procedure finds the tool-head velocity function V (t) that minimizes the material
overfill at the corner.

Ref. [124] defines an ideal bead corner topography with no overfill. In it, the corner exit tra-
jectory is defined as a rotation of the entry one. This rotation by the corner angle θ pivots at the
corner tip.

Eq. III.D.4.7 (Ref. [124]) computes the bead height of an infinite linear trajectory along the X-
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axis at steady conditions. vc is the tool-head velocity [mm/s], and f is the powder flow rate [kg/s].

H0(x, y) =

∫ ∞

−∞
I(x, y, t)dt

=

√
2f

ρ
√
πRvc

exp
(
−2y2

R2

)
.

(III.D.4.7)

The ideal corner for the angle θ, Hθ
G, is built by joining H0 and its corresponding θ rotation.

Fig. III.D.4.5 depicts the ideal corner Hθ
G for θ = 30◦ for the process parameters in Table III.D.4.2.

Table III.D.4.2: Experimental set-up. Parameters used in the experiments.

Parameter Value
Material Stellite 6
Density ρ = 8400 kg/m3

Nozzle cruising velocity vc = 6.67 mm/s
Powder flow rate f = 0.12 g/s
Laser power P = 1200 W
Bead width W = 2R = 2.6 mm
Maximal velocity vmax = 2vc = 13.33 mm/s

Eqs. III.D.4.8 and III.D.4.9 pose the optimization problem presented in Ref. [124]. The problem
is stated for a substrate surface discretized into a rectangular grid. Nrow and Ncol denote the
number of rows and columns of the grid. The tuning variable, V (t), is the tool-head velocity
function that, for a given angle θ, produces the corner most similar to the ideal corner. The
function e(x) in Eq. III.D.4.9 (Ref. [124]) measures the discrepancy between the ideal corner and
the corner achieved with the tuning tool-head velocity V .

find V (t)

to minimize E(V ) =

1

Nrow · Ncol

Ncol∑
i=0

Nrow∑
j=0

e(xi, yj)
2

subject to 0 < V (t) ≤ vmax;

with

(III.D.4.8)

e(x) =

|H(x)−Hθ
G(x)|, if H(x) < Hθ

G(x),
i.e. underfill

0, if Hθ
G(x) ≤ H(x) ≤ max(Hθ

G),
i.e. permissible overfill

H(x)− max(Hθ
G), if H(x) > max(Hθ

G),
i.e. overfill

(III.D.4.9)

In Eq. III.D.4.9, max(Hθ
G) =

√
2f

ρ
√
πRvc

is the maximum height of the ideal corner Hθ
G.
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The present work (implemented in MATLAB) uses an exhaustive search to approximate solu-
tions for this optimization problem. Table III.D.4.3 reports the parameters used in the numerical
optimization. The corner entry and exit trajectories, bead topography and velocity V are assumed
to be reflections of each other with respect to the plane that bisects the corner (Fig. III.D.4.5).
Moreover, it is assumed that V is a piecewise linear (w.r.t. time) function with four stages.

Table III.D.4.3: Parameters used in the numerical optimization.

Parameter Value
Optimization method Exhaustive search
Length of the corner segment 20 mm
Voxel size 0.01 mm
Size of trajectory discretization 0.01 mm
Software MATLAB

Figure III.D.4.5: Ideal corner Hθ
G for θ = 30◦ (Eq. III.D.4.7) and corner bisector plane ΠC . Process

parameters in Table III.D.4.2.

III.D.4.4.4 Materials for the experiments and the 3D scanning
The corner deposition experiments were executed with an IPG Photonics YLS-6000 high-power
fiber laser. The laser beam diameter was 2.5 mm. The optical head was placed in a 3-linear-axis
machine. The metal powder was deposited through a coaxial nozzle with Nitrogen as carrier gas.
The powder material used was Stellite 6, and the substrate was S355 carbon steel. The powder
flow rate, tool-head velocity, and laser power are listed in Table III.D.4.2.

The deposited corners were scanned with the Gocator 3210 structured-light scanner. The maxi-
mum accuracy of the scanner is 35 µm. The scanner light source is a blue LED emitted at wavelength
465 nm. To adequately capture the details of the workpieces, the scanner was integrated with the
Universal Robots UR10 6-axis robot arm. Several captures of the workpieces were taken at different
poses of the robot. The captures were then consolidated in the same coordinate system to obtain
the corresponding 3D mesh of the workpiece.
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III.D.4.4.5 Registration of the experimental corners
By definition, an overall standard registration would seek to minimize the distances between the
predicted and the experimental plate - bead - corner data. This fact would bias the assessment of
the effectiveness of the overfill minimization algorithm. Because of this reason, the present work
uses instead a local probing datum-based sequential registration (Fig. III.D.4.6), implemented in
MATLAB, that avoids such a bias.

Figure III.D.4.6: Registration of the 3D point cloud of the experimental corner. Steps of the
proposed datum-based sequential registration.

III.D.4.4.5.1 Problem statement

Given the 3D scanned data (point cloud) of the corner, Ssample ⊂ R3, one must find the rigid
transformation

MMM =

[
RRR TTT
000 1

]
; RRR ∈ SO(3); TTT ∈ R3; (III.D.4.10)

from the local coordinate system to the World Coordinate System [XXXw,YYY w,ZZZw,OOOw], as shown in
Fig. III.D.4.7. The matrix MMM is different for each scanned corner.
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Figure III.D.4.7: Registration of the scanned data with the World Coordinate System. Estimation
of the plane of the substrate plate surface and the lines of the bead axes.

III.D.4.4.5.2 Estimation of the substrate plate

The 3D point cloud Ssample is segmented into four subsets:

Ssample = Splate ∪ Sentry ∪ Sexit ∪ Srest. (III.D.4.11)

Splate contains the points on the substrate plate. Sentry and Sexit contain the points on the steady-
state regions of the entry and exit beads. Srest contains all the other points.

The substrate plate surface is represented by a plane Π = (n̂nnΠ, pppΠ). As usual, n̂nnΠ= plate normal
vector, pppΠ=any point on the plane. n̂nnΠ is the direction of least variance of the point sample, and
is determined via Principal Component Analysis. pppΠ is estimated as the center of gravity of Splate
(Eq. III.D.4.12):

pppΠ = CG(Splate). (III.D.4.12)

The normal vector n̂nnΠ sets the first constraint C1 needed to find MMM:

C1 : ZZZw = MMM n̂nnΠ. (III.D.4.13)

III.D.4.4.5.3 Estimation of the bead axes

Let Lentry ⊂ Π be the line defining the axis of the entry bead:

Lentry(d) = pppentry + d v̂vventry, d ∈ R. (III.D.4.14)

The definitions of v̂vventry and pppentry follow. Let vvv∗entry be the direction of maximum variability of
the points in Sentry. This direction is estimated via Principal Component Analysis. The direction
vector of Lentry, v̂vventry, is the projection of vvv∗entry onto Π:

v̂vventry = proj(vvv∗entry,Π). (III.D.4.15)

pppentry can be estimated as the projection of the CG of Sentry onto Π:

pppentry = proj(CG(Sentry),Π). (III.D.4.16)
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An analogous procedure is used to find the axis of the exit bead Lexit ⊂ Π. Fig. III.D.4.7 shows a
graphical representation of the entities involved in this process.

The direction vector of Lentry sets the second constraint C2 needed to find MMM:

C2 :XXXw = MMM v̂vventry (III.D.4.17)

Since MMM represents a rigid transformation, the following constraint, C3, arises as a consequence of
C1 and C2:

C3 : YYY w = MMM (n̂nnΠ × v̂vventry) (III.D.4.18)
C1, C2 and C3 determine the SO(3) vector triad of the coordinate system for the scanned data
Ssample.

III.D.4.4.5.4 Estimation of the corner tip

The corner tip OOOs ∈ Π is estimated as the intersection between Lentry and Lexit. OOOs is computed
as per Eq. III.D.4.19:

OOOs = proj(OOOs,Π) (III.D.4.19)
where OOOs is the midpoint of the shortest segment that joins Lentry and Lexit. The final constraint
C4 needed to compute MMM is:

C4 : OOOw = MMMOOOOOOOOOs (III.D.4.20)
Recalling constraints C1, C2, C3 and C4, the following linear equation is obtained, with MMM as the
unknown variable: [

ZZZw XXXw YYY w OOOw

0 0 0 1

]
=

MMM
[
n̂nnΠ v̂vventry n̂nnΠ × v̂vventry OOOs

0 0 0 1

] (III.D.4.21)

The rigid transformation matrix MMM is then calculated as:

MMM =

[
ZZZw XXXw YYY w OOOw

0 0 0 1

]
[
n̂nnΠ v̂vventry n̂nnΠ × v̂vventry OOOs

0 0 0 1

]−1 (III.D.4.22)

Notice that with the implemented method, the upper left (3 × 3) sub-matrix of MMM (i.e. RRR in
Eq. III.D.4.10) is indeed Special Orthogonal SO(3).

III.D.4.5 Results

III.D.4.5.1 Computational results
III.D.4.5.1.1 Tool-head velocity profiles

The optimization approach in Section III.D.4.4.3 is used to find tool-head velocity functions that lo-
cally minimize the overfill in corners. Computer runs were executed for angles θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦}.
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Fig. III.D.4.8 shows, for each angle, the obtained velocity profile V as function of the signed
distance d (measured in plant view along the bead) to the corner tip [mm]. As expected, (i) the
velocity increases in the vicinity of the corner tip (d = 0) in all cases, and (ii) the velocity increment
occurs sooner for smaller angles.

Figure III.D.4.8: Tool-head velocity profiles obtained via numerical optimization for θ ∈
{15◦, 30◦, 45◦, 60◦, 75◦}. Process parameters in Table III.D.4.2. For entry stage, d ≤ 0. For exit
stage, d ≥ 0.
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Table III.D.4.4: Predicted bead geometry by the voxel-based simulator. Comparison of the corners
simulated with constant and variable tool-head velocity.

Angle Constant velocity Variable velocity

15◦

30◦

45◦

60◦

75◦
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Table III.D.4.5: Experimental datasets. Deposited corners with constant and variable tool-head
velocity.

Angle Uncontrolled velocity Controlled velocity

15◦

30◦

45◦

60◦

75◦
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Table III.D.4.6: Experimental validation. Columns 1-2: registered scanned data of the physical
specimens in Table III.D.4.5. Column 3: bead height of variable vs. constant tool-head velocity at
Y = 0.

Angle Uncontrolled velocity Controlled velocity
Controlled vs. un-
controlled velocity.
Cross-section Y = 0

15◦

30◦

45◦

60◦

75◦
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Table III.D.4.7: Bead height at the corner. Experimental corners. Constant vs. variable tool-head
velocity.

Constant velocity Variable velocity

Angle
Average height.
Over-deposition
zone

Deviationi
Average height.
Over-deposition
zone

Deviationi

θ = 15◦ 1.1 mm 0.32 mm (61%) 0.6 mm −0.08 mm
(−12%)

θ = 30◦ 1.0 mm 0.27 mm (47%) 0.6 mm −0.08 mm
(−12%)

θ = 45◦ 0.8 mm 0.12 mm (17%) 0.5 mm −0.18 mm
(−27%)

θ = 60◦ 0.9 mm 0.22 mm (32%) 0.6 mm −0.08 mm
(−12%)

θ = 75◦ 0.9 mm 0.22 mm (32%) 0.6 mm −0.08 mm
(−12%)

iMeasured w.r.t. the average bead height in the steady zones: 0.68 mm.

III.D.4.5.1.2 Predicted corners with constant and variable tool-head velocity

Table III.D.4.4 shows the corners predicted by the geometrical simulator with variable (Fig. III.D.4.8)
and constant tool-head velocity. Table III.D.4.4 shows significant material overfill at the cor-
ners simulated with constant tool-head velocity. The metal overfill is larger for sharper corners
(θ ∈ {15◦, 30◦}). As a result of the corner overfill minimization, the corners with variable tool-head
velocity have a more uniform material distribution along the whole trajectory.

III.D.4.5.2 Experimental validation
Table III.D.4.5 presents the experimental corners resulting from constant and variable tool-head
velocity. Table III.D.4.6 shows the registered scanned data corresponding to the physical corners
depicted in Table III.D.4.5. The comparisons in Table III.D.4.6 demonstrate that the application of
tool-head velocity variation significantly reduces material overfill at the corners. The height of the
corners deposited with variable tool-head velocity is more uniform than the height of the corners
built with constant velocity, such as previously observed in the simulated corners.

Table III.D.4.7 compares the bead height in the overfill zone for the corners resulting from
constant and variable tool-head velocity. The average height of the 10 registered datasets at the
steady-state region of the entry bead is 0.68 mm. Fig. III.D.4.9 shows the bead height deviation
in the overfill zone for the experimental corners resulting from constant and variable tool-head
velocity.

Constant tool-head velocity. (i) the average bead height in the overfill zone is, as expected,
above the reference value (0.68 mm) and (ii) except for θ = 45◦, the height deviation w.r.t. the
reference value is above 30%. These two facts show that the material overfill at the corner is
noticeable when the tool-head velocity is kept constant.
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Variable tool-head velocity. The bead height deviation nears 10% (except for θ = 45◦). It
is a significant reduction when compared against the constant tool-head velocity case. The average
height in the overfill zone is below the reference value for all the studied angles. It shows that
the present approach tends to generate material underfill at the corner. This aspect is particularly
apparent for θ = 45◦, where the height deficit of the corner with variable tool-head velocity (27%)
is higher than for the corner with constant tool-head velocity (17%).

Figure III.D.4.9: Experimental corners. Constant vs. variable tool-head velocity. Bead height
deviation (Table III.D.4.7) in the overfill zone.

Table III.D.4.8: Volume of the predicted and experimental corners.

Constant velocity Variable velocity

Angle Predicted cor-
ner

Experimental
corner

Predicted cor-
ner

Experimental
corner

θ = 15◦ 85.7 mm3 51.3 mm3 76.9 mm3 43.7 mm3

θ = 30◦ 85.7 mm3 49.5 mm3 81.2 mm3 45.0 mm3

θ = 45◦ 85.7 mm3 49.3 mm3 82.4 mm3 46.3 mm3

θ = 60◦ 85.7 mm3 51.9 mm3 83.2 mm3 49.7 mm3

θ = 75◦ 85.7 mm3 55.1 mm3 83.7 mm3 51.4 mm3

III.D.4.5.3 Comparison of the predicted vs. experimental corners
Table III.D.4.8 reports the volume of the predicted and experimental corners. The volume of the
predicted corners is larger than the volume of the experimental corners. The predicted corners are
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Table III.D.4.9: Corners built with constant tool-head velocity. Predicted (η = 0.59) vs. experi-
mental data sets.

Angle Predicted (η = 0.59) Experimental
Predicted vs. ex-
perimental. Cross-
section Y = 0

15◦

30◦

45◦

60◦

75◦
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Table III.D.4.10: Corners built with variable tool-head velocity. Predicted (η = 0.59) vs. experi-
mental data sets.

Angle Predicted (η = 0.59) Experimental
Predicted vs. ex-
perimental. Cross-
section Y = 0

15◦

30◦

45◦

60◦

75◦
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(a) Material efficiency factor η = 1.0. (b) Material efficiency factor η = 0.59.

Figure III.D.4.10: Predicted vs. experimental datasets. Corners built with variable velocity. Corner
angle θ = 30◦.

simulated with the nominal powder flow rate f with the assumption that all the powder material is
indeed melted and becomes part of the bead. However, it does not occur in the real LMD process,
where an amount of the powder material is wasted (independently from corner existence). The
effective powder flow rate feff, which models the amount of powder that effectively becomes part
of the bead is:

feff = η ∗ f, (η ∈ [0, 1]) (III.D.4.23)

where η ∈ [0, 1] is the material efficiency factor.
The value of η was approximated as the average ratio of the volume of the experimental vs. the

predicted corners reported in Table III.D.4.8. The obtained value was η ≈ 0.59. This value shows
that, on average, 41% of the powder is wasted in the deposition of the 10 corners.

The predicted model for volume estimation in both constant and variable velocity differs from
the measured volume, mainly due to material waste in the process (still difficult to adjust in
the theoretical model). But a good experimental result is that the variable velocity approach
indeed reduces sensibly the measured overfill at the corners, and that this reduction effect is more
pronounced in sharper angles -columns 2 and 4 in Table III.D.4.8-. Thus, for the sharper angle of
15◦ the volume reduction is about 16% (43.7 vs. 51.3 mm3).

Tables III.D.4.9 and III.D.4.10 compare the bead height trend of the predicted vs. the exper-
imental corners with constant and variable tool-head velocity, respectively. The bead height is
compared at the cross-section Y = 0 because it corresponds to the zone of maximum height in the
entry bead. In both Tables III.D.4.9 and III.D.4.10, the bead height of the predicted datasets was
adjusted with the material efficiency factor η = 0.59.

Tables III.D.4.9 and III.D.4.10 show a good agreement between the predicted and the experi-
mental datasets. In Table III.D.4.9, the cross-sectional data at Y = 0 for the corners with constant
tool-head velocity show that the geometrical simulator overestimates the material overfill for the
sharpest corners (θ ∈ {15◦, 30◦, 45◦}). In the other cases, θ ∈ {60◦, 75◦}, the approximation of
the overfill is correct. For the corners with variable tool-head velocity, Table III.D.4.10 shows that
the predicted corners provide valid estimations of the shape of the experimental corners in the
cross-section Y = 0.
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Fig. III.D.4.10 presents the corner of angle θ = 30◦ built with variable velocity. The predicted
corner in Fig. III.D.4.10(a) does not consider material loss, i.e. the material efficiency factor is
η = 1. In Fig. III.D.4.10(a), the predicted corner is always above the experimental corner along the
whole trajectory, not only at the corner.

Fig. III.D.4.10(b) compares the predicted vs. the experimental datasets considering the ma-
terial loss for the simulation of the predicted corner. This figure supports the previous findings in
Table III.D.4.10, which shows that the geometrical simulator estimates the deposited bead when
the effective powder efficiency is known (η = 0.59).

The previous results show the capacity of the voxel-based simulator to approximate the topog-
raphy of the bead in LMD trajectory corners and to optimize it for a given set of LMD settings. It
is worth mentioning that the material efficiency does not affect the optimization process. The same
optimal tool-head velocity profiles are obtained for different values of material efficiency η ∈ (0, 1].
On the other hand, the material efficiency η (usually known to the process engineer) is required to
generate accurate predictions of the bead height with the voxel-based simulator.

III.D.4.5.4 Similarities and differences with other approaches
The LMD process settings (e.g. materials, tool-head velocity, laser power) for Refs. [7, 10, 124,
140, 193] differ from one reference to the other. The hardware used is also diverse. It is therefore
unfeasible to establish numerical comparisons between these works. Hence, this section qualitatively
compares this work and the other approaches in Table III.D.4.1 to limit overfill in LMD trajectory
corners.

1. Tuning process variable: Tool-head velocity (Refs. [124, 140, 193]) prevails over the powder
feed rate (Ref. [7]) and the laser power (Ref. [10]) as tuning variable. The main reasons are
that (i) the response time of the kinematic system is faster than the one of the powder flux
system, (ii) additional hardware is not required to modify the tool-head velocity and (iii)
material waste additionally weakens the powder feed rate as a tuning variable.

2. Trial-and-error vs. computational approaches: Trial-and-error approaches (Refs. [140,
193]) are costly in time and materials and, therefore, few angles are studied. Computational
approaches (e.g. this work and Ref. [124]) reduce experimentation costs and allow the study of
several corner angles. In addition, computational approaches can simulate different conditions
(e.g. corner angle or process parameters) without adding considerable costs. An advantage
(at the present time) of the trial-and-error approaches in Refs. [140, 193] is that they admit
multi-layer experiments.

3. Corner smoothing: This approach (Ref. [140]) rounds a 90 degree corner, lowers the tool-
head velocity and variates the power delivered to the laser, thus deposing more or less material.
The corner is rounded by affecting the G502 instruction of the G-code and the e precision
parameter (intervening the CNC controller). Ref. [140] does not present conclusions regarding
the use of laser power as a tuning variable. The approach of the present manuscript is not to
change the path geometry and therefore is not a competitor for Ref. [140].
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III.D.4.6 Conclusions
This manuscript presents the experimental validation of the computational approach in Ref. [124]
to use variable tool-head velocity in order to limit unintentional material accumulation in trajectory
corners in Laser Metal Deposition (LMD). To validate the method in Ref. [124], single-layer corners
with angles θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦} are built with and without tool-head velocity variation.
The results of the experiments show that:

1. The studied tool-head velocity variation effectively limits material overfill for the trajectory
corners with angles θ ∈ {15◦, 30◦, 60◦, 75◦}. After applying the tool-head velocity variation,
the maximum height deviation reduces from 61% to 12% and from 32% to 12% for the angles
θ = 15◦ and θ = 75◦, respectively. This result shows that the benefit of the tool-head velocity
strategy is greater for smaller angles.

2. A significant underfill of 27% around the corner tip is observed for θ = 45◦ when the tool-head
velocity variation is applied.

3. Metal powder waste is an important aspect to consider in LMD. In the experiments reported
in this manuscript, a considerable amount (near 40%) of metal powder dispensed by the nozzle
is wasted. This material loss is present along the whole trajectory and it is independent of
the presence of corners in the trajectory.

4. The manufacturing engineer plans the LMD process, using the nominal material feed [kg/s],
the nozzle trajectories, material efficiency η, etc. Observe that the material efficiency for
a particular process/machine is generally known to the process engineer, and is present re-
gardless of the presence/absence of trajectory corners. The presented strategy for minimizing
the metal overfill prescribes velocity profiles at the trajectory corners. When the LMD (with
these velocity profiles) is executed, the engineer finds that the corners significantly improve,
as compared against the constant velocity counterparts. On the other hand, the overall multi-
layer deposition progresses according to the process/machine material waste (approx. 40%).
As a consequence, the number of layers required to clad the workpiece increases. However,
the focus of this manuscript (i.e. the metal overfill minimization at corners) is substantially
achieved.

Additional work is necessary over the computational approach to control the effect (2) above.
Future work will also be devoted to extending the current overfill minimization strategy to multi-
layer situations.

Context of application
This manuscript reports the extension of the capabilities of Process Planning in Additive Manu-
facturing (Refs. [110, 125]). The manuscript reports the experimental validation of a method to
limit unwanted metal overfill. This computational method is to be integrated into a larger LMD
planning tool (Ref. [125]).
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Abstract
In the context of Industrie 4.0, it is necessary for several applications, to encode characteristics of a
Boundary Representation of a manifold M in an economical manner. Two related characterizations
of closed B-Reps (and the solid they represent) are (1) medial axis and (2) Reeb Graph. The medial
axis of a solid region is a non-manifold mixture of 1-simplices and 2-simplices and it is expensive
to extract. Because of this reason, this manuscript concentrates in the work-flow necessary to
extract the Reeb Graph of the B-Rep. The extraction relies on (a) tests of geometric similarities
among slices of M and (b) characterization of the topological transitions in the slice sequence of
M. The process roughly includes: (1) tilt of the B-Rep to obtain an unambiguous representation
of the level sets of M, (2) identification and classification of the topological transitions that arise
between consecutive level sets, (3) sample of Reeb graph vertices inside the material regions defined
by the level sets, (4) creation of Reeb graph edges based on the type of topological transition and
the 2D similarity among material regions of consecutive levels. Although the Reeb Graph is a
topological construct, geometrical processing is central in its synthesis and compliance with the
Nyquist-Shannon sampling interval is crucial for its construction. Future work is needed on the
extension of our methodology to account for manifolds with internal voids or nested solids.

Keywords
Computing methodologies → Computer graphics, Shape analysis, Volumetric models

III.D.5.2 Introduction
The encoding of geometry and topology characteristics of a Boundary Representation (B-Rep) in
a computationally economical manner is a useful process in several fields such as medical imaging,
computer graphics and computational mechanics[69]. Two of the most commonly used characteri-
zations of a closed manifold are (1) medial axis and (2) Reeb Graph. The Reeb Graph in particular
is used in the analysis of large data sets, such as: the efficient classification and segmentation of
large point clouds [191], mesh segmentation oriented towards topological optimization [104], CAD
model segmentation [75, 175], shape similarity and matching [118] and data abstraction from large
data sets [132]. For a detailed description of applications of Reeb Graphs in computer graphics see
[17].
The goal of this manuscript is to introduce the necessary steps to synthetize the Reeb Graph from
the Boundary Representation of a closed manifold M. The proposed methodology relies on (a)
the identification of the critical points of the slice-driven Morse function defined on M and (b) the
synthesis of connectivity between critical points based on tests of geometric similarities between
slices of M and the type of topological transitions.
The Medial Axis of a compact 3D region Ω ⊂ R3 is defined as the set of all points p ∈ Ω such that
the closest point in the boundary ∂Ω is not unique. The medial axis is a non-manifold mixture of 1-
simplices and 2-simplices. The extraction of the medial axis of a closed manifold is computationally
expensive and therefore unsuitable for applications that require real time interaction.
The Reeb Graph [150] is a way to encode the topological characteristics of a closed manifold in
an efficient manner. The Reeb graph depends on the characteristics of the level sets determined
by a slicing-driven function on a closed manifold M. Slicing a closed 2- or 3-manifold mesh is to
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compute level sets of a height function f : M → R with f (x, y, z) = z. The preimage f−1 of such
function at a point c is known as a level set of f .
The topological characteristics of manifold M are determined by the critical points of the function
f defined on M. To avoid ambiguity in the level sets, the height function f defined on M must be
a Morse function. A Morse function is characterized by its critical points. A critical point of f is
a point p ∈ M such that its tangent gradient ∇Mf(p) is zero. A critical point is degenerate if its
tangent Hessian matrix HMf(p) is degenerate, that is, if its matrix determinant is zero.
Morse Function: Let M be a closed and oriented 2- or 3-manifold without inner cavities embedded
in R3, and consider a twice differentiable function f : M → R. The function f is a Morse function
if all critical points of f are non-degenerate:

∀p ∈ M : ∇Mf(p) = 0 → det (HMf(p)) ̸= 0 (III.D.5.1)

Given a Morse function f defined on manifold M, it is then possible to define the Reeb Graph of
f , denoted as R (f).
Reeb Graph: Let f : M → R be continuous and call a component of a level set a contour. Two
points p, q ∈ M are equivalent if they belong to the same connected component of f−1(c) with
c = f(p) = f(q). The Reeb Graph of f , R (f) = X∼, is the quotient space defined by this
equivalence relation.
There is a continuous map ψ : M → R (f). Point u ∈ R (f) is a node if ψ−1(u) contains a critical
point, that is, if u is the image of a critical point of f under ψ.
The rest of the manuscript is structured as follows: Section III.D.5.3 presents the literature re-
view regarding the Reeb Graph extraction on manifolds, Section III.D.5.4 presents our proposed
methodology, Section III.D.5.5 shows the application of the proposed methodology to example data
sets and Section III.D.5.6 concludes the manuscript.

III.D.5.3 Literature Review
Two of the most commonly used characterizations of a closed manifold are (1) medial axis and
(2) Reeb Graph. The calculation of the medial axis of a 3D region is a computationally expensive
problem [40, 148], making it unsuitable for applications that require real time interaction. The
Reeb Graph was introduced to graphics applications by Shinagawa et al. [164].
Available methods for the extraction of Reeb Graph can be classified according to the choice of the
Morse function f : M → R that encodes the topological information of the manifold [19]. Some
functions used include the height function [17, 111], the geodesic distance from a seed vertex [74] and
distance from center of mass [18]. The height function approach imposes the lowest computational
cost of all three options but requires an adequate definition of the slicing that defines the function f .
The main advantage of such a function is the independence from translations and uniform scaling.
However, the height function is not independent from rotations. The approaches based on distance
from barycenter and geodesic distance from a seed vertex impose greater computational cost than
the height function method [18], but with the advantage of independence with respect to rotations.
Given a slicing-driven height function, available methods differ on how to find the connectivity
of the Reeb Graph. Standard methods rely solely on proximity between level sets and handle
classification, such as the ones in [76, 164]. Other authors have proposed to use heat-based mesh
segmentation [74] or triangular mesh collapse [76] to link together the nodes of the Reeb Graph.
Sweep algorithms are also used to find the connectivity of the Reeb Graph, such as the one in
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[31]. Some authors have explored the 2D shape similarity analysis between the polygonal regions
denoted by a connected component of a level set as a filter to establish connectivity between slices
[157, 158] in the surface reconstruction context. The proximity-only solutions are unreliable to
produce correct results in complex topological transitions [164]. The addition of a shape similarity
filter increases the reliability of the connectivity extraction by ensuring the correctness of each
ancestor-descendant relationship between level sets. Other approaches, such as the one in [176], are
heavily dependant on the mesh representation of the manifold, entailing problems regarding the
mesh density and the computational cost of mesh segmentation. Other works have focused on the
definition and extraction of discrete Reeb Graphs on voxelized domains [16] or the reduction of the
topological complexity of the extracted graphs [41].
The Reeb Graph is able to adequately reflect the topological structure only of manifolds with no
inner voids. When inner voids are present, the Reeb Graph fails to univocally capture the topological
structure of the manifold [51, 174]. The reason for this is that the Reeb Graph is sensible only to
topological changes that affect the number of connected components in the level set (i.e. in the cross
section). The introduction of inner contours does not change the number of connected components
in a level set.

III.D.5.3.1 Conclusion of Literature Review
Reeb Graph extraction methods can be classified according to the nature of the function f : M → R
that encodes the topological characteristics of the manifold. The most commonly used function is
the height function. It allows for easy implementation and low computational cost at the setback
of being dependant on the orientation of the manifold in 3D space.
The synthesis of the edges of the Reeb Graph is also approached using different methods. Proximity-
only solutions are unreliable for automatic extraction of the edges and other approaches entail high
computational costs. Some authors have explored 2D shape similarity as an additional filter to
improve reliability of level set connectivity in other contexts such as surface reconstruction. The
Reeb Graph is limited to 2-manifolds or 3-manifolds without inner cavities, since it is only sensible
to topological changes that affect the number of connected components.
To encode 3D shape, the medial axis computation is extremely expensive if directly addressed.
On the other hand, the Reeb Graph by itself presents the aforementioned limitations. Because
of this reason, this manuscript presents the first steps in supplementing the Reeb Graph with
geometrical information, thus allowing in the future a reasonable encoding of 3D shape with inner
voids characteristics.

III.D.5.4 Methodology
We propose a methodology to extract the Reeb Graph of a given Boundary Representation of a 2-
or 3-manifold without inner cavities M embedded in R3. Our algorithm can be summarized in the
following steps:

1. Level set extraction: Tilt of the B-Rep to obtain an unambiguous representation of the level
sets of M.

2. Nodes definition: Sampling of the material regions denoted by the obtained level sets of M
to obtain the nodes of the Reeb Graph.
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3. Edges definition: Synthesis of the connectivity (edges) of the Reeb Graph according to the
criteria of shape similarity and the type of topological transition.

III.D.5.4.1 Level sets extraction
Given a Boundary Representation of a 2- or 3-manifold without inner cavities M embedded in R3

(Fig. III.D.5.1), a height function f : M → R is defined on the manifold driven by a planar slicing
with a set of planar surfaces Π parallel to the x − y plane. The orientation of the manifold M
in R3 must be one in which the function induced by the planar slicing is a Morse function (see
Eq. III.D.5.1). The fact that the function f defined on M is Morse ensures the unambiguity of the
level sets of M retrieved from such a mapping.
A level set Πc : f−1(c) defined by the preimage of the Morse function f can contain one or more
contours (connected components). For example, in Fig. III.D.5.1, the level set Πci has one contour
and the level set Πcj has two contours. The contour population between level sets evolve as a result
of changes in the cross-section composition of M.
The distance between the slices is subjected to compliance with the Nyquist-Shannon principle
in all directions. The technician must decide which level of geometric detail d is to be captured.
The sampling distance should be less than d/2 (in all directions). Therefore, there is no universal
sampling rate. For example, if the designer wants to preserve very close cavities as separate ones,
the sampling distance (in all directions) must be set up as half of the minimal separation among
holes, or less

Figure III.D.5.1: Definition of Morse function f : M → R on M. Level sets are obtained by the
preimage of f .

III.D.5.4.2 Nodes definition
A set P of material points is obtained by sampling each polygonal region denoted by the contours
of each level set. Each point p ∈ P represents a polygonal region (connected component) inscribed
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(a) Creation: add 0-handle (b) Annihilation: add 2-handle

(c) Union: add 1-handle (d) Separation: add 1-handle

Figure III.D.5.2: Effect of Morse operators (handles) on the contour population between level sets
Πi and Πi+1.

within one or more contours. As stated before (see Section 1), the vertices V of the Reeb graph
R (f) = (V,E) are the points in P such that they are critical points (i.e. they belong to a critical
level set).

III.D.5.4.3 Edges definition
Before establishing a connectivity between the nodes of the Reeb Graph, the topological changes in
the level set sequence must be identified and classified. A set of Morse operators known as handles
govern the evolution of the contour population. Each handle represents a topological change in
the manifold M and a change in the number of contours (connected components) between level
sets. The application of handle operators can be classified as follows (Fig. III.D.5.2): (a) a 0-handle
creates a new contour from the empty set, (b) a 2-handle annihilates a contour and (c) a 1-handle
either separates a contour into two different contours or unites two contours into a single contour.
The occurrence of handles in the level set sequence dictates whether a level set is critical or not.
A level set is critical if there is a change in the contour population with respect to the previous or
the next level set in the sequence. Fig. III.D.5.3 shows the critical level sets in the sequence for
manifold M and the type of handle operator that acts upon the level set sequence in each step.
Even though the slicing provides the vertices of the Reeb graph, the connectivity of the Reeb graph
does not unequivocally follows from the slicing. We propose an heuristic to find the edges E of Reeb
graph R (f) = (V,E) by following the level set sequence and connecting two vertices in neighboring
level sets according to (a) the handle operator that acts on the contour population between the
neighboring level sets and (b) shape similarity between polygonal regions. In this heuristic, the
non-critical level sets are necessary to synthetize the connectivity of the Reeb graph.
For example, in Fig. III.D.5.4, to obtain the connectivity between vertices v5 and v8 it is necessary
to take into account noncritical points p6 and p7 (edges e5−6, e6−7, e7−8). Each edge is labeled
with a handle operation according to the contour population evolution. Edges e3−5 and e4−5 are
1-handle edges since they connect a level set with two contours (represented by vertices v3 and v4)
with a level set with only one contour (represented by vertex v5).
Once all vertices and edges are obtained, the Reeb graph R(f) for a Morse function f : M →
R encodes the characteristics of the Boundary Representation of the manifold M, as seen in
Fig. III.D.5.5.
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Figure III.D.5.3: Critical level sets on manifold M with handles.

Figure III.D.5.4: Connectivity between level sets to synthetize Reeb graph R(f) = (V,E).
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Figure III.D.5.5: Reeb graph R(f) for the example manifold M.

III.D.5.5 Results
Figure III.D.5.6 shows the Reeb Graph synthetized for two example data sets. Figures III.D.5.6(a)
and III.D.5.6(b) shows the Reeb Graph for the hands dataset. Figures III.D.5.6(c) and III.D.5.6(d)
shows the Reeb Graph for the elephant dataset. In both examples the synthetized Reeb Graph
correctly captures the topological transitions that occur through the Boundary Representation.
Notice that, since our methodology is geometrically-driven, the Reeb graph resembles the geometry
of the manifold M.
Even though there is not a preferred way of drawing the Reeb Graph (connections between nodes
could take any shape), the fact that the connections resemble the geometry of the manifold M is
useful towards the use of the Reeb Graph for the computation of the medial axis of the manifold
M.

III.D.5.6 Conclusions
This manuscript presents a workflow for the synthesis of a Reeb Graph encoding for a solid region in
R3 denoted by its Boundary Representation M. The Reeb Graph for M is a well known topological
entity. However, its geometrical realization presents challenges and variations. Our approach starts
with the rotation of M to obtain a Morse function f : M → R on the manifold, with f (x, y, z) = z
for point (x, y, z) in M. Morse-compliance guarantees that level sets of f unambiguously determine
the material regions of M on each slice. The nodes of the Reeb Graph (non-degenerate critical
points of f) are detected by registering the topological changes (i.e. classifying the Morse handles)
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in the level sets of a Nyquist-Shannon equispaced slicing of M. The Reeb Graph admits several
edges for each pair of nodes. Detection and per-slice-tracing of these edges is achieved by using the
handle classification and 2D shape similarity among level sets.
This geometry-driven methodology correctly synthesizes the Reeb Graph of the example B-Reps.
It results in Reeb Graph representations faithful to the geometrical characteristics of M, and not
only to its topological features. Future work is needed in: (a) the extension of the methodology to
obtain a topological representation of manifolds in R3 with inner cavities and (b) trying to achieve
independence of the slicing with respect to the orientation of the manifold in R3.
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(a) Reeb Graph on hands dataset. Viewpoint
1.

(b) Reeb Graph on hands dataset. Viewpoint
2.

(c) Reeb Graph on elephant dataset. View-
point 1.

(d) Reeb Graph on elephant dataset. Viewpoint 2.

Figure III.D.5.6: Synthesis of the Reeb Graph representation on example manifolds.
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Part IV
General Conclusions
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IV.A

Contributions

This thesis presents the following contributions of Computational Geometry Applied to Additive
Manufacturing:

In the domain of Shape Optimization in Lattice Structures, this thesis presents:

(a) The implementation and sensitivity analysis of the SIMP (Solid Isotropic Material with Pe-
nalization) topology optimization strategy. The sensitivity analysis shows that extreme values
of the SIMP parameters affect the manufacturability and mechanical performance of the final
designs (see Section III.B.1).

(b) A method to transform density maps (e.g. resulting from topology optimization) into surface
lattice structures. The lattice structures generated by this method (i) resemble the given
density distribution and (ii) are fabricated via metal Additive Manufacturing, specifically
with the processes of selective laser melting and binder jetting (see Section III.B.2).

(c) A procedure to integrate material homogenization and Design of Experiments (DOE) to esti-
mate the stress/strain response of large surface lattice domains. The procedure significantly
reduces the computational cost with respect to direct Finite Element Simulation. Material
homogenization efficiently approximates the displacements on the lattice domains and DOE
produces simple mathematical expressions to express the stresses in the lattice as functions of
the displacements obtained through homogenization. Results show that the proposed method-
ology is an efficient tool with potential applications in the coarse estimation of the von Mises
stress in large lattice domains (see Section III.B.3).

In the domain of Simulation of Laser Metal Deposition, this thesis presents:

(a) The Finite Element Method implementation of a 2D linear transient thermal model for a metal
substrate that is heated by the action of a laser. The analysis of the influence of the laser
intensity distribution and the laser spot radius showed that these two parameters strongly
affect the shape (width and depth) of the heat affected zone and the maximum temperature
on the metal substrate. A comparison with a nonlinear model shows that the linear model is
a good option for digital twin designs, due to their simplicity and reasonable accuracy (see
Section III.C.1).

(b) The Finite Element Method implementation of a 2D nonlinear thermal model of the Laser
Metal Deposition (LMD) process. This implementation considers the following nonlinear phe-
nomena: (i) temperature-dependent material properties, (ii) phase change, and (iii) radiation.
The energy of the laser is represented as an energy flux boundary condition. The material
deposition model is dictated by the delivery rate of powder (feed rate [kg/s]) and its asso-
ciated Gaussian function of the radii from the nozzle axis. The model does not assume a
particular geometry (parabolic, circular, sinusoidal, etc.) for the bead cross-section, as some

216



previous works do. The results of the simulations show reasonable accuracy to predict the
bead geometry (width error 15%, height error 22%) (see Section III.C.2).

In the context of Process Planning for Laser Metal Deposition, I had the opportunity to
work on a project funded by a private industrial company. The goal of the project was to develop a
softtware that provided CAD/CAM support for the path-planning and process-planning of LMD.
In view of this, this thesis presents the following scientific and industrial contributions:

(a) The implementation of a 2.5D path planning method for Laser Metal Deposition which (i)
considers the geometrical aspects of the toolpath generation, and (ii) incorporates a graph-
based region avoidance algorithm to alleviate hardware limitations. The physical experiments,
using a powder-fed LMD system, show that the path planning methods for subtractive man-
ufacturing must be adapted to fulfill the particular constraints of the LMD process. This
computational method is integrated into an industrial LMD process planning tool (see Sec-
tion III.D.1).

(b) The implementation of a 3D (non-planar) path planning method for Laser Metal Deposition
(LMD). The method allows the manufacturing, via LMD, of overhanging features of revolution
workpieces with a cylindrical 3D kernel. The algorithm slices the geometry into cylindrical
layers using coordinate transformation and planar slicing. The algorithm generates the tool-
path for each cylindrical slice using isometric parametrization and planar toolpath-planning
methods. The results of the simulations show that this algorithm allows the LMD manufac-
turing of industrial workpieces, such as gear teeth and cam lobes. This strategy for cylindrical
slicing is also integrated into an industrial LMD process planning tool (see Section III.D.2).

(c) The implementation of a voxel-based geometric simulator for Laser Metal Deposition (LMD)
and a tool for the minimization of the material over-deposition at corners in LMD. The
method controls tool-head velocity near the corner tip. Results for the corner angle instances
θ ∈ {30◦, 60◦, 90◦} show a reduction of over 90% of the over-deposition present at corners
without nozzle velocity control (see Section III.D.3).

(d) The experimental validation of the computational minimization approach in (c). The exper-
iments consider single-layer corners with angles θ ∈ {15◦, 30◦, 45◦, 60◦, 75◦} built with and
without tool-head velocity control. The results of the experiments show that this method
limits material overfill for trajectory corners in LMD. The benefit of the method is greater for
smaller angles (see Section III.D.4).

(e) A workflow for the synthesis of the Reeb Graph for a solid region in R3 denoted by its
Boundary Representation (B-Rep) M. The workflow starts by rotating M so that the function
f(x, y, z) = z becomes a Morse function. The nodes of the Reeb Graph (non-degenerate
critical points of f) are detected by classifying the Morse handles of the equispaced level sets
(slices) of M. The edges of the Reeb Graph are achieved by using the handle classification and
2D shape similarity among level sets. The results show that this geometry-driven methodology
correctly synthesizes the Reeb Graph of the example B-Reps (see Section III.D.5).
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IV.B

Future Directions and Opportunities

The development and advance in (Metal) Additive Manufacturing depend on multidisciplinary
efforts. It requires simulation, experimentation, and the interaction and integration of physics,
geometry, materials science, robotics, and software development. This thesis has contributed to the
development of Computational Geometry and its integration into industrial software for the Laser
Metal Deposition process. In this section, I describe some potential directions that this work leaves
open for future investigations.
In the domain of Shape Optimization in Lattice Structures, further work is required on the
following:

(a) The transformation of density maps into lattice structures. This thesis presented a solution
to this problem in Section III.B.2 using a single family of lattices, namely the Schwarz cell.
An interesting direction to explore is the use of two or more families of lattice cells at the
same time. In this manner, one could exploit the mechanical advantages of different lattice
families on the same workpiece. One of the challenging problems would be to achieve smooth
transitions in the connections between lattice cells of different families.

(b) The efficient simulation of the thermo-fluid-mechanical response of large lattice domains under
working loads. The simulations should also account for arbitrary topology and geometry of the
workpiece filled with lattice cells. In Section III.B.3, this thesis presented a multiscale model
based on homogenization and DOE that points in this direction. However, further efforts are
required to improve its accuracy by, for example, fitting of more robust meta-models that use
more information from the displacements field obtained via homogenization.

In the domain of Simulation of Laser Metal Deposition, further work is required on the
following:

(a) The physical-based simulation of the Laser Metal Deposition regarding its efficiency and ac-
curacy. Particularly, for the 2D nonlinear thermal model presented in Section III.C.2, further
investigation is required to calibrate the absorption coefficient, which expresses the portion of
the laser power that indeed inputs to the bead-substrate. It is affected by phenomena not yet
understood or even identified. Future work is also needed to account for the particle (thermal)
dynamics over the substrate, which is responsible for significant material and energy waste.

(b) The inclusion of stochastic conditions during the simulation. For example, the material feed
rate is not constant but suffers perturbations that non-stochastic models do not consider.
Although stochastic considerations generally come at a sacrifice of efficiency, I think this
could be a valuable path to explore for addressing repeatability issues sometimes associated
to LMD and Additive Manufacturing in general.

As mentioned above, the contributions to Process Planning for Laser Metal Deposition were
achieved in the framework of a project funded by a private industrial company. This industrial
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collaboration is still ongoing. Our ultimate goal in this regard is to develop and apply Computa-
tional Geometry techniques and translate them into CAD/CAM software solutions that contribute
to the industrial adoption of LMD. In other words, we aim to contribute to the increase of LMD’s
Technology Readiness Level (TRL). In light of this, future work will be devoted to the following:

(a) The implementation and validation of additional deposition strategies for LMD, apart from
those described in Section III.D.1. The process planning for LMD should consider the whole
manufacturing process, including the postprocessing (e.g. machining) to which the LMD-
manufactured workpieces are subjected to.

(b) The use of the 3D cylindrical slicing presented in Section III.D.2 for the LMD-manufacturing of
industrial gears whose pitch surface is a cylinder (e.g. spur and helical gears). The upcoming
stages of this project will be: (i) the experimental validation of the proposed approach and (ii)
the development of the inverse kinematics to translate the 3D trajectory into the movements
of a 6-axis robot. Another direction for future research is the extension of the mathematical
model to consider industrial gears whose pitch surface is a cone (e.g. bevel gears).

(c) The tool for the minimization of the material over-deposition at corners in LMD presented
in Sections III.D.3 and III.D.4 currently uses an exhaustive search strategy. This strategy is
expensive in computing time. Further study of other optimization techniques (e.g. branch and
bounding) and heuristics for cutting computing time expenditures are required for in-process
applications. Future work will also be devoted to extending the current overfill minimization
strategy to multilayer situations.

(d) The workflow for synthesizing the Reeb Graph for a solid region presented in Section III.D.5
does not account for 3-manifolds with inner cavities. Further efforts will be devoted to ad-
dressingthis problem. Future work is also needed to explore the potential of the Reeb Graph
to serve for the decomposition of solids in the context of desynchronized multiaxis (3+1 or
3+2 axis) additive manufacturing.

The aforementioned contributions are the product of the joint collaboration between the Universidad
EAFIT and Vicomtech Research Center, Laboratory of CAD CAM CAE (Universidad EAFIT),
Department of Industry and Advanced Manufacturing (Vicomtech), and all the doctoral research
team. These contributions have been screened, revised and accepted by the international scientific
community, achieving publication in indexed International Journals and Conferences. Some of
these contributions have been approved and integrated into industrial software, and are being
commercially exploited by Ikergune A.I.E. and Talens Systems, part of the INZU Group.
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