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CHAPTER 1Introduction and Literature ReviewGeometric relations are of primary importance in Computer Aided Design, Manufac-turing and Process Planning. Any software intended to serve these areas has to providethe ability to create, modify, maintain and reason about geometric relationships. Theseabilities have traditionally been imparted to the software on a case-by-case basis. Thusthe general structure of the problem has been lost. The repercussions of this loss are: (i)a failure to address the common, fundamental problems underlying particular instances;(ii) a restriction in the application domains served; and (iii) a tendency towards soft-ware replication. These factors produce larger, di�cult-to-maintain and economicallyunattractive systems. In this work, e�orts towards improving this situation are under-taken, by producing a centralized kernel or server for spatial geometry tasks. This kernelcan be accessed by several applications, and extended as needed. To be useful it has tobe able to solve problems e�ciently over a broad domain.In a simple scenario, a spatial reasoning system should deal with geometric entitiesfully and consistently de�ned. Typical services in this case correspond to queries aboutorientation and position of entities relative to each other, inclusion of one geometric entityinto another, unambiguous constructions based on the entities (e.g convex hulls), etc.More complicated scenarios result from the creation of entities which hold prescribedrelations with their surroundings. In some cases, the entities are fully speci�ed by theserelations. For example, calculating the convex hull of a tesselation of points producesa well de�ned object, a convex polyhedron. In other cases the desired entities couldbe ambiguously speci�ed. For example an ambiguous speci�cation might require thecreation of a line perpendicular to another line, resulting in an in�nite number of possible1



answers. In yet other cases the relation speci�ed between objects might be internallyinconsistent making their creation/modi�cation impossible. For example, an inconsistentspeci�cation might request a line being simultaneously perpendicular to two non-parallelplanes. Producing a con�guration of geometric entities which satis�es a set of spatialrelations is called Scene Feasibility or Geometric Constraint Satisfaction problem.This work pursues a centralized kernel philosophy with the objective of serving all ofthese levels of spatial reasoning, including solutions for instances of the Scene Feasibilityproblem.1.1 Motivation and Objectives. Problem De�nitionThe following are examples of diverse �elds in design and manufacture where thecapabilities mentioned above �nd application:Feature extraction is a process by which a subset of the geometric (solid) model of abody is identi�ed as representing a feature. The process of feature extraction implies asearch across the data structure of the solid model for a con�guration of entities [18, 24]which satis�es relations inherent to the feature. The strategy used for the extraction (syn-tactic pattern recognition, graph matching, etc.) is essentially connectivity oriented [16].However, the determination of the exact nature of the feature found involves the geome-try of the model. For example, slots and protrusions are identical from the point of viewof connectivity; they can only be distinguished by their geometry. To extract a givenfeature, the connectivity search must be complemented by a geometrical query system.Typical geometrical queries test for relations between entities such as perpendicularity,parallelism, distance, convexity, etc.Fixturing concerns the holding of a workpiece during a manufacturing process. Theassessment of the degrees of freedom of the workpiece implies the evaluation of orientationof supporting surfaces, positioning of center of gravity, projection of center of gravity onthe supporting surfaces, 2D and 3D convex hull calculations, etc. Numerical calculationsmay be able to answer some queries (for example positioning of center of gravity). How-2



ever, manipulation of geometric concepts is required to support the concept of degrees offreedom of the body.Assembly planning is an area which intensively uses spatial reasoning capabilities.Information on perpendicularity, parallelism, distances between entities, etc is neededto validate/�nd a particular assembly scene [36, 34, 35, 37]. Again, these capabilitiesaddress only part of the problem. The problem of feasibility of an assembly implies astudy of the possible relative motion between the bodies involved accompanied by anstudy of the dimensions and positions of the participant entities.Parametric design uses the speci�cation of relations among geometrical entities tofacilitate the process of re-design in the event of changing speci�cations. Therefore anymodi�cations to dimensions or positions in the design have to be compatible with thegoverning relations. Conversely, modi�cation of the required relations has to be validatedagainst the dimensions and positions of the existing objects. Finally, relations and objectsmay be required to change. Therefore, the software developer faces the challenge ofkeeping con�gurations which are consistent in the relational and geometrical aspects.Tolerancing analysis requires the reasoning about perpendicularity, parallelism, con-sistency of dimensions, angularity, etc. These are central tasks of a Spatial ReasoningModule [32]. Additionally, issues such as inconsistent dimensioning and tolerancing areintrinsically Scene Feasibility problems.The examples discussed demonstrate the need for having a centralized kernel forreasoning about spatial relationships. Such a kernel must: (i) contain tools allowing forqueries and constructions for fully and consistently instantiated entities (static reasoning);and (ii) have the ability to create and reason about ambiguously de�ned scenes whichare the result of spatial relations among their entities (dynamic reasoning). Since thedesign and planning process are sequentially speci�ed, a tool is needed in order to detectinconsistencies in the speci�ed relations, or else, to produce entities satisfying them.As part of this work, a library will be developed to address the most common geo-metric queries and constructions present in static reasoning. This library also lends itselfas a support for queries needed in the solution of the Scene Feasibility problem (dynamic3



reasoning). Both modules are supported by a Geometric Modeling system, which is re-sponsible for the data structures which represent the models of the world. Since the �nalgoal is to characterize solutions for the instances of the Constraint Satisfaction problem,a theoretical work is presented which combines concepts from algebraic geometry, grouptheory and graph theory in order to make it computationally feasible. This theoreticalwork: (i) presents several techniques to express the problem in a tractable mathematicalway; (ii) provides a solid theoretical background for the physical interpretation of math-ematical results; and (iii) discusses the necessary abstractions and manipulations neededto improve performance of the computations. This work includes an application of thestatic library to tasks of Feature Extraction. It also applies the proposed techniques toanalysis of constraint satisfaction to several domains in Design and Manufacture.1.1.1 Research Objectives. The GCS/SF ProblemThe objective of this work is to develop techniques to solve instances of the GeometricConstraint Satisfaction or Scene Feasibility (GCS/SF) problem. It can be stated asfollows: Let a World W be, a closed, homogeneous subset of E3, and a set of geometricentities S = fe1; ::eng which are closed, connected subsets of W. A set of spatial relationsamong pairs of entities R = fRi;j;kg are speci�ed, where Ri;j;k is the kth relation betweenentities i and j. The solution to such a problem is constituted by either a diagnosticof inconsistency in the formulated relations, or an instance of a set of entities ei in theworld W consistent with all relations R speci�ed on entity i.As discussed in depth later, the GCS/SF problem requires for its solution the supportof Dynamic and Static Reasoning systems. On the other hand, research conducted inspeci�c application areas of reasoning [19, 36, 35] has shown that Static reasoning is alsoa necessary tool in solving the Dynamic reasoning problem. Following sections discussthe practical and theoretical aspects of the solutions to these problems. In the context ofthe GCS/SF problem the term topology will be used to refer to the spatial relations thatthe entities have to keep. The term geometry is related to the dimensions and positionsof entities in the World. 4



Table 1.1 Common Geometric AlgorithmsName Speci�cation Size Measure ComplexityPlanar Convex Hull convex hull of N=number points O(N:log(N))set of planar points3D Convex Hull convex hull of N = number points O(N:log(N))set of pointsPlanar Point Point included N = number sides O(N)Inclusion in a polygonConvex Polygons P,Q Polygons Np;Nq number edges O(Np +Nq)IntersectionStar Polygons P,Q Polygons Np;Nq number edges O((Np +Nq)2)IntersectionKernel of a Polygon P polygon Np number edges O(Np)1.2 Components of a Geometric Reasoning Server1.2.1 Static Reasoning ModuleStatic Reasoning problems are those concerning fully and unambiguously de�ned enti-ties. Typical problems include boolean queries testing a particular relation among entitiesand construction queries which create new entities satisfying relations with other givenentities in the world. Examples are classi�cation problems, in which a point is tested forinclusion inside a polygon, construction of convex hulls, projections of rays onto objects,etc. These problems have well de�ned (although not unique) answers. For example, theperpendicular line from a point onto a curved surface is a set of well de�ned lines.Static reasoning therefore spans a well de�ned (and complex) set of services, whichare needed in common practice in environments of CAD / CAM. Table 1.1 presents asample of common problems, along with their complexity [14]. A short browsing in 2Dproblems follows:� Given convex polygons P and Q, �nd the result of the intersection be-tween them. This type of algorithms exploits the fact that the intersection mustbe convex, and that its upper (lower) boundary is a merging of sections of theindividual upper (lower) boundaries. 5



� A Star Polygon has an area whose points can "see" all the boundary, called kernel.The kernel is a convex polygon. The problem of determining the kernel of agiven star polygon is equivalent to the intersection of N halfspaces in 2D.� Find the set of polygons which form the intersection of two star polygons.In this case, since the boundary of the two polygons Pq and Pp is described inconsistent order, it is easy to determine the crossovers of boundaries and to formthe collection of disjoint (convex) polygons which form the intersection.From the examples above, it can be seen that although many problems have beendeeply studied, static problems still present a rich variety and implementation challenges.These challenges are related to the optimization of algorithms, and the re-usability ofparts of them in other problems.1.2.2 Dynamic Reasoning ModuleDynamic Reasoning addresses the Scene Feasibility / Constraint Satisfaction (GCS/SF)problem. This problem can be stated in mathematical terms as a set of equalities andinequalities. Solving the GCS/SF problem is equivalent to the determination of the setsof values for the variables which solve the equations. This work will be limited to spa-tial constraints that can be expressed as equalities; for example positioning constraints.Other types of constraining conditions, for example enforcement of non-invasive posi-tioning, are expressed in the form of inequalities. They are not within the scope of thisinvestigation.Solving the GCS/SF problem requires the answer to the following points:(1) Calculate the con�guration(s) which satisfy the given constraints.(2) Are the given entities over or under-constrained?(3) If it is under-constrained, how many degrees of freedom are still available?(4) What is the relation between variables used in the mathematical form of theGCS/SF problem and physical degrees of freedom of the entities involved?6



Question 1 has been partially answered with the help of numerical techniques [28,27, 1, 8]. However, they produce a particular answer, even in cases in which the degreesof freedom form a set of either in�nite or �nite number of solutions. Furthemore, todetermine a particular answer the methods are limited; failure of the numerical methodto produce an answer might not mean an empty solution space (over-speci�cation in theproblem), but instead a convergence problem in the implementation of the numericalprocedure. Therefore numerical techniques, although needed for determining particularcon�gurations, do not answer the questions 2, 3, and 4.Questions 2-3 have not been satisfactorily answered in a systematic manner to thepresent time, basically because the dimension of the solution space for the GCS/SF prob-lem is a function of topological and geometrical conditions. In other words, manipulationof the topological part of the GCS/SF problem does not su�ce in determining the topol-ogy (degrees of freedom) of the solution space. This work explores several techniquesused in order to answer questions 2 and 3. They include Grobner Bases [21, 7] andCharacteristic Sets [10, 9]. The Characteristic Set method is mainly used for automatictheorem proving; given a set of hypotheses in the form of polynomials H = fh1; h2; ::hngand a conclusion polynomial c, the method establishes whether or not c follows from H,and extracts degenerate conditions under which c does not necessarily follow from H.Application of this method to problems of spatial reasoning requires the statement ofa conclusion [20]; which, in the case of GCS/SF problems, would require a hypothesisabout the solution scenario. This is usually not available. Also, if the response of the al-gorithm is that conclusion c does not necessarily follow fromH, no additional informationis gained. These reasons have led to an exploration of methods other than CharacteristicSets to deal with the questions asked.Grobner Bases are a consistent and computable way for reasoning about the existenceof solutions to a set of polynomials. They also provide a framework in answering questionsabout the dimensionality of the solution space. This investigation will show that thistheory helps to address questions 2 and 3 above. However, since this background has beenforged in the domains of pure algebraic geometry, its speci�c application to the GCS/SF7



problem has not been intended. In response to this situation, this work formalizes theanalysis of the GCS/SF problem by using Algebraic Geometry theory. In this way,properties of Grobner Bases will help to resolve issues about the number of feasiblegeometric scenarios, inconsistency and redundancy of constraints, etc.In the literature reviewed, question 4 has been approached in special cases fromthe areas of kinematics, mechanisms and group theory [19, 2, 3]. A joint in a rigid barmechanism is, by de�nition, a constraint. Therefore, historically, the study of mechanismanalysis precedes constraint satisfaction problems. At the same time, a mathematicalabstraction of constraints is provided by group theory. This multiplicity of disciplinesstudying the same area is manifested in the fact that the terms (trivial) constraint,joint and group are used interchangeably in the discussion. The techniques described in[19, 2, 3] are limited to reasoning about topology of constraint networks, and to the specialcases in which the constraints are of the trivial type (discussed later in this document).In this investigation, the theoretical background built for questions 1-3 will allow theintegration of topological and geometrical analysis, without the limitation of triviality ofconstraints. In addition, problem formulations derived from the use of group theory willrelate the variables used with the degrees of freedom of the participant entities.The following sections present a theoretical background and review of related material.This review allows for a more speci�c and formal discussion of the research objectives.1.3 Theoretical BackgroundThree theoretical aspects need to be addressed in this investigation: (i) Since theGCS/SF problem can be expressed in terms of sets of polynomials, its solution corre-sponds to the existence of common roots for the polynomials in the set. In this respect,Grobner Basis provides a background for analysis of the solution of the set of polynomials.(ii) Given that the SE(3) group allows the e�cient expression of the geometrical natureof the GCS/SF problem, an introduction to the relevance of group theory is presented.(iii) Since the Spatial Constraint graph is a pictorical representation of the GCS/SF prob-8



Table 1.2 Elementary Relations and Polynomial FormsRelation Arguments Vector Form Polynomial Formperpendicular v,w vectors v:w = 0 v1:w1 + v2:w2 + v3:w3 = 0parallel v,w vectors v � w = 0 v2:w3 � v3:w2 = 0v3:w1 � v1:w3 = 0v1:w2 � v2:w1 = 0magnitude v vector v:v = d2 v1:v1 + v2:v2 + v3:v3 = d2lem, it is felt that the decomposition of the SC graph has close relation with embeddedsubproblems of the GCS/SF problem. To address such issue, graph partition, selectionof subproblems and integration of partial solutions into the general solution need to beexplored.1.3.1 Algebraic Geometry. Grobner BasesTable 1.2 shows how relations commonly used in Spatial Reasoning translate intovector and polynomial equations. These equations use the variables corresponding toposition and orientation of the entities involved. For example, the speci�cation of twoplanes being parallel implies their normal vectors being parallel, forcing relations such asthose shown in Table 1.2. Therefore, solution to a set of geometric constraints involvesthe analysis of the set of common roots for a polynomial set. This type of variablesis called here, for reasons discussed later, non-canonical. Canonical variables will beintroduced in following sections, and will carry considerable weight in this investigation.There are several (symbolic) techniques [22] used to study the roots of sets of polyno-mials. Among them, Grobner Bases provide several characteristics which make it suitablefor solving this kind of problems. In [21, 7], a discussion about the more fundamentalfacts in Grobner Bases theory and applications is available.Given a set of polynomials F , which expresses the GCS/SF problem, a Grobner Basisfor F , GB(F ), is a mathematically equivalent set, with convenient properties for rootsolving [21]. By examining GB(F ) one can draw conclusions about the nature of theroots in the original set F . In particular, Grobner Bases allow the answering of ques-9



tions about existence of solutions (real or complex), the dimension of the solution space(empty, Zero-Dimensional or Multi-Dimensional) and the dependence (or redundance) ofa new polynomial on (with respect to) polynomials existing in the set. It also presentsadvantages in determining a particular numerical solution.The algorithm proposed by Buchberger [6, 7] for the construction of the GrobnerBases of a set of polynomials F does not take any advantage of particular characteristicsof the application domains which produce the set F . Therefore, it is necessary to useformalizations that set up an e�cient characterization of the GCS/SF problem. Suchcharacterization would be then submitted for solution to Grobner Bases computationalgorithms. The formalization of the GCS/SF problem in terms of Group Theory ful�llssuch a goal.1.3.2 Euclidean GroupsGroups are sets of mathematical elements, furnished with a binary associative op-eration, displaying a neutral element and an inverse for every element in the set. Inthis investigation, the group of interest is SE(3), the semi-direct product R3 �SO(3; R),where R3 is the translational part, SO(3; R) is the special orthogonal group, representingall right handed orthonormal 3-D frames and � is the group multiplication operation. IfG1; G2 and G3 represent displacements in SE(3) the (non-commutative) group propertiesare satis�ed: (i) Two displacements G1; G2 applied in sequence produce a new displace-ment G3 = G1 �G2. (ii) I is the null displacement in SE(3); G � I = I �G = G. (iii) Foreach G 2 SE(3) there is an inverse displacement G�1 which undoes the displacemente�ected by G; i.e. G �G�1 = G�1 �G = I. (iv) The e�ect of displacements is accumula-tive. If G's are applied in the order G1; G2 and G3, the following sequences are identical:(G1 �G2) �G3 = G1 � (G2 �G3).In [19], Herve was able to relate the structure of the group SE(3) to the displace-ments allowed by kinematic joints. In this way formal structures were introduced (con-jugation classes) which allow the naming of certain displacements in SE(3) as "lineartranslations", "rotations", "planar slidings", etc. For example, a rotational joint, can10



be described as the rotational class of displacements, written as Ru(�) to stress the factthat it has one, rotational degree of freedom, �, about the axis u. The prescribed kine-matic relations are herein called constraints, since they restrict the degrees of freedomof the entities expressed by the conjugation class. The variables expressing the degreesof freedom of the joint (for example �) in this formulation will be called canonical. Thedirect relation between constraints in the context of the GCS/SF problem and canonicalforms of constraints as classes of the group SE(3) can be exploited for the solution ofthe GCS/SF problem.Herve, and later Thomas & Torras [36, 34, 35] used the fact that, as sets, groupscan be composed and intersected. The composition re
ects the sequential application ofconstraints, while the intersection re
ects the simultaneous application of two constraints.From a kinematic point of view, several composed constraints can be thought of as a serialmechanism. Constraints intersected can be taken as several links (in parallel) sharing anend e�ector.Sequences of constraints are expressed as:R1 �R2 �R3:::: �Rn (1:1)When the sequence has length 1, it is called Trivial constraint. In [19] Herve pro-vides tables in which the results of composition and intersection of trivial constraintsare tabulated. Non-trivial constraints, however, are present in many concepts in scenespeci�cations; for example in the concepts of parallelism, distance and angles betweenentities, etc.As mentioned before, the GCS/SF problem presents a strong inter-dependency be-tween geometry and topology of constraints. The existing methods using the SE(3)group [36, 34, 35] for constraint manipulations only address the topology of constraints.They also present limitation in that they only deal with trivial constraints. In this inves-tigation, however, group theory is exploited to shift the emphasis in the modeling of theGCS/SF problem from the positions to the degrees of freedom of the entities involved.11



The convenience of this alternative formulation will be assessed in this work. Addition-ally, the joint application of canonical variables in conjunction with the techniques ofalgebraic geometry will be investigated.1.3.3 Graph TheoryThe Graph of Spatial Constraints (see Figure 1.1) conveys the topological and geomet-rical information of the GCS/SF problem. The representation of the GCS/SF problemby a Spatial Constraint Graph allows a series of unexploited advantages: (i) a very clearformulation of the problem; (ii) a systematic way, suitable for computer applications, ofgenerating the equations governing the degrees of freedom of the entities involved and;most importantly, (iii) the identi�cation of subproblems which help in the solution ofthe GCS/SF problem, by allowing the application of preprocessing techniques. In or-der to have a clear convention for discussion ahead, the Graph of Spatial Constraints isintroduced [35], using the following conventions:(1) Bi: Represent the Bodies (i = 1:::n):(2) Fij (frame of) the feature i in body j.(3) Ci; i = 1::m: Constraint RelationsSince entities are represented by frames, in the following discussion the terms entityand frame are used as equivalent. In the SC graph, the nodes are entity frames (Bjand Fij), while the arc between two nodes represents the displacement that relate thecorresponding entity frames. Two entities may be joined by more than one arc, to admitmore than one constraining relation between them. There are two types of nodes; nodesBj represent (a position frame of) an entity in the World Coordinate System. Featurenodes Fij represent the feature i in body (frame) Bj. The arcs in the graph representdisplacements which convert coordinate frames.Conceptually, there are two types of arcs: positioning and constraint arcs. Positioningarcs represent known relative positions of entities or features. They always join an entity12
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investigation will address the in
uence of the SC graph decomposition on the analysis oflocal constraints, and on the solution of the full GCS/SF problem. In assembly planning,for example, such analysis is central to the mapping of local subgraphs of the SC graphinto sub-assemblies. Treatment of sub-assemblies as clusters of bodies greatly simpli�esthe GCS/SF problem.The identi�cation of cycles of a graph has been studied in connection with several en-gineering applications. For example, in the analysis of electric networks the cycles in thegraph of a circuit allow for the formulation of Kircho� laws and similar techniques [33].Two questions in such analysis present particular importance for our purposes: (i) howmany cycles exist in a graph which convey independent information about the connectiv-ity (topological structure) of the graph; and (ii) how to obtain a set of such non-redundantcycles which completely expresses the connectivity of the graph. The answers to the ques-tions are well known [12, 11, 38], but the determination of such a set is largely dependenton the �nal purpose of the application. It is, in many cases, an expensive computationalprocedure. In this investigation, the theoretical results that allow the enumeration ofthe cycles of a graph will be complemented with proposed algorithms to extract a set ofcycles that are meaningful from the physical point of view of the GCS/SF problem.
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1.4 Outline of the Proposed ResearchThe long term goal of this research is the achievement of a Dynamic and Static Rea-soning Server applicable in CAD / CAM / CAPP environments. However, the degreeto which knowledge in these areas (static/dynamic) has developed presents a great un-balance, with the dynamic reasoning part being in the very early stages of exploration.This situation is taken into consideration by setting di�erent objectives in each area.For Static Reasoning a robust implementation and application is proposed. In the Dy-namic Reasoning area, research in the theoretical foundations and algorithms is targeted,along with exploration of contributing �elds, and applications in a variety of domains.Activities of software development are comparatively reduced in this area.Figure 1.2 shows the underlying philosophy in the creation of the centralized Geome-try Server aimed at in this investigation. From the point of view of the user (programs orhumans), a layer (Geometric Objects) extends the capabilities of the computer, present-ing geometric objects as primitive types, similar to 
oating or integer numbers, characterstrings, etc. The Geometric Reasoning Server is anchored on top of this extension layer.It presents the Static and Dynamic Reasoning division previously mentioned. The Geo-metric Reasoning module serves the requests of variety of client applications.1.4.1 Proposed Research in Static ReasoningThe nature of the problems addressed implies that Static Reasoning utilities have arole both in serving external calls, and requests from the Dynamic Reasoning part. Aset of client programs/users share the capabilities of the library. The proposed schemeeliminates the opportunity of code replication, concentrates specialized knowledge in oneplace, under a unique standard of data structures and interfaces, and yet it is built insuch a way that it allows clients to extend the capabilities with their own constructionsand/or routines.1.4.2 Proposed Research in Dynamic Reasoning15



Figure 1.3 presents a conceptual division of di�erent aspects in the research regardingDynamic Reasoning. Individual discussion of each follows:1.4.2.1 Equation Representation of the GCS/SF ProblemTwo alternatives can be used in modeling the GCS/SF problem with a set of poly-nomial equations: (i) using non-canonical variables, which emphasize the parametersand positions of the entities in the world; or (ii) using the canonical variables, whichstress the degrees of freedom allowed to the entities by the constraints. Methodolo-gies for the modeling of the problem using both alternatives will be explored, and theirstrengths/weaknesses identi�ed.1.4.2.2 Solution of the Equation Form of the GCS/SF ProblemRegardless of the method of representation (canonical / non-canonical) numerical andsymbolic techniques can be used for the solution of (polynomial) equations. However, asdiscussed before, given the need for counting the degrees of freedom of the entities, thenumerical methods are not su�cient. Therefore symbolic techniques will be used in thisresearch.1.4.2.3 GCS/SF Problem PartitionAccording to the description to the GCS/SF problem, its representation in the formof a Spatial Constraint graph simply requires the mapping of entities into nodes and rela-tions into arcs. A partition of the SC graph is then needed for the systematic productionof the Equations Form of the GCS/SF problem. The existing theory [33, 12, 11] will beused in order to produce a partition that also facilitates the application of preprocessingtechniques proposed in this investigation, and discussed later.Symbolic manipulation techniques [19, 36], based in look-up tables have the charac-teristic that they require a canonical representation of the constraints. Further, they havethe limitation of working only with the topological part of trivial constraints. Geometryhas to be dealt with separately, and non-trivial constraints are not contemplated. In16



response to this limitation, in this work the calculation of a Grobner Basis for the poly-nomial representation of the GCS/SF problem will allow: (i) the modeling by canonicaland non-canonical variables; (ii) the inclusion of non-trivial constraints; and (iii) the con-sideration of the geometrical and topological aspects of the problem. This application ofAlgebraic Geometry techniques requires that a direct relation be established between theGrobner Basis of the polynomial form of the GCS/SF problem and its solution space (thedegrees of freedom of the scene). This relation is an important part of the contributionof this investigation.1.4.2.4 Divide & Conquer Solution for the GCS/SF ProblemThe partition of the GCS/SF problem was �rst used in topology oriented solutiontechniques in [19, 36]. The present work will use Divide & Conquer techniques in con-nection with Grobner Basis calculation as a means to make e�cient use of characteristicsof subproblems. Previous works in GCS/SF do not elaborate on the strategies of prob-lem partition. This investigation considers SC graph partition as a step to produce theequation form of the GCS/SF problem. Beyond this consideration, the partitioning ofthe Spatial Constraint graph will allow the application of Divide & Conquer techniques.Therefore, two important aspects will be addressed: (i) methods for partitioning theproblem; and (ii) usage of the solution of subproblems in the construction of the solutionfor the full GCS/SF scenario.1.5 Dissertation OutlineThis thesis is organized as follows:Chapter 2 examines the structure of the Geometric Reasoning Server. Static Reason-ing tasks have the dual purpose of (i) addressing geometric problems which are themselvesrelevant to the CAD / CAM / CAPP processes; and (ii) support of of the solutions tothe GCS/SF (dynamic) problem. 17



Chapter 3 establishes a methodology for the formal expression of the GCS/SF problemin polynomial forms. Relevant background in Algebraic Geometry is discussed. Di�erentphysical situations of the GCS/SF are mapped into properties in the Algebraic Geometrydomain, and vice versa. This chapter therefore gives theoretical support to the solutionof the GCS/SF problem.Chapter 4 describes an alternative methodology for the expression of the GCS/SFproblem by using the subgroups of the Special Euclidean group SE(3) (canonical for-mulation). This alternative representation allows for: (i) a more e�cient representationof the GCS/SF problem; (ii) a direct relation between variables and physical degreesof freedom of the entities involved; and (iii) the application of automated reasoning interms of degrees of freedom. This automated reasoning may be implemented in the formof look-up tables, rewriting rules, etc.Chapter 5 studies partition techniques for the GCS/SF problem. The subdivisionof the problem is required not only for a systematic enumeration of all the equationsgoverning the scene, but for the application of Divide & Conquer techniques. Sincethese techniques can be implemented by partitioning the Spatial Constraint graph of theGCS/SF problem, this chapter studies the mathematical structure of graphs, and therepresentation of graphs as linear spaces. The partition of the SC graph is then relatedto the determination of a basis for particular subspaces of that linear space. After atheoretical background is set up, heuristically e�cient algorithms for the partition of theGCS/SF problem are proposed. Chapter 5 concludes with an example of the applicationof the theory reviewed and algorithms developed.Chapter 6 evaluates the proposed techniques for the solution of the GCS/SF prob-lem in terms of the computer resources spent on them. These techniques have varyinge�ectiveness depending on the characteristics of the problem at hand. These charac-teristics include: (i) Two body vs. multi-body systems; and (ii) trivial vs. non-trivialconstraints. The choices for solution include: (a) modeling of the problem by canonicalor non-canonical variables; and (b) solving the polynomial form of the GCS/SF prob-18



lem by handling the whole set of polynomials, or by identifying and preprocessing localsubproblems in order to contribute to the general solution.Chapter 7 illustrates several applications of this research, in the areas of MobilityAnalysis and Kinematic Analysis of Mechanisms. This chapter also discusses the inter-action of the Geometric Reasoning server with a client program; in this case a FeatureExtraction client module uses diverse libraries of the Static Geometric Reasoning server.Chapter 8 establishes the limitations and potentials of the present investigation, andhighlights the areas in which future research would be most fruitful.
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CHAPTER 2A Static Geometric Reasoning Server2.1 IntroductionIn the previous chapter the rationale for the research and development of a serverspecialized in Geometric Reasoning was introduced. The basic division between dynamicand static reasoning was established, and an overview of the theoretical backgroundbehind these areas was presented. This chapter will discuss the Static Reasoning serverdesigned and developed as part of this investigation. Besides the central GeometricReasoning module, it contains complementary libraries which are essential to make itaccessible by clients (humans or programs). A brief description of the supporting modulesfollows, and the conclusions of this development are drawn. A later chapter discusses theapplication of the Static Reasoning server and other modules in the domain of FeatureRecognition.In CAD / CAM / CAPP environments, apparently unrelated problems in manycases share an underlying theoretical area. Failure in factorizing and developing thespecialized common knowledge inherent in the problems results in a series of separateand overlapping ad hoc attempts to solve them. Although successful in the immediatesense, these attempts produce large replication, and waste of e�orts, coding, knowledge,etc. When another application that shares the same knowledge is encountered, the samesituation and patterns repeat. To prevent this situation, a centralized server specializedin geometry has been designed and implemented.21



2.2 Static Reasoning in the GCS/SF problemThe previous chapter discussed the need for a centralized Static Geometric Reasoningserver. Besides the obvious applicability in CAD / CAM / CAPP, static reasoning servesa supporting role in solving dynamic reasoning problems. This section elaborates on thisstatement.
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if (dist(L1,L2) < L) ->    1 rotational d.o.f.   & 1 translational d.o.f.   Figure 2.1 Static Reasoning Support for Dynamic ReasoningThe instance of the GCS/SF problem presented in Figure 2.1 belongs to the domainof kinematic analysis of mechanisms. Given a kinematic chain of entities (bodies) andconstraints (joints) the goal is to determine how many, and which degrees of freedomthe chain presents. The example presented involves two lines L1 and L2 in arbitraryposition in the space, and a rigid bar, equipped with spherical joints in both extremes,which connects L1 and L2. As a crude approximation to the appropriate solution, acase-by-case analysis of the dimension of the solution space would originate the followingalgorithm: 22



function 3D slider(L1; L2 : line;L : real) : fd:o:f:g0 f1 if (distance(L1; L2) > L)!2 return(�);3 else if (distance(L1; L2) = L)!4 if (parallel(L1; L2))!5 return(f�; xg);6 else7 return(f�g);8 �9 else if (distance(L1; L2) < L)!10 return(f�; xg);11 �12 gThis example, illustrates the fact that geometric conditions (distance() and parallel()in the example) have the capability to change the structure of the solution space, althoughthe topological speci�cation of the constraining relations remains the same. Therefore,the calculation of a solution space in the case of the GCS/SF problem cannot be accom-plished by separating geometrical or topological terms. It follows that dynamic reasoningcannot be performed without the support of static Reasoning routines.2.3 Organization of the Static Reasoning LibraryThe Spatial Reasoning library has been implemented following the structure shownin Fig 2.2. Although its central goal is to provide geometric reasoning services, itsimplementation cannot be carried out in isolation, and its services cannot be exploitedexternally if no supporting utilities are provided. In this section the di�erent supportmodules are discussed. 23



2.3.1 The Solid ModelerThe solid modeler contains the basic database in which the connectivity and geometryof the entities populating the world are stored and maintained. In this development anObject Oriented, Boundary Representation solid modeler was used. Since solid modelingis not the purpose of this investigation, a commercial product (ACIS) was selected as thebasic platform. Object Oriented was used as the programming paradigm, since in manycases the nature of the objects handled is not known a priori; therefore a 
exible datamodel, such as the one provided by the Object Oriented methodology, is required.2.3.2 Standard InterfaceTo avoid that applications become dependent on a speci�c solid modeler, an Applica-tion Interface Speci�cation (AIS) standard is enforced. The AIS assumes the interactionof the application with a generic modeler, leaving open the possibility of replacing themodeler without changing the program which uses it. This goal is attainable as longas both the new modeler and the Geometric Reasoning module comply with the AISspeci�cation.2.3.3 Application InterfaceThe design of the Geometric Reasoning system is such that a client program or appli-cation is able to use the Geometric Reasoning module as a library. This scheme enlargesthe capabilities of the solid modeler. The client program may chose to interact withthe World Administrator if there is need for services such as set or list libraries, nam-ing/renaming of objects, management of attributes and intermediate results, deletion,debugging, etc. The interaction between the application and AIS is also open, in casethat direct services of the solid modeler are required. As a last resort, the client applica-tion could interact at the level of the solid modeler itself. In that case no compatibilitywith other solid modeling systems should be expected.24
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ApplicationFigure 2.2 General Structure Geometric Reasoning Server2.3.4 User and Script InterfaceThe goal of this interface is to allow the user to create, manipulate, display andquery geometric objects without creating a client application. For this purpose, eachroutine that serves as entry point for a call from a program is also accessible to the userthrough the User Interface. In this way, an interactive user can access the services ofthe Geometric Reasoning server. It is also possible to make a log of a large sequenceof commands, store the session and replay it for the purposes of demonstrations, or forcorrections or modi�cations in the middle of a large chain of commands. Notice thata script can be also submitted by a client program, therefore providing another way ofinteraction. Consistent with the �nal purpose of the Geometric Reasoning Server, thelanguage de�ned can be referred to as a Geometric Prolog, with capabilities for variable25



instancing that are not present in pure Prolog. As usual in cases of language de�nition,the typical three submodules included are the Lexic Analyzer, Syntax Analyzer andSemantic Validator. Since these practical aspects are not central to this investigation,they will not be discussed here.2.3.5 World AdministrationThis module is vital to any activity interacting with the objects kept in the solidmodeling space, since the solid modeler does not provide database services. Therefore itis the responsibility of the World Administrator to perform the following tasks:(1) naming and attribute managing, to guarantee the uniqueness of names for the ob-jects in the world.(2) identi�cation and extraction, for extraction of selected components of objects.(3) object storage and retrieval, for implementation of the data structures and classeswhich allow to organize, store and retrieve the entities in the world.(4) preservation of consistency of the world upon object elimination.2.4 Geometric Reasoning ModuleFrom the point of view of software organization, the Geometric Reasoning module hasthe same status as other modules discussed above, such as the Solid Modeler, ApplicationInterface, World Administrator, etc. However, from the point of view of its functionalityand its importance for this investigation, it is singled out for separate discussion. Inthis section the domain and the functionality of the Geometric Reasoning module arepresented. 26
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ects the fact that as a general rule, a higher dimensionality entity uses for itsde�nition lower dimensionality ones; for example a COEDGE uses EDGE and VERTEXfor its de�nition. For the purpose of this investigation the world is assumed composed of
at 3D entities, including non-manifold objects. Therefore the curve and surface objectsare restricted to straight lines and plane surfaces respectively.27



2.4.2 FunctionalityThe functions developed as part of the Geometric Reasoning module have the follow-ing basic functionalities:E � E � :::�E ! fTRUE;FALSEg (2.1)E � E � :::� E ! fEg (2.2)E � E � :::�E ! [E] (2.3)E � E � :::� E ! math entity (2.4)where E represents an entity. Line 2.1 represents logical or boolean queries. Lines 2.2 to2.4 represent constructive queries. In line 2.2 the result of the function is a set, in whichorder is irrelevant, while line 2.3 involves a list, in which order is important. Line 2.4introduces functions whose result is a mathematical entity (vector, matrix, etc).Table 2.1 Reduced set of Logical Queries and FunctionalityFunction Arguments Resultscolinear: E � E booleancoplanar: E � E booleancoincide: E � E booleanperpendicular: E � E booleanparallel: E � E booleanconvex: E � E booleanconcave E � E booleanTable 2.1 shows a classi�cation of the logical functions according to main groups.Functions somehow overlap in their de�nition due to client program interface; for examplecoincide(E1,E2) tests whether two entities coincide. In the particular case of straight linesthis function has to revert to colinear(E1,E2). Therefore it is natural to design the systemin such a way that coincide() be a generic function which is supported, in this given case,by colinear(). By providing the two functions, a seamless front end is presented to theuser. 28



Table 2.2 Reduced set of Constructors and FunctionalityFunction Arguments Resultsjoin perpend: E � E point � pointdistance: E � E realangle between: E � E real � realsigned angle between: E � E real � realintersection: E � E fEgsort angular: fpointg � point� vector [point]projection E � E � vector [E]planar hull fpointg � vector [point]space hull fpointg shellTable 2.2 shows a classi�cation of the constructive functions according to main groups.This table exempli�es the situation in which the exact result of a constructive operationis known only at execution time. For example, the projection of a line onto a jagged facein general would be a set of segments; a point if the line is perpendicular to the face; ora null entity if the projection falls outside the face limits.Figures 2.4 and 2.5 show a partial view of the library structure. Figure 2.4 showsfunctions whose primary domain are geometric entities. Figure 2.5, corresponds to topo-logical entities of dimension 1 and 2; EDGE and FACE.2.4.3 HierarchyThe structure of the library is such that many of the functions provided are themselvesusers of lower level utilities in the library kernel. Figure 2.6 shows an example of thissituation. In this case, space hull() calls an algorithm for generating the convex hull of aset of points in E3 ( gift wrapping() ); this algorithm uses utility routines to calculate theangle between planes, (signed angle between() ), extract coplanar points from a givenset (extract coplanar()), and a planar convex hull function (graham scan())based onthe Graham Scan algorithm. The Graham Scan uses routines to sort a set of (coplanar)points based on the angle about a central point (sort angular()). The angular sorting29
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CHAPTER 3Algebraic Geometry Solution to theGCS/SF ProblemIn previous chapters the rational for a Geometric Reasoning server supporting CAD/ CAM / CAPP activities was presented. The organization of a Static Geometric Rea-soning module was then discussed. In this chapter the mathematical formulation of theGCS/SF problem (Dynamic Reasoning) will be presented. An important portion of thisresearch involves the reasoning about the structure of the solution space, for the problem.Therefore, properties of the algebraic geometry methods used, relevant to the character-ization of the solution space will be introduced. Based on these properties, an algorithmfor constraint management will be proposed and illustrated with an example.3.1 Polynomial Model for the GCS/SF ProblemThis section demonstrates a methodology for stating the GCS/SF problem in terms ofsets of polynomials. This methodology uses the (unknown) position frame of the entitiesin the scene. Therefore, in this case the unknowns of the GCS/SF problem are theelements of the matrix representing the frame. In this work, variables that result fromsuch a formulation are called non-canonical, in contrast with canonical ones, discussedin following chapters.The following conventions will be held: 32



Table 3.1 Elementary Relations and Polynomial FormsRelation Entity 1 Entity 2 Vector EquationP �ON � P p1 p2 p1 = p2P �ON � LN p1 LN = (p2; v2) (p1 � p2)� v2 = 0P �ON � PLN p1 PLN = (p2; n2) (p1 � p2) � n2 = 0LN �ON � LN LN = (p1; v1) LN = (p2; v2) v1 � v2 = 0(p1 � p2)� v2 = 0LN �ON � PLN LN = (p1; v1) PLN = (p2; n2) (p1 � p2) � n2 = 0v1 � n2 = 0PLN �ON � PLN PLN = (p1; n1) PLN = (p2; n2) (p1 � p2) � n2 = 0n1 � n2 = �1� entity means geometric entity: point, line, or plane. Each entity has an attachedframe. Points are in the origin of their attached frame. Lines coincide with the Xaxis of their frame. Planes coincide with the Y-Z plane of their attached frame.� The world W contains a set of geometrical entities S = fe1; e2; :::; eng. For thediscussion at hand it is assumed that the entities are part of a body.� Fij is the known, �xed relative position of entity i inside body (frame) j.� Ci represents relations or constraints between entities. These relations are shownin the �rst column of Table 3.1.� Di represents displacements applied on the frames of the entities Fij.Let the con�guration of entities be as shown in Figure 3.1, where B2 can be assumedstationary with no loss of generality. Frames Fi1 represent the position of distinguishedelement i (i = 1::3 in this case) of (and with respect to) body B1. Similar statements canbe made about Fi2 with respect to body B2. The goal is to �nd a position of B1 whichsatis�es the relations Fi1 �Ri � Fi2. For example, it may required that point F11 be ONplane F12. That means, F11 �ON � F12.The procedure for modeling the problem in terms of sets of polynomials is:33
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Figure 3.2 Simultaneous Line-to-Line Restriction between Pairs of Lines3.1.1 Example. Constraint ExpressionConsider a scene in which there are two straight lines LN1 = (P1; v1) and LN2 =(P2; v2) (see Figure 3.2) expressed parametrically, and assumed to be rigidly linked toeach other. Another set of lines, with similar conditions are given by LN3 = (P3; v3)and LN4 = (P4; v4). The proposed relations place LN1 ON LN3 and LN2 ON LN4,(being LN3; LN4 also rigidly joined). The goal is to �nd out whether the relations can besatis�ed, what displacement is to be performed on the rigid body holding LN1 and LN2to achieve the goal, and the degrees of freedom that are a�orded to the body holdingLN1 and LN2 by the relationship.The problem can be stated as follows:(1) Apply a (still unknown) rigid displacement D to LN1 and LN2. D is formed by arotation Rot and a translation T .Rot = 266666664 x11 x12 x13x21 x22 x23x31 x32 x33 377777775 ;T = 266666664 TxTyTz 377777775 (3:2)35



The transformed entities areP 01 = T +Rot:P1; v01 = Rot:v1; P 02 = T +Rot:P2; v02 = Rot:v2 (3.3)(2) The speci�ed relations (parallel, contained, etc.) impose the following conditions(expressed in vector terms for simplicity):(P 01 � P3)� v3 = 0; P 01 2 LN3 (3.4)v01 � v3 = 0; v01 k v3(P 02 � P4)� v4 = 0; P 02 2 LN4v02 � v4 = 0; v04 k v4det(Rot) = +1;The condition det(Rot) = +1 imposes dexterous orthonormality to the matrixRot = [v1 v2 v3]. Orthonormality implies kvik = 1; (i = 1::3); vj:vi = 0; (i 6= j).Dexterity implies v1 � v2 = v3. The corresponding polynomials are presented anddiscussed in later sections (equations 3.5).The equations arrived at are polynomials, whose solutions determine the matrix D,and therefore the position of the (frame of) body B1. Having established the expressionof constraints in terms of polynomials, techniques for characterizing the solution for sucha set are explored in following sections.3.2 Grobner Basis and the GCS/SF ProblemIn what follows, an introduction to an algebraic geometry technique called GrobnerBasis construction will be attempted. Only those issues relevant to the GCS/SF problemare discussed. The interested reader is directed to [21, 7] for details. The following issome relevant terminology.K[ x1,x2,...,xn ]: ring of n-varied polynomials over the coe�cient �eld K.36



Algebraic Closure : The algebraic closure of a �eld K, �K, is the �eld of all roots ofall polynomials in K[x1; x2; :::; xn]. If K is R the set of real numbers, then �K is theset of complex numbers C.Ideal of F : The Ideal of a polynomial set F = ff1; f2; f3; :::; fng is:IK[x1;x2;:::;xn]hF i = fg1:f1 + g2:f2 + :::+ gn:fnjgi 2 K[x1; x2; :::; xn]g:The notation is usually simpli�ed to: IhF i. One says that F is a basis for IhF i.Radical(F) : ff j9k s:t: fk 2 Ideal(F )gAlgebraic set V(I) : Given an ideal I � K[x1; x2; :::; xn] generated by the set F =ff1; f2; f3; :::; fmg, its algebraic set V (I) is de�ned by:V (I) = fx 2 �Knjf(x) = 0;8f 2 Ig; therefore, (fi(x) = 0 8fi 2 F )! (x 2 V (I))Zero Dimension : An Ideal I is zero-dimensional if V (I) is �nite.Ordering : the set of variables fx1; x2; :::; xng is totally ordered under a given order �if 8xi 6= xj, either xi � xj or xj � xi.Lexicographic Order �l : Given two terms t1 = x�11 :x�22 ::x�nn and t2 = x�11 :x�22 ::x�nn ,then t1 �l t2 i� 9i � n such that �j = �j for i � j � n and �i < �i.Degree : deg(t) = deg(x�11 :x�22 ::x�nn ) = �1 + �2 + :::+ �nDegree Order �d : t1 �d t2 i� deg(t1) < deg(t2) or deg(t1) = deg(t2) and t1 �l t2head(f), ldcf(f) : For a given order, and a given ring K[x1; x2; :::; xn], head(f) is thelargest (in the sense of �) term in polynomial f . ldcf(f), the leading coe�cient off , is the coe�cient of head(f) in f . Therefore f = ldcf(f):head(f) + tail(f).Normal Form : Given F = ff1; f2; f3; :::; fng and p where F � K[x1; x2; :::; xn] andp 2 K[x1; x2; :::; xn], there exists a decomposition of p :p = NF (F; p) + Pfi2F (�fi :fi) (with �fi 2 K[x1; x2; :::; xn]) such that NF (F; p)cannot be further decomposed as Pfi2F (�fi:fi) with �fi 2 K[x1; x2; :::; xn]. Theterm NF (F; p) is called a normal form of p with respect to F and NF (F; p) is a37



residual of the reduction of p with respect to F. The reduction process is denoted asp �!F NF (F; p).Grobner Basis : A Grobner Basis GB � K[x1; x2; :::; xn] is a set of polynomials suchthat NF (GB; f) for every f is unique; it does not depend on the sequence ofreduction of f with respect to GB. Therefore, f �!GB p1 and f �!GB p2 implyp1 = p2 (the converse is not true). Also, if NF (GB; f) = 0 then f 2 IhGBi.If NF (GB; f) 6= 0 it implies some of the common roots of F are not roots of f ;therefore the set of roots common to F and f is more restricted than the set ofroots of F .Reduced Grobner Basis : A Grobner Basis GB = fg1; :::; gng is a Reduced GrobnerBasis if:(1) for all fi 2 GB ldcf(fi) = 1(2) for all fi 2 GB NF (GB � ffig; fi) = fiLet F = ff1; f2; f3; :::; fng be a polynomial set in K[x1; x2; :::; xn], and IhF i be itsideal. If another set G = fg1; g2; g3; :::; gng is basis of IhF i then, every root of F is alsoroot of G, and conversely.Given a polynomial f 2 K[x1; x2; :::; xn] one may want to eliminate a term t of f withthe help of another polynomial g 2 K[x1; x2; :::; xn] by multiplying the head(g) by someterm such that on subtracting the result from f , t disappears. For this to happen, it isnecessary that g � f . It is said then that f is reduced with respect to g. It is written asf g�! h, where h is the result of the subtraction. In the process of iterated reductions withrespect to elements of K[x1; x2; :::; xn], the position of the h's in the ordering � decays.One of two things may occur: either f reduces to 0, or all the remaining g's are bigger thanthe �nal h, and therefore f cannot be further reduced. The last product of the reductionprocess is a normal form of f with respect to K[x1; x2; :::; xn], NF (K[x1; x2; :::; xn]; f). Inthe described process, di�erent sequences of reduction are possible, and they do not, ingeneral, produce the same NF (K[x1; x2; :::; xn]; f) result. If a set of polynomials F is38



used for the decomposition, NF (F; f) can be considered as the part of f that cannot beexpressed as a combination of the polynomials fi 2 F .Several additional comments are pertinent at this point:� Grobner Basis forces NF (GB;F ) to be unique, thus providing a way to examinewhether an arbitrary polynomial p is in IhF i or not. If p 2 IhF i then NF (GB; p) =0. Otherwise, it represents an independent polynomial. Intuitively, Grobner Basisbehaves in a manner analogous to a vector basis in linear spaces: if a vector canbe expressed as a linear combination of the base vectors, it is in the space. Inthat case, any common root for the polynomials in the basis also makes any linearcombination of them to vanish.� In a property described later (triangularity of elimination ideals), Grobner Basispresents a characteristic similar to triangulation of a matrix A in solving a linearsystem A:x = b. A triangular form allows the incremental determination of thesolution point.� In a Reduced Grobner Basis there is no redundancy in the polynomials present,since each polynomial is equal to its normal form with respect to the remainingones. The value of this property in the solution of the polynomial system is that itreduces to a minimum the polynomials to be manipulated and/or solved.� An algorithm to calculate the Grobner Basis GB(F ) for a polynomial ideal IhF iis provided by Buchberger in [7]. Several implementations are available in pack-ages such as Mathematica, Maple, Macaulay, etc. The condition for termina-tion of the Buchberger's algorithm relies heavily on the fact that a total orderon K[x1; x2; :::; xn] [7, 21] can be de�ned. Since a decreasing sequence (in the senseof �) of terms is �nite, a reduction process of a polynomial p with respect to a setF is bound to stop.In the next sections, the theoretical basis developed here will be used to exploit theproperties of Grobner Basis in the solution of the GCS/SF problem.39



3.2.1 Algebraic Geometry and the GCS/SF ProblemThe GCS/SF problem takes place in a world W , with a set of relations R. If a set ofentities S = fe1; ::eng responds to the constraints, it is said that S is feasible for W andR , and this fact is written as S = feasible(W;R). If the polynomial form of the problemis F = ff1; f2; :::; fng, it is said that F = poly form(W;R). Since S is a solution for F ,it is denoted as S = solution(F ).Given F (F = poly form(W;R) and S = feasible(W;R)), there is an associatedideal IhF i. For any polynomial set F , the Grobner Basis GB(F ) is an alternative set,which generates the same ideal IhF i, but has important properties in characterizing thesolution space and producing solution points.The following are some of the properties of Grobner Basis:(1) IhGB(F )i= IhF i.(2) F is solvable in �K i� 1 62 GB(F ).(3) Given a lexicographic order x1 � x2 � ::: � xn 8i; s:t:1 � i � n, we have:GB(F ) \ K[x1; x2; :::; xi] is a (reduced) Grobner Basis for the elimination IdealIK[x1;x2;:::;xn]hF i \K[x1; x2; :::; xi].This property establishes that GB(F) is triangular set; in the sense that GB(F)contains polynomials only in x1, some others only in x1; x2, and so on, making thenumerical solution a process similar to triangular elimination.(4) If G is the reduced Grobner Basis for an Ideal I 2 K[x1; x2; :::; xn]; I is zero-dimensional i� 8xi 2 fx1; x2; :::; xng, G contains a polynomial whose head term isa pure power of xi, i.e. of the form xdi for some integer d.This property allows one to determine, by inspection, whether the set of polyno-mials has �nitely or in�nitely many solutions.(5) The Grobner basis G1 for a zero-dimensional ideal I based on the order �m can beconverted into another basis G2 under another ordering �l.40



This property allows one to compute total degree Grobner Bases for certain pur-poses, and only when it is required, to transform them into lexicographic GrobnerBases (computationally more expensive), provided that they correspond to a zero-dimensional ideal.(6) 8f 2 K[x1; x2; :::; xn];8y 62 fx1; x2; :::; xngf 2 Radical(F ), (1 2 GB(F [ fy:f � 1g))The equation y:f � 1 = 0 ensures f 6= 0. Therefore, this property establishes thatf presents the same zeros as F i� the system F [ fy:f � 1g is inconsistent, i.e. itis impossible for f not to be zero when F is.These properties translate into propositions about the solvability and characteristicsof the solution for the GCS/SF problem. Some of the consequences of the propertiesfollow:(1) Proposition 1S = solution(F ) i� S = solution(GB(F )).This is a consequence of the fact that F and GB(F ) span the same polynomialideal (Property 1). In the context of the GCS/SF problem, a set of polynomialsrepresenting constraints is indirectly analyzed by calculating the Grobner Basis ofits polynomial ideal and solving it by using the properties discussed below.(2) Proposition 21 2 GB(F )) S = solution(F ) = �Property 2 above establishes that if the �eld is algebraically closed, �nding "1" ora constant polynomial in GB(F) implies the equation "0=1" leading to the factthat F has no solution in that �eld. However, the converse proposition has to becarefully used:If 1 62 GB(F ), a solution exists, although it might be complex. Therefore, anadditional check on the results of a numerical algorithm to ensure a real solution isneeded. 41



(3) Proposition 3If IhF i is a zero-dimensional ideal, then the set F (and GB(F )) has a �nite numberof solutions. Therefore S = feasible(W;R) has a �nite number of con�gurations.The zero-dimensionality of I can be assessed by applying property 4 above.(4) Proposition 4Let a new constraint be represented by polynomial f . Then:f is redundant to F i� (1 2 GB(F [ fy:f � 1g)) for a new variable y.Property 6 above helps to determine whether an additional constraint is redun-dant by examining if the satisfaction of the new, additional constraint is unavoid-able when the initial set of constraints is satis�ed. An alternative test can beimplemented by recalling that a polynomial f is redundant if its normal formNF (GB(F ); f) = NF (F; f) is equal to zero.These properties and propositions provide a theoretical framework for the solution of theGCS/SF problem. The construction of an algorithm using these facts will be discussedin following sections.3.2.2 An Algorithmic Solution to the GCS/SF ProblemThis theoretical background can be summarized in the following macro-algorithm, inwhich the invariant clause for the loop is the existence of a non-redundant, consistent andmulti-dimensional set of constraint-generated polynomials. In the event of the additionof new constraints to the scene, the algorithm converts them into polynomial(s), andtests their redundancy (by using Proposition 4), consistency (Proposition 2), and zero-dimensionality (Proposition 3). If the new constraint is redundant no action is taken;in the other two cases the invariant becomes false and the loop breaks. If the ideal hasbecome zero-dimensional, a triangular Grobner Basis under some stated lexicographicorder is extracted (Property 5) and solved (Property 3). Proposition 1 is the underlyingbasis of the algorithm, since it establishes that the GB(F ) faithfully represents F , with42



the same roots and ideal set. In the algorithm presented below, the propositions orproperties relevant to some important instructions are displayed at the left hand side:fPre: W a �xed scenario g1 F = fg2 GBt = fg3 do new relation Ri4 fInv: F is consistent, non-redundant, non-zero-dimensional g5 R = R [ fRig6 f = poly form(W;Ri)Proposition 2 7 if (1 2 GBt(F [ ffg)) then8 stop ( system is inconsistent )9 elseProposition 4 10 if (f 2 Radical(F )) then11 skip ( f is redundant )12 else13 F = F [ ffgProposition 1 14 GBt = GrobnerBasis(F;�t)Proposition 3 15 if ( ZeroDimension(GBt ) ) then16 break loop17 else18 skip (next relation-constraint)19 �20 �21 �22 odProperty 5 23 GBl = GrobnerBasis(F;�l)Property 3 24 S = triangular solution(GBl)fPost:R = fRig a set of relations; S = feasible(W;R) gThe limitations of Grobner Basis (and for that matter, any symbolic algebraic ge-ometry method solving this problem) is the explosive computational complexity of themethod, and its still-unexplored behavior in dealing with 
oating point (real) arithmetic.43



If F is a set inK[x1; x2; :::; xn], with maximumexponentm, the Grobner Basis can containpolynomials of degree proportional to 22m [21].3.2.3 Example 1. Grobner Basis for the Constraint SetThis section continues the example described previously, which demonstrated how tobuild the polynomial formulation of the constraint set. The reader might want to referback to Figure 3.2 for details on the example.The basic condition of (dexterous) orthonormality of the D matrix produces thefollowing set of equations:x112 + x212 + x312 � 1 = 0; x122 + x222 + x322 � 1 = 0x132 + x232 + x332 � 1 = 0; x13 x12 + x23 x22 + x33 x32 = 0x11 x12 + x21 x22 + x31 x32 = 0; x21 x32 � x31 x22 � x13 = 0x31 x12 � x11 x32 � x23 = 0; x11 x22 � x21 x12 � x33 = 0 (3.5)The lexicographic order used in this example, for the calculation of the Grobner Basisis: x11 � x12 � x13 � x21 � x22 � x23 � x31 � x32 � x33 � Tx � Ty � Tz (3:6)When the �rst constraint is applied (LN1 �ON � LN3), the conditions(P 01 � P3)� v3 = 0 (P 01 2 LN3); v01 � v3 = 0 (v01 k v3) (3.7)produce an initial polynomial set:fd+ Tz = 0; n � Ty = 0; x31 = 0;�x21 = 0g (3.8)
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The Grobner Basis corresponding to this condition is shown below. The f notationis used to stress the fact that f is head() of a polynomial:Tz + d = 0 (3.9)Ty � n = 0x322 + x332 � 1 = 0x31 = 0x232 + x332 � 1 = 0�x22+ x22 x332 � x23 x32 x33 = 0x22 x32 + x23 x33 = 0x22 x23 + x33 x32 = 0x222 � x332 = 0x21 = 0x13 = 0x12 = 0x11 + x23 x32 � x22 x33 = 0The parameters of the World con�guration (c; d; w; n) appear as constants in thebasis. First, the fact that it does not contain 1, indicates that inconsistency of theconstraint with the preexisting scene cannot be concluded. Yet, it is possible to have asolution with complex variables which is not physically realizable. Second, Proposition 3and Property 4 indicate a multi-dimensional ideal and consequently an in�nite number ofsolution con�gurations. Any claim to a zero-dimensional ideal, and hence to a completelydetermined con�guration for the scene, is trivially discarded by the fact that Tx does notappear in any polynomial in the basis (therefore it cannot be head() of any polynomial,Property 4). Further inspection of the basis also indicates that x33 does not appear in45



any of the head terms. These facts indicate a two dimensional ideal, because Tx andx33 can be given arbitrary values and still a real solution would exist for the system.This conclusion is consistent with the physical fact that the constraint would still bevalid under arbitrary rotations around the line LN3 and translations along it. While thetranslational degree of freedom is easily related to Tx, the relationship of the rotation tox33 is less intuitive.Suppose the second constraint (LN2�ON�LN4) is added, resulting in the equations(P 02 � P4)� v4 = 0 (P 02 2 LN4); v02 � v4 = 0 (v02 k v4) (3.10)The Grobner Basis for the accumulated constraints, once again, shows neither inconsis-tency nor zero-dimensionality, for the same reasons as before.Tz + d = 0 (3.11)Ty � n = 0x33 + 1 = 0x32 = 0x31 = 0x23 = 0x222 � 1 = 0x21 = 0x13 = 0x12 = 0x11 + x22 = 0In this case, however, Tx variable is e�ectively the only degree of freedom left. Twoassembly modes are possible, by setting x22 = �1.46



If an additional constraint is set, for example P1 � ON � P3, the Grobner Basisfor the accumulated set of equations has each variable in the head term of an equationin the basis and would therefore be zero-dimensional, re
ecting the fact that all thedegrees of freedom are now �xed, and there are a �nite number of con�gurations (Dtransformations) to satisfy the conditions:Tz + d = 0 (3.12)Ty � n = 0Tx2 � c2 + w2 � 2w:Tx = 0x33 + 1 = 0x32 = 0x31 = 0x23 = 0c:x22 + w � Tx = 0x21 = 0x13 = 0x12 = 0x11 c� w + Tx = 0If yet one more condition is set, unless it is redundant, the system becomes incon-sistent; for example, the requirement P2 � ON � P4, the Grobner Basis produces aninconsistency. In this case it is a topological inconsistency, which will in general impedethe solution, except for a special set of values, i.e. for a very special point on the line L4(which is not P4) to receive the point P2. The inconsistent Grobner Basis in this casewould be: GB = f1g (3.13)47



The four instances of GB(F ), sequentially calculated as constraints are added, demon-strate how the GCS/SF problems might be solved. Further, it can be noticed thatthe GB(F ) can be ordered by using the prescribed term ordering. For example, equa-tions 3.12 allows the variables to be solved in the order Tz; Tx; :::; x11. The equationsthemselves are in triangular form. It can be seen that x11, which is highest in the order,appears in only one equation while Tx, which is lower, appears in a number of equations.3.3 SummaryIn this chapter the problem of reasoning about geometric constraints was addressedusing Grobner Bases. The Grobner Basis of a polynomial set F = fp1; p2; :::; png hasseveral properties for characterization of the variety of the polynomial ideal. From theGCS/SF problem perspective, these properties allow to determine: (i) if there are re-maining spatial degrees of freedom among the entities in a given scenario or world;(ii) the redundancy of a constraint in the context of a set of constraints; and (iii) the(in)consistency of the set of constraints F . An algorithmic explanation of how the Grob-ner Basis properties can be exploited in a constraint based design/planning situation wasgiven and discussed by means of an example.The theoretical underpinnings of Grobner Basis have been found to be useful in givingmathematical expression to di�erent actual situations concerning the GCS/SF problem,such as �nite or in�nite number of con�gurations (including no possible con�guration)corresponding to inconsistent constraint sets, as well as a formal de�nition and detec-tion procedure for redundant constrains. On the other hand, Grobner Basis provides aframework for the integral treatment of topological and geometrical consistency in theset of constraints.Although the example described above is relatively simple (12 variables and 20 equa-tions), given the high computational complexity of the Grobner Basis construction itillustrates a critical limitation of the formulation discussed. Emphasis therefore needsto be placed on reducing the size of the problem to a minimum. Also, the di�culty in48



the physical interpretation of the degrees of freedom was manifest in the solutions found.A more "natural" set of variables which addresses these problems is therefore required.These problems are addressed in following chapters.
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CHAPTER 4Group Based Solution for the GCS/SFProblemIn previous chapters, the GCS/SF problem was posed as a system of polynomialequations and its Grobner Basis was used to characterize their solution space. The prop-erties of the Grobner Basis allow the sequential addition of constraints between entitiesin a scenario. These properties permit the response to questions about the dimensional-ity of the solution space or, in physical terms, the multiplicity of the feasible scenarios.This dimensionality also determines the internal consistency of the constraint set andthe redundancy of a particular constraint in the context of pre-existing ones. While thisprocedure forms the underlying structure for a Geometric Constraint Management sys-tem, it has two major drawbacks. First, the computational e�ort could be potentiallyvery large 1. Second, the physical meanings of the variables used are not intuitive. As aconsequence, the degrees of freedom of an entity are di�cult to correlate to the variablesin the Grobner Basis.The limitations mentioned above arise because the special structure of the set ofconstraints of the GCS/SF problem was not exploited. Therefore, this chapter addressesthese limitations by using a formulation devised to speci�cally express spatial constraints.It is possible to study them, and how they interact with each other, within the structureof the subgroups of the group of Euclidean displacements, SE(3).1Degrees of the polynomials in the Grobner Basis can grow at a double exponential rate in themaximum degree of the polynomials in the constraint set F50



The subgroups of SE(3) have been used by Herve [19] to characterize lower pairs (orjoints) in mechanisms. Extending Herve's work, Angeles in [2, 3] has used operationsbetween groups (intersection and direct product) to attempt the reduction of a mechanismto its essential degrees of freedom. Torras et al [34, 35] have studied mating constraintsbetween objects in an assembly by using the formalization proposed by Herve.In this chapter, we undertake the integration of the algebraic geometry-based ap-proach, developed in prior chapters, with the formalisms provided by a group-theoreticanalysis of the constraint set. This allows the two approaches to complement each otherthereby reducing the e�ects of their individual disadvantages. The use of a group the-oretic formulation introduces structure into an otherwise unstructured set of equations.By doing so, it has the potential of making the construction of the Grobner Basis moree�cient. Further, the variables obtained by group theoretic formulation have directphysical meaning, producing a Grobner Basis that re
ects the degrees of freedom of theentities. Viewed the other way, the Grobner Basis construction replaces the reductionbased on group intersection. As mentioned in previous chapters, this reduction processdeals only with the topological aspects of trivial constraints. The calculation of a Grob-ner Basis, though computationally expensive, is not limited to the trivial constraints andsimultaneously enforces topological and geometrical consistency.The next section discusses the group SE(3) of the Euclidean displacements in E3and its subgroups. The conjugation classes developed by Herve [19] are then presented,and their relation to the constraints used in the formulation of the GCS/SF problemis developed. Next, a methodology for deriving constraint equations using the grouptheoretic analysis is introduced and illustrated with examples.4.1 Subgroups of the SE(3) Group and CanonicalVariablesA group is a set S with a binary operation � de�ned on S, which has the followingproperties [25, 26]: 51



� G1; G2 2 S ! G1 �G2 2 S (closure property).� 9I 2 S; s:t: 8G 2 S; G � I = I �G = G (identity element)� 8G 2 S 9H 2 S; s:t: G �H = H �G = I (invertibility)� 8G1; G2; G3 2 S; (G1 �G2) �G3 = G1 � (G2 �G3) (associativity)SE(3) is the group of Euclidean displacements in E3. G1; G2 and G3 represent dis-placements in SE(3) and � represents the composition of displacements. The particularmeaning of the properties in the case of the group SE(3) is recalled here:� Two displacements G1; G2 applied in sequence produce a new displacement G3 =G1 �G2.� I is the null displacement in SE(3). G � I = I �G = G� For each G 2 SE(3) there is an inverse one G�1 which restores the a�ected entityto the original position G �G�1 = G�1 �G = I� The e�ect of displacements is accumulative. If G's are applied in the order G1; G2and G3, the following sequences are identical (associativity):(G1 �G2) �G3 = G1 � (G2 �G3)SE(3) presents subsets which are groups themselves and which express certain com-mon classes of displacements. They are called subgroups. For example, the subgroup ofthe rotations about a given axis u in the space, Ru, is a subset of SE(3), and a groupitself. Therefore, the composition of two sequential rotations about the same axis u is arotation about u again (closure of groups). Although the classi�cation of displacementsinto subgroups is theoretically sound, it is not useful because there are still in�nitelymany di�erent subgroups of rotations, translations, etc. A contribution of Herve [19],was to lump all the rotations, all the translations, etc into sets, more populated thansubgroups, called conjugation classes. 52



Table 4.1 Conjugation Classes and Their Canonical FormsDof Symbol Conjugation Class Canonical Subgroup1 Ru Rotations about axis u ftwix(�)g1 Tu Translations along axis u ftrans(x; 0; 0)g1 Hu,p Screw movement ftrans(x; 0; 0)twix(px)galong axis u, with pitch p2 Cu Cylindrical movements ftrans(x; 0; 0)twix(�)galong axis u2 Tp Planar translations ftrans(0; y; z)gparallel to plane P3 Gp planar slidings ftrans(0; y; z)twix(�)galong plane P3 So Spherical rotations ftwix( )XTOY twix(�)XTOY twix(�)gabout center "o"3 T 3D translations ftrans(x; y; z)g3 Yv,p Translating Screws ftrans(x; y; z)twix(px)gaxis v, pitch p4 Xv 3D translations ftrans(x; y; z)twix(�)gfollowed by rotation about vTable 4.1, column 3, presents the classi�cation that groups the displacements in SE(3)into 10 conjugation classes. In order to identify the common structure in each class, Herveexpressed all displacements in a standard way:T�1:S(x; y; z; �; �):T (4:1)with the term S(x; y; z; �; �) being characteristic for each class. It appears in Table 4.1,column 4, and it is called canonical because it expresses the degrees of freedom of eachclass with a minimum of variables. 2 For example, using the canonical form, a rotationRw(�) about an axis w in the space can be written as:Rw(�) = T (w)�1:twix(�):T (w) (4:2)2In this Table, twix(�) means a rotation about the X axis by �; XTOY means a rotation by 900about the Z axis; trans(x; y; z) indicates a general spatial translation.53



where the twix(�) part conveys the topological information about the class and its degreesof freedom, and T (w) 2 SE(3) stores the geometrical information about the actualposition of the axis of rotation w.The de�nitions presented above are intended to de�ne an equivalence between dis-placements. They allow to state the equivalence between, for example, rotations (re-gardless of the axis), or likewise, planar translations (regardless of the plane). Thisequivalence is formalized next:De�nition: Given A, B, subgroups of the Euclidean group SE(3), A is conjugate ofB ( A � B ) i� 9T 2 SE(3) such that A = T�1BT . The relation A � B is an equivalencerelation. It is symmetric, re
exive and transitive. It de�nes equivalence classes calledconjugation classes.The T element above represents a rigid displacement. Therefore, two displacementsA and B are equivalent i� a change of basis T converts one into the other. In this way,two displacements by 30 degrees are equivalent because all that di�erentiates them is arigid transformation between their axes.Equivalence classes have the property that the whole class can be represented byone element since all elements are equivalent via �. The representative, or canonicalelement, in this case results from making T = I above. Therefore, the canonical elementhas the simplest possible geometrical component (I). Also, its topological part is minimalin the number of variables since they strictly re
ect the physical degrees of freedom ofthe class. A list of the conjugation classes for the subgroups of SE(3), their canonicalrepresentation [19] and their degrees of freedom are shown in Table 4.1.4.1.1 Topological Manipulation of Trivial ConstraintsThis section brie
y exposes the application of the concepts just introduced towardsconstraint manipulation. 54



4.1.1.1 Constraint CompositionIf an entity B is forced to adopt positions which sacri�ce degrees of freedom withrespect to other entity A, it is said to be constrained. For example, if they can only rotatewith respect to each other (1 dof), it is said that they are constrained by a rotationaljoint, or they hold a rotational constraint G1 = Ru(�). If another entity C is constrainedwith respect to B by G2 the equivalent constraint between A and C has the structureG1 �G2. G1 and G2 are subgroups, extracted from the conjugation classes of Table 4.1.In general, G1 �G2 will not fall into any one of the conjugation classes. It will only do soin special cases in which the geometry of G1 and G2 allows the reduction of the constraintchain. For example, in G1 �G2 = Ru(�1) �Ru(�2) = Ru(�1 + �2) (4:3)both rotations happen to have equal rotation axes (a geometrical circumstance). Theycan be reduced, and the reduction falls into the conjugation class of the "rotations".Sequences of constraints (which are also constraints) are expressed as:G1 �G2 �G3:::: �Gn (4:4)Trivial constraints are or can be reduced to one subgroup of SE(3). The compositionG1 �G2 is called the direct product of G1 and G2. If visualized as a kinematic situation,it can be thought of as a serial arrangement of joints.4.1.1.2 Constraint IntersectionIn the example above, if entitiesA and B are also constrained byG3, the mobility of Awith respect to B (or vice versa) becomes more restricted. Any possible movement mustsatisfy both G1 and G3. Therefore, this scheme represents an intersection of subgroupsof SE(3), which always forms a subgroup of SE(3). Again, the resulting subgroup is55



determined by the geometry of the constraints involved. For example,Tu \ T = trans(x; 0; 0) \ trans(x2; y2; z2) = Tu (4:5)If no mobility is left, the resulting subgroup is fIg (a static structure). From this dis-cussion it follows that an intersection of constraints can be thought of as a parallelarrangement of joints.4.1.1.3 Table Look-up Algorithms for Constraint ReductionIn [19], tables are provided in which the result of composition and intersection oftrivial constraints are tabulated. Two of such examples are shown in Table 4.2. Forexample, Cu0 � Cu1, illustrates the fact that the composition of trivial constraints ingeneral produces a non-trivial one. This fact places a fundamental limitation in thereduction of constraint compositions and intersections by rewriting procedures based ontables such as Table 4.2. Thomas & Torras in [36] proposed a mechanical constraintnetwork reduction that proceeds as follows: given a number of entities in the world andtrivial constraints among them, a re-writing of the composition/intersection of constraintsis based on pre-calculated results (Table 4.2). At each step, two adjacent constraints areconsidered. If a reduction is possible, the participant constraints are replaced by theirequivalent. This process continues until all possible pairs are considered and no furtherreductions are possible. The �nal goal, which is not always attainable, is to reduce thewhole constraint graph to a single, trivial constraint relating two entities. This approachis limited because it is unable to deal with geometric inconsistencies. For example, theintersection of two cylindrical groups Cu0 and Cu1, with u0 k u1, produces a translationalTu0 degree of freedom(Table 4.2). The physical situation corresponds to a rigidly linkedpair of parallel pegs, entering into a pair of holes with parallel axes. The method wouldcorrectly establish that a translational joint is left (topological result). However, thedistance between the axes has to be checked separately (geometric condition).56



Table 4.2 Composition and Intersection of Trivial ConstraintsGroups Conditions Intersection Compositionon GeometryCu0; Cu1 u0 k u1 Tu0 Cu0 �Ru1Tp0; T p1 Tv0 Tv0 = P0 \ P1Table 4.3 Entity Relations in the Form of Kinematic JointsMacro Joint Chain Kinematic Joints in Chain DofP-ON-P S spherical 3P-ON-LN T1 � S linear translation, spherical 4P-ON-PLN T2 � S planar translation, spherical 5LN-ON-LN C cylindrical 2LN-ON-PLN T2 �Rv �Rw planar translation, revolute 4PLN-ON-PLN T2 �Rv planar translation, revolute 3The important contributions of Herve, Angeles, and later, Thomas & Torras reside in(i) the representation of constraints as subgroups of the SE(3) group of displacements;(ii) the formal de�nition of intuitive concepts such as rotations, translations, etc. in termsof conjugation classes; and (iii) the introduction of reduction techniques for the constraintgraph that represents the GCS/SF problem. On the other hand, the limitations of thereduction techniques are the inability to deal with non-trivial constraints, and the failurein addressing the geometry of the problem.This work uses the canonical form of conjugation classes developed by Herve to modelthe constraints of the GCS/SF problem. Therefore, they will be re-speci�ed as shownin Table 4.3. The constraint reduction procedures developed by Thomas & Torras willbe replaced by the more powerful algebraic geometric technique of Grobner Basis. Thecomposition of the subgroups represented by the conjugation classes produces a series ofmatrix or polynomial equations, presented in the following sections.57



4.2 Methodology with Canonical VariablesA constraint between two entities by de�nition maintains invariant certain relationsbetween the constrained entities. For example, a planar sliding, Gp, allows two transla-tional and one rotational degree of freedom, while still ensuring planar contact betweenthe two parts. A rotational, Ru constraint preserves axial and radial relative distances,allowing one angular degree of freedom between the constrained entities.
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θ2,φ2,ψ2Figure 4.1 Two Body Example of Canonical Variable Modeling of the GCS/SF ProblemThe GCS=SF problem is stated as a series of constraints Ri relating Fi1 with Fi2 asshown in Figure 4.1, (corresponding to a two body system). The Ri() constraints arein general composed by translations T () and rotations Rot(), as dictated by Tables 4.1and 4.3. Body B1 contains two features, whose frames are F11 and F21. Correspondingfeatures in body B2 are F12 and F22. The goal is to �nd a �nal position of B1 (assumingB2 is stationary), such that F11 relates to F12 and F21 relates to F22 satisfying theinvariance dictated by R1() and R2() respectively. In the initial con�guration, the relativeposition of entities Fi1 and Fi2 is a (known) displacementDi. F 011 and F 021 denote framesF11 and F21 in the �nal con�guration. The constraints Ri() contain degrees of freedomto instantiate, satisfying the required relations while enforcing the rigidity of the twobodies. The modeling procedure follows: 58



(1) Transform Fi1 by Di, making it coincident with frame Fi2:F11:D1 = F12; F21:D2 = F22 (4:6)(2) The above transformation in general destroys the rigid relationM1 which is neededbetween frames F11 and F21. The application of the desired constraints recoversthe rigidity condition: Ri():F 011 = F11:D1:R1(x1; y1; z1; �1; �1;  1); F 021 = F21:D2:R2(x2; y2; z2; �2; �2;  2) (4:7)(3) The rigidity conditions are enforced by recognizing that F11 and F21 must have thesame relation in the initial and �nal con�gurations:F11:M1 = F21; F 011:M1 = F 021 (4.8)(4) The above equations lead to a matrix equation which characterizes the cycle formedby transformations D1;D2;M1; R1(); R2():F11:D1:R1():M1 = F11:M1:D2:R2()! D1:R1():M1 =M1:D2:R2() (4:9)The above procedure can be generalized to the case in which there are several relations(constraints) Ri() speci�ed among bodies. The general situation is sketched in Figure 4.2.Once the constraint equations are obtained by this procedure, the construction of theGrobner Basis and its interpretation are carried out in the manner described by theconstraint management algorithm discussed in the last chapter. The application of theabove concepts is illustrated by the examples in next section.
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Figure 4.3 Simultaneous Line-to-Line Restriction between Pairs of Lines4.3 ExamplesThis section presents examples of the modeling of the GCS/SF problem by usingcanonical and non-canonical formulations. It continues the discussion of the problem in-troduced in chapter 3, which involves the simultaneous enforcement of two LN�ON�LNconstraints (repeated in Figure 4.3). The use of canonical variables as an alternative formodeling the problem is presented. Another GCS/SF problem of increasing complexityis used to demonstrate the computational resources spent on the formulations.60



4.3.1 Example 1. Solution with Canonical VariablesThis example illustrates the methodology related to group theoretic analysis from thelast sections. In this example, both constraints proposed are of the trivial type, as shownin Figure 4.3, in which the simultaneous enforcement of two LN �ON �LN constraintsappears.The methodology mentioned above follows these steps:(1) Frame LN1 is placed onto frame LN3: LN1:D1 = LN3.Frame LN2 is placed onto frame LN4: LN2:D2 = LN4.Where D1;D2 are the relative positions of LN3 with respect to LN1 and LN4 withrespect to LN2 respectively. These positions (LN3; LN4) are not the �nal positionsLN 01; LN 02. The whole displacement of LN1; LN2 has to respect the constraints andthe rigidity condition.(2) The constraints are enforced by letting frame LN1:D1 undergo a cylindrical move-ment: LN 01 = LN1:D1:Cu1(�1; x1). Similarly, LN 02 = LN2:D2:Cu2(�2; x2).(3) Record the rigidity condition between LN1 and LN2 in the initial con�guration:LN1:M = LN2; M is the rigid link between LN1 and LN2.(4) Enforce the rigidity condition M for the �nal con�guration: LN 01:M = LN 02Based on these equations, the matrix equations which govern this problem are (by elim-inating LN1; LN2; LN 01; LN 02):D1:Cu1(�1; x1):M =M:D2:Cu2(�2; x2) (4:10)
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This matrix equation can be expanded in the form:D1:2666666666664 1 0 0 x10 c1 �s1 00 s1 c1 00 0 0 1 3777777777775 :M =M:D2:2666666666664 1 0 0 x20 c2 �s2 00 s2 c2 00 0 0 1 3777777777775 (4:11)Where c1 = cos(�1); s1 = sin(�1). Also, two equations of the form c21 + s21 � 1 = 0 areincluded.Equation 4.10 represents a set of 12 polynomials and 6 variables. This equation sethas the following (lexicographic) Grobner Basis:s2 � 1 = 0 (4.12)c2 = 0s1 + 1 = 0c1 = 0x1 � x2 + c = 0which is based on the order: x1 � x2 � c1 � s1 � c2 � s2. In these equations c is aconstant. One can easily conclude that the zero-dimensionality property is violated bythe absence of a polynomial whose head() term (shown underlined in the Grobner Basis)contains a pure power of x2. Indeed, x2 is the variable which represents the remainingdegree of freedom -the translational movement of the ensemble.Notice that the variables in this set directly represent the degrees of freedom ofentities, unlike the case of non-canonical variables. Further, they are fewer, thereforesuggesting savings in the computing e�ort spent on the construction of the GrobnerBasis. Table 4.4 presents some statistics corresponding to the examples shown.62
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� v12 � v11 = 0; v12 � (p12 � p11) = 0� v12 � v23 = 0; v12 � (p12 � p23) = 0� matrices D2 and D3 are orthonormal.� det(D2) = +1, det(D3) = +1This system results in the following solutions based on the Grobner Basis (D2 =fD2i;jg and D3 = fD3i;jg): D334 = 0 (4.13)D333 � 1 = 0D332 = 0D331 = 0D3224 � 10D324 = 0D323 = 05D322 � 5 +D324 = 0D321 = 05D314 +D324 = 0D313 = 0D312 = 05D311 � 5 +D324 = 0D234 � 2 = 0D2322 +D2332 � 1 = 0D231 = 0D224 � 5 = 0D2232 +D2332 � 1 = 064



�D222 �D223D232D233 +D222D2332 = 0D222D232 +D223D233 = 0D222D223 +D232D233 = 0D2222 �D2332 = 0D221 = 0D213 = 0D212 = 0D211 +D223D232 �D222D233 = 0which is calculated based in the ordering: D211 � D212 � D213 � D214 � D221 �D222 � D223 � D224 � D231 � D232 � D233 � D234 � D311 � D312 � D313 � D314 �D321 � D322 � D323 � D324 � D331 � D332 � D333 � D334 producing the followingsolution: D211 ! �1 D212 ! 0 D213 ! 0 (4.14)D221 ! 0 D224 ! 5 D231 ! 0D234 ! 2 D311 ! �1 D312 ! 0D313 ! 0 D314 ! �2 D321 ! 0D322 ! �1 D323 ! 0 D331 ! 0D332 ! 0 D333 ! 1 D334 ! 0D324 ! 10 D222 !�D233 D223 !�q1�D2332D232 ! �q1 �D2332The Grobner Basis (shown in Equation 4.13) is presented in triangular form, and theindividual polynomials themselves have been arranged to have the head() term (underthe order presented above and underlined in the equations) in the leftmost position. The65



examination of the Grobner Basis detects that variables D214 and D233 are missing inthe head() terms of polynomials. These two variables have a very de�nite role in the D2matrix (as easily seen in this simple example): D214 represents a translational degree offreedom, while D233 represents a rotational degree of freedom about an unknown axisin space. This axis is determined by the eigenvalues and eigenvectors of the submatrixRot2 = D2ij(i = 1::3; j = 1::3) [5]. The solution implies (as expected) that body B3is �xed while body B2 still has degrees of freedom left, represented in the variablesD214;D233. Notice that in this case, non-instantiation of D233 immediately spreads toD232;D223;D222, since these values control the eigenvalues and eigenvectors of the matrixRot2. However this information is not self-evident from the solution set.4.3.2.2 Grobner Basis with Canonical VariablesIn this case the system of matrix equations can be stated as:F21:Cu1(x1; �1):F�113 = F11:Cu3(x3; �3):Cu2(x2; �2):F�123 (4:15)Using an ordering x1 � x2 � x3 � s1 � c1 � s2 � c2 � s3 � c3 produces a(lexicographic) Grobner Basis: s32 � 1 + c32 = 0 (4.16)c2 � c3 = 0s2 + s3 = 0c1 � 1 = 0s1 = 0x2 + x3 = 0x1 = 0The use of canonical variables immediately gives information on the degrees of free-dom: because of its role in the group equations (Cu3(x3; �3) represents Cos(�3), and the66



Table 4.4 Statistics for Examples. Non-canonical vs Canonical VariablesExample Variable Type Variables Equations GB Size Time (secs)Example 1 Non-canonical 12 20 16 1.53Example 1 Canonical 6 14 6 0.25Example 2 Non-canonical 20 30 24 6.08Example 2 Canonical 9 15 7 0.51Grobner Basis indicates that it is dependent on c2. Meanwhile, x1; c1; s1 are completelyinstantiated, showing that the position of the body B3 is �xed. Body B2 is free to rotateabout and translate along axis F12. This is con�rmed by the fact that x2 and s2 do notappear in the head() terms in polynomials of the Grobner Basis, and this fact indicatesthat they are the variables representing the remaining degrees of freedom. In this exam-ple again it is seen that the canonical variables present a convenient way to simplify theequations and give geometric meaning to the polynomial solution process.Table 4.4 presents statistics for the di�erent examples developed. It shows the num-ber of variables involved in the modeling, the size of the equation set which expressesthe constraints and the size of the corresponding Grobner bases. Finally, it shows theexecution times for the canonical and non-canonical modeling for each example.4.4 SummaryIn previous chapters, a systematic method for managing geometric constraints waspresented. First, the application of the Grobner Basis in characterizing the solution spaceof a set of constraints was discussed. One potential drawback of a direct application ofthis algebraic geometric technique is the growth of computational e�ort with problemsize. This problem was addressed in this chapter by the choice of a convenient set ofvariables (canonical) dictated by the conjugation classes of the subgroups of the groupSE(3) of the Euclidean displacements.Canonical variables present a compact representation of the GCS/SF problem con-straints and have a direct physical meaning. Therefore, they facilitate the interpretation67



of variables in terms of the degrees of freedom, allowing an easier analysis of the solutionspace. The statistics on computational e�ort presented suggest that canonical formu-lation presents advantages over its non-canonical counterpart. Non-canonical variables,however, cannot be entirely dismissed since they may present advantages in situationswhere a small number of bodies have many interactions between themselves. Furtherinvestigation will be presented later, which characterizes the systems of constraints thatare e�cientlymodeled by each method. The application of Grobner Basis to the GCS/SFallows the consideration of geometrical as well as topological aspects in the constraintset. It is not limited to trivial constraints as is the case with techniques associated withgroup theoretic approaches. The next chapters deal with the possibility of pre-processingthe local parts of the constraint network, by using the Grobner basis method itself, whichwill produce a reduced set of constraints.
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CHAPTER 5Constraint Reduction5.1 IntroductionIn previous chapters, the methodology for the formulation of the GCS/SF problemin terms of non-canonical variables was discussed. Being a �rst attempt at solving theproblem, this formulation resulted in a large number of variables. Also, it presenteddi�culties for determining of the mapping between variables and the physical degrees offreedom of the entities. As a response to these shortcomings a second formulation wasproposed, based on the subgroups of the Special Euclidean Group of displacements inE3, SE(3). By exploiting the fact that the GCS/SF problem originates from a geometricdomain, this formulation uses variables that directly relate to the degrees of freedom ofthe entities. As a consequence, the size of the GCS/SF problem was reduced and theremaining degrees of freedom could be determined in a straightforward manner. In spiteof this improvement, the computational complexity of the GCS/SF problem requiresadditional e�orts to exploit the physical characteristics of the set of constraints.This chapter discusses how the structure of a particular instance of a GCS/SF problemmight be exploited to obtain a further reduction of the computational e�ort of producingits Grobner Basis. The general idea is to identify local subproblems whose solution mightbe easily obtained and then merged to produce a solution to the overall set of equationsof the GCS/SF problem. These techniques, called Divide & Conquer techniques in thisinvestigation, will be discussed here.It will be shown that the Spatial Constraint (SC) graph structures the set of equationsof the GCS/SF problem. Additionally, the basic cycles in the SC graph map into local69



subproblems which can be solved separately, thus contributing to the complete solution.Therefore, the issue of identi�cation and classi�cation of GCS/SF subproblems requiresa theoretical background which is related to the topological 1 properties of graphs. Thischapter addresses such theory and translates it into algorithms for identifying subgraphsin the SC graph. An example of the application of Divide & Conquer techniques ispresented at the end of this chapter.5.2 BackgroundThe SC graph conveys the topological and geometrical information of the GCS/SFproblem. In the context of the SC graph, cycles represent constraint intersections. Theyare named by the corresponding constraint sequences. For example,C5�C1�C7�C3�C6is composed by constraints C5; C1; C7; C3 and C6.It is assumed that the graphs in the discussion have the following characteristics:(1) G = (E; V ) is an undirected graph, with node set V = fv1:::vng and edge setE = fe1::::emg. Although the edges in the SC graph are directed, edges representingconstraints can be inverted; the corresponding degrees of freedom �; x; y; z changesign, and the order of the matrices in the chain is inverted:(C1(�):C2(�))�1 = C2(�)�1:C1(�)�1 = C2(��):C1(��) (5:1)Therefore the structural properties of the SC graph can be calculated based on theassumption of non-directedness.(2) G has only one component.(3) Every edge ei 2 E belongs to a cycle. This assumption follows from the fact thatan open chain of constraints does not present interest from the point of view of1In the context of graph theory, topology refers to the connectivity of the graph. In the context of theGCS/SF problem it includes the constraint network between entities and the type of constraint relationsbetween them. 70



solution space reduction, since it doesn't include the simultaneous satisfaction ofconstraint conditions.In an abuse of notation, and since vertices in graphs are implied by the edges in whichthey participate, sometimes the graph is equated to its set of edges.
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In a similar manner, all the relevant equations should be expressed, and no redundantequations should be included. Several problems are immediately evident: (i) how todetermine formally when an equation is redundant; (ii) how to determine formally thatall the relevant equations have been included; (iii) which set is more convenient for solvingthe GCS/SF problem among the many sets of complete, non-redundant equations; and(iv) how to obtain it?Since the equations of the GCS/SF problem directly relate to the cycles of the SCgraph, the questions stated above can be expressed in other ways: (i) what does it meanfor a cycle to be redundant and how to identify it; (ii) how to enumerate the cycles ofa graph; (iii) which set of cycles in the SC graph has special meaning in the context ofthe GCS/SF problem; and (iv) what kind of cycle partitions exist in graphs and howexpensive is to extract them. The theoretical background and algorithms presented inthis chapter are essential in properly stating the GCS/SF problem to answer the questionsabove. Beyond this consideration, it will be seen that careful manipulation of the SCgraph presents attractive ways to improve the e�ciency of the solution of the GCS/SFproblem.5.3 De�nitionsTo develop a basis for the discussion ahead, some standard de�nitions( [12, 11]) arereviewed here:Spanning Tree: In a connected graph G = (V;E), a spanning tree ST (G) is a subgraphof G which contains all the nodes of V and a set of arcs which make it connected,and acyclic (Figure 5.1 (e)).Branch bi: Is an edge in ST (G) (for example, c1; c5; c6 and c4 are branches in Figure 5.1(e)).Cord ci: Is an edge in G�ST (G) (for example, c2; c3; c7; c8 and c9 are cords in Figure 5.1(f)). 72



Cord set: Is the set of all edges removed from G to convert it into a spanning tree.Therefore, CS = G� ST (G).Cycle: A cycle (or loop) Li = few; ew+1; ::; ekg is a subgraph of G whose nodes haveexactly two incident edges.Set of Basic Cycles: A set of cycles SBC = fL1; L2; L3; ::; Lmg in a graph G(V;E) iscalled a Basic Set of Cycles if:(1) 8� cycle in G, � = Li � Lk:::� Lw. It means � can be expressed as a linearcombination of the cycles Li in SBC.(2) No Lk basic cycle in SBC can be written as a linear combination of othercycles in SBC.For example, SBC = ffc1; c2g; fc3; c4g; fc5; c8g; fc6; c9g; fc1; c5; c6; c4; c7gg in Fig-ure 5.1 (d).Circ: A circ is an undirected graph C = (Vc; Ec) whose nodes have even degrees; all ofthem receive an even (nonzero) number of incoming arcs (Figure 5.1 (b),(c)).Ring Sum: � is the ring sum operation between edge subsets F and H of E (F � E ,H � E):H � F = (H [ F )� (H \ F ).5.3.1 Structure of the Set of Circs of a GraphTo present the algorithms for extraction of a basic set of cycles in a graph and togive them theoretical support, a short discussion follows concerning the mathematicalstructure of subgraphs in a graph, and in particular, the classes of circs and cycles. Inthis review, standard graph theorems and lemmas relevant to this research are presentedas propositions, with no formal proof. For a deeper insight the reader can consult [11].Proposition 1The set S of all subgraphs of graph G = (V;E) is an abelian group with operation �.73



Each element Gi of S is a subgraph whose inverse is Gi itself. The element identity isthe empty graph � (see [33, 11]).De�nition: Consider the set F = f0; 1g with operations +2 (addition module 2) and�2 (multiplication module 2). F has the properties of a �eld, and serves to introduce thescalar product : : F � S �! S which can be de�ned as:0:Gi = �; 1:Gi = Gi (5:3)Comment: Informally, the operation 0:Gi means "neglect subgraph Gi", while theoperation 1:Gi means "choose subgraph Gi". This operation is necessary when a set ofsubgraphs fG1; G2:::Geg is used to build any other subgraph Gm of G. The followingproposition formalizes that concept.Proposition 2: Let (S;�) be the abelian group, (F;+2; �2) the �eld and : the scalarmultiplication as de�ned above. Then, S is a linear space over F (see [33, 11]).Comment: Given the graph G = (V;E) with edge set E = fe1; e2; ::eeg, a possiblebasis for the linear space S could be the canonical set (in the sense of linear algebra)fG1 = fe1g; G2 = fe2g; :::Ge = feegg. In this way, any subgraph Gw 2 S can beexpressed as: Gw = (�1:G1)� (�2:G2)� :::� (�e:Ge) (5:4)by choosing convenient values for the �i 2 F . Therefore if a subgraph si contains theedges ek; ej; ew, then si can be written as:si = (0:G1)� :::� (1:Gk)� (1:Gj)� (1:Gw):::� (0:Ge) (5:5)The following propositions move the emphasis from the general set of all subgraphs tothe particular case of circs, from which the cycles are a subset. From Figure 5.1 (b) and(c) several formal properties can be observed: (i) a circ is either a cycle or the (set) unionof edge-disjoint cycles; and (ii) the ring sum of two cycles is either a cycle or the unionof edge-disjoint cycles. The application of these properties is the construction of the74



set of circs. In order to parallel the construction procedure used for general subgraphs,it should be noticed that (iii) the set of all circs in a graph is an abelian group under�. With these foundations, the construction of the set of the circs in a graph can beundertaken.Proposition 3: The set of all circs in a graph is a subspace Sc of S (see [33, 11]).Once the elements which allow the construction of the subspace of circs are identi�ed,the dimension of such subspace becomes relevant. This dimension indicates how manyindependent cycles are required to obtain a complete coverage of the set of cycles in agraph. Therefore, it is a termination condition for a basis construction algorithm.The extraction of a set of independent cycles is closely linked to the determination ofa spanning tree T for a graph G. It is a well known fact [12, 33, 11] that a spanning treehas jV j � 1 edges. Therefore, there are jEj � (jV j � 1) edges in the corresponding set ofcords. Since the T has no cycles but covers all the nodes, the addition of each cord ciproduces exactly one cycle in T [fcig. Each cycle is independent from the others becauseit contains a new cord. Therefore, there are jEj � (jV j � 1) di�erent, independent cycles.The following propositions formalize such a concept.Proposition 4: Let ci 2 G�ST (G) be a cord. Then, ST (G)+fcig contains exactlyone cycle fci; bk; bm:::; bw; cig (see [33, 11, 12]).Proposition 5: Let G be a one component graph with G = (V;E). Then, there areexactly jEj � jV j+ 1 cords in G � ST (G) (see [11, 12]).Proposition 6: The set of all circs in a graph is a subspace of dimension jEj�jV j+1(see [11, 12, 38]).Proposition 7: Let cycle set = fL1; L2; L3; ::; LjEj�jV j+1g be a set of cycles, with thefollowing characteristics: each cycle Li is the form Li = fcj; bk; bm:::; bw; cjg with ci a cordand the bj being branches of a spanning tree ST . Then, cycle se contains jEj � jV j+ 1independent cycles, and cycle set constitutes a basis for the set of cycles for the graphG (see [33, 11, 12, 38]).Figure 5.1 illustrates these concepts; the spanning tree in (e) contains jV j � 1 = 4edges. This spanning tree produces a cord set of jEj � (jV j � 1) = 5 elements, which75



immediately implies that the Sc subspace has dimension 5. Given the spanning tree of(e), restoring each cord ci (marked in dashed lines in (f)) produces an independent cycle.Notice that although the basis produces the circ subspace, since the cycles are a subsetof the circs, having a basis for the circs ensures the production of the cycles.The facts mentioned above suggest that the construction of a basic set of cycles for agraph can be achieved by obtaining a spanning tree T and the set of corresponding cords(sometimes called cotree T 0). Each time a cord ci is added to T , one and only one cycleis produced. Since exactly jEj � jV j+ 1 cycles are needed and there exist jEj � jV j+ 1cords, it follows that the set of cycles obtained in this way serves as a basis for the setof circs (and therefore cycles) of the graph. Obviously, the equations for the GCS/SFproblem only need to be written for the cycles which form the basis for the Sc subspacein the SC graph; any other set of equations can be written as a linear combination of theequations for the set of basic cycles.5.4 Extraction of the Basic Set of CyclesThe following algorithm makes use of the fact that once jEj � jV j + 1 independentcycles have been identi�ed they form a basis for the set of circs of the graph. As aby-product, the original graph G has been partitioned into a spanning tree T and thecorresponding cotree T 0.For the present application, namely the solution of the GCS/SF problem, it is im-portant that the cycles belonging to the basic set of cycles be as small as possible. Thisrequirement allows the application of the Divide & Conquer method to sets of polyno-mials involving easily reducible solution spaces. These partial solutions can be used toattack the complete GCS/SF problem.In this section, an algorithm is considered which constructs the basic set of cycles in agraph by using a low-depth spanning tree T . In a spanning tree T every cord completesa cycle that in the worst case has length 2H + 1, where H is the depth of the tree. By76



using a low-depth spanning tree, the largest cycle length is limited, therefore producinga set of small cycles.5.4.1 Extracting the Basic Set of Cycles Given a SpanningTreeIf the existence of a spanning tree T for a graph G is assumed, the construction of theactual cycles would follow, with the procedure cycles from tree(T : tree; T 0 : graph;C :set of graph) which takes the partition of a graph into a tree T and a cotree T 0 andconstructs the set of cycles C. With no loss in generality it can be assumed that T hasindeed a tree data structure which can be used to retrieve the ancestors of a node in thetree all the way to the root. This assumption facilitates the task of extracting the cyclesfrom the original graph G, by using the following algorithm:procedure cycles from tree(T : tree; T 0 : graph;C : set of graph)0 f1 C = fg;2 do (T 0 6= fg)!3 ci = first cord(T 0);4 [v1; v2] = extremes of edge(ci);5 l1 = path to root(T; v1);6 l2 = path to root(T; v2);7 [lcommon; tail1; tail2] = common path(l1; l2);8 cycle = [invert(tail1); tail2; fcig];9 C = C [ fcycleg;10 T 0 = T 0 � fcig;11 od12 gIntuitively, cycles from tree(T; T 0; C) takes each cord ci in the cotree T 0 (line 3),and determines the cycle that such a cord completes in the spanning tree T . For thispurpose, the �rst node in the tree that is common ancestor of nodes v1 and v2 is searchedby determining the path from root to v1 (l1) and from root to v2 (l2) (lines 5, 6). If these77



paths are cross-examined, the common ancestors will be found (lcommon), as well as thetwo non-common paths, tail1 and tail2 to v1 and v2 respectively (line 7). If the two tailsare glued together with the closing edge ci, the cycle is determined (line 8).5.4.2 Extraction of a Low-Depth Spanning TreeIn order to guarantee the input for the procedure cycles from tree(), a pre-processingprocedure spanning tree() extracts a spanning tree T from a graph G.procedure spanning tree(G : graph;T : tree)0 f1 head = max degree node(G);2 T = fg;3 visited = fg;4 to visit = fheadg;5 do (to visit 6= fg)!6 node = max degree node(to visit);7 branching = incident edges(node);8 do (branching 6= fg)!9 edge = first element(branching);10 v = opposite extreme(edge; node);11 if ((v 62 visited)and(v 62 to visit)) !12 to visit = to visit [ fvg;13 T = T [ fedgeg;14 �15 branching = branching � fedgeg;16 od17 visited = visited [ fnodeg;18 to visit = to visit � fnodeg;19 od20 gThe algorithm is biased to heuristically extract a low-depth spanning tree. As a start,it chooses the root of the tree to be a large-degree node (line 3), and each time a node ina set is considered for branching, the chosen candidate is also the one which presents the78



largest degree. In this heuristic way, by forcing a large branching in the tree, its depthwould be expected to be low.spanning tree() constructs a list of the nodes that have to be visited, along with theones already branched. The strategy of developing the tree lies in the administration ofsuch a list (line 6). If the list is managed strictly as a queue, a breadth-search strategywould result. If instead a stack management is used, a depth-�rst strategy results.Departing from these two alternatives, in this research the list is sorted by size of thedegree of the nodes involved.Each time a node is included in the tree (line 6), its neighbor nodes are scheduled tobe visited (line 12) if they haven't been visited already (line 11). The algorithm stopswhen the to visit set is empty (line 5).An execution of the spanning tree() routine for the graph in Figure 5.1 would startwith node B3 (whose degree is 4) and continue with nodes B1 and B2, eventually produc-ing the spanning tree T = fC1; C5; C6; C4g. The cotree T = fC7; C2; C8; C9; C3g providesthe cords, each one of them completing a cycle in the graph G. In this case four of thecompleted cycles have length 2 and one has length 5.5.4.3 Complexity AnalysisIn the spanning tree() procedure, the external loop (line 5) is executed O(V ) times.Internal to that loop, the largest operation is the branching loop (line 8) with complexityO(E). Inside such a loop there is an O(E) operation in first element() and an O(V )operation in the if (line 11). From these considerations it can be concluded that thecomplexity of the spanning tree() algorithm is O(V E2 + EV 2). The analysis for thecycles from tree() procedure indicates that since T is assumed to have tree structure,the operation path to root() can be completed in O(V ) (lines 5, 6), and the executionof common path() in O(V 2) steps. Next, the two legs tail1; tail2 are appended, togetherwith the cord ci to make the cycle (line 8). Since the loop (line 2 ) has to be performedexactly E�V +1 times, the complexity of this procedure is O(EV 2) (assuming E > V ).79



From the considerations above, it can be concluded that the complexity of the extractionof a set of basic cycles from a graph is G = (V;E) is O(V E2 + EV 2).5.5 Constraint Reduction for the GCS/SF ProblemBefore starting the application of the algorithm just presented, a short recapitulationmay be useful. In Chapter 4 and Chapter 5, methodologies for the statement of theGCS/SF problem using non-canonical and canonical variables were discussed. Regardlessof the methodology used, the complete and non-redundant set of constraints has to beused in the production of a set of polynomials to be input to the Grobner Basis algorithm.The partition of the original GCS/SF problem into a basic set of cycles for the SC graphproduces exactly a complete and non-redundant coverage of the SC graph (and of theproblem). Additionally, the cycles of the graph represent local GCS/SF subproblems.By analyzing these subproblems, conclusions about local scenes can be drawn, loweringthe overall computational expenses. In some domains of application, such as assemblyplanning, sub-assemblies can be identi�ed by this method. Therefore, the partition ofthe GCS/SF problem presents direct applications in CAD / CAM environments. Thestrategy called hereDivide & Conquer comprises the subdivision of the GCS/SF problem,the analysis of its local sub-problems and the integration of such analysis into the solutionfor the original system. In this section such a strategy is developed, and a variant of it,called Incremental Instancing, is discussed. An example illustrates the application ofthese concepts.5.5.1 Divide & Conquer AlgorithmThe Divide & Conquer (D&C) algorithm showed below assumes the existence of afundamental set of basis cycles for the SC graph. It extracts the polynomial equationsfor each cycle Li (lines 2, 4) and calculates its Grobner Basis gbi (line 5). The equationsobtained in this way are put together into the set full equations (line 7), whose Grobner80



Basis is �nally calculated. Obviously, if any one of the gi sets shows any inconsistency(gbi = f1g), the process should stop (line 9).procedure Divide and Conquer(G set of Graph )0 fPre: G = fL1; L2; ::Lkg basic cycles in Spatial Constraint Graphg1 full equations = fg;2 do not empty(G)3 fInv: full equations has same roots as fL1; L2; ::Lig g4 Li = next cycle(G);5 gbi = GB(equations(Li);�l) ;6 if (gbi 6= f1g) �!7 full equations = full equations [ gbi;8 else �!9 exit;10 �11 G = G� fLig;12 od13 full GB = GB(full equations;�l) ;14 fPost:full GB is the Grobner Basis for equations(G) gThe rationale behind the partition technique just discussed is based on several facts:(i) the individual gbi are Grobner Basis for the polynomials representing each basic cycle.Therefore, they have no internal redundancy; (ii) local inconsistencies are �ltered beforethe full GCS/SF problem is addressed; (iii) local solutions to subproblems can be foundand used towards the solution of the full problem; and (iv) the gi sets represent analready (triangularly) ordered set of polynomials. Although it is not within the scopeof this investigation to examine the details of Grobner Basis calculation, it is possiblethat in later work the pre-ordering in the individual Grobner Bases could be exploitedto speed up the processing of the full set. 81



5.5.2 Incremental Instancing AlgorithmThe Incremental Instancing (II) method is a variant of the D & C technique, in whichvariables that can be given a value by the characteristics of the local constraint scenarioare instanced immediately, therefore progressively reducing the size of the variable andpolynomial sets.procedure Incremental Instancing(G set of Graph )0 f1 fPre: G = fL1; L2; ::Lkg basic cycles in Spatial Constraint Graphg2 full equations = fg;3 free variables = fg;4 instanced variables = fg;5 do not empty(G)6 fInv: full equations has same roots as fL1; L2; ::Lig g7 Li = next cycle(G);8 Vi = variables(Li)� instanced variables;9 gbi = GB(equations(Li); Vi;�l) ;10 if (gbi 6= f1g) �!11 instanced variables = instanced variables [ instanced vars(Vi; gbi);12 full equations = full equations [ instanced form(gbi);13 else �!14 exit;15 �16 G = G� fLig;17 od18 free variables = all variables(G) � instanced variables ;19 full GB = GB(full equations; free variables;�l) ;20 fPost:full GB is the Grobner Basis for equations(G) g21 gIn this algorithm a set called instanced variables is maintained which contains thevariables that have taken a value at any point in the execution. Subsequently, onlyvariables not contained in this set can be considered for Grobner Basis calculation (lines8, 9). If a Grobner Basis is successfully calculated for a cycle (line 10), the set of instancedvariables is augmented by its contribution (line 11), and the general set of polynomials,82



full equations , is augmented by the partially instanced version of its set of polynomialsgbi (line 12). When the solution of the overall GCS/SF problem is �nally undertaken,only the free variables and the instanced version of the individual Grobner Bases gbi areused (lines 18, 19).5.5.3 Application of Constraint Reduction. Cartesian Table
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Figure 5.2 Piece Disassembly of Cartesian TableThe Cartesian Table example is presented to illustrate how the theory for partitioningand solving the GCS/SF problem discussed in this chapter can be applied. Given theconstraint con�guration (the topological information), and the dimensions of the entities(the geometrical part), the goal is to determine the degrees of freedom of the di�erentbodies in the mechanism. The Cartesian Table (see Figure 5.2) is intended to undergoorthogonal movement, which involves two translational degrees of freedom, thereforeproducing a planar translation between bodies B4 and B5. Notice that with the speci�ed83



Table 5.1 Joint List of the Cartesian TableConstraint Constraint Type Elements Canonical RepresentationC1 LN � PLN F11; F14 Ru(�1) � Tp(y1; z1) �Ru(�1)C2 LN � PLN F21; F14 Ru(�2) � Tp(y2; z2) �Ru(�2)C3 LN � PLN F12; F15 Ru(�3) � Tp(y3; z3) �Ru(�3)C4 LN � PLN F22; F15 Ru(�4) � Tp(y4; z4) �Ru(�4)C5 LN � LN F13; F11 Cu(�5; x5)C6 LN � LN F13; F12 Cu(�6; x6)C7 PLN � PLN F24; F25 GP (�7; y7; z7)C8 LN � LN F23; F21 Cu(�8; x8)C9 LN � LN F33; F22 Cu(�9; x9)constraints, the bodies B1, B2 and B3 have zero degrees of freedom relative to each other.This fact, together with constraints C1, C2, C3 and C4, forces the planes F15 and F14 toremain perpendicular to each other. An additional GP (planar sliding) constraint forcesplanes F25 and F24 to stay in contact, therefore producing the desired X � Y movement.The types of joints present in this mechanism appear in Table 5.1. The features Fijinvolved with each constraint Ck appear in column 3. The compositions of subgroups ofSE(3) that constitute each Ck appear in column 4. Notice that this example includesnon-trivial constraints such as C1, C2, C3 and C4.5.5.3.1 A Partition of the Cartesian Table ProblemFigure 5.3 shows the SC graph for the Cartesian Table and a simple abstraction of it.The Divide part of the Divide & Conquer strategy includes the identi�cation and solutionof local GCS/SF subproblems. The set of basic cycles contains four cycles of length 2,and one cycle of length 5. The SC graph presents jV j = 5 nodes (entities) and jEj = 9edges (constraints). Since the set of basic cycles must have jEj � jV j + 1 = 5 cycles, itfollows that, since the cycles mentioned above are independent, they constitute a basisfor the set of circs (and cycles) of the graph. In this example, the algorithm discussedfor partition of the SC graph produced the following set of basic cycles:SBC = ffC1 �C2g; fC3 � C4g; fC6 � C9g; fC8 � C5g; fC5 � C1 � C7 � C3 � C6gg(5.6)84
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Figure 5.3 Spatial Constraint Graph for Cartesian TableTable 5.2 Constraint Graph Basic CyclesCycle Name Cycle EquationsC1 �C2 F11:C1 = F21:C2C3 �C4 F12:C3 = F22:C4C6 �C9 F13:C6:F�112 = F33:C9:F�122C8 �C5 F23:C8:F�121 = F13:C5:F�111C5 � C1 � C7 � C3 � C6 C5:C1:F�114 :F24:C7 = C6:C3:F�115 :F25In Figure 5.1(f) the spanning tree corresponding to this example is shown, as well asthe corresponding set of cords, ci. It can be observed that every cord closes exactly oneindependent cycle when added to the spanning tree. The matrix equations describingthe constraint chains for each cycle appear in Table 5.2.At this point in the context of the Cartesian Table example, a partition of the originalGCS/SF problem has been determined by using a basic set of cycles for the SC graph.This set of cycles serves the purpose of stating the complete and non-redundant setof simultaneous equations to be input to a Grobner Basis algorithm. In what follows,the canonical formulation for the Cartesian Table will be processed by the Brute Force,Divide & Conquer and Incremental Instancing approaches.85



5.5.3.2 Brute Force ProcedureThe Brute Force approach directly processes a polynomial set that contains all thecycle-matrix equations originated from the partition of the SC graph (Table 5.2). Alexicographically ordered Grobner Basis is then calculated for this complete set, with nocalculation of partial or intermediate solutions. The Grobner Basis considering the orderS�1 � C�1 � y1 � z1 � S�1 � C�1 � S�2 � C�2 � y2 � z2 � S�2 � C�2 � S�3 �C�3 � y3 � z3 � S�3 � C�3 � S�4 � C�4 � y4 � z4 � S�4 � C�4 � S�5 � C�5 � x5 �S�6 � C�6 � x6 � S�7 � C�7 � y7 � z7 � S�8 � C�8 � x8 � S�9 � C�9 � x9 is asfollows: S�1 + S�4C�4 = 0 (5.7)C�1 = 0y1 � S�4 z4 � 3 = 05 z1 � 10S�4 + y4 S�4 y7 + 5S�4 y4 � 2S�4 y7 �C�4 z7S�4 y7 � 5C�4 z7S�4 = 05S�1 � C�4 z7 + y4 � 2 = 0C�1 = 0S�2 = 0C�2 � S�4 S�7 = 0y2 + S�4 y7 + 5S�4 � 2 = 05 z2 � S�4 z4C�4 z7 � 2C�4 z7 + S�4 z4 y4 + 2 y4 � 2S�4 z4 � 4 = 0S�2 = 05C�2 + C�4 z7 � y4 + 2 = 0S�3 + S�4C�4 = 0C�3 = 0y3 � 1� S�4 z4 = 0z3 � 2S�4 + S�4 y4 = 0S�3 = 086



C�3 + S�4 = 0S�4 = 0C�42 � 1 = 0C�4 y4 � 2C�4 + 5S�7 � z7 = 05C�4 S�7 + y4 �C�4 z7 � 2 = 0C�4 z72 + 2 z7 � 25C�4 � z7 y4 � 5S�7 y4 + 10S�7 = 0y42 � 4 y4 � 21 + 10S�7 z7 � z72 = 0S�42 � 1 = 0C�4 = 0S�5 + 1 = 0C�5 = 0x5 � 1 = 0S�6 � 1 = 0C�6 = 0x6 + 1 = 0S�72 � 1 = 0C�7 = 0S�8 = 0C�8 � 1 = 0x8 � 2 = 0S�9 = 0C�9 � 1 = 0x9 � 2 = 0This lexicographic Grobner Basis, presented as a triangular set, allows the evaluation ofthe Zero dimensionality properties for the polynomial ideal. By applying the method-87



ology and algorithms developed in previous chapters the following conclusions can bedrawn: (i) the ideal is not Zero-dimensional; (ii) the table is restricted to move in planartranslation, Tp(y7; z7), with two degrees of freedom, y7andz7; and (iii) a careful exam-ination of the example indicates that the remaining degree of freedom, z4, indeed hasa physical signi�cance, since the sub-assembly B1 � B2 � B3 still keeps one degree offreedom when all the other objects in the space are positioned. It can move along theline intersecting planes F15 and F14. Although in real machine tool design such a de-gree of freedom is unrealistic, in this example it has the capability to demonstrate thatcon�ning the sub-assembly B1 � B2 � B3 onto a plane F25 is not a necessary conditionfor the cartesian movement of the table. In more general terms, this rather �ne detaildemonstrates that a formal degree of freedom analysis is necessary in an increasinglycomputerized design environment. The problem is intuitively simple to a human being.5.5.3.3 Divide & Conquer ProcedureThis section shows the results of the preprocessing (Divide & Conquer) applied tothe individual cycles presented in Table 5.2. Observing Figure 5.2 and considering theconstraints in cycles C1 � C2, C3 � C4, C5 � C8 and C6 � C9, it is intuitively evidentthat the constraint intersections represented by those cycles are indeed reducible, and theresulting constraints should be as shown in Table 5.3. However, they cannot be reducedby the topological techniques introduced by Herve and/or Thomas & Torras [19, 36]because this mechanism involves non-trivial constraints. It will be shown here that theresults in Table 5.3 can be obtained in a local preprocessing of the constraints by usingGrobner Basis techniques. This preprocessing requires the application of the relations,established in this investigation, between the properties of the Grobner Bases and thesolutions for the GCS/SF problem. The application of the Divide & Conquer strategyto the Cartesian Table problem follows.Local Preprocessing. Cycle C1 � C2The (non-trivial) constraints C1 and C2 are of the type LN � ON � PLN , with thefeature lines F11 and F21 being non-colinear. The simultaneous enforcement of the two88



Table 5.3 Topological Basic Cycle ReductionsCycle Path 1 Path 2 Reduced De�ningConstraint GeometryC1 �C2 C1 = F11 �ON � F14 C2 = F21 �ON � F14 Gp F14C3 �C4 C3 = F12 �ON � F15 C4 = F22 �ON � F15 Gp F15C5 �C8 C5 = F13 �ON � F11 C8 = F23 �ON � F21 I4 -C6 �C9 C6 = F13 �ON � F12 C9 = F33 �ON � F22 I4 -constraints under such a geometric condition produces a (trivial) constraint of the typeGp, planar sliding. It is expected that the following procedure will con�rm this intuitiveconclusion.By using the cycle equations shown in Table 5.2 for cycle C1 � C2, and the orderS�1 � C�1 � y1 � z1 � S�1 � C�1 � S�2 � C�2 � y2 � z2 � S�2 � C�2, thelexicographic Grobner Basis resulted in:S�1 � C�2C�2 = 0 (5.8)C�1 + C�2S�2 = 0y1 � 1 + C�2 z2 = 0z1 + 2C�2 � C�2 y2 = 0S�1 + C�2 = 0C�1 = 0S�22 + C�22 � 1 = 0S�2 = 0C�22 � 1 = 0Using the interpretation background developed in chapter 3, it can be seen that y2; z2 andC�2 are free variables since they appear in no polynomial p as head(p). Consistently, theresult of this preprocessing indicates that two angular degrees of freedom �1 and �2 are�xed. The degrees of freedom can be extracted from path C2, and they clearly representthe planar sliding Gp(�2; y2; z2). 89



Local Preprocessing. Cycle C3 � C4From Table 5.2 and Figure 5.2 it can be determined that the cycle C3 � C4 presents anidentical situation as cycle C1�C2 does. By using the cycle equations shown in Table 5.2for cycle C3 � C4, and the order S�3 � C�3 � y3 � z3 � S�3 � C�3 � S�4 � C�4 �y4 � z4 � S�4 � C�4 , the following lexicographic Grobner Basis is calculated:S�3 + S�4C�4 = 0 (5.9)C�3 � S�4 S�4 = 0y3 � 1� S�4 z4 = 0z3 � 2S�4 + S�4 y4 = 0S�3 = 0C�3 + S�4 = 0S�42 + C�42 � 1 = 0S�42 � 1 = 0C�4From this triangular Grobner Basis one can see that the free variables are z4; y4 andC�4; therefore, three degrees of freedom z4; y4; �4 are left in the (trivial) constraintGP (z4; y4; �4). As in the previous case, the cycle could not be reduced by a topology-basedre-writing strategy for trivial constraints.Local Preprocessing. Cycle C5 � C8The satisfaction of constraints C5 and C8 at the same time can be assimilated to thesimultaneous positioning of two pegs into holes whose axes are perpendicular. This geo-metric condition suppresses all degrees of freedom of the cycle. As before, this conclusionis expected from the calculation of the Grobner Basis for the polynomials correspondingto this cycle. The ordering x5 � S�5 � C�5 � x8 � S�8 � C�8 leads to a (lexicographic)90



Grobner Basis: x5 � 1 = 0 (5.10)S�5 + 1 = 0C�5 = 0x8 � 2 = 0S�8 = 0C�8 � 1 = 0In this case no free variables are left and, as a consequence, bodies B1 and B3 have theirrelative movement completely constrained.Local Preprocessing. Cycle C6 � C9As in the case of the cycle C5 �C8, it is expected that all movement between bodies B3and B2 should be restricted. The ordering x6 � S�6 � C�6 � x9 � S�9 � C�9 producesthe (lexicographic) Grobner Basis: x6 + 1 = 0 (5.11)S�6 � 1 = 0C�6 = 0x9 � 2 = 0S�9 = 0C�9 � 1 = 0Again in this case, the triangular presentation of the Grobner Basis helps to show theZero-dimensionality of this ideal; therefore all the variables are instanced, and the bodyB3 is rigidly attached to body B2 in this cycle of the constraint graph.Global Processing. Full GraphIn this section the (gi) Grobner Bases already calculated for the individual cycles91



fgb1�2; gb3�4; gb5�8; gb6�9g are used towards the calculation of the Grobner Basis for thewhole constraint graph.The same variable order was used as for the full cycle, Brute Force approach; theGrobner Basis obtained is the same as in Equation 5.7. The Grobner Bases for theindividual cycles replaced the original constraint equations in the calculation of the overallGrobner Basis, which would therefore include all the variables and constraints in thegraph.5.5.3.4 Incremental Instancing ProcedureAccording to the Incremental Instancing algorithm presented in previous sections, thesequence of cycles considered in the execution is presented in Table 5.4. Cycle C1 � C2produces an instancing of variables C�2, S�2, S�1 and C�1. This result con�rms thefact that, as mentioned before, two rotational degrees of freedom are lost in this cycle.Cycle C3 � C4 presents a similar situation for variables S�3, C�3, S�4 and C�4, and soon. Notice that, in general, the order in which the cycles are considered is signi�cantif they share variables (line 8 of the Incremental Instancing algorithm). In that case, avariable instanced in a processed cycle would become a constant for the later stages ofthe algorithm. In this particular example, the �rst four cycles considered do not havevariables in common among themselves. Therefore they do not in
uence each other.However, they share variables with, and therefore contribute to lower the computationalburden of, the last cycle, C5 � C1 �C7 � C3 �C6.5.6 SummaryThis chapter has presented an algorithm for the determination of a basic set of cyclesfor the Spatial Constraint graph of the GCS/SF problem. The SC graph is a formalismwhich allows the automatic expression of the GCS/SF problem and its set of governingequations. The set of basic cycles for the SC graph indicates the minimum set of cycleequations that contain all the information of the problem.92



Table 5.4 Statistics for Incremental Instancing ExecutionSubgraph Instanced # Vars Equations GB SizeValuesC1 � C2 C�2 ! 1 12 16 9S�2 ! 0S�1 !�1C�1 ! 0C3 � C4 S�3 ! 0 12 16 9C�3 ! 1S�4 !�1C�4 ! 0C5 � C8 x5 ! 1 6 14 6x8 ! 2S�5 !�1C�5 ! 0S�8 ! 0C�8 ! 1C6 � C9 x6 ! �1 6 14 6x9 ! 2S�6 ! 1C�6 ! 0S�9 ! 0C�9 ! 1Full Graph C�1 ! 0 20 65 20S�1 ! 1S�2 ! 0C�2 ! 1S�3 ! 1C�3 ! 0S�4 ! 0C�4 ! 1C�7 ! 0S�7 !�1 93



The set of basic cycles of the SC graph induces a complete enumeration of the equa-tions governing the GCS/SF problem, regardless of the methods used to solve them.Additionally, each cycle can be separately processed in order to detect local inconsisten-cies, solution spaces of low dimensionality, or subproblems with weak dependencies tothe general GCS/SF problem. Therefore, the problem of the identi�cation of convenientbasic cycles becomes relevant. A convenient cycle, in this context, is the one whoseequations represent an ideal of low dimensionality. In other words, it allows one to drawconclusions or detect inconsistencies in the con�guration of the entities involved in thecycle. Since such cycles tend to be small, a desirable set of cycles contains as many smallcycles as possible. The algorithm presented here to extract a basic set of cycles from anSC graph uses a heuristic strategy to limit the size of the cycles that results in a com-plexity of O(V E2 + EV 2). It should be stated that although other algorithms studiedare able to �nd sets with smaller cycles, their computational expense is exponential andoutweighs the advantages of the Divide & Conquer techniques.The application of the algorithms discussed to the kinematic analysis of the CartesianTable mechanism illustrates how a set of basic cycles of the SC graph, can be used inthe solution of the problem in terms of sub-assemblies. Within the Divide & Conquertechniques, the method of Incremental Instancing proved to be more e�cient for thisparticular example. Incremental Instancing not only solves the small subproblems sepa-rately, but, by partially instancing the set of variables, it further reduces the size of theproblem. The evaluation of the convenience of D&C and II techniques in the context ofdiverse GCS/SF problems will be carried out in later chapters.
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CHAPTER 6Comparison of Solution Techniques for theGCS/SF ProblemThe goal of this chapter is to evaluate the performance of di�erent techniques inmodeling and solving the GCS/SF Problem as the characteristics of the physical problemchange. These characteristics involve the number of entities present in the world (two-body vs. multi-body systems), and the nature of the constraints (trivial vs. non-trivial)imposed upon them. A set of examples illustrating a full combination of types of physicalproblems against methods of modeling and methods of solution would involve a largenumber of situations. Since many of them are not signi�cant from the point of view oftheir applicability, they will not be considered. This aspect will be developed in followingsections.Given a speci�c GCS/SF problem, the investigator must chose techniques formodelingand solution. In modeling the problem, the alternative of using canonical vs. non-canonical variables needs to be addressed. This choice has important implications for thesolution process: canonical variables seem to be a smaller and physically more meaningfulway to express the GCS/SF Problem. In this chapter, examples to test this statementare presented.Once a modeling technique is chosen, the issue of the solution method arises. Severalmethods have been developed in this work, and the purpose of this chapter is to providea comparison of their performance. They are represented in two main strategies:(1) The solution of a large, non-structured set of polynomial equations modeled usingeither canonical or non canonical variables.95



(2) The processing of local subproblems as part of the solution for the general GCS/SFproblem and the consolidation of the partial solutions into the general one.6.1 Design of ExamplesTo identify modeling and solution techniques appropriate for each physical situationof the GCS/SF problem, the following aspects have to be considered:� Physical characteristics of the problem:Two Body vs. Multi Body Systems, and Trivial vs. Non-trivial Constraints betweenthe entities.� Method of modeling:Canonical vs. Non-canonical formulations.� Processing method:Preprocessing (PP) vs. Non-preprocessing (NPP) techniques.In Figure 6.1 the di�erent combinations of the factors presented above are shownin a tree diagram. Branches which are trimmed are considered super
uous or of littleapplicability in common situations:(1) Systems with trivial constraints are not discussed extensively due to the scarcityof applicable situations. In almost any case of multi-body or multiple constraintsystems, the SC graph produces non-trivial interactions.(2) In dealing with multi-body systems and non-trivial constraints, the use of non-canonical variables makes the computations expensive. Therefore no further e�ortwas made to assess preprocessing techniques in multiple entity problems expressedwith non-canonical formulation.Two restrictions to the physical problems dealt with in this chapter are:96



(1) In general, the number of entities involved in the GCS/SF problem is larger thantwo. Although examples using two-body scenarios are discussed, the emphasis inthe modeling and solution of the GCS/SF problem will be directed to systems withmultiple entities.(2) Due to their applicability, this investigation focuses on contact constraints, whichare mainly non-trivial. Although trivial constraints are not excluded altogether,this chapter will emphasize non-trivial cases.
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Table 6.1 Entity Relations in Vector FormRelation Entity 1 Entity 2 Vector EquationP �ON � P p1 p2 p1 = p2P �ON � LN p1 LN = (p2; v2) (p1 � p2)� v2 = 0P �ON � PLN p1 PLN = (p2; n2) (p1 � p2) � n2 = 0LN �ON � LN LN = (p1; v1) LN = (p2; v2) v1 � v2 = 0(p1 � p2)� v2 = 0LN �ON � PLN LN = (p1; v1) PLN = (p2; n2) (p1 � p2) � n2 = 0v1 � n2 = 0PLN �ON � PLN PLN = (p1; n1) PLN = (p2; n2) (p1 � p2) � n2 = 0n1 � n2 = �1This example (called Block on Corner (BC)) presents a degree of redundancy in theconstraints and is also suitable for application of preprocessing techniques.An assembly adapted from [36] shows the interaction of more than two bodies withtrivial constraints. It is referred to as Thomas & Torras (T&T) example. The caseof multiple bodies with non-trivial constraints is illustrated by the modeling of a Carte-sian (or X-Y) Table (CT). Given the complexity of the SC graph, techniques forpreprocessing become a necessity for this type of situations.6.1.1 Terminology and NotationIn addition to the notation used in previous chapters, new terms are introduced here:� Oij is the origin of the feature frame i relative to entity Bj .� Xij is the orientation of x axis of the feature frame i relative to entity Bj.� Bj :Oij is the absolute position of the point Oij.� Bj :Xij is the absolute orientation of the vector Xij .� Ci: Constraint RelationsThey are modeled following the formulations in Tables 6.1 and 6.2, repeated inthis chapter for convenience. 98



Table 6.2 Entity Relations Using Canonical FormulationMacro Joint Chain Kinematic Joints in Chain dofP �ON � P So spherical 3P �ON � LN T1 � S linear translation, spherical 4P �ON � PLN T2 � S planar translation, spherical 5LN �ON � LN Cv cylindrical 2LN �ON � PLN GP �Rw planar sliding, revolute 4PLN �ON � PLN GP planar sliding 36.2 Two Body SystemsThis section discusses the modeling and solution of GCS/SF problems in scenarioswith two bodies. First, DPH will illustrate the case for trivial constraints. Second, BCwill demonstrate the case when non-trivial constraints are present.6.2.1 Trivial Constraints. Double Peg and Hole (DPH)
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Table 6.3 Constraints for the Double Peg and Hole (DPH) ExampleConstraint Non-canonical Equations CanonicalEquationsC1: LN �ON � LN (B1:X11 �B2:X12) = 0 B1:F11:Cu:F�112 = B2F11 �ON � F12 (B1:O11 �B2:O12)� (B2:X12) = 0C2: LN �ON � LN (B1:X21)� (B2:X22) = 0 B1:F21:Cv:F�122 = B2F21 �ON � F22 (B1:O21 �B2:O22)� (B2:X22) = 0Table 6.4 Statistics for the DPH ExampleExample Variable Type Variables Equations GB Size Time (secs)DPH Non-canonical 12 20 16 1.53DPH Canonical 6 14 6 0.25and F22 also being rigidly joined). Table 6.3 presents the canonical and non-canonicalformulations for this example.This problem presents a con�guration similar to an electric outlet plug, with cylin-drical legs. If considered separately, each peg-hole pair allows a cylindrical movementwith axes Fij's. However, by joining them with a rigid link the rotational component ofeach pair is suppressed, leaving only the translational one in the direction of the linesFij. The statistics comparing the canonical and non-canonical modeling for this exampleare shown in Table 6.4. A detailed account of the modeling and solution of this case waspresented in chapter 3.6.2.2 Non-trivial Constraints. Block and Corner (BC)An interesting situation for the application of non-canonical variables is an scenariowith small number of entities, and a large number of (trivial or non-trivial) constraintsamong them. This situation originates in the fact that non-canonical modeling presentsa number of variables proportional to the number of entities in the scene. Meanwhile,the number of variables for the canonical formulation is proportional to the number ofconstraints. Therefore, in this case, by using non-canonical modeling a smaller GCS/SFproblem results. Since this example (Figure 6.3) presents large number of constraints100
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Table 6.6 Canonical Formulation for Basic Cycles in the BC ExampleCycle Name Cycle EquationsC1 �C2 F11:C1F�112 = F21:C2:F�122C2 �C3 F21:C2:F�122 = F31:C3:F�132C2 �C4 F21:C2:F�122 = F41:C4:F�142The set of equations of this example (Table 6.5) is dealt with by using both non-preprocessing and preprocessing techniques. In the �rst case (NPP or Brute Force tech-niques), the equations are directly included in a general, non-structured set. Their solu-tion space is then calculated by the Grobner Basis methods discussed in previous chapters.In the second case, advantage is taken from the opportunity of applying the Preprocess-ing (PP) or Divide and Conquer (D&C) techniques based on the spatial constraint graph(Figure 6.4).
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Table 6.7 Statistics for the BC ExampleExample Variable Type Variables Equations GB Size Time (secs)Brute Force Non-canonical 12 18 12 2.334C1� C2 Non-canonical 12 15 10 2.10C2� C3 Non-canonical 12 14 11 2.25C2� C4 Non-canonical 12 13 11 1.916Joint Cycles Non-canonical 12 32 12 1.983Total D&C Non-canonical 8.249Brute Force Canonical 24 47 23 22.783C1� C2 Canonical 10 16 7 2.850C2� C3 Canonical 9 15 8 1.083C2� C4 Canonical 11 16 10 6.150Joint Cycles Canonical 24 25 23 6.916Total D&C Canonical 16.27partial Grobner Bases GBi. The GBi bases are subsequently used in determining theGrobner Basis for the whole problem.As expected, the non-canonical formulation exhibits an advantage with relation to thecanonical one. However, D&C was largely unsuccessful. The added cost of calculatingthe cycle-based, local Grobner Bases along with calculating GB for the general set ishigher than the direct approach of attacking the whole set of original equations. Thesmall size of the problem makes the overhead of setting up the local subproblems moreexpensive than the solutions themselves. Therefore, in small systems the D&C approachis not desirable.6.3 Multi-body SystemsMost of the instances of the GCS/SF problem correspond to multi-body systems,with trivial and non-trivial constraints. Therefore, it is important to �nd an e�cientmethodology for stating and solving such problems. The �rst study case presented herecorresponds to a trivially constrained system with several bodies. It is a modi�cation ofan assembly presented in [36] (T&T). The second, non-trivially constrained, multi-bodysystem corresponds to the modeling of a Cartesian (or X-Y) Table (CT).103



Table 6.8 Constraints for the T&T ExampleConstraint Non-canonical Equations CanonicalEquationsC1: LN �ON � LN (B1:X21)� (B2:X12) = 0 B1:F21:Cu = B3:F13F21 �ON � F13 (B1:O21 �B3:O13)� (B3:X13) = 0C2: LN �ON � LN (B1:X31)� (B2:X12) = 0 B1:F31:Cu = B2:F12F31 �ON � F12 (B1:O31 �B2:O12)� (B2:X12) = 0C3: LN �ON � LN (B3:X23)� (B2:X22) = 0 B3:F23:Cu = B2:F22F23 �ON � F22 (B3:O23 �B2:O22)� (B2:X22) = 0C4: LN �ON � LN (B4:X14)� (B2:X32) = 0 B4:F14:Cu = B2:F32F14 �ON � F32 (B4:O14 �B2:O32)� (B2:X32) = 0C5: LN �ON � LN (B3:X33)� (B4:X14) = 0 B3:F33:Cu = B4:F14F33 �ON � F14 (B3:O33 �B4:O14)� (B4:X14) = 0C6: LN �ON � LN (B1:X11)� (B4:X14) = 0 B1:F11:Cu = B4:F14F11 �ON � F14 (B1:O11 �B4:O14)� (B4:X14) = 0Table 6.9 Canonical Formulation of Basic Cycles in the T&T ExampleCycle Name Cycle EquationsC6 � C4 � C2 F11:C6:C4:F�132 = F31:C2:F�112C6 � C5 � C1 F11:C6:C5:F�133 = F21:C1:F�113C2 � C6 � C5 � C3 F31:C2:F12�1:F22:C3:F23�1 = F11:C6:C5:F�1336.3.1 Trivial Constraints. Torras & Thomas (T&T)The assembly for this example is shown in Figure 6.5. Its constraint speci�cationappears in Table 6.8, column 1. The two internal bodies B2 and B3 are allowed acylindrical movement about each other using the axes F22 and F23 respectively. However,both degrees of freedom, the translation and the rotation are restricted by the slides F21and F31 in the interior of body B1. The remaining movement of the assembly B2 �B3,the sliding granted by the features F21 and F11, is avoided by the pin B4 through theenforcement of constraint pairs (R6, R5) and (R6, R4). For the whole scenario, the onlydegrees of freedom left (rotation and translation) are associated with the pin B4. TheSC graph for this example is shown in Figure 6.6. The cycle decomposition of the SCgraph used for the statement of equations and application of D&C techniques is shownin Table 6.9. 104
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Figure 6.5 Torras & Thomas (T & T) Example ScenarioThe non-canonical formulation for this example translates into the vector equations ofTable 6.8, column 2. The canonical formulation appears in matrix form in column 3. Theconstraint graph includes three basic loops of constraints that must be simultaneouslysatis�ed. Their expression in the form of matrix equations appears in Table 6.9.Table 6.10 presents statistics for the T&T example. From these results, it can beconcluded that in multibody, trivial constraint problems: (i) canonical formulation resultsin smaller polynomial sets, therefore lowering the computational expenses; (ii) for smallproblems (such as T&T), D&C re�nements simply don't justify their own expense inproblem formulation; and (iii) although D&C is comparatively more useful with non-105
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Figure 6.6 Constraint Graph for the T&T Examplecanonical modeling because (ii), it simply becomes unpractical for large scale problems(with or without D&C). Even canonical formulation will solve the proposed problemsonly with the help of D&C techniques. The next example explores these statements inlarger scenarios.6.3.2 Non-trivial Constraints. Cartesian Table (CT)In order to evaluate di�erent modeling and solving techniques in multibody, non-trivial constraint systems, a mechanism called a Cartesian Table will be analyzed (seeFigure 6.7). The account of constraints for this mechanism appears in Table 6.11, column1. The spatial relations imposed in this example produce a constraint graph (with severalcycles) which requires the application of D&C techniques for its solution. Although thecomparison between non-canonical vs. canonical modeling is (tangentially) discussed inthis example, the main purpose of it is to compare the application of Brute Force andD&C techniques. Local treatment of subproblems should o�er advantages in lowering thecomputational resources expended. For the application of D&C techniques, it is necessaryto extract a set of basic cycles in the constraint graph of Figure 6.8, as discussed in chapter5. The result of the algorithms determining such a set of cycles is shown in Table 6.12.106



Table 6.10 Statistics for the T&T Example.Example Variable Type Variables Equations GB Size Time (secs)Brute Force Non-canonical 36 54 37 403.3C1� C5� C6 Non-canonical 24 30 25 117.0C2� C4� C6 Non-canonical 24 30 25 117.1C2� C6� C5� C3 Non-canonical 36 16 - 1Joint Cycles Non-canonical 36 56 37 20.400Total D&C Non-canonical 254.5Brute Force Canonical 18 42 16 5.800C1� C5� C6 Canonical 9 15 7 1.400C2� C4� C6 Canonical 9 15 7 1.600C2� C6� C5� C3 Canonical 12 16 12 4.817Joint Cycles Canonical 18 26 16 3.233Total D&C Canonical 11.05Table 6.11 Constraints for the CT ExampleConstraint Non-canonical Equations CanonicalEquationsC1: LN �ON � PLN (B1:X11):(B4:X14) = 0 B1:F11:Ru:Gp = B4:F14F11 �ON � F14 (B1:O11 �B4:O14):(B4:X14) = 0C2: LN �ON � PLN (B1:X21):(B4:X14) = 0 B1:F21:Ru:Gp = B4:F14F21 �ON � F14 (B1:O21 �B4:O14):(B4:X14) = 0C3: LN �ON � PLN (B2:X12):(B5:X15) = 0 B2:F12:Ru:Gp = B5:F15F12 �ON � F15 (B2:O12 �B5:O15):(B5:X15) = 0C4: LN �ON � PLN (B2:X22):(B5:X15) = 0 B2:F22:Ru:Gp = B5:F15F22 �ON � F15 (B2:O22 �B5:O15):(B5:X15) = 0C5: LN �ON � LN (B3:X13) � (B1:X11) = 0 B3:F13:Cu = B1:F11F13 �ON � F11 (B3:O13 �B1:O11)� (B3:X13) = 0C6: LN �ON � LN (B3:X13) � (B2:X12) = 0 B3:F13:Cu = B2:F12F13 �ON � F12 (B3:O13 �B2:O12)� (B3:X13) = 0C7: PLN �ON � PLN (B4:X24) � (B5:X25) = 0 B4:F24:Gp = B5:F25F24 �ON � F25 (B4:O24 �B5:O25):(B5:X25) = 0C8: LN �ON � LN (B3:X23) � (B1:X21) = 0 B3:F23:Cu = B1:F21F23 �ON � F21 (B3:O23 �B1:O21)� (B3:X23) = 0C9: LN �ON � LN (B3:X33) � (B2:X22) = 0 B3:F33:Cu = B2:F22F33 �ON � F22 (B3:O33 �B2:O22)� (B3:X33) = 0107
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Figure 6.7 Cartesian Table (CT) Example ScenarioThe CT example was initially modeled using non-canonical variables. This modelingwas not successful since the execution calculating the Grobner Basis corresponding tothe complete set of equations (Table 6.13) did not terminate. Therefore, pursuit of themodeling by non-canonical means was stopped, and the emphasis of this section wasplaced in evaluating variants using the canonical modeling. Using this formulation anda Brute Force (non-preprocessing) approach, the Grobner Basis was successfully deter-mined. However, the high cost of this result forced the exploration of D&C techniques,presented next.6.3.2.1 Divide & Conquer PreprocessingAs explained earlier, the Divide & Conquer approach uses the Grobner Bases cor-responding to the local GCS/SF subproblems GBi = GB(Si) instead of the originalsubproblem equations Si. The theoretical justi�cation for this substitution lies in the108
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Figure 6.8 Constraint Graph for the CT ExampleTable 6.12 Basic Cycles in the CT ExampleCycle Name Cycle EquationsC1 �C2 F11:C1 = F21:C2C3 �C4 F12:C3 = F22:C4C6 �C9 F13:C6:F�112 = F33:C9:F�122C8 �C5 F23:C8:F�121 = F13:C5:F�111C5 � C1 � C7 � C3 � C6 C5:C1:F�114 :F24:C7 = C6:C3:F�115 :F25fact that the two sets, the original Si for subproblem (or cycle) i and the correspondingbasis GBi generate the same ideal. Refer to chapter 5 for a closer analysis of the D&Ctechniques.The set of basic cycles which resulted from the partition algorithm applied to the SCgraph is (see Figure 6.8):SBC = ffC1 �C2g; fC3 � C4g; fC6 � C9g; fC8 � C5g; fC5 � C1 � C7 � C3 � C6gg(6.1)Since these cycles are formed by non-trivial constraints, direct application of thereduction technique described in [19] by Herve is not possible. However, by using thecanonical formulation, in combination with the properties of the Grobner Bases and thecycle preprocessing, the reduced constraints of Table 6.14 were obtained. In two cases109



Table 6.13 Statistics for the CT Example. Divide & Conquer StrategyExample Variable Type Variables Equations GB Size Time (secs)Brute Force Full Graph Non-canonical 48 58 - 1Brute Force Full Graph Canonical 40 73 40 107.416C1 � C2 Canonical 12 16 9 1.883C3 � C4 Canonical 12 16 9 2.050C5 � C8 Canonical 6 14 6 0.617C6 � C9 Canonical 6 14 6 1.034Full Graph Canonical 40 43 40 54.333Total D & C Canonical 59:9Table 6.14 Topological Basic Cycle Reductions for the CT examplePath 1 Path 2 Reduced ConstrainingConstraint GeometryC1 = F11 �ON � F14 C2 = F21 �ON � F14 Gp F14C3 = F12 �ON � F15 C4 = F22 �ON � F15 Gp F15C5 = F13 �ON � F11 C8 = F23 �ON � F21 I4 -C6 = F13 �ON � F12 C9 = F33 �ON � F22 I4 -(cycles C5�C8 and C6 �C9), the enforcement of all the constraints in a cycle produceda complete instancing of all variables. This instancing implies that bodies B1, B2, andB3 are rigidly linked together, and the role of this cluster body B123 is to eliminate fromthe constraint C7 the rotational degree of freedom �7, thereby producing the cartesianmovement sought.6.3.2.2 Incremental InstancingA variant of the D&C strategy, the Incremental Instancing (II) technique (see chapter5) implies the progressive elimination by instancing of variables from the problem as aconsequence of solutions found by calculating the local bases GBi. This section examinesthis approach and reports its results.According to the procedure de�ned in chapter 5 for Incremental Instancing, the vari-ables instanced during the execution of the algorithm appear in Table 6.15. The com-parison of the results of Incremental Instancing with those of D&C (Table 6.13) show110



Table 6.15 Statistics for the CT Example. Incremental Instancing.Subgraph Instanced # Vars Equations GB size TimeValues (secs)C1 � C2 C�2 ! 1; S�2 ! 0 12 16 9 1.883S�1 ! �1; C�1 ! 0C3 � C4 S�3 ! 0; C�3 ! 1 12 16 9 2.200S�4 ! �1; C�4 ! 0C5 � C8 x5 ! 1; x8 ! 2 6 14 6 0.717S�5 ! �1; C�5 ! 0S�8 ! 0; C�8 ! 1C6 � C9 x6 ! �1; x9 ! 2 6 14 6 0.717S�6 ! 1; C�6 ! 0S�9 ! 0; C�9 ! 1Full Graph C�1 ! 0; S�1 ! 1 20 65 20 10.23S�2 ! 0; C�2 ! 1S�3 ! 1; C�3 ! 0S�4 ! 0; C�4 ! 1C�7 ! 0; S�7 ! �1Total Time 15.747that the �rst method presents de�nite advantages. These advantages can be traced tothe decreasing size of each subproblem being subsequently solved.The examples developed showed that results in Table 6.14 can be obtained by alocal preprocessing of the constraints using an algebraic method which: (i) identi�es thedegrees of freedom lost in local sub-problems; (ii) detects local geometric or topologicalinconsistencies; and (iii) reduces the size of the GCS/SF problem to the degrees of freedomleft by the local instancing processes.6.4 SummaryThis chapter discussed the techniques most suitable to model and solve the di�erenttypes of GCS/SF problems. Systems with only trivial constraints and two bodies areconsidered rare, as are systems with several bodies and only trivial constraints betweenthem. For the rest of the cases, the following conclusions have been drawn from theexperiments: 111



(1) Systems with a small number of bodies and large number of (possibly) redundantconstraints between them are more e�ectively modeled by non-canonical methods.In either case (non-canonical or canonical), the use of D&C techniques does notre
ect a de�nite improvement. A conjecture about this result lies in the fact thatcomputations spent in problem set-up may be heavier than the actual GrobnerBasis calculation for a small polynomial set.(2) In systems with a larger number of bodies, canonical variables are de�nitely needed.The computation e�ort for the non-canonical version of the examples in most suchcases is extremely heavy.(3) For larger systems, the Divide & Conquer techniques are advisable, since theytake advantage of the existence of sub-systems strongly constrained internally, andweakly related to the external world. These sub-systems correspond to cycles in theSC graph which have some of their degrees of freedom internally instanced. If D&Ctechniques are used, the local Grobner Bases are used in the solution of the generalsystem. These GBi sets are already ordered (lexicographically or by degree order)and free of redundancy and inconsistencies. Therefore, they contribute towards thecomputation of the �nal solution.(4) Incremental Instancing presents the advantage of actually eliminating degrees offreedom from the variable set, therefore contributing to lower the computationalexpense of the solution. This technique, as demonstrated in the examples of theCartesian Table, is frequently the only alternative in dealing with large systems.By exploiting the Incremental Instancing technique, the size of the entity set canbe decreased due to clustering of several entities into one. Divide & Conquer (andIncremental Instancing) techniques have the characteristic that they are e�ectiveonly in situations in which the burden of the original Brute Force approach is high.If the collateral burden of the numerical solution of triangular subsystems and otherbook-keeping activities is large compared to the size of the problem, the Divide &Conquer techniques are not justi�ed.112



This chapter has shown that problems with large numbers of entities and constraintscan be modeled in a more e�cient way using the canonical formulation. Not only doesit produce smaller and more compact sets of polynomials, but the results of the GrobnerBasis can be easily related to the physical degrees of freedom of the entities. For largeproblems, D&C becomes a necessary tool for solution. Since in any case a partition ofthe GCS/SF problem is required in order to establish the complete, non-redundant set ofequations for the problem, the D&C (and Incremental Instancing) techniques can bene�tfrom such calculation.
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CHAPTER 7ApplicationsThe formulation and solution of the GCS/SF problem were discussed previously inthis thesis. Canonical variables and Divide & Conquer strategies were presented as meansto make the tasks of formulation and solution more e�cient and physically meaningful.This chapter addresses the applicability of the concepts developed. First, it presentsthe services provided by the Static Geometric Reasoning library to a client programfor Feature Extraction. The scope and usability of these services are discussed. Thesecond application corresponds to Kinematic Analysis of Mechanisms. The proposedalgorithms for constraint management are used to analyze the Oldham coupling [15]. Thecharacteristics of Grobner Bases for the GCS/SF problem are mapped into variations ofthe kinematic structure of the mechanism. As third case study, the theory developedfor evaluation of the solution space for the GCS/SF problem is applied to MobilityAnalysis. The study case is the Bennett mechanism [4], a classical example of solutionspace topology being dependent on problem geometry. These three cases, in addition tothe other examples in this document, demonstrate the relevance and applicability of thisinvestigation.7.1 Geometric Reasoning for a Feature ExtractionApplicationThe Static Geometric Reasoning library has been used to serve a client applicationin Automatic Feature Recognition. Traditional solution approaches to the problem of114



Feature Recognition formulate general algorithms for the identi�cation of features fromthe solid model of a part. This approach has not been successful because the hard codedalgorithms make underlying functional assumptions about the de�nition of the feature.Therefore, they have the following negative e�ects: (i) the process may identify as featuressets of entities whose functionality is completely unrelated; and (ii) it may fail in identi-fying evident features, which could be extracted by using a more customized algorithm.Such an algorithm could apply the expert knowledge of a user, who could devise moree�cient, although less general, identi�cation strategies. This approach would avoid theinteraction with large search spaces, therefore making the recognition computationallyfeasible.In order to avoid these drawbacks, Marin & Ferreira [31] have proposed to take thefeature recognition process a step early. Instead of writing hard coded algorithms whichare intended to recognize features in all the cases and situations, they designed a a Fea-ture Declaration and Recognition language which allows for the automatic production ofrecognition algorithms. Although automatic, this process produces highly customizedstrategies for recognition of the predominant features in a given manufacturing environ-ment. Instead of being forced to use existing feature de�nitions, the user is equippedwith the tools to (i) declare features; (ii) automatically produce recognition code; and(iii) control the e�ciency of the algorithm by using the semantic context related to thefeature in pruning the search space. The code thus produced can be attached to themodel of a part, in the same way in which tolerance or dimension speci�cations are. Itcan be used at any required stage in the process of design / manufacture.The feature de�nitions written in this language are compiled into a C++ program andlinked with the Static Geometric Reasoning library. A brief description of the character-istics of the language and its interaction with the Geometric Reasoning library follows.
115
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(2) In the second stage, the extraction programs produced in the �rst one are exe-cuted when needed, using as input the solid model of the part. At this stage, theExtraction program makes extensive use of geometric and connectivity reasoning,administration of partial results, graphic display, etc.To illustrate the above description, an example [31] is displayed and discussed. The fea-ture to be recognized is a step, and its declaration / recognition program is transcribedhere. The program is divided into de�nition and recognition sections. The de�nition sec-tion allows the user to establish the entities that constitute the feature, their properties,and the relations among them. The recognition part allows the expertise of the user tobe expressed in the sequence of steps taken to identify the di�erent entities which arecomponents of the feature. These aspects are discussed next.#De�nition section0 DEFINITION1 NAME STEP ;2 ENTITIES:3 F1, F2 : FACE ;4 E1 : EDGE ;5 EDGE TYPE:6 E1 : STRAIGHT ;7 FACE TYPE:8 F1, F2 : PLANAR ;9 CONNECTIVITY:10 F1: (F2, E1, CONCAVE) ;11 ORIENTATION:12 F1, F2 : PERPENDICULAR ;13 END DEFINITION#Recognition section14 BEGIN15 �nd [E1] based on edge convexity ;16 �nd [F1] based on connectivity with [F2] ;17 verify [E1] derived connectivity from [F1, F2]18 END 117



F1

F2

E1Figure 7.2 Simple step feature7.1.2 Services Provided by the Geometric Reasoning SystemBased on the example displayed here, the services provided by the Static GeometricReasoning and other modules to the Feature Recognition module follow:� type of entities:This call to the extraction routines is used to identify and extract entities by type(EDGE, FACE, STRAIGHT, etc) from the solid model. The entity types aredeclared in lines 2-4. They are (implicitly) enforced in lines 15-17.� characteristics of entities:In this case, a geometric characteristic of the extracted entity is imposed; for ex-ample, the EDGEs are declared to be STRAIGHT, or the FACEs to be PLANAR(lines 5-8). The enforcement of these conditions is implicit in lines 15-17.� connectivity:This statement identi�es topological connections between entities in the solid model.In the example (lines 9-10), it is declared that the (FACE) entities F1 and F2 areconnected by an EDGE (E1), which should be concave. The Geometric Reasoningserver produces the list of FACE entities connected to F1. Enforcement of concavityon the common EDGE results from the compilation of line 15.� orientation:Several orientation conditions (lines 11-12) may be requested between di�erententities. For example an EDGE perpendicular to another EDGE, two FACEs beingparallel, etc. The role of the server is to test such relations in candidate sets118



submitted to it. This conditions are implicitly used to reduce the search space (line16).From the discussion above it is clear that the language of the Recon�gurable FeatureDe�nition and Recognition application is designed to have the description and recognitionparts complement each other. Capabilities imparted to the language for feature descrip-tion are met by corresponding types of enforcement statements that command actionson the recognition process. In this way, the language allows 
exibility in the semanticsassociated to a feature name. In addition, the recognition process can be made moree�cient by allowing the expertise of the user to dictate the order of enforcement of thedescriptions.7.1.3 Table ManagerFrom the point of view of the Feature Recognition process a Feature is an ordered setof n entities, or n � tuple, where each place of the tuple corresponds to a role speci�edin the recognitions program. In the example shown in Figure 7.2 a typical tuple wouldhave the form (F1; F2; E1). F1; F2 and E1 have to be considered as roles which are tobe ful�lled by real instances of entities. Therefore, the result of the recognition processis a set of tuples, each one of them holding di�erent instances of entities from the solidmodel for the declared roles. This form of the result suggests that the administration ofthe set of results of the recognition process can be managed in similar way to a relationaldatabase. The manager of the data base, called Tuple Manager, handles the instancing ofthe roles in the tuples by real entities, deletes tuples which do not satisfy the requirements(verify statements), and �nishes the process returning a set of tuples, with their rolescompletely instanced. These tuples represent di�erent combinations of entities in thesolid model which satisfy the Feature Declaration. The recognition program �lls up eachtuple in the result set with pointers to the candidate entities in the model, as shown inFigure 7.1. The Tuple Manager is given the name Partial Recognition Administration,119



since it manipulates the partially �lled tuples until the recognition process �nishes. Atthat point each surviving tuple is completely and consistently �lled.Figure 7.1 illustrates the modules serving the client program. They include (i) theConnectivity module, which serves the topological queries searching in the solid model;(ii) Geometric Reasoning module, which veri�es geometric relations such as perpendic-ular(), parallel(), etc.; and (iii) the Tuple Manager, which administers the consistencyand evolution of the Tuple Table.7.1.4 Feature Extraction Client Program. SummaryThis section has shown the use of the Geometric Reasoning server by a client applica-tion, a Recon�gurable System for Feature Description and Extraction. Besides the purelygeometric queries performed by the server, other services such as topological (connectiv-ity) queries, table administration, graphic display, etc., are provided for this application.These services are also organized in form of libraries and separate modules to be used bya client (human or program).The following sections of this chapter involve the application of the theoretical back-ground developed for the Dynamic Reasoning problem. The applications presented hereare in the areas of Kinematic Analysis of Mechanisms and Mobility Analysis. Thesedomains are particularly suitable for the application of this work since a mechanism is,by de�nition, the materialization of geometric constraints imposed upon its constitutivelinks. As a complement, Mobility Analysis implies the inventory of degrees of freedomof entities. The following sections expand on these topics.7.2 Kinematic Analysis. Oldham CouplingThe purpose of this section is to show how the kinematics of mechanisms can beexpressed in terms of the GCS/SF problem, and how the methods of solution for GCS/SFcan be applied to analyze the characteristics of kinematic chains. Speci�cally, the Oldhamcoupling and several variations of it will be discussed.120



Table 7.1 Joint List of the Oldham CouplingJoint Joint Type Canonical RepresentationR1 Tu trans(x1)R2 Tu trans(x2)R3 Ru twix(�3)R4 Ru twix(�4)The relevance of the GCS/SF problem in the context of Kinematic Analysis of Mech-anisms is obvious given that kinematic joints are precisely constraints on the relativeposition of entities. A solution in the context of the GCS/SF problem corresponds to aphysically realizable con�guration (or a set of con�gurations) in the domain of kinemat-ics. Continuous regions of the solution space for the GCS/SF problem directly map tothe possible motion (degrees of freedom) of the mechanism. This correspondence allowsa two way analysis: (i) a given kinematic arrangement can be screened by looking atthe solution space of its expression as a GCS/SF problem; and (ii) it is possible to infer(new) kinematic arrangements based on desired properties of the solution space.7.2.1 Kinematics of the Oldham CouplingThe Oldham coupling is shown in Figure 7.3. This mechanism is designed to connecttwo parallel, non-colinear axes, allowing the transmission of rotational movement [15].Using canonical variables, the types of joints present in this mechanism are modelled inTable 7.1The ground frame is called B0, and supports the Oldham coupling through the fea-tures F20 and F10 which are the parallel, non-colinear axes. The two central joints R1 andR2 are prismatic, with their grooves F12 and F22 being non-parallel. R3 and R4 representthe rotatory movements (input / output) that are to be transmitted by the coupling.
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x1 � x2 � s�3 � c�3 � s�4 � c�4, is:x1 + L13 s�4 = 0 (7.5)x2 + L13 c�4 = 0s�3 � s�4 = 0c�3 + c�4 = 0s�42 + c�42 � 1 = 0This triangularized Grobner Basis presents a free variable, c�4, responsible for the one-dimensionality of the polynomial ideal [7, 22, 30]. It represents the rotational degree offreedom transmitted. As expected, the prismatic joints R1 and R2 (variables x1 and x2)are controlled by the separation between the two axes, L13.7.2.1.2 Variation 1. Cylindrical Joints in Central ConnectorA question arising from the previous section is whether other con�guration di�erentfrom the Oldham coupling would also transfer rotational movement between non-colinearaxes. One of such variations is achieved by replacing joints R1 and R2, which originallyare prismatic (Tu), by cylindrical ones (Cu). Cylindrical joints present two degrees offreedom, (Cu = trans(x; 0; 0):twix(�)). The translational degree of freedom x is essentialto the functioning of the coupling, and it would be expected that the rotational degree offreedom � introduced be inoperant, since the nature of joints R3 and R4 forces a de�nedangular position in R1 and R2. This intuitive reasoning will be formally supported bythe information contained in the Grobner Basis. Table 7.2 summarizes the degrees offreedom of the modi�ed kinematic chain.Using the cycle formulation from Equation 7.2, and the joint speci�cation of Table 7.2,the kinematic equations can be formulated. Under the ordering x1 � s�1 � c�1 � x2 �s�2 � c�2 � s�3 � c�3 � s�4 � c�4 this equation set has the following lexicographic125



Table 7.2 Joint List of the Oldham Coupling. Variation 1Joint Joint Type Canonical RepresentationR1 Cu trans(x1):twix(�1 )R2 Cu trans(x2):twix(�1 )R3 Ru twix(�3)R4 Ru twix(�4)Grobner Basis: x1 + L13 s�4 = 0 (7.6)s�1 = 0c�1 � 1 = 0x2 + L13 c�4 = 0s�2 + 1 = 0c�2 = 0s�3 � s�4 = 0c�3 + c�4 = 0s�42 + c�42 � 1 = 0The variable c�4, the angular input/output of the mechanism, impedes the zero-dimensionalityof the Grobner Basis. Therefore, it is e�ectively the degree of freedom left. All othervariables appear as head() of some polynomial. On the other hand, as expected, the an-gular freedoms given to the central joints R1 and R2 do not a�ect the degrees of freedomof the whole coupling, since they are immediately instanced. Therefore, the joints act asprismatic rather than cylindrical ones. 126



Table 7.3 Joint List of the Oldham Coupling. Variation 2Joint Joint Type Canonical RepresentationR1 Tu trans(x1)R2 Tu trans(x2)R3 Cu trans(x3):twix(�3)R4 Cu trans(x4):twix(�4)7.2.1.3 Variation 2. Cylindrical Joints in Input/Output LinksUnder the condition of R3 and R4 being strictly rotational joints Ru, L12 was founddependent on other dimensions of the mechanism. This dependency suggests a variationin the basic Oldham coupling, namely the one obtained by allowing axial movement injoins R3 and R4. The expected result should be that the distance L12 can be consid-ered an independent parameter and also that the coupling as a whole should act as atransmitter of cylindrical movement along two non-colinear parallel axes.The constraint polynomials are built under the joint con�guration of Table 7.3 andthe matrix Equation 7.2. Their Grobner Basis under the ordering x1 � x2 � x3 � s�3 �c�3 � x4 � s�4 � c�4 is: x1 + L13 s�4 = 0 (7.7)x2 + L13 c�4 = 0x3 + x4 + L12 � L8 + L11 � L7 � L1 � L3 = 0s�3 � s�4 = 0c�3 + c�4 = 0s�42 + c�42 � 1 = 0This Grobner Basis represents a two-dimensional ideal with two free variables; x4 andc4. Variable c4, as before, represents the rotational movement transmitted by the mecha-nism, while variable x4 represents the translational degree of freedom. As predicted, themechanism transmits cylindrical movement between non-colinear, parallel axes. Notice127



that the variables x4 and x3 act as slack variables with regard to L12; L8; L11; L7; L1 andL3. This allows to have L12 6= L8 � L11 + L7 + L1 + L3, in contrast with the originalOldham coupling in which such condition would render the mechanism unrealizable.7.2.1.4 Variation 3. Parallel Prismatic Joints in Central LinkIn this variation the topology of the Variant 2 is maintained while the geometry ismodi�ed in such a way that the solution space changes radically. The features F12and F22, the grooves of the prismatic joints R1 and R2, are made parallel. Since theoriginal Oldham coupling was based on the fact that the link B2 acted as an hypothenusewith sliding ends following the orthogonal features F12 and F22, it is expected that thismovement would be restricted if F12 and F22 are parallel. This e�ect would preclude thewhole joint for transmitting rotational movement through the non-aligned axis F10 andF20. Under the order x1 � x2 � s�3 � c�3 � s�4 � c�4 the lexicographic Grobner Basisof this arrangement would be: x1 + x2 + L13 s�4 = 0 (7.8)s�3 = 0c�3 + s�4 = 0s�42 � 1 = 0c�4 = 0This triangular Grobner Basis indicates that all the angular variables are locked (in-stanced), which means that the mechanism cannot transmit rotatory movement. Asexpected, x2, the translational variable, is the only degree of freedom left. The freedomof x2 implies that B2 is able to slide, supported by B1 and B3.128



7.2.2 Oldham Mechanism. SummaryIt has been shown that the kinematics of mechanical link arrangements can be ex-pressed in terms of the Geometric Constraint Satisfaction or Scene Feasibility (GCS/SF)problem. Therefore, the methods of solution for such a problem can be applied in orderto analyze the characteristics of kinematic chains.By using the set of canonical variables, a direct map between the kinematic char-acteristics of the mechanism and the algebraic properties of the Grobner Basis for thecorresponding GCS/SF problem can be established. This direct map can be taken advan-tage of in inferring possible variations of the mechanism by elaborating about variationsin the basis of the polynomial ideal. In the the GCS/SF problem a scenario was pro-posed, and the con�guration of the solution space was found. The discussion presentedin the previous sections shows that, constraints or speci�cations on the solution spacecan also be mapped back to the problem scenario in the form of conditions on the di-mensions of the links. Other variations of the coupling have been presented to illustratethe statements above.7.3 Mobility Analysis. The Bennett MechanismThe Bennett mechanism, proposed in 1903 [4], is an example of a closed kinematicchain that in the general case behaves as a static structure, but presents mobility undercertain lengths of its links and certain orientations of its joints. This mechanism isdiscussed to (i) demonstrate that Algebraic Geometry and Group Theory techniquescan be used as tools for mobility analysis in problems which do not admit Thomas &Torras solution; and (ii) illustrate why a reasoning approach based on pure topology ofthe problem cannot succeed in the solution of the GCS/SF problem. In terms of theGCS/SF problem that is the object of this investigation, the Bennett mechanism is aclassical case of the in
uence that the geometry of the scene has on the dimension of thesolution space. 129



Among the general class of kinematic chains with multiple rotational joints, twovariants are the ones that have parallel, no coincident axes (for example, the traditionalfour bar mechanism), and the ones whose axes intersect at one point (for example, thespherical joint). Let the class be of closed chains in which each link has rotationaljoints in the extremes, with arbitrarily oriented rotation axes on them. In general, sucharrangements of links do not present mobility.
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Its lexicographic Grobner Basis, calculated with the order: s�1 � c�1 � s�2 � c�2 �s�3 � c�3 � s�4 � c�4, resulted in: s�1 + s�3 = 0c�1 � c�3 = 0s�2 + s�4 = 0c�2 � c�4 = 0s�32 + c�32 � 1 = 0s�4 s�3 = 0s�3 + c�4 s�3 = 0s�4 + s�4 c�3 = 0c�3 + 1 + c�3 c�4 + c�4 = 0c�42 + s�42 � 1 = 0 (7.11)In agreement with Bennett's �ndings, the mechanism presents one degree of freedom,represented by the variable s�4. The fact that variable �4 is free, permits to use thismechanism to transmit rotatory movement between non-parallel axis. Notice that itpresents more 
exibility than the Oldham coupling, which required the axes to be parallel.7.3.2 A Structure not Compliant with Bennett ConditionsThe goal of this section is to �nd a physically realizable kinematic chain that is notmobile. In terms of the Grobner Basis, this represents a mechanism whose constraintequations produce a zero-dimensional ideal. Figure 7.8 shows a case of a four bar mech-anism in which although the links B1 and B3 are identical (as well as the B2 and B4),the later ones present rotation axis X1 intersecting X2, therefore violating Bennett's suf-�ciency conditions. The cycle equations are identical to Equation 7.10. Specifying the132
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for example, due to dimensional incompatibility among the links, which would producea Grobner Basis equal to f1g.
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C�3 = 0S�42 + C�42 � 1 = 0in which the variable C�4 represents the remaining degree of freedom.7.3.4 Bennett Mechanism. SummaryThis example illustrated the following conclusions in the area of Mobility Analysis:(1) The Grobner Basis analysis can be applied to a general case. Therefore, it com-plements methods (Thomas & Torras), which only apply to trivial constraints, andcon�gurations which are topologically reducible. In this example, no reductionsare possible, and however, the mobile mechanism presents a unique degree of free-dom. These degrees of freedom are successfully identi�ed by jointly applying thecanonical formulation along with the relations between the Grobner Basis and thesolution space for the GCS/SF problem.(2) This application shows the need for the joint consideration of geometrical and topo-logical conditions in determining the dimension of the solution space. In particular,Bennett conditions represent the geometrical information required to give mobilityto a purely topological speci�cation.7.4 SummaryThis chapter has shown additional applications of the techniques and algorithmsdeveloped in chapters 2, 3, 4, 5 and 6. The three areas addressed correspond to (i)application of the Static Reasoning Server to a client program for Recon�gurable FeatureDe�nition and Extraction; (ii) application of Algebraic Geometry theory to KinematicAnalysis of Mechanisms. It demonstrates that speci�cations made in the solution spacefor existence of degrees of freedom can be mapped back to the physical domain of theGCS/SF; and (iii) Analysis of Mobility, applied to the Bennett Mechanism. It illustrates135



the interdependency between topology and geometry in the con�guration of a solutionspace for the GCS/SF problem.
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CHAPTER 8Conclusions and RecommendationsApplication of geometric reasoning is central in CAD/CAM/CAPP environments.This investigation has undertaken the theoretical background, design and partial imple-mentation of a Geometric Reasoning Server. This system is aimed at o�ering geometricmanipulation and reasoning services to users (humans and computer programs). By us-ing them, the user can access a series of routines and algorithms, which represent a largeamount of research and work in the area of Computational Geometry applied to designand manufacture. The impact of such a set of routines is signi�cant in industrial researchand development environments, in which repetition of e�orts is costly.The existence of a Geometric Reasoning Library frees the user, a research or applica-tions engineer, from the arduous work of programming a geometric reasoning algorithm.Such programming e�orts include several steps: (i) understanding the central idea; (ii)mathematical formalization; (iii) development and formal test of a solution; (iv) designand implementation of supporting data structures, and of the algorithm itself; (v) de-bugging of topological and geometrical degeneracies; and (vi) display of the result, orcommunication of it through data structures to other programs or users.The need for a library which supports reasoning in geometric scenarios in which theactual con�guration is well de�ned (static reasoning) has been discussed in the initialchapters. However, an increasing number of applications in CAD / CAM / CAPP envi-ronments interact with partially de�ned scenarios (dynamic reasoning). Such situationsoccur when the scenario is a virtual world speci�ed by relations among its components.Although in the static case there exist extremely hard problems in computational geom-137



etry, the complexity of the problems in the dynamic case is much larger, starting withthe evaluation of the existence of the scene itself.This investigation has attacked the �rst problem by creating a geometric reasoninglibrary which works with deterministic scenarios (static reasoning). The second typeof problems has been addressed by identifying the theoretical basis for the characteri-zation of uncertain scenarios (dynamic reasoning), by taking this theory to applicablemethodologies and by showing its application in several domains. Uncertain scenariosare speci�ed by geometric relations which translate into sets of polynomial equations.Techniques in Algebraic Geometry allow the characterization of the solution space ofsuch sets of polynomials. A direct relation has been established in this work between theproperties of polynomial ideals and the existence of feasible geometric "worlds".In what follows, comments and conclusions relevant to speci�c areas of this work arepresented. Finally, recommendations for future research are given, which signal the mostpromising areas of research. In addition, potentially di�cult areas are identi�ed.8.1 Static ReasoningA static reasoning library has been designed and developed, o�ering two types ofservices to human and program clients: (i) logical queries, which test the objects in theworld for satisfaction of a given relation (parallelism, perpendicularity, inclusion, etc.);and (ii) construction queries, which create entities satisfying non-ambiguous relationswith other ones in the existing world. Examples of this type of queries are the constructionof lines perpendicular to other two lines, intersections of surfaces, lines, minimumdistancebetween points and surfaces, etc. In addition to that, other entities are built whosemathematical speci�cation may be very cumbersome, but whose algorithmic constructionis well de�ned. Examples of this type of entities are the intersections between polygonalregions in 2D and 3D space, the convex hull enclosing a set of points in 2D and 3D space,the projections of lines and points, etc. 138



In addition to the purely geometrical tasks, the static reasoning system performsa variety of other roles. These roles are mediate the interaction of the user with thegeometric world of objects, through the following modules:(1) naming and attribute managing:This module ensures the uniqueness of names for the objects in the world, andthe consistency of object de�nition in cases where other objects in the world aredeleted.(2) parsing and script interfacing:This module manages the interface language created for this application, whichallows script- and user-driven interaction with the geometric world. It includeslexical and syntactic analyzers, and a uniform interface for user interaction.(3) object storage and retrieval:This module contains the data structures and classes of container objects whichallow the client to organize, store and e�ciently retrieve the entities in the world.(4) graphic interface:This module lends semantic e�ects to the subset of the interface language whichdeals with displaying tasks.(5) identi�cation and extraction:This module extracts selected objects from more complex ones. It allows the 
ex-ible managing of entities resulting from geometric constructions whose nature andnumber are not known in advance.8.1.1 An application of Static ReasoningThe static geometric reasoning library was used to service geometric and databaserequests from a Recon�gurable Feature De�nition and Extraction client program. As de-scribed in chapter 7 (applications), this client program made use of the geometric reason-ing services of a central kernel. These services covered tests for orientation, parallelism,139



perpendicularity, metrics between the entities, etc. The Static Geometric Reasoning li-brary also provided supporting routines assessing connectivity relations in the objects.The Feature Recognition client was served by an additional module functioning as database administrator, which produced solution tables for the feature recognition program.To close this subsection, it can be said that the static geometric reasoning kernel hasproven the point for the convenience of the existence of a centralized server in compu-tational geometry in CAD / CAM / CAPP tasks. Thanks to the emphasis placed onan open design, both in the algorithmics and in the interface, the server continues beingexpanded by other researchers, to include additional types of objects and services.8.2 Dynamic ReasoningDynamic Reasoning covers the Geometric Constraint Satisfaction or Scene Feasibility(GCS/SF) problem. For convenience, the de�nition of the GCS/SF problem is repeatedhere: Let a World W be a closed, homogeneous subset of E3, and a set of geometricentities S = fe1; ::eng which are closed, connected subsets of W. A set of spatial relations(or constraints) among pairs of entities R = fRi;j;kg is speci�ed, where Ri;j;k is the kthrelation between entities i and j. The solution to such a problem is constituted by eithera diagnostic of inconsistency in the formulated relations, or an instance of a set of entitiesei in the world W consistent with all constraints R speci�ed on entity i.8.2.1 Algebraic Geometry BackgroundIn this investigation the problem of reasoning about geometric constraints was ad-dressed using Grobner Bases. A Grobner Basis of a polynomial set F = fp1; p2; ::pnghas several properties which characterize the variety of the polynomial ideal. From theGCS/SF problem perspective, these properties allow the user to determine: (i) if thereare remaining spatial degrees of freedom among the entities in a given scenario or world(which would imply the existence of an in�nite number of solution con�gurations); (ii)the redundancy of a constraint in the context of a pre-existent set of constraints; and (iii)140



the (in)consistency of the set of constraints F , which would produce an empty solutionspace. The application of Grobner Bases to the GCS/SF problem allows the treatmentof geometrical as well as topological inconsistencies in the constraint set. An algorithmicexplanation of how the Grobner Bases properties can be exploited in a constraint-basedscenario was proposed and applied in several examples.8.2.2 Methodologies for ModelingA drawback of the direct application of the Grobner Bases analysis technique is thegrowth of computational e�ort with problem size. Therefore, the set of variables used formodeling is an important consideration. The �rst alternative explored in this work formodeling of the GCS/SF problem was the use of position (non-canonical) variables forthe speci�cation of the entities in the world. Although theoretically sound, it producesa large problem formulation and computing expenses for the Grobner Bases calculation.This disadvantage was o�set by the choice of a convenient set of (canonical) variables,dictated by the conjugation classes of the subgroups of the group SE(3) of the Eu-clidean displacements. Canonical variables proved to be a compact representation of theGCS/SF problem constraints and to have a direct physical interpretation. Therefore,they facilitate the interpretation and analysis of the solution space of the constraints andthe degrees of freedom of the entities involved.The evaluation of the two methods proposed showed that systems with small num-bers of bodies and large numbers of (possibly) redundant constraints between them aremore e�ectively modeled by non-canonical methods, while systems with large numbersof bodies and few constraints in each pair of bodies are better modeled by canonicalvariables. The explanation for this behavior lies in the fact that non-canonical variablesare positional while canonical ones are motion- or freedom-related. Since with a constantnumber of bodies the number of positional variables remains constant regardless of thenumber of constraints, this type of modeling is attractive for problems with small num-bers of entities, and possibly large numbers of constraints between them. In problems141



with large numbers of entities, the usage of their degrees of freedom instead of theirpositional variables produces a physically meaningful and compact problem formulation.8.2.3 Methodologies for SolutionIn spite of the improvement in performance achieved by the use of canonical formu-lation of the GCS/SF problem, additional e�orts were made to �nd opportunities tolower the computational burden of solving this problem. The Divide & Conquer (D&C)techniques, discussed next, illustrate such e�orts.8.2.3.1 Divide & Conquer TechniquesDivide & Conquer techniques take advantage of strongly constrained subproblemswhich can be e�ciently solved given their small size. Once these subsystems have beenidenti�ed and processed, the partial answers can be applied towards the solution of thegeneral problem.If the GCS/SF problem is expressed using the Spatial Constraint (SC) graph, stronglyconstrained clusters of geometric entities can be recognized in the cycles of the SC graph(discussed ahead).Upon identi�cation of the GCS/SF subproblems, their Grobner Bases can be usedin the calculation of a general Grobner Basis instead of the original equations of thesubproblem. As a natural step further, Incremental Instancing presents the advantage ofactually eliminating a degree of freedom from the variable set, therefore contributing tolower the computational expenses of the solution. The intuitive meaning of this action isobviously the fact that, in local instances of the GCS/SF problem, entities may be lockedinto de�nite positions, therefore forming clusters which behave as new, unique entities inlater stages of the problem. The incremental instancing technique, discussed in chapters5 and 6 indeed showed the advantages just mentioned over the other techniques applied.142



8.2.3.2 Spatial Constraint GraphsA partition of the GCS/SF problem is required for the statement of a complete,topologically non-redundant polynomial set from the set of constraints. This basic stephas to be taken regardless of the subsequent application of D&C techniques. A partitionof the GCS/SF problem into subproblems is also needed if D&C techniques are usedto solve it. If the GCS/SF is modeled with the help of the SC graph, identi�cationof such subproblems maps to the partition of the SC graph into a set of basic cycles.Chapter 5 discussed two issues: (i) counting and identifying sets of basic cycles in theSC graph; and (ii) choosing a convenient set of basic cycles which allows partial, localsolutions for the GCS/SF problem. The requirements of the GCS/SF problem demandthe partition of the SC graph into a set of short basic cycles. This research has proposedan algorithm that limits the size of the cycles by extracting them with the help of alow-height, large-branching spanning tree for the SC graph. By applying the D&C andIncremental Instancing techniques to problems with large number of entities and complexSC graphs, signi�cant improvements were achieved.8.3 Recommendations for Future ResearchImprovement in the solution techniques for the GCS/SF problem can be achieved byworking in the following directions:� Applications of Divide & Conquer techniques to the solution of this problem are anabsolute requirement if real applications are pursued. In chapter 5 a sound theo-retical ground for partition of graphs was identi�ed from the literature and appliedto the SC graph. Even in the case of numerical solutions for the GCS/SF problem,the use of D&C techniques is promising; in the face of symbolic computation, suchas Grobner Basis applications, D&C is frequently the only way to e�ectively attacka given problem. 143



� Integer arithmetic, used in the calculation of Grobner Basis, is unstable when ap-plied to 
oating point problems. A Grobner Basis calculation technique whichmakes use of symbol re-de�nition for calculating the coe�cients of the polynomialsin the Grobner Basis can be used. This solution was not explored in this workbecause the Grobner Basis calculation routines from packages such as Mathemat-ica, Maple, or Macaulay were used. The possibility of implementing an in-houseGrobner Basis Algorithm can be considered for later stages of this research.� The mapping of characteristics of the solution space onto the physical scene for theGCS/SF problem represents a promising area of research. This process (Oldhamcoupling example in chapter 7) would allow the formulation of functional conditionson the polynomial ideal corresponding to the problem, and their translation intophysical (design) parameters which satisfy those requirements. Notice that theoriginal goal in the GCS/SF problem was to �nd the solution space correspondingto a basic scenario with constraints. With the proposed methodology, the contraryproblem could be undertaken: to re-de�ne the basic scenario and the constraintsbased on conditions imposed on the solution space.� The so-called operational methods correspond to an intuitive administration of de-grees of freedom in the face of sequential application of constraints. These methodsare not complete [17, 23, 37] in the sense that they do not guarantee a correctanswer in all cases. However, if they are implemented on the theoretical back-ground developed in this investigation, a compromise of speed vs. completenesscan be achieved. More importantly, Algebraic Geometry techniques can be used toidentify and solve situations in which these methods fail. Algebraic Geometry tech-niques are most e�ective for problems whose solution space has low dimension. Onthe other hand, operational methods have good performance in problems of high di-mensionality of the solution space. These relative advantages of the methods couldbe complemented by each other. For example, some open chain manipulators canbe analyzed by an operational approach, while application of Algebraic Geometry144



would render no results. On the other hand, cases such as the Bennett mechanismhave been reported as out of the reach of operational techniques [23], while it wassuccessfully analyzed by the Grobner Basis method.Direct application of built-in Grobner Basis routines for 
oating point manipulationdo not produce robust results. Tests run under constant topological (constraint type)conditions and varying geometrical (dimensional) conditions produce execution errorsfor some of the geometries tried. The natural conclusion in this case is that built-inGrobner Bases routines are not robust when 
oating point arithmetic is involved. Thisdrawback can be averted if more control is provided on the Grobner Basis calculation.This task would require a strong background both in programming skills and in conceptsof algebraic geometry.
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