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CHAPTER 1

Introduction and Literature Review

Geometric relations are of primary importance in Computer Aided Design, Manufac-
turing and Process Planning. Any software intended to serve these areas has to provide
the ability to create, modify, maintain and reason about geometric relationships. These
abilities have traditionally been imparted to the software on a case-by-case basis. Thus
the general structure of the problem has been lost. The repercussions of this loss are: (i)
a failure to address the common, fundamental problems underlying particular instances;
(ii) a restriction in the application domains served; and (iii) a tendency towards soft-
ware replication. These factors produce larger, difficult-to-maintain and economically
unattractive systems. In this work, efforts towards improving this situation are under-
taken, by producing a centralized kernel or server for spatial geometry tasks. This kernel
can be accessed by several applications, and extended as needed. To be useful it has to
be able to solve problems efficiently over a broad domain.

In a simple scenario, a spatial reasoning system should deal with geometric entities
fully and consistently defined. Typical services in this case correspond to queries about
orientation and position of entities relative to each other, inclusion of one geometric entity
into another, unambiguous constructions based on the entities (e.g convex hulls), etc.

More complicated scenarios result from the creation of entities which hold prescribed
relations with their surroundings. In some cases, the entities are fully specified by these
relations. For example, calculating the convex hull of a tesselation of points produces
a well defined object, a convex polyhedron. In other cases the desired entities could
be ambiguously specified. For example an ambiguous specification might require the

creation of a line perpendicular to another line, resulting in an infinite number of possible



answers. In yet other cases the relation specified between objects might be internally
inconsistent making their creation/modification impossible. For example, an inconsistent
specification might request a line being simultaneously perpendicular to two non-parallel
planes. Producing a configuration of geometric entities which satisfies a set of spatial
relations is called Scene Feasibility or Geometric Constraint Satisfaction problem.

This work pursues a centralized kernel philosophy with the objective of serving all of
these levels of spatial reasoning, including solutions for instances of the Scene Feasibility

problem.

1.1 Motivation and Objectives. Problem Definition

The following are examples of diverse fields in design and manufacture where the
capabilities mentioned above find application:

Feature extraction is a process by which a subset of the geometric (solid) model of a
body is identified as representing a feature. The process of feature extraction implies a
search across the data structure of the solid model for a configuration of entities [18, 24]
which satisfies relations inherent to the feature. The strategy used for the extraction (syn-
tactic pattern recognition, graph matching, etc.) is essentially connectivity oriented [16].
However, the determination of the exact nature of the feature found involves the geome-
try of the model. For example, slots and protrusions are identical from the point of view
of connectivity; they can only be distinguished by their geometry. To extract a given
feature, the connectivity search must be complemented by a geometrical query system.
Typical geometrical queries test for relations between entities such as perpendicularity,
parallelism, distance, convexity, etc.

Fizturing concerns the holding of a workpiece during a manufacturing process. The
assessment of the degrees of freedom of the workpiece implies the evaluation of orientation
of supporting surfaces, positioning of center of gravity, projection of center of gravity on
the supporting surfaces, 2D and 3D convex hull calculations, etc. Numerical calculations

may be able to answer some queries (for example positioning of center of gravity). How-



ever, manipulation of geometric concepts is required to support the concept of degrees of
freedom of the body.

Assembly planning is an area which intensively uses spatial reasoning capabilities.
Information on perpendicularity, parallelism, distances between entities, etc is needed
to validate/find a particular assembly scene [36, 34, 35, 37]. Again, these capabilities
address only part of the problem. The problem of feasibility of an assembly implies a
study of the possible relative motion between the bodies involved accompanied by an
study of the dimensions and positions of the participant entities.

Parametric design uses the specification of relations among geometrical entities to
facilitate the process of re-design in the event of changing specifications. Therefore any
modifications to dimensions or positions in the design have to be compatible with the
governing relations. Conversely, modification of the required relations has to be validated
against the dimensions and positions of the existing objects. Finally, relations and objects
may be required to change. Therefore, the software developer faces the challenge of
keeping configurations which are consistent in the relational and geometrical aspects.

Tolerancing analysis requires the reasoning about perpendicularity, parallelism, con-
sistency of dimensions, angularity, etc. These are central tasks of a Spatial Reasoning
Module [32]. Additionally, issues such as inconsistent dimensioning and tolerancing are
intrinsically Scene Feasibility problems.

The examples discussed demonstrate the need for having a centralized kernel for
reasoning about spatial relationships. Such a kernel must: (i) contain tools allowing for
queries and constructions for fully and consistently instantiated entities (static reasoning);
and (ii) have the ability to create and reason about ambiguously defined scenes which
are the result of spatial relations among their entities (dynamic reasoning). Since the
design and planning process are sequentially specified, a tool is needed in order to detect
inconsistencies in the specified relations, or else, to produce entities satisfying them.

As part of this work, a library will be developed to address the most common geo-
metric queries and constructions present in static reasoning. This library also lends itself

as a support for queries needed in the solution of the Scene Feasibility problem (dynamic



reasoning). Both modules are supported by a Geometric Modeling system, which is re-
sponsible for the data structures which represent the models of the world. Since the final
goal is to characterize solutions for the instances of the Constraint Satisfaction problem,
a theoretical work is presented which combines concepts from algebraic geometry, group
theory and graph theory in order to make it computationally feasible. This theoretical
work: (i) presents several techniques to express the problem in a tractable mathematical
way; (ii) provides a solid theoretical background for the physical interpretation of math-
ematical results; and (iii) discusses the necessary abstractions and manipulations needed
to improve performance of the computations. This work includes an application of the
static library to tasks of Feature Extraction. It also applies the proposed techniques to

analysis of constraint satisfaction to several domains in Design and Manufacture.

1.1.1 Research Objectives. The GCS/SF Problem

The objective of this work is to develop techniques to solve instances of the Geometric
Constraint Satisfaction or Scene Feasibility (GCS/SF) problem. It can be stated as
follows: Let a World W be, a closed, homogeneous subset of £, and a set of geometric
entities S = {el,..en} which are closed, connected subsets of W. A set of spatial relations
among pairs of entities R = { R, j 1} are specified, where R; ; is the k" relation between
entities ¢ and j. The solution to such a problem is constituted by either a diagnostic
of inconsistency in the formulated relations, or an instance of a set of entities ¢; in the
world W consistent with all relations R specified on entity .

As discussed in depth later, the GCS/SF problem requires for its solution the support
of Dynamic and Static Reasoning systems. On the other hand, research conducted in
specific application areas of reasoning [19, 36, 35] has shown that Static reasoning is also
a necessary tool in solving the Dynamic reasoning problem. Following sections discuss
the practical and theoretical aspects of the solutions to these problems. In the context of
the GCS/SF problem the term topology will be used to refer to the spatial relations that
the entities have to keep. The term geometry is related to the dimensions and positions

of entities in the World.



Table 1.1 Common Geometric Algorithms

‘ Name ‘ Specification ‘ Size Measure ‘ Complexity ‘
Planar Convex Hull convex hull of N=number points O(N.log(N))
set of planar points
3D Convex Hull convex hull of N = number points O(N.log(N))
set of points
Planar Point Point included N = number sides O(N)
Inclusion in a polygon
Convex Polygons P.Q Polygons Np, N¢g number edges | O(Np + Nq)
Intersection
Star Polygons P,Q Polygons Np, Ng number edges | O((Np + Nq)?)
Intersection
Kernel of a Polygon P polygon Np number edges O(Np)

1.2 Components of a Geometric Reasoning Server

1.2.1 Static Reasoning Module

Static Reasoning problems are those concerning fully and unambiguously defined enti-
ties. Typical problems include boolean queries testing a particular relation among entities
and construction queries which create new entities satisfying relations with other given
entities in the world. Examples are classification problems, in which a point is tested for
inclusion inside a polygon, construction of convex hulls, projections of rays onto objects,
etc. These problems have well defined (although not unique) answers. For example, the
perpendicular line from a point onto a curved surface is a set of well defined lines.

Static reasoning therefore spans a well defined (and complex) set of services, which
are needed in common practice in environments of CAD / CAM. Table 1.1 presents a
sample of common problems, along with their complexity [14]. A short browsing in 2D

problems follows:

e Given convex polygons P and Q, find the result of the intersection be-
tween them. This type of algorithms exploits the fact that the intersection must
be convex, and that its upper (lower) boundary is a merging of sections of the

individual upper (lower) boundaries.



e A Star Polygon has an area whose points can "see” all the boundary, called kernel.
The kernel is a convex polygon. The problem of determining the kernel of a

given star polygon is equivalent to the intersection of N halfspaces in 2D.

e Find the set of polygons which form the intersection of two star polygons.
In this case, since the boundary of the two polygons P, and P, is described in
consistent order, it is easy to determine the crossovers of boundaries and to form

the collection of disjoint (convex) polygons which form the intersection.

From the examples above, it can be seen that although many problems have been
deeply studied, static problems still present a rich variety and implementation challenges.
These challenges are related to the optimization of algorithms, and the re-usability of

parts of them in other problems.

1.2.2 Dynamic Reasoning Module

Dynamic Reasoning addresses the Scene Feasibility / Constraint Satisfaction (GCS/SF)
problem. This problem can be stated in mathematical terms as a set of equalities and
inequalities. Solving the GCS/SF problem is equivalent to the determination of the sets
of values for the variables which solve the equations. This work will be limited to spa-
tial constraints that can be expressed as equalities; for example positioning constraints.
Other types of constraining conditions, for example enforcement of non-invasive posi-
tioning, are expressed in the form of inequalities. They are not within the scope of this
investigation.

Solving the GCS/SF problem requires the answer to the following points:

(1) Calculate the configuration(s) which satisfy the given constraints.
(2) Are the given entities over or under-constrained?
(3) If it is under-constrained, how many degrees of freedom are still available?

(4) What is the relation between variables used in the mathematical form of the

GCS/SF problem and physical degrees of freedom of the entities involved?



Question 1 has been partially answered with the help of numerical techniques [28,
27, 1, 8]. However, they produce a particular answer, even in cases in which the degrees
of freedom form a set of either infinite or finite number of solutions. Furthemore, to
determine a particular answer the methods are limited; failure of the numerical method
to produce an answer might not mean an empty solution space (over-specification in the
problem), but instead a convergence problem in the implementation of the numerical
procedure. Therefore numerical techniques, although needed for determining particular
configurations, do not answer the questions 2, 3, and 4.

Questions 2-3 have not been satisfactorily answered in a systematic manner to the
present time, basically because the dimension of the solution space for the GCS/SF prob-
lem is a function of topological and geometrical conditions. In other words, manipulation
of the topological part of the GCS/SF problem does not suffice in determining the topol-
ogy (degrees of freedom) of the solution space. This work explores several techniques
used in order to answer questions 2 and 3. They include Grobner Bases [21, 7] and
Characteristic Sets [10, 9]. The Characteristic Set method is mainly used for automatic
theorem proving; given a set of hypotheses in the form of polynomials H = {hq, hy,..h,}
and a conclusion polynomial ¢, the method establishes whether or not ¢ follows from H,
and extracts degenerate conditions under which ¢ does not necessarily follow from H.
Application of this method to problems of spatial reasoning requires the statement of
a conclusion [20]; which, in the case of GCS/SF problems, would require a hypothesis
about the solution scenario. This is usually not available. Also, if the response of the al-
gorithm is that conclusion ¢ does not necessarily follow from H, no additional information
is gained. These reasons have led to an exploration of methods other than Characteristic
Sets to deal with the questions asked.

Grobner Bases are a consistent and computable way for reasoning about the existence
of solutions to a set of polynomials. They also provide a framework in answering questions
about the dimensionality of the solution space. This investigation will show that this
theory helps to address questions 2 and 3 above. However, since this background has been

forged in the domains of pure algebraic geometry, its specific application to the GCS/SF



problem has not been intended. In response to this situation, this work formalizes the
analysis of the GCS/SF problem by using Algebraic Geometry theory. In this way,
properties of Grobner Bases will help to resolve issues about the number of feasible
geometric scenarios, inconsistency and redundancy of constraints, etc.

In the literature reviewed, question 4 has been approached in special cases from
the areas of kinematics, mechanisms and group theory [19, 2, 3]. A joint in a rigid bar
mechanism is, by definition, a constraint. Therefore, historically, the study of mechanism
analysis precedes constraint satisfaction problems. At the same time, a mathematical
abstraction of constraints is provided by group theory. This multiplicity of disciplines
studying the same area is manifested in the fact that the terms (trivial) constraint,
joint and group are used interchangeably in the discussion. The techniques described in
[19, 2, 3] are limited to reasoning about topology of constraint networks, and to the special
cases in which the constraints are of the trivial type (discussed later in this document).
In this investigation, the theoretical background built for questions 1-3 will allow the
integration of topological and geometrical analysis, without the limitation of triviality of
constraints. In addition, problem formulations derived from the use of group theory will
relate the variables used with the degrees of freedom of the participant entities.

The following sections present a theoretical background and review of related material.

This review allows for a more specific and formal discussion of the research objectives.

1.3 Theoretical Background

Three theoretical aspects need to be addressed in this investigation: (i) Since the
GCS/SF problem can be expressed in terms of sets of polynomials, its solution corre-
sponds to the existence of common roots for the polynomials in the set. In this respect,
Grobner Basis provides a background for analysis of the solution of the set of polynomials.
(ii) Given that the SFE(3) group allows the efficient expression of the geometrical nature
of the GCS/SF problem, an introduction to the relevance of group theory is presented.
(iii) Since the Spatial Constraint graph is a pictorical representation of the GCS/SF prob-



Table 1.2 Elementary Relations and Polynomial Forms

‘ Relation ‘ Arguments ‘ Vector Form ‘ Polynomial Form
perpendicular | v,w vectors v =0 V1.1 + V.9 + v3.wz = 0
parallel v,w vectors | v x w =10 vg. w3 — V3.9 = 0

U3. W1 — V1. W3 = 0
U1.Wy — V2. W1 = 0

magnitude v vector v =d? v1.01 + V9.9 + v3.05 = d?

lem, it is felt that the decomposition of the SC graph has close relation with embedded
subproblems of the GCS/SF problem. To address such issue, graph partition, selection
of subproblems and integration of partial solutions into the general solution need to be

explored.

1.3.1 Algebraic Geometry. Grobner Bases

Table 1.2 shows how relations commonly used in Spatial Reasoning translate into
vector and polynomial equations. These equations use the variables corresponding to
position and orientation of the entities involved. For example, the specification of two
planes being parallel implies their normal vectors being parallel, forcing relations such as
those shown in Table 1.2. Therefore, solution to a set of geometric constraints involves
the analysis of the set of common roots for a polynomial set. This type of variables
is called here, for reasons discussed later, non-canonical. Canonical variables will be
introduced in following sections, and will carry considerable weight in this investigation.

There are several (symbolic) techniques [22] used to study the roots of sets of polyno-
mials. Among them, Grobner Bases provide several characteristics which make it suitable
for solving this kind of problems. In [21, 7], a discussion about the more fundamental
facts in Grobner Bases theory and applications is available.

Given a set of polynomials I, which expresses the GCS/SF problem, a Grobner Basis
for F, GB(F), is a mathematically equivalent set, with convenient properties for root
solving [21]. By examining GB(F') one can draw conclusions about the nature of the

roots in the original set F'. In particular, Grobner Bases allow the answering of ques-



tions about existence of solutions (real or complex), the dimension of the solution space
(empty, Zero-Dimensional or Multi-Dimensional) and the dependence (or redundance) of
a new polynomial on (with respect to) polynomials existing in the set. It also presents
advantages in determining a particular numerical solution.

The algorithm proposed by Buchberger [6, 7] for the construction of the Grobuner
Bases of a set of polynomials F' does not take any advantage of particular characteristics
of the application domains which produce the set F'. Therefore, it is necessary to use
formalizations that set up an efficient characterization of the GCS/SF problem. Such
characterization would be then submitted for solution to Grobner Bases computation
algorithms. The formalization of the GCS/SF problem in terms of Group Theory fulfills

such a goal.

1.3.2 Euclidean Groups

Groups are sets of mathematical elements, furnished with a binary associative op-
eration, displaying a neutral element and an inverse for every element in the set. In
this investigation, the group of interest is SF(3), the semi-direct product R* o SO(3, R),
where R? is the translational part, SO(3, R) is the special orthogonal group, representing
all right handed orthonormal 3-D frames and o is the group multiplication operation. If
(1, Gy and G5 represent displacements in S FE(3) the (non-commutative) group properties
are satisfied: (i) Two displacements (1, (G5 applied in sequence produce a new displace-
ment G3 = Gy oGy, (ii) [ is the null displacement in SE(3); Gol =[0G = (. (iii) For
each GG € SE(3) there is an inverse displacement G~ which undoes the displacement
effected by Gjie. GoG™! =G oG = 1. (iv) The effect of displacements is accumula-
tive. If G’s are applied in the order (G, Gy and (5, the following sequences are identical:
(G10Gy) oGy =Gho(GyoGs).

In [19], Herve was able to relate the structure of the group SFE(3) to the displace-
ments allowed by kinematic joints. In this way formal structures were introduced (con-
jugation classes) which allow the naming of certain displacements in SF(3) as "linear

translations”, "rotations”, "planar slidings”, etc. For example, a rotational joint, can
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be described as the rotational class of displacements, written as Ru(f) to stress the fact
that it has one, rotational degree of freedom, 8, about the axis u. The prescribed kine-
matic relations are herein called constraints, since they restrict the degrees of freedom
of the entities expressed by the conjugation class. The variables expressing the degrees
of freedom of the joint (for example ) in this formulation will be called canonical. The
direct relation between constraints in the context of the GCS/SF problem and canonical
forms of constraints as classes of the group SF(3) can be exploited for the solution of
the GCS/SF problem.

Herve, and later Thomas & Torras [36, 34, 35] used the fact that, as sets, groups
can be composed and intersected. The composition reflects the sequential application of
constraints, while the intersection reflects the simultaneous application of two constraints.
From a kinematic point of view, several composed constraints can be thought of as a serial
mechanism. Constraints intersected can be taken as several links (in parallel) sharing an
end effector.

Sequences of constraints are expressed as:

RloRQORg....ORn (11)

When the sequence has length 1, it is called Trivial constraint. In [19] Herve pro-
vides tables in which the results of composition and intersection of trivial constraints
are tabulated. Non-trivial constraints, however, are present in many concepts in scene
specifications; for example in the concepts of parallelism, distance and angles between
entities, etc.

As mentioned before, the GCS/SF problem presents a strong inter-dependency be-
tween geometry and topology of constraints. The existing methods using the SFE(3)
group [36, 34, 35] for constraint manipulations only address the topology of constraints.
They also present limitation in that they only deal with trivial constraints. In this inves-
tigation, however, group theory is exploited to shift the emphasis in the modeling of the
GCS/SF problem from the positions to the degrees of freedom of the entities involved.
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The convenience of this alternative formulation will be assessed in this work. Addition-
ally, the joint application of canonical variables in conjunction with the techniques of

algebraic geometry will be investigated.

1.3.3 Graph Theory

The Graph of Spatial Constraints (see Figure 1.1) conveys the topological and geomet-
rical information of the GCS/SF problem. The representation of the GCS/SF problem
by a Spatial Constraint Graph allows a series of unexploited advantages: (i) a very clear
formulation of the problem; (ii) a systematic way, suitable for computer applications, of
generating the equations governing the degrees of freedom of the entities involved and;
most importantly, (iii) the identification of subproblems which help in the solution of
the GCS/SF problem, by allowing the application of preprocessing techniques. In or-
der to have a clear convention for discussion ahead, the Graph of Spatial Constraints is

introduced [35], using the following conventions:
(1) B;: Represent the Bodies (¢ = 1...n).
(2) Fi; (frame of) the feature ¢ in body j.

(3) C;, i =1..m: Constraint Relations

Since entities are represented by frames, in the following discussion the terms entity
and frame are used as equivalent. In the SC graph, the nodes are entity frames (B;
and Fj;), while the arc between two nodes represents the displacement that relate the
corresponding entity frames. Two entities may be joined by more than one arc, to admit
more than one constraining relation between them. There are two types of nodes; nodes
B; represent (a position frame of) an entity in the World Coordinate System. Feature
nodes Fj; represent the feature ¢ in body (frame) B;. The arcs in the graph represent
displacements which convert coordinate frames.

Conceptually, there are two types of arcs: positioning and constraint arcs. Positioning

arcs represent known relative positions of entities or features. They always join an entity
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Figure 1.1 Spatial Constraint Graph

B; and one of its features, F;. Abusing the notation this arc is named F}; , as the feature
itself. Constraint arcs always communicate two feature nodes, representing the degrees
of freedom that a particular constraint allows. The constraint arcs are represented by
Ci(;,0m,...). In some cases the degrees of freedom (x;,0,,...) are omitted for the sake
of clarity. Positioning arcs express the geometry of the GCS/SF problem while con-
straint arcs represent its topological structure. Given a number of entities in the world
and (trivial and non-trivial) constraints among them, the objective is to transform the
Spatial Constraint Graph in such a way that constraints subgraphs are replaced by equiv-
alent, simpler ones. The existing approaches [19, 36] present the following limitations
in reaching such a goal: (i) the reduction process does not always reduce the constraint
graph; (ii) only trivial constraints are handled; and (iii) being a topology oriented process,
the geometric (or dimensional) part has to be dealt with separately.

Although the idea of preprocessing the loops of the SC graph appears in Thomas
& Torras work [36, 35], no further elaboration on it has been presented. Another early
application of graph formalism in mechanism analysis was presented by Dobrjansky;]
& Freudenstein in  [13]. Again, the analysis of local parts of the mechanism was not

attempted, and therefore the decomposition of the kinematic graph was not pursued. This
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investigation will address the influence of the SC graph decomposition on the analysis of
local constraints, and on the solution of the full GCS/SF problem. In assembly planning,
for example, such analysis is central to the mapping of local subgraphs of the SC graph
into sub-assemblies. Treatment of sub-assemblies as clusters of bodies greatly simplifies
the GCS/SF problem.

The identification of cycles of a graph has been studied in connection with several en-
gineering applications. For example, in the analysis of electric networks the cycles in the
graph of a circuit allow for the formulation of Kirchoff laws and similar techniques [33].
Two questions in such analysis present particular importance for our purposes: (i) how
many cycles exist in a graph which convey independent information about the connectiv-
ity (topological structure) of the graph; and (ii) how to obtain a set of such non-redundant
cycles which completely expresses the connectivity of the graph. The answers to the ques-
tions are well known [12, 11, 38], but the determination of such a set is largely dependent
on the final purpose of the application. It is, in many cases, an expensive computational
procedure. In this investigation, the theoretical results that allow the enumeration of
the cycles of a graph will be complemented with proposed algorithms to extract a set of

cycles that are meaningful from the physical point of view of the GCS/SF problem.

T S e

Dynamic Reasoning

Static Reasoning

GEOMETRIC OBJETCS

OPERATI NG SYSTEM

Figure 1.2 Centralized Geometry Server
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1.4 Outline of the Proposed Research

The long term goal of this research is the achievement of a Dynamic and Static Rea-
soning Server applicable in CAD / CAM / CAPP environments. However, the degree
to which knowledge in these areas (static/dynamic) has developed presents a great un-
balance, with the dynamic reasoning part being in the very early stages of exploration.
This situation is taken into consideration by setting different objectives in each area.
For Static Reasoning a robust implementation and application is proposed. In the Dy-
namic Reasoning area, research in the theoretical foundations and algorithms is targeted,
along with exploration of contributing fields, and applications in a variety of domains.
Activities of software development are comparatively reduced in this area.

Figure 1.2 shows the underlying philosophy in the creation of the centralized Geome-
try Server aimed at in this investigation. From the point of view of the user (programs or
humans), a layer (Geometric Objects) extends the capabilities of the computer, present-
ing geometric objects as primitive types, similar to floating or integer numbers, character
strings, etc. The Geometric Reasoning Server is anchored on top of this extension layer.
It presents the Static and Dynamic Reasoning division previously mentioned. The Geo-

metric Reasoning module serves the requests of variety of client applications.

1.4.1 Proposed Research in Static Reasoning

The nature of the problems addressed implies that Static Reasoning utilities have a
role both in serving external calls, and requests from the Dynamic Reasoning part. A
set of client programs/users share the capabilities of the library. The proposed scheme
eliminates the opportunity of code replication, concentrates specialized knowledge in one
place, under a unique standard of data structures and interfaces, and yet it is built in
such a way that it allows clients to extend the capabilities with their own constructions

and/or routines.

1.4.2 Proposed Research in Dynamic Reasoning
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Figure 1.3 presents a conceptual division of different aspects in the research regarding

Dynamic Reasoning. Individual discussion of each follows:

1.4.2.1 Equation Representation of the GCS/SF Problem

Two alternatives can be used in modeling the GCS/SF problem with a set of poly-
nomial equations: (i) using non-canonical variables, which emphasize the parameters
and positions of the entities in the world; or (ii) using the canonical variables, which
stress the degrees of freedom allowed to the entities by the constraints. Methodolo-
gies for the modeling of the problem using both alternatives will be explored, and their

strengths/weaknesses identified.

1.4.2.2 Solution of the Equation Form of the GCS/SF Problem

Regardless of the method of representation (canonical / non-canonical) numerical and
symbolic techniques can be used for the solution of (polynomial) equations. However, as
discussed before, given the need for counting the degrees of freedom of the entities, the
numerical methods are not sufficient. Therefore symbolic techniques will be used in this

research.

1.4.2.3 GCS/SF Problem Partition

According to the description to the GCS/SF problem, its representation in the form
of a Spatial Constraint graph simply requires the mapping of entities into nodes and rela-
tions into arcs. A partition of the SC graph is then needed for the systematic production
of the Equations Form of the GCS/SF problem. The existing theory [33, 12, 11] will be
used in order to produce a partition that also facilitates the application of preprocessing
techniques proposed in this investigation, and discussed later.

Symbolic manipulation techniques [19, 36], based in look-up tables have the charac-
teristic that they require a canonical representation of the constraints. Further, they have
the limitation of working only with the topological part of trivial constraints. Geometry

has to be dealt with separately, and non-trivial constraints are not contemplated. In
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response to this limitation, in this work the calculation of a Grobner Basis for the poly-
nomial representation of the GCS/SF problem will allow: (i) the modeling by canonical
and non-canonical variables; (ii) the inclusion of non-trivial constraints; and (iii) the con-
sideration of the geometrical and topological aspects of the problem. This application of
Algebraic Geometry techniques requires that a direct relation be established between the
Grobner Basis of the polynomial form of the GCS/SF problem and its solution space (the
degrees of freedom of the scene). This relation is an important part of the contribution

of this investigation.

1.4.2.4 Divide & Conquer Solution for the GCS/SF Problem

The partition of the GCS/SF problem was first used in topology oriented solution
techniques in [19, 36]. The present work will use Divide & Conquer techniques in con-
nection with Grobner Basis calculation as a means to make efficient use of characteristics
of subproblems. Previous works in GCS/SF do not elaborate on the strategies of prob-
lem partition. This investigation considers SC graph partition as a step to produce the
equation form of the GCS/SF problem. Beyond this consideration, the partitioning of
the Spatial Constraint graph will allow the application of Divide & Conquer techniques.
Therefore, two important aspects will be addressed: (i) methods for partitioning the

problem; and (ii) usage of the solution of subproblems in the construction of the solution

for the full GCS/SF scenario.

1.5 Dissertation Outline

This thesis is organized as follows:
Chapter 2 examines the structure of the Geometric Reasoning Server. Static Reason-

ing tasks have the dual purpose of (i) addressing geometric problems which are themselves
relevant to the CAD / CAM / CAPP processes; and (ii) support of of the solutions to
the GCS/SF (dynamic) problem.
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Chapter 3 establishes a methodology for the formal expression of the GCS/SF problem
in polynomial forms. Relevant background in Algebraic Geometry is discussed. Different
physical situations of the GCS/SF are mapped into properties in the Algebraic Geometry
domain, and vice versa. This chapter therefore gives theoretical support to the solution
of the GCS/SF problem.

Chapter 4 describes an alternative methodology for the expression of the GCS/SF
problem by using the subgroups of the Special Euclidean group SF(3) (canonical for-
mulation). This alternative representation allows for: (i) a more efficient representation
of the GCS/SF problem; (ii) a direct relation between variables and physical degrees
of freedom of the entities involved; and (iii) the application of automated reasoning in
terms of degrees of freedom. This automated reasoning may be implemented in the form
of look-up tables, rewriting rules, etc.

Chapter 5 studies partition techniques for the GCS/SF problem. The subdivision
of the problem is required not only for a systematic enumeration of all the equations
governing the scene, but for the application of Divide & Conquer techniques. Since
these techniques can be implemented by partitioning the Spatial Constraint graph of the
GCS/SF problem, this chapter studies the mathematical structure of graphs, and the
representation of graphs as linear spaces. The partition of the SC graph is then related
to the determination of a basis for particular subspaces of that linear space. After a
theoretical background is set up, heuristically efficient algorithms for the partition of the
GCS/SF problem are proposed. Chapter 5 concludes with an example of the application
of the theory reviewed and algorithms developed.

Chapter 6 evaluates the proposed techniques for the solution of the GCS/SF prob-
lem in terms of the computer resources spent on them. These techniques have varying
effectiveness depending on the characteristics of the problem at hand. These charac-
teristics include: (i) Two body vs. multi-body systems; and (ii) trivial vs. non-trivial
constraints. The choices for solution include: (a) modeling of the problem by canonical

or non-canonical variables; and (b) solving the polynomial form of the GCS/SF prob-
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lem by handling the whole set of polynomials, or by identifying and preprocessing local
subproblems in order to contribute to the general solution.

Chapter 7 illustrates several applications of this research, in the areas of Mobility
Analysis and Kinematic Analysis of Mechanisms. This chapter also discusses the inter-
action of the Geometric Reasoning server with a client program; in this case a Feature
Extraction client module uses diverse libraries of the Static Geometric Reasoning server.

Chapter 8 establishes the limitations and potentials of the present investigation, and

highlights the areas in which future research would be most fruitful.
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CHAPTER 2

A Static Geometric Reasoning Server

2.1 Introduction

In the previous chapter the rationale for the research and development of a server
specialized in Geometric Reasoning was introduced. The basic division between dynamic
and static reasoning was established, and an overview of the theoretical background
behind these areas was presented. This chapter will discuss the Static Reasoning server
designed and developed as part of this investigation. Besides the central Geometric
Reasoning module, it contains complementary libraries which are essential to make it
accessible by clients (humans or programs). A brief description of the supporting modules
follows, and the conclusions of this development are drawn. A later chapter discusses the
application of the Static Reasoning server and other modules in the domain of Feature
Recognition.

In CAD / CAM / CAPP environments, apparently unrelated problems in many
cases share an underlying theoretical area. Failure in factorizing and developing the
specialized common knowledge inherent in the problems results in a series of separate
and overlapping ad hoc attempts to solve them. Although successful in the immediate
sense, these attempts produce large replication, and waste of efforts, coding, knowledge,
etc. When another application that shares the same knowledge is encountered, the same
situation and patterns repeat. To prevent this situation, a centralized server specialized

in geometry has been designed and implemented.
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2.2 Static Reasoning in the GCS/SF problem

The previous chapter discussed the need for a centralized Static Geometric Reasoning
server. Besides the obvious applicability in CAD / CAM / CAPP, static reasoning serves
a supporting role in solving dynamic reasoning problems. This section elaborates on this

statement.

Two bar mechanism
connected by alength L
rod with spherical ends.

if (dist(L1,L2)>L)-> Empty Solution Space

—
Vi
4
\
—=
if (~parallel(L1,L2) and dist(L1,L2)=L)-> 1 rotational d.o.f L

if (dist(L1,L2) <L)-> 1rotationa d.of. & 1trandationa d.o.f.

if (parallel(L1,L2) and dist(L1,L2)=L)->
1rotational d.o.f. & 1translational d.o.f.

Figure 2.1 Static Reasoning Support for Dynamic Reasoning

The instance of the GCS/SF problem presented in Figure 2.1 belongs to the domain
of kinematic analysis of mechanisms. Given a kinematic chain of entities (bodies) and
constraints (joints) the goal is to determine how many, and which degrees of freedom
the chain presents. The example presented involves two lines L; and L, in arbitrary
position in the space, and a rigid bar, equipped with spherical joints in both extremes,
which connects L; and L,. As a crude approximation to the appropriate solution, a
case-by-case analysis of the dimension of the solution space would originate the following

algorithm:
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function 3D _slider(Ly, Lo : line; L : real) : {d.o.f.}

0{

1 if (distance(Ly,Ly) > L) —

2 return(®);

3 else if (distance(Ly, Ly) = L) —
4 if (parallel(Ly, Lo)) —

5 return({0, z});

6 else

7 return({0});

8 fi

9 else if (distance(Ly, L2) < L) —
10 return({0, z});

11 fi

12}

This example, illustrates the fact that geometric conditions (distance() and parallel()
in the example) have the capability to change the structure of the solution space, although
the topological specification of the constraining relations remains the same. Therefore,
the calculation of a solution space in the case of the GCS/SF problem cannot be accom-
plished by separating geometrical or topological terms. It follows that dynamic reasoning

cannot be performed without the support of static Reasoning routines.

2.3 Organization of the Static Reasoning Library

The Spatial Reasoning library has been implemented following the structure shown
in Fig 2.2, Although its central goal is to provide geometric reasoning services, its
implementation cannot be carried out in isolation, and its services cannot be exploited
externally if no supporting utilities are provided. In this section the different support

modules are discussed.

23



2.3.1 The Solid Modeler

The solid modeler contains the basic database in which the connectivity and geometry
of the entities populating the world are stored and maintained. In this development an
Object Oriented, Boundary Representation solid modeler was used. Since solid modeling
is not the purpose of this investigation, a commercial product (ACIS) was selected as the
basic platform. Object Oriented was used as the programming paradigm, since in many
cases the nature of the objects handled is not known a priori; therefore a flexible data

model, such as the one provided by the Object Oriented methodology, is required.

2.3.2 Standard Interface

To avoid that applications become dependent on a specific solid modeler, an Applica-
tion Interface Specification (AIS) standard is enforced. The AIS assumes the interaction
of the application with a generic modeler, leaving open the possibility of replacing the
modeler without changing the program which uses it. This goal is attainable as long
as both the new modeler and the Geometric Reasoning module comply with the AIS

specification.

2.3.3 Application Interface

The design of the Geometric Reasoning system is such that a client program or appli-
cation is able to use the Geometric Reasoning module as a library. This scheme enlarges
the capabilities of the solid modeler. The client program may chose to interact with
the World Administrator if there is need for services such as set or list libraries, nam-
ing/renaming of objects, management of attributes and intermediate results, deletion,
debugging, etc. The interaction between the application and AIS is also open, in case
that direct services of the solid modeler are required. As a last resort, the client applica-
tion could interact at the level of the solid modeler itself. In that case no compatibility

with other solid modeling systems should be expected.
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Figure 2.2 General Structure Geometric Reasoning Server

2.3.4 User and Script Interface

The goal of this interface is to allow the user to create, manipulate, display and
query geometric objects without creating a client application. For this purpose, each
routine that serves as entry point for a call from a program is also accessible to the user
through the User Interface. In this way, an interactive user can access the services of
the Geometric Reasoning server. It is also possible to make a log of a large sequence
of commands, store the session and replay it for the purposes of demonstrations, or for
corrections or modifications in the middle of a large chain of commands. Notice that
a script can be also submitted by a client program, therefore providing another way of
interaction. Consistent with the final purpose of the Geometric Reasoning Server, the

language defined can be referred to as a Geometric Prolog, with capabilities for variable
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instancing that are not present in pure Prolog. As usual in cases of language definition,
the typical three submodules included are the Lexic Analyzer, Syntax Analyzer and
Semantic Validator. Since these practical aspects are not central to this investigation,

they will not be discussed here.

2.3.5 World Administration

This module is vital to any activity interacting with the objects kept in the solid
modeling space, since the solid modeler does not provide database services. Therefore it

is the responsibility of the World Administrator to perform the following tasks:

(1) naming and attribute managing, to guarantee the uniqueness of names for the ob-

jects in the world.
(2) identification and extraction, for extraction of selected components of objects.

(3) object storage and retrieval, for implementation of the data structures and classes

which allow to organize, store and retrieve the entities in the world.

(4) preservation of consistency of the world upon object elimination.

2.4 Geometric Reasoning Module

From the point of view of software organization, the Geometric Reasoning module has
the same status as other modules discussed above, such as the Solid Modeler, Application
Interface, World Administrator, etc. However, from the point of view of its functionality
and its importance for this investigation, it is singled out for separate discussion. In
this section the domain and the functionality of the Geometric Reasoning module are

presented.
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Figure 2.3 World Domain for the Geometric Reasoning Module

2.4.1 Domain and Hierarchies of Objects

The simplified structure of the objects in the World is shown in Figure 2.3. Given
the functionalities of the module, there is a need to provide mathematical entities, which
serve as arguments/results for many functions e.g. wvectors, unit vectors, matrices and
transformations. On the other hand, the geometric entities cover two main areas; (i)
topologies (or topological entities), which convey the structure and connectivity of the
elements in a given model; and (ii) geometries, which place the given topologies in the
E? space, by giving them dimensions and positions.

In Figure 2.3 the dimensionalities of the different entities are shown. The figure
also reflects the fact that as a general rule, a higher dimensionality entity uses for its
definition lower dimensionality ones; for example a COEDGE uses EDGE and VERTEX
for its definition. For the purpose of this investigation the world is assumed composed of
flat 3D entities, including non-manifold objects. Therefore the curve and surface objects

are restricted to straight lines and plane surfaces respectively.
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2.4.2 Functionality

The functions developed as part of the Geometric Reasoning module have the follow-

ing basic functionalities:

ExXEx..xE—-{TRUE FALSE}

ExEx..xE—={F}

ExEx..xE—][F]

Ex Ex..xE— math_entity

W N =
— e e e

e e N U o N
b
N

where F represents an entity. Line 2.1 represents logical or boolean queries. Lines 2.2 to

2.4 represent constructive queries. In line 2.2 the result of the function is a set, in which

order is irrelevant, while line 2.3 involves a [list, in which order is important. Line 2.4

introduces functions whose result is a mathematical entity (vector, matriz, etc).

Table 2.1 Reduced set of Logical Queries and Functionality

‘ Function ‘ Arguments ‘ Results ‘
colinear: Ex kK boolean
coplanar: ExFE boolean
coincide: Ex kK boolean

perpendicular: ExFE boolean
parallel: ExFE boolean
convex: Ex kK boolean
concave Ex kK boolean

Table 2.1 shows a classification of the logical functions according to main groups.

Functions somehow overlap in their definition due to client program interface; for example

coincide(FE1,FE2) tests whether two entities coincide. In the particular case of straight lines

this function has to revert to colinear(E1,E2). Therefore it is natural to design the system

in such a way that coincide() be a generic function which is supported, in this given case,

by colinear(). By providing the two functions, a seamless front end is presented to the

user.
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Table 2.2 Reduced set of Constructors and Functionality

‘ Function ‘ Arguments ‘ Results ‘
join_perpend: ExE point X point
distance: ExFE real
angle_between: ExFE real X real
signed_angle_between: ExFE real X real
intersection: ExE {E}
sort_angular: {point} x point x vector [point]
projection E x E x vector [E]
planar_hull {point} x vector [point]
space_hull {point} shell

Table 2.2 shows a classification of the constructive functions according to main groups.
This table exemplifies the situation in which the exact result of a constructive operation
is known only at execution time. For example, the projection of a line onto a jagged face
in general would be a set of segments; a point if the line is perpendicular to the face; or
a null entity if the projection falls outside the face limits.

Figures 2.4 and 2.5 show a partial view of the library structure. Figure 2.4 shows

functions whose primary domain are geometric entities. Figure 2.5, corresponds to topo-

logical entities of dimension 1 and 2; EDGE and FACE.

2.4.3 Hierarchy

The structure of the library is such that many of the functions provided are themselves
users of lower level utilities in the library kernel. Figure 2.6 shows an example of this
situation. In this case, space_hull() calls an algorithm for generating the convex hull of a
set of points in £ ( gi ft wrapping() ); this algorithm uses utility routines to calculate the
angle between planes, (signed_angle_between() ), extract coplanar points from a given
set (extract_coplanar()), and a planar convex hull function (graham_scan())based on
the Graham Scan algorithm. The Graham Scan uses routines to sort a set of (coplanar)

points based on the angle about a central point (sort_angular()). The angular sorting
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POINT STRAIGHT PLANE
coincide() contained() contained()
distance() projection() projection()
Jjoi ntJDegg??d() join_perpend()
confain ;
distance distance POINT
coincide() projection()
intersection() Intersection()
perpend perpend()
distanc distance STRAIGHT
parallel() angle_between()
angle_between() parallel()
join_perpend() contained()
coincide()
i(jntersecti on()
istance
parallel() PLANE
angle_between()
signed_angle_between()

Figure 2.4 Reduced Library Structure of calls for Geometries

algorithm itself uses another routine to calculate the normal vector based on the boundary

of a (planar) polygon (calculate normal()).

2.5 Summary

This chapter has discussed the motivation, organization and scope of a Static Geomet-
ric Reasoning server. This server presents applications in geometry-intensive operations
in CAD / CAM / CAPP environments. It also supports the Dynamic Reasoning server,
which addresses the the GCS/SF problem. The structure and scope of the constitutive
parts has been presented. The following characteristics have been imparted to this server:
(i) enlargement of the capabilities of the virtual machine to handle geometric objects;
(ii) presentation of a compatible interface to supporting and supported software; (iii)
interaction at level of library, direct user manipulation and script interpretation; (iv)

flexible functionality, required because the influence of geometry on the dimensionality
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POINT STRAIGHT PLANE

contained() intersection() intersection() EDGE
distance angle_between()
contained() intersection() intersection() FACE
distance classify() angle_between()
projection() projection()

classify() parallel()

Figure 2.5 Reduced Library Structure of calls for Topologies

| space hull({POINT} , SHELL ) |

] gift_wrapping({ POINT},SHELL) \

[

signed_angle_between
(PLANE,PLANE)

graham_scan

({POINT}, PLANE, { POINT} )

extract_coplanar

(POINT, vector, { POINT} )
|

sort_angular
(POINT, POINT, { POINT} )

|

calculate_normal
(LOOP, unit_vector)

Figure 2.6 Example of hierarchical calls to solve the problem of 3D space convex hull

of the solution space; and (v) layered structure allowing extensibility to more complex

services.

In a later chapter an application of static reasoning is presented. Such application,

in which a client program for feature extraction uses geometric and database routines,

illustrates the capabilities and interaction provided by the Geometric Reasoning server.
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CHAPTER 3

Algebraic Geometry Solution to the
GCS/SF Problem

In previous chapters the rational for a Geometric Reasoning server supporting CAD
/ CAM / CAPP activities was presented. The organization of a Static Geometric Rea-
soning module was then discussed. In this chapter the mathematical formulation of the
GCS/SF problem (Dynamic Reasoning) will be presented. An important portion of this
research involves the reasoning about the structure of the solution space, for the problem.
Therefore, properties of the algebraic geometry methods used, relevant to the character-
ization of the solution space will be introduced. Based on these properties, an algorithm

for constraint management will be proposed and illustrated with an example.

3.1 Polynomial Model for the GCS/SF Problem

This section demonstrates a methodology for stating the GCS/SF problem in terms of
sets of polynomials. This methodology uses the (unknown) position frame of the entities
in the scene. Therefore, in this case the unknowns of the GCS/SF problem are the
elements of the matrix representing the frame. In this work, variables that result from
such a formulation are called non-canonical, in contrast with canonical ones, discussed
in following chapters.

The following conventions will be held:

32



Table 3.1 Elementary Relations and Polynomial Forms

‘ Relation ‘ Entity 1 ‘ Entity 2 ‘ Vector Equation
P—-—ON-P m s P’ = P2
P—-ON - LN P LN = (pa,v2) | (pr—p2) Xvg =0
P—ON—-PLN 2 PLN = (p2,n2) | (p1 —p2)-n2 =0
LN —-ON — LN LN = (pl,vl) LN = (pg,vg) V1 X Vg = 0

(pL—p2) X v2 =0
LN — ON — PLN LN = (pl,vl) PLN = (pz,ng) (pl —pg) Mg = 0

U1 - N2 =0
PLN—ON—PLN PLN = (pl,nl) PLN = (pz,ng) (pl —pg)'nz =0
nq - Na ==+l

e cntity means geometric entity: point, line, or plane. Each entity has an attached
frame. Points are in the origin of their attached frame. Lines coincide with the X

axis of their frame. Planes coincide with the Y-Z plane of their attached frame.

e The world W contains a set of geometrical entities S = {eq,ea,...,¢,}. For the

discussion at hand it is assumed that the entities are part of a body.
e F;; is the known, fixed relative position of entity ¢ inside body (frame) j.

e (; represents relations or constraints between entities. These relations are shown

in the first column of Table 3.1.
e D, represents displacements applied on the frames of the entities F7;.

Let the configuration of entities be as shown in Figure 3.1, where By can be assumed
stationary with no loss of generality. Frames F}; represent the position of distinguished
element ¢ (¢ = 1..3 in this case) of (and with respect to) body B;. Similar statements can
be made about Fj; with respect to body By. The goal is to find a position of By which
satisfies the relations F;; — R; — Fj3. For example, it may required that point 11 be ON
plane Fi5. That means, F1; — ON — Fi,.

The procedure for modeling the problem in terms of sets of polynomials is:
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Figure 3.1 Methodology for Statement of Non-canonical Form of Scene Feasibility
Problem

Rot T
(1) Assume a (unknown) displacement D = which will place body B; in

0 1
the desired final position.

(2) Transform each entity to its new position: Fj;.D.

(3) Use Table 3.1 to model the proposed relations using the transformed entities. The
proposed equations are not a minimal set since some redundant equations are pro-
duced; for example, P — ON — LN can be expressed in two equations instead of

three.

(4) Each relation (or constraint) produces a series of equations of the form C;(F1, D, Bz, Fi2) =
0, which involves the corresponding entities Fjy, F}s, the positions of the bodies

D, By, and the particular form of the relation C;:

Cl(Fll,D,BQ,Flz) = 0, CQ(FQl,D,BQ,FQQ) = 0, 03(F317D7B27F32) = 0 (31)
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Figure 3.2 Simultaneous Line-to-Line Restriction between Pairs of Lines

3.1.1 Example. Constraint Expression

Consider a scene in which there are two straight lines LNy = (P, v1) and LNy =
(Py,vq) (see Figure 3.2) expressed parametrically, and assumed to be rigidly linked to
each other. Another set of lines, with similar conditions are given by LNs; = (Ps,v3)
and LNy = (Py,v4). The proposed relations place LNy ON LN3 and LNy ON LNy,
(being L N3, LN, also rigidly joined). The goal is to find out whether the relations can be
satisfied, what displacement is to be performed on the rigid body holding LN; and LN,
to achieve the goal, and the degrees of freedom that are afforded to the body holding
LNy and LN, by the relationship.

The problem can be stated as follows:

(1) Apply a (still unknown) rigid displacement D to LN; and LNs. D is formed by a

rotation Rot and a translation 7.

11 L12 113 T
Rol = | 291 w9y o [T =1, (3.2)
€31 X3z 33 T,
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The transformed entities are

P/ =T+ Rot.P;; v} = Rotwy; Py,=T+ Rot.Py; vy = Rot.vy (3.3)

(2) The specified relations (parallel, contained, etc.) impose the following conditions

(expressed in vector terms for simplicity):

(P, — P3) xvs=0; P/ €LN; (3.4)
vy X v3=10; o] | vs

(Pl = Py) xvs=0; P,e LN,
vh x vy =0; v vg

det(Rot) = +1;

The condition det(Rot) = +1 imposes dexterous orthonormality to the matrix
Rot = [v1 vz v3]. Orthonormality implies ||v;|| = 1,(¢ = 1..3); v, = 0,(¢ # 7).
Dexterity implies v; X vy = v3. The corresponding polynomials are presented and

discussed in later sections (equations 3.5).

The equations arrived at are polynomials, whose solutions determine the matrix D,
and therefore the position of the (frame of) body B;. Having established the expression
of constraints in terms of polynomials, techniques for characterizing the solution for such

a set are explored in following sections.

3.2 Grobner Basis and the GCS/SF Problem

In what follows, an introduction to an algebraic geometry technique called Grobner
Basis construction will be attempted. Only those issues relevant to the GCS/SF problem
are discussed. The interested reader is directed to [21, 7] for details. The following is

some relevant terminology.

K[ x1,x2,...,xn |: ring of n-varied polynomials over the coefficient field K.
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Algebraic Closure : The algebraic closure of a field K, K, is the field of all roots of
all polynomials in K[z, %, ..., z,]. If K is R the set of real numbers, then K is the

set of complex numbers C'.

Ideal of F : The Ideal of a polynomial set F' = { f1, fa, f3, ..., fa} is:

Il 20, xn]<F> ={g. i+ g2-fot o+ gu-fulgi € Klx1,2a, .. 2]}
The notation is usually simplified to: I(F). One says that F'is a basis for [{F).

Radical(F) : {f|3k s.t. f¥ € Ideal(F)}

Algebraic set V(I) : Given an ideal I C Klzy, 22, ..., 2,] generated by the set F' =
{f1, f25 f3y ey fm )}, its algebraic set V(1) is defined by:
V(I)={x € K"|f(x) = 0,Yf € I}; therefore, (fi(x) =0V f; € F) — (z € V(I))

Zero Dimension : An Ideal [ is zero-dimensional if V(1) is finite.

Ordering : the set of variables {xy, x5, ...,2,} is totally ordered under a given order <

if Va; # x;, either x; < z; or x; < ;.
Lexicographic Order <; : Given two terms t1 = 2{".25%..22" and 12 = :z;fl.:z;§2..:1;g",

then 1 <; 12 iff 3¢ < n such that a; = 3, for 2 < j < n and «; < ;.

Degree : deg(t) = deg(x]*.23%..25") = a1 + az + ... + ay,

n

Degree Order <; : t1 <42 iff deg(tl) < deg(12) or deg(tl) = deg(t2) and 1 <; 2

head(f), ldcf(f) : For a given order, and a given ring K[z1, 2, ..., %,], head([) is the
largest (in the sense of <) term in polynomial f. ldef(f), the leading coefficient of
f, is the coefficient of head(f) in f. Therefore f = ldef(f).head(f) + tatl(f).

Normal Form : Given F' = {f, f2, f3,..., fu} and p where F' C Klaq,z9,...,2,] and
p € K|ay, 24, ..., 2,)], there exists a decomposition of p :
p = NF(F,p)+ Xjerlay. fi) (with oy, € Klzy,29,...,2,]) such that NF(F,p)
cannot be further decomposed as 3 cp(By,.fi) with 5 € Ky, x2,...,2,]). The
term NF'(F,p) is called a normal form of p with respect to F and NF(F,p) is a
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residual of the reduction of p with respect to F. The reduction process is denoted as

Grobner Basis : A Grobner Basis GB C K1, 2a,...,2,] is a set of polynomials such
that NF(GB, f) for every f is unique; it does not depend on the sequence of
reduction of f with respect to GB. Therefore, f —¢p p1 and f —gp po imply
p1 = p2 (the converse is not true). Also, if NF(GB,f) = 0 then f € I{GB).
If NF(GB, f) # 0 it implies some of the common roots of F' are not roots of f;
therefore the set of roots common to F' and f is more restricted than the set of

roots of I'.

Reduced Grobner Basis : A Grobner Basis GB = {¢1,...,¢.} is a Reduced Grobner
Basis if:

(1) forall fi € GB ldef(f;) =1

(2) forall f; e GB NF(GB—-A{fi},f)= 1

Let F' = {f1, f2, f3,..., fu} be a polynomial set in K[xq,x2,...,2,], and I{F) be its
ideal. If another set G' = {¢1, 92,93, ..., gn} is basis of I{F) then, every root of F is also
root of (G, and conversely.

Given a polynomial f € Ky, 23, ..., 2,] one may want to eliminate a term ¢ of f with
the help of another polynomial ¢ € K1, xs, ..., 2,] by multiplying the head(g) by some
term such that on subtracting the result from f, ¢ disappears. For this to happen, it is
necessary that ¢ < f. It is said then that f is reduced with respect to g. It is written as
f -2 h, where h is the result of the subtraction. In the process of iterated reductions with
respect to elements of K[y, s, ..., 2,], the position of the A’s in the ordering < decays.
One of two things may occur: either f reduces to 0, or all the remaining ¢’s are bigger than
the final h, and therefore f cannot be further reduced. The last product of the reduction
process is a normal form of f with respect to K[xq1, €2, ..., 2], NF(K[x1, 22, ..., 2], f). In
the described process, different sequences of reduction are possible, and they do not, in

general, produce the same NF(K[x1,xa,...,2,], f) result. If a set of polynomials F' is
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used for the decomposition, NF(F, f) can be considered as the part of f that cannot be
expressed as a combination of the polynomials f; € F'.

Several additional comments are pertinent at this point:

e Grobner Basis forces NF(GB, F') to be unique, thus providing a way to examine
whether an arbitrary polynomial p isin I{F') or not. If p € I{F') then NF(GB,p) =
0. Otherwise, it represents an independent polynomial. Intuitively, Grobner Basis
behaves in a manner analogous to a vector basis in linear spaces: if a vector can
be expressed as a linear combination of the base vectors, it is in the space. In
that case, any common root for the polynomials in the basis also makes any linear

combination of them to vanish.

e In a property described later (triangularity of elimination ideals), Grobner Basis
presents a characteristic similar to triangulation of a matrix A in solving a linear
system A.x = b. A triangular form allows the incremental determination of the

solution point.

e In a Reduced Grobner Basis there is no redundancy in the polynomials present,
since each polynomial is equal to its normal form with respect to the remaining
ones. The value of this property in the solution of the polynomial system is that it

reduces to a minimum the polynomials to be manipulated and/or solved.

e An algorithm to calculate the Grobner Basis GB(F') for a polynomial ideal [(F)
is provided by Buchberger in [7]. Several implementations are available in pack-
ages such as Mathematica, Maple, Macaulay, etc. The condition for termina-
tion of the Buchberger’s algorithm relies heavily on the fact that a total order
on K[x1,x2,...,x,] [T, 21] can be defined. Since a decreasing sequence (in the sense
of <) of terms is finite, a reduction process of a polynomial p with respect to a set

F'is bound to stop.

In the next sections, the theoretical basis developed here will be used to exploit the

properties of Grobner Basis in the solution of the GCS/SF problem.
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3.2.1 Algebraic Geometry and the GCS/SF Problem

The GCS/SF problem takes place in a world W, with a set of relations R. If a set of

entities S = {eq,..¢,,} responds to the constraints, it is said that S is feasible for W and

R, and this fact is written as S = feasible(W, R). If the polynomial form of the problem
is F'={f1, f2, .., fu}, it is said that F = poly_form(W, R). Since S is a solution for F',

it is denoted as S = solution(F).
Given F' (F = poly_form(W,R) and S = feasible(W, R)), there is an associated
ideal I{F'). For any polynomial set F', the Grobner Basis GB(F') is an alternative set,

which generates the same ideal I(F'), but has important properties in characterizing the

solution space and producing solution points.

The following are some of the properties of Grobner Basis:

(1)
(2)
(3)

H{GB(F))=I{F).
F is solvable in K iff | € GB(F).

Given a lexicographic order =y < 23 < ... < z, Vi,s.t.1 < ¢ < n, we have:
GB(F) N K[xy,22,...,2;] is a (reduced) Grobner Basis for the elimination Ideal
]K[l’hm ~~~~~ l’n]<F> m[([xlvx%--wxi]-

This property establishes that GB(F) is triangular set; in the sense that GB(F)
contains polynomials only in xy, some others only in z1, x5, and so on, making the

numerical solution a process similar to triangular elimination.

If G is the reduced Grobner Basis for an Ideal I € Klxy,2q,...,2,], [ is zero-
dimensional iff Va; € {x1,24,...,2,}, G contains a polynomial whose head term is

a pure power of z;, i.e. of the form x¢ for some integer d.

This property allows one to determine, by inspection, whether the set of polyno-

mials has finitely or infinitely many solutions.

The Grobner basis (G1 for a zero-dimensional ideal [ based on the order <,, can be

converted into another basis (G2 under another ordering <;.
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(6)

This property allows one to compute total degree Grobner Bases for certain pur-
poses, and only when it is required, to transform them into lexicographic Grobner
Bases (computationally more expensive), provided that they correspond to a zero-

dimensional ideal.

Ve Kz, ag, . x,],Vy € {1, 29, ..., 2, }

f € Radical(F)< (1 e GB(FU{y.f —1}))

The equation y.f — 1 = 0 ensures f # 0. Therefore, this property establishes that
| presents the same zeros as F' iff the system F'U {y.f — 1} is inconsistent, i.e. it

is impossible for f not to be zero when F' is.

These properties translate into propositions about the solvability and characteristics

of the solution for the GCS/SF problem. Some of the consequences of the properties

follow:

(1)

Proposition 1

S = solution(F) iff S = solution(G'B(F)).

This is a consequence of the fact that F' and GB(F') span the same polynomial
ideal (Property 1). In the context of the GCS/SF problem, a set of polynomials
representing constraints is indirectly analyzed by calculating the Grobner Basis of

its polynomial ideal and solving it by using the properties discussed below.

Proposition 2

1 € GB(F)= S = solution(F') = ®

Property 2 above establishes that if the field is algebraically closed, finding ”1” or
a constant polynomial in GB(F) implies the equation "0=1" leading to the fact
that F has no solution in that field. However, the converse proposition has to be
carefully used:

If 1 € GB(F), a solution exists, although it might be complex. Therefore, an
additional check on the results of a numerical algorithm to ensure a real solution is

needed.
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(3) Proposition 3
If I{F) is a zero-dimensional ideal, then the set F' (and G'B(F')) has a finite number
of solutions. Therefore S = feasible(W, R) has a finite number of configurations.

The zero-dimensionality of I can be assessed by applying property 4 above.

(4) Proposition 4
Let a new constraint be represented by polynomial f. Then:
f is redundant to F iff (1 € GB(F U{y.f —1})) for a new variable y.
Property 6 above helps to determine whether an additional constraint is redun-
dant by examining if the satisfaction of the new, additional constraint is unavoid-
able when the initial set of constraints is satisfied. An alternative test can be

implemented by recalling that a polynomial f is redundant if its normal form

NF(GB(F), f)= NF(F, f)is equal to zero.

These properties and propositions provide a theoretical framework for the solution of the
GCS/SF problem. The construction of an algorithm using these facts will be discussed

in following sections.

3.2.2 An Algorithmic Solution to the GCS/SF Problem

This theoretical background can be summarized in the following macro-algorithm, in
which the invariant clause for the loop is the existence of a non-redundant, consistent and
multi-dimensional set of constraint-generated polynomials. In the event of the addition
of new constraints to the scene, the algorithm converts them into polynomial(s), and
tests their redundancy (by using Proposition 4), consistency (Proposition 2), and zero-
dimensionality (Proposition 3). If the new constraint is redundant no action is taken;
in the other two cases the invariant becomes false and the loop breaks. If the ideal has
become zero-dimensional, a triangular Grobner Basis under some stated lexicographic
order is extracted (Property 5) and solved (Property 3). Proposition 1 is the underlying
basis of the algorithm, since it establishes that the G'B(F') faithfully represents F', with
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the same roots and ideal set. In the algorithm presented below, the propositions or

properties relevant to some important instructions are displayed at the left hand side:

Proposition 2

Proposition 4

Proposition 1

Proposition 3

Property 5
Property 3

{Pre: W a fixed scenario }

1 oF={)

2 GB:=1{}

3 do new relation R;

4 {Inv: F is consistent, non-redundant, non-zero-dimensional }
5 R=RU{R;}

6 [ = poly_form(W, R;)

7 if (1€ GB{(FU{f})) then

8 stop ( system is inconsistent )

9 else

10 if (f € Radical(F)) then

11 skip ( f is redundant )

12 else

13 F=FuUl{f}

14 GGB; = Grobner Basis(F, <)

15 if ( ZeroDimension(GBy) ) then
16 break loop

17 else

18 skip (next relation-constraint)
19 fi

20 fi

21 fi

22 od

23 By = GrobnerBasis(F, <;)
24 S = triangular_solution(G By)
{Post:R = {Ri} a set of relations; S = feasible(W, R) }

The limitations of Grobner Basis (and for that matter, any symbolic algebraic ge-

ometry method solving this problem) is the explosive computational complexity of the

method, and its still-unexplored behavior in dealing with floating point (real) arithmetic.
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If Fisasetin K[y, 23, ..., x,], with maximum exponent m, the Grobner Basis can contain

polynomials of degree proportional to 22" [21].

3.2.3 Example 1. Grobner Basis for the Constraint Set

This section continues the example described previously, which demonstrated how to
build the polynomial formulation of the constraint set. The reader might want to refer
back to Figure 3.2 for details on the example.

The basic condition of (dexterous) orthonormality of the D matrix produces the

following set of equations:

2 2 2 2 2 2

Tt tan tanT—1=0, v+t —1=0

2 2 2 _ _
13" + @93 + 33" — 1 =0, 213719 + 93722 + 233732 =0
T11 T12 + T21 T2 + T31 L32 = 07 X9y T3g — T31 Tog — T3 = ()

31 L12 — 11232 — T23 = 07 11 Tg2 — To1 T2 — T3z = 0 (3-5)
The lexicographic order used in this example, for the calculation of the Grobner Basis

is:

11 7™ X1 > L13 = L1 = Loy />~ T3 = T31 = L3 »~ L33 >~ Tx - Ty - TZ (36)

When the first constraint is applied (LN; — ON — LN3), the conditions
(Pl — P3) xv3=0 (P €LN3); vyxvs=0 (v]]| vs) (3.7)
produce an initial polynomial set:

{d+T.=0,n—-T,=0,23, =0, —x9 = 0} (3.8)
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The Grobner Basis corresponding to this condition is shown below. The f notation

is used to stress the fact that f is head() of a polynomial:

T, +d=0 (3.9)

|

—n=20
2 2
3p° +233° —1=10
31 = 0
2 2
o3+ x33° —1 =10
2 =0
—T92 + T2 T33” — T332 T3z =
Ta Tag + 23733 = 0

Ty Tos + 33732 = 0

Tgp® — 33" =0
$21—0
ﬁz()
12=20

11+ TasTag — Top 33 =0

The parameters of the World configuration (¢,d,w,n) appear as constants in the
basis. First, the fact that it does not contain 1, indicates that inconsistency of the
constraint with the preexisting scene cannot be concluded. Yet, it is possible to have a
solution with complex variables which is not physically realizable. Second, Proposition 3
and Property 4 indicate a multi-dimensional ideal and consequently an infinite number of
solution configurations. Any claim to a zero-dimensional ideal, and hence to a completely
determined configuration for the scene, is trivially discarded by the fact that T, does not
appear in any polynomial in the basis (therefore it cannot be head() of any polynomial,

Property 4). Further inspection of the basis also indicates that x33 does not appear in
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any of the head terms. These facts indicate a two dimensional ideal, because T, and
x33 can be given arbitrary values and still a real solution would exist for the system.
This conclusion is consistent with the physical fact that the constraint would still be
valid under arbitrary rotations around the line L N3 and translations along it. While the
translational degree of freedom is easily related to T, the relationship of the rotation to

Ta3 1s less intuitive.

Suppose the second constraint (L Ny —ON — LN,) is added, resulting in the equations
(Py— Py) xvy=0 (Py€LNy); vyxve=0 (vy] vs) (3.10)

The Grobner Basis for the accumulated constraints, once again, shows neither inconsis-

tency nor zero-dimensionality, for the same reasons as before.

T.+d=0 (3.11)
_y—n:()
x33+1=0
T30 =10
x31 =0
T3 =10
To® —1=0
Ty =0
233 =0
T =10
11+ 22 =0

In this case, however, T, variable is effectively the only degree of freedom left. Two

assembly modes are possible, by setting x9y = +1.
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It an additional constraint is set, for example P, — ON — P53, the Grobner Basis
for the accumulated set of equations has each variable in the head term of an equation
in the basis and would therefore be zero-dimensional, reflecting the fact that all the
degrees of freedom are now fixed, and there are a finite number of configurations (D

transformations) to satisfy the conditions:

T.+d=0 (3.12)

|

—n=20

&z—cz—l—wz—Zw.Tx:O

T3z +1=0
T35 =0
x31 =0
T93 =0

$21:0
$13:0
$12:0

If yet one more condition is set, unless it is redundant, the system becomes incon-
sistent; for example, the requirement P, — ON — P,, the Grobner Basis produces an
inconsistency. In this case it is a topological inconsistency, which will in general impede
the solution, except for a special set of values, i.e. for a very special point on the line L,
(which is not Py) to receive the point P,. The inconsistent Grobner Basis in this case

would be:

GB = {1} (3.13)

47



The four instances of G B(F'), sequentially calculated as constraints are added, demon-
strate how the GCS/SF problems might be solved. Further, it can be noticed that
the GB(F') can be ordered by using the prescribed term ordering. For example, equa-
tions 3.12 allows the variables to be solved in the order T.,T,,...,z1;. The equations
themselves are in triangular form. It can be seen that x1;, which is highest in the order,

appears in only one equation while T, which is lower, appears in a number of equations.

3.3 Summary

In this chapter the problem of reasoning about geometric constraints was addressed
using Grobner Bases. The Grobner Basis of a polynomial set F' = {py,pa,...,p,} has
several properties for characterization of the variety of the polynomial ideal. From the
GCS/SF problem perspective, these properties allow to determine: (i) if there are re-
maining spatial degrees of freedom among the entities in a given scenario or world;
(ii) the redundancy of a constraint in the context of a set of constraints; and (iii) the
(in)consistency of the set of constraints F'. An algorithmic explanation of how the Grob-
ner Basis properties can be exploited in a constraint based design/planning situation was
given and discussed by means of an example.

The theoretical underpinnings of Grobner Basis have been found to be useful in giving
mathematical expression to different actual situations concerning the GCS/SF problem,
such as finite or infinite number of configurations (including no possible configuration)
corresponding to inconsistent constraint sets, as well as a formal definition and detec-
tion procedure for redundant constrains. On the other hand, Grobner Basis provides a
framework for the integral treatment of topological and geometrical consistency in the
set of constraints.

Although the example described above is relatively simple (12 variables and 20 equa-
tions), given the high computational complexity of the Grobner Basis construction it
illustrates a critical limitation of the formulation discussed. Emphasis therefore needs

to be placed on reducing the size of the problem to a minimum. Also, the difficulty in
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the physical interpretation of the degrees of freedom was manifest in the solutions found.
A more "natural” set of variables which addresses these problems is therefore required.

These problems are addressed in following chapters.
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CHAPTER 4

Group Based Solution for the GCS/SF
Problem

In previous chapters, the GCS/SF problem was posed as a system of polynomial
equations and its Grobner Basis was used to characterize their solution space. The prop-
erties of the Grobner Basis allow the sequential addition of constraints between entities
in a scenario. These properties permit the response to questions about the dimensional-
ity of the solution space or, in physical terms, the multiplicity of the feasible scenarios.
This dimensionality also determines the internal consistency of the constraint set and
the redundancy of a particular constraint in the context of pre-existing ones. While this
procedure forms the underlying structure for a Geometric Constraint Management sys-
tem, it has two major drawbacks. First, the computational effort could be potentially
very large '. Second, the physical meanings of the variables used are not intuitive. As a
consequence, the degrees of freedom of an entity are difficult to correlate to the variables
in the Grobner Basis.

The limitations mentioned above arise because the special structure of the set of
constraints of the GCS/SF problem was not exploited. Therefore, this chapter addresses
these limitations by using a formulation devised to specifically express spatial constraints.
It is possible to study them, and how they interact with each other, within the structure
of the subgroups of the group of Euclidean displacements, SFE(3).

!Degrees of the polynomials in the Grobner Basis can grow at a double exponential rate in the
maximum degree of the polynomials in the constraint set F'
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The subgroups of SFE(3) have been used by Herve [19] to characterize lower pairs (or
joints) in mechanisms. Extending Herve’s work, Angeles in [2, 3] has used operations
between groups (intersection and direct product) to attempt the reduction of a mechanism
to its essential degrees of freedom. Torras et al [34, 35] have studied mating constraints
between objects in an assembly by using the formalization proposed by Herve.

In this chapter, we undertake the integration of the algebraic geometry-based ap-
proach, developed in prior chapters, with the formalisms provided by a group-theoretic
analysis of the constraint set. This allows the two approaches to complement each other
thereby reducing the effects of their individual disadvantages. The use of a group the-
oretic formulation introduces structure into an otherwise unstructured set of equations.
By doing so, it has the potential of making the construction of the Grobner Basis more
efficient. Further, the variables obtained by group theoretic formulation have direct
physical meaning, producing a Grobner Basis that reflects the degrees of freedom of the
entities. Viewed the other way, the Grobner Basis construction replaces the reduction
based on group intersection. As mentioned in previous chapters, this reduction process
deals only with the topological aspects of trivial constraints. The calculation of a Grob-
ner Basis, though computationally expensive, is not limited to the trivial constraints and
simultaneously enforces topological and geometrical consistency.

The next section discusses the group SE(3) of the Euclidean displacements in E?
and its subgroups. The conjugation classes developed by Herve [19] are then presented,
and their relation to the constraints used in the formulation of the GCS/SF problem
is developed. Next, a methodology for deriving constraint equations using the group

theoretic analysis is introduced and illustrated with examples.

4.1 Subgroups of the SE(3) Group and Canonical

Variables

A group is a set S with a binary operation o defined on 5, which has the following
properties [25, 26]:
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Gh,Gy € S — G oGy € S (closure property).
e 1/ €S, sit. VGeS, Gol=10G = (identity element)

e VG €S dH €S, si. GoH = H oG =1 (invertibility)

VG, Gy, Gs €S, (GhoGy) oGy =Gy o(GyoGs) (associativity)

SE(3) is the group of Euclidean displacements in E°. Gy, Gy and G represent dis-
placements in SF(3) and o represents the composition of displacements. The particular

meaning of the properties in the case of the group SF(3) is recalled here:

e Two displacements GGy, Gy applied in sequence produce a new displacement G5 =

Gl O GQ.
e [ is the null displacement in SE(3). Gol=10G =G

e For each G € SF(3) there is an inverse one (G~ which restores the affected entity
to the original position Go G™' =G oG =1

o The effect of displacements is accumulative. If G’s are applied in the order Gy, Gy

and G5, the following sequences are identical (associativity):

(Gl OG2)0G3 - Glo(GQOG:g)

S E(3) presents subsets which are groups themselves and which express certain com-
mon classes of displacements. They are called subgroups. For example, the subgroup of
the rotations about a given axis u in the space, Ru, is a subset of SE(3), and a group
itself. Therefore, the composition of two sequential rotations about the same axis u is a
rotation about u again (closure of groups). Although the classification of displacements
into subgroups is theoretically sound, it is not useful because there are still infinitely
many different subgroups of rotations, translations, etc. A contribution of Herve [19],
was to lump all the rotations, all the translations, etc into sets, more populated than

subgroups, called conjugation classes.
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Table 4.1 Conjugation Classes and Their Canonical Forms

‘ Dof‘ Symbol ‘ Conjugation Class ‘ Canonical Subgroup
1 Ru Rotations about axis u {twixz(0)}
Tu Translations along axis u {trans(x,0,0)}
Hu,p Screw movement {trans(x,0,0)twez(px)}
along axis u, with pitch p
2 Cu Cylindrical movements {trans(x,0,0)twixz(0)}
along axis u
2 Tp Planar translations {trans(0,y,z)}
parallel to plane P
3 Gp planar slidings {trans(0,y, z)twixz(0)}
along plane P
3 So Spherical rotations {twix(P)XTOYtwiz(d)XTOY twiz(0)}
about center 70"
3 T 3D translations {trans(x,y,z)}
3 Yv,p Translating Screws {trans(x,y, z)twiz(px)}
axis v, pitch p
4 Xv 3D translations {trans(x,y, z)twixz(0)}
followed by rotation about v

Table 4.1, column 3, presents the classification that groups the displacementsin S E(3)
into 10 conjugation classes. In order to identify the common structure in each class, Herve

expressed all displacements in a standard way:
T7'.8(z,y,2,0,0).T (4.1)

with the term S(z,vy, 2,8, ¢) being characteristic for each class. It appears in Table 4.1,
column 4, and it is called canonical because it expresses the degrees of freedom of each
class with a minimum of variables. ? For example, using the canonical form, a rotation

R, (0) about an axis w in the space can be written as:

Ry,(0) = T(w) " twiz(0).T(w) (4.2)

In this Table, twir(f) means a rotation about the X axis by @; XTOY means a rotation by 90°
about the 7 axis; trans(z,y, z) indicates a general spatial translation.
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where the twiz(0) part conveys the topological information about the class and its degrees
of freedom, and T(w) € SFE(3) stores the geometrical information about the actual
position of the axis of rotation w.

The definitions presented above are intended to define an equivalence between dis-

placements. They allow to state the equivalence between, for example, rotations (re-
gardless of the axis), or likewise, planar translations (regardless of the plane). This
equivalence is formalized next:
Definition: Given A, B, subgroups of the Euclidean group SF(3), A is conjugate of
B (A~ B)iff 3T € SFE(3) such that A = T~'BT. The relation A ~ B is an equivalence
relation. It is symmetric, reflexive and transitive. It defines equivalence classes called
conjugation classes.

The T element above represents a rigid displacement. Therefore, two displacements
A and B are equivalent iff a change of basis T' converts one into the other. In this way,
two displacements by 30 degrees are equivalent because all that differentiates them is a
rigid transformation between their axes.

Equivalence classes have the property that the whole class can be represented by
one element since all elements are equivalent via ~. The representative, or canonical
element, in this case results from making T' = [ above. Therefore, the canonical element
has the simplest possible geometrical component (I). Also, its topological part is minimal
in the number of variables since they strictly reflect the physical degrees of freedom of
the class. A list of the conjugation classes for the subgroups of SFE(3), their canonical

representation [19] and their degrees of freedom are shown in Table 4.1.

4.1.1 Topological Manipulation of Trivial Constraints

This section briefly exposes the application of the concepts just introduced towards

constraint manipulation.
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4.1.1.1 Constraint Composition

It an entity B is forced to adopt positions which sacrifice degrees of freedom with
respect to other entity A, it is said to be constrained. For example, if they can only rotate
with respect to each other (1 dof), it is said that they are constrained by a rotational
joint, or they hold a rotational constraint G4 = R, (). If another entity C' is constrained
with respect to B by (5 the equivalent constraint between A and ' has the structure
G710 Gy. G and (5 are subgroups, extracted from the conjugation classes of Table 4.1.
In general, G o G5 will not fall into any one of the conjugation classes. It will only do so
in special cases in which the geometry ot (i and G allows the reduction of the constraint

chain. For example, in

Gi oGy = Ry(6:) 0 Ru(y) = Ru(6: + 05) (4.3)

both rotations happen to have equal rotation axes (a geometrical circumstance). They
can be reduced, and the reduction falls into the conjugation class of the ”rotations”.

Sequences of constraints (which are also constraints) are expressed as:

G10G20G3....0Gn (44)

Trivial constraints are or can be reduced to one subgroup of SFE(3). The composition
(i1 o Gy 1s called the direct product of GGy and (5. If visualized as a kinematic situation,

it can be thought of as a serial arrangement of joints.

4.1.1.2 Constraint Intersection

In the example above, if entities A and B are also constrained by (5, the mobility of A
with respect to B (or vice versa) becomes more restricted. Any possible movement must
satisfy both (G4 and (/5. Therefore, this scheme represents an intersection of subgroups

of SE(3), which always forms a subgroup of SFE(3). Again, the resulting subgroup is
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determined by the geometry of the constraints involved. For example,

T.NT =trans(x,0,0) Ntrans(xs,ya, z9) = Ty (4.5)

If no mobility is left, the resulting subgroup is {/} (a static structure). From this dis-
cussion it follows that an intersection of constraints can be thought of as a parallel

arrangement of joints.

4.1.1.3 Table Look-up Algorithms for Constraint Reduction

In [19], tables are provided in which the result of composition and intersection of
trivial constraints are tabulated. Two of such examples are shown in Table 4.2. For
example, C'ug o C'uy, illustrates the fact that the composition of trivial constraints in
general produces a non-trivial one. This fact places a fundamental limitation in the
reduction of constraint compositions and intersections by rewriting procedures based on
tables such as Table 4.2. Thomas & Torras in [36] proposed a mechanical constraint
network reduction that proceeds as follows: given a number of entities in the world and
trivial constraints among them, a re-writing of the composition /intersection of constraints
is based on pre-calculated results (Table 4.2). At each step, two adjacent constraints are
considered. If a reduction is possible, the participant constraints are replaced by their
equivalent. This process continues until all possible pairs are considered and no further
reductions are possible. The final goal, which is not always attainable, is to reduce the
whole constraint graph to a single, trivial constraint relating two entities. This approach
is limited because it is unable to deal with geometric inconsistencies. For example, the
intersection of two cylindrical groups Cug and C'uq, with ug || uq, produces a translational
Tug degree of freedom(Table 4.2). The physical situation corresponds to a rigidly linked
pair of parallel pegs, entering into a pair of holes with parallel axes. The method would
correctly establish that a translational joint is left (topological result). However, the

distance between the axes has to be checked separately (geometric condition).
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Table 4.2 Composition and Intersection of Trivial Constraints

Groups Conditions | Intersection | Composition
on Geometry
Cug, C'uy ug || us Tug Cug o Ruy
Tp0,Tpl Tv0 T
v0=P0N Pl

Table 4.3 Entity Relations in the Form of Kinematic Joints

‘ Macro ‘ Joint Chain ‘ Kinematic Joints in Chain ‘ Dof‘
P-ON-P S spherical 3
P-ON-LN TioS linear translation, spherical | 4
P-ON-PLN Ty0S8 planar translation, spherical | 5
LN-ON-LN C cylindrical 2
LN-ON-PLN | T; 0 Rv o Rw | planar translation, revolute | 4
PLN-ON-PLN Ty 0 Rv planar translation, revolute | 3

The important contributions of Herve, Angeles, and later, Thomas & Torras reside in
(i) the representation of constraints as subgroups of the SE(3) group of displacements;
(ii) the formal definition of intuitive concepts such as rotations, translations, etc. in terms
of conjugation classes; and (iii) the introduction of reduction techniques for the constraint
graph that represents the GCS/SF problem. On the other hand, the limitations of the
reduction techniques are the inability to deal with non-trivial constraints, and the failure
in addressing the geometry of the problem.

This work uses the canonical form of conjugation classes developed by Herve to model
the constraints of the GCS/SFE problem. Therefore, they will be re-specified as shown
in Table 4.3. The constraint reduction procedures developed by Thomas & Torras will
be replaced by the more powerful algebraic geometric technique of Grobner Basis. The
composition of the subgroups represented by the conjugation classes produces a series of

matrix or polynomial equations, presented in the following sections.
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4.2 Methodology with Canonical Variables

A constraint between two entities by definition maintains invariant certain relations
between the constrained entities. For example, a planar sliding, Gp, allows two transla-
tional and one rotational degree of freedom, while still ensuring planar contact between
the two parts. A rotational, Ru constraint preserves axial and radial relative distances,

allowing one angular degree of freedom between the constrained entities.

Body 1, Position 1 Body 2 R1()=T(x1y1lz1). Rot(61,01,yl )

B

R2()=T(x2,y2,z2).Rot(  02,02,2)
Body 2 Body 1, Position 2

Figure 4.1 Two Body Example of Canonical Variable Modeling of the GCS/SF Problem

The GCS/SF problem is stated as a series of constraints R; relating F;; with £}, as
shown in Figure 4.1, (corresponding to a two body system). The R;() constraints are
in general composed by translations T'() and rotations Rot(), as dictated by Tables 4.1
and 4.3. Body Bl contains two features, whose frames are Fij; and Fy;. Corresponding
features in body B2 are Fiy and Fyy. The goal is to find a final position of Bl (assuming
B2 is stationary), such that Fy; relates to Fiy and Fyy relates to Fhy satisfying the
invariance dictated by R;() and Rs() respectively. In the initial configuration, the relative
position of entities Fj; and Fj3 is a (known) displacement D;. F{; and F3, denote frames
Fi1 and Fyy in the final configuration. The constraints Ri() contain degrees of freedom
to instantiate, satisfying the required relations while enforcing the rigidity of the two

bodies. The modeling procedure follows:
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(1) Transform Fj; by D;, making it coincident with frame Fjy:

Fll-Dl = Flg; F21.D2 = F22 (46)

(2) The above transformation in general destroys the rigid relation M; which is needed

between frames £} and Fy;. The application of the desired constraints recovers

the rigidity condition: R;():

F1/1 = F11-D1-Rl($17y172179174517@/)1)3 F2/1 = F21.D2.R2(:1;2,y2,22,92,qﬁz,%) (4'7)

(3) The rigidity conditions are enforced by recognizing that Fy; and Fy; must have the

same relation in the initial and final configurations:

Fll-Ml = FQl; Flll.Ml == F2/1 (48)

(4) The above equations lead to a matrix equation which characterizes the cycle formed

by transformations Dy, Dy, My, R1(), R2():

Fll.Dl.Rl().Ml - Fll.Ml.DQ.RQ() — DlRl()Ml - Ml.DQ.RQ() (49)

The above procedure can be generalized to the case in which there are several relations
(constraints) R;() specified among bodies. The general situation is sketched in Figure 4.2.
Once the constraint equations are obtained by this procedure, the construction of the
Grobner Basis and its interpretation are carried out in the manner described by the
constraint management algorithm discussed in the last chapter. The application of the

above concepts is illustrated by the examples in next section.
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Figure 4.3 Simultaneous Line-to-Line Restriction between Pairs of Lines

4.3 Examples

This section presents examples of the modeling of the GCS/SF problem by using
canonical and non-canonical formulations. It continues the discussion of the problem in-
troduced in chapter 3, which involves the simultaneous enforcement of two LN—ON—-LN
constraints (repeated in Figure 4.3). The use of canonical variables as an alternative for
modeling the problem is presented. Another GCS/SF problem of increasing complexity

is used to demonstrate the computational resources spent on the formulations.
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4.3.1 Example 1. Solution with Canonical Variables

This example illustrates the methodology related to group theoretic analysis from the
last sections. In this example, both constraints proposed are of the trivial type, as shown
in Figure 4.3, in which the simultaneous enforcement of two LN —ON — LN constraints
appears.

The methodology mentioned above follows these steps:

(1) Frame LNy is placed onto frame LN3: LN;.Dy = LNs.
Frame LN, is placed onto frame LNy LNy.Dy = LNy
Where Dy, Dy are the relative positions of L N3 with respect to LNy and LN, with
respect to LN; respectively. These positions (L N3, LN) are not the final positions
LN, LN}. The whole displacement of LNy, LN, has to respect the constraints and

the rigidity condition.

(2) The constraints are enforced by letting frame LN;.D; undergo a cylindrical move-

ment: LN| = LNy.Dy.Cuy(bq,x1). Similarly, LN, = LNy.Dy.Cug(0, 25).

(3) Record the rigidity condition between LN; and LN, in the initial configuration:
LN{.M = LNy; M is the rigid link between LN; and LN;.

(4) Enforce the rigidity condition M for the final configuration: LN{.M = LN,

Based on these equations, the matrix equations which govern this problem are (by elim-

inating LNy, LNy, LN{, LN}):

Dl.Cul(Ql,xl).M == M.DQ.CU2(02,$2) (410)
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This matrix equation can be expanded in the form:

(10 0 a (10 0 ay)
0 cT —$851 0 0 Cy —S89 0
0 S1 (8] 0 0 S9 Co 0
(00 0 1| 00 0 1|

Where ¢; = cos(01);s; = sin(f1). Also, two equations of the form ¢ + s? — 1 = 0 are
included.
Equation 4.10 represents a set of 12 polynomials and 6 variables. This equation set

has the following (lexicographic) Grobner Basis:

s5—1=0 (4.12)

1 —22+c=0

which is based on the order: @1 = x5 = ¢; = $1 = ¢3 = $3. In these equations c is a
constant. One can easily conclude that the zero-dimensionality property is violated by
the absence of a polynomial whose head() term (shown underlined in the Grobner Basis)
contains a pure power of xy. Indeed, x5 is the variable which represents the remaining
degree of freedom -the translational movement of the ensemble.

Notice that the variables in this set directly represent the degrees of freedom of
entities, unlike the case of non-canonical variables. Further, they are fewer, therefore
suggesting savings in the computing effort spent on the construction of the Grobner

Basis. Table 4.4 presents some statistics corresponding to the examples shown.
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B2

Figure 4.4 Three Body Assembly Producing Non-trivial Constraints

4.3.2 Example 2. Canonical vs. Non-canonical Variables.

Non-trivial Constraints

This example demonstrates the advantages of using a canonical formulation of the
problem, in cases containing a larger set of bodies, and (non-trivial) constraints. Fig-
ure 4.4 (adapted from [35]) shows the scenario being modeled. The following constraints

are imposed on the entities:
e Line F'21 = (po1,v21) is placed onto line F'13 = (p13, v13) ( Constraint R1 )
e Line F'12 = (p13,v12) is placed onto line F'11 = (p11,v11) ( Constraint R3 )

e Line F'12 = (p13,v12) is placed onto line F'23 = (pa3, v23) ( Constraint R2 )

Assuming that the body Bl is in the origin of the World, bodies B2 and B3 are in

(unknown) positions D2 and D3 respectively.

4.3.2.1 Grobner Basis with Non-canonical Variables

The constraints mentioned above result in the following equations and conditions:

® vy X v13 = 0;v91 X (p21 - p13) =0
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o vy X vy = 05012 X (P12 — p11) =0

® U1y X U9y = 05012 X (P12 — p23) =0

e matrices D2 and D3 are orthonormal.
o det(D2) = +1, det(D3) = +1

This system results in the following solutions based on the Grobner Basis (D2 =

{DQZ'J} and D3 = {D327]})

D3s4 =0 (4.13)
D333 —1=0
D3sy = 0
D3sy =0

D32, —10D35 =0
D3y =0
5D39 — 54 D334 =0
D3y =0
5 D314 + D335 = 0
D315 =0
D315, =0
5D311 — 54 D34 =10
D23, —2=0
D235° + D233° =1 =10
D23 =0
D2y —5=0

D2232 —|— D2332 - 1 - 0
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— D299 — D293 D233 D233 + D229 D233° = 0
D2y9 D235 + D233 D235 =0
D299 D293 + D235 D235 =0

D2222 - D2332 - 0

D221 — 0
D213 =
D212 - 0

D211 + D293 D23y — D299 D233 =0

which is calculated based in the ordering: D2y = D25 > D23 = D2y4 = D2y >
D321 - D322 - D323 - D324 - D331 - D332 - D333 - D334 pI’OdUCng the fOHOWng

solution:

D2y — —1 D215 — 0 D215 — 0 (4.14)
D251 — 0 D294 — 5 D23 — 0
D234 — 2 D31 — —1 D315 — 0
D313 — 0 D314 — =2 D331 — 0

D35y — —1 D353 — 0 D351 — 0

D332 — 0 D333 — 1 D334 — 0

D324 — 10 D222 — —D233 D223 — —\/ 1 — D2332
D232 — —\/1 - D2332

The Grobner Basis (shown in Equation 4.13) is presented in triangular form, and the
individual polynomials themselves have been arranged to have the head() term (under

the order presented above and underlined in the equations) in the leftmost position. The
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examination of the Grobner Basis detects that variables D24 and D233 are missing in
the head() terms of polynomials. These two variables have a very definite role in the D2
matrix (as easily seen in this simple example): D214 represents a translational degree of
freedom, while D233 represents a rotational degree of freedom about an unknown axis
in space. This axis is determined by the eigenvalues and eigenvectors of the submatrix
Roty = D2;;(i = 1..3,7 = 1..3) [5]. The solution implies (as expected) that body B3
is fixed while body B2 still has degrees of freedom left, represented in the variables
D244, D233. Notice that in this case, non-instantiation of D233 immediately spreads to
D235, D253, D245, since these values control the eigenvalues and eigenvectors of the matrix

Rot,. However this information is not self-evident from the solution set.

4.3.2.2 Grobner Basis with Canonical Variables

In this case the system of matrix equations can be stated as:
Fgl.cul(l'l, 01).F1_31 = Fll.Cug(l'g, 03).Cu2($2, 02).F2_1 (415)

Using an ordering 1 = x9 = T3 = S = €1 = S = C3 = S3 = c¢3 produces a

(lexicographic) Grobner Basis:

538 —1+¢e°=0 (4.16)

cg—c3=10

S2+s3=10
cg—1=0
51 =10
T3+ a3=10
1 =0

The use of canonical variables immediately gives information on the degrees of free-

dom: because of its role in the group equations (C\s(x3,03) represents Cos(6s), and the
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Table 4.4 Statistics for Examples. Non-canonical vs Canonical Variables

‘ Example ‘ Variable Type ‘ Variables ‘ Equations ‘ GB Size ‘ Time (secs) ‘

Example 1 | Non-canonical 12 20 16 1.53
Example 1 Canonical 6 14 6 0.25
Example 2 | Non-canonical 20 30 24 6.08
Example 2 Canonical 9 15 7 0.51

Grobner Basis indicates that it is dependent on ¢;. Meanwhile, x1, ¢y, s1 are completely
instantiated, showing that the position of the body B3 is fixed. Body B2 is free to rotate
about and translate along axis F'12. This is confirmed by the fact that x5 and s do not
appear in the head() terms in polynomials of the Grobner Basis, and this fact indicates
that they are the variables representing the remaining degrees of freedom. In this exam-
ple again it is seen that the canonical variables present a convenient way to simplify the
equations and give geometric meaning to the polynomial solution process.

Table 4.4 presents statistics for the different examples developed. It shows the num-
ber of variables involved in the modeling, the size of the equation set which expresses
the constraints and the size of the corresponding Grobner bases. Finally, it shows the

execution times for the canonical and non-canonical modeling for each example.

4.4 Summary

In previous chapters, a systematic method for managing geometric constraints was
presented. First, the application of the Grobner Basis in characterizing the solution space
of a set of constraints was discussed. One potential drawback of a direct application of
this algebraic geometric technique is the growth of computational effort with problem
size. This problem was addressed in this chapter by the choice of a convenient set of
variables (canonical) dictated by the conjugation classes of the subgroups of the group
SE(3) of the Euclidean displacements.

Canonical variables present a compact representation of the GCS/SF problem con-

straints and have a direct physical meaning. Therefore, they facilitate the interpretation
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of variables in terms of the degrees of freedom, allowing an easier analysis of the solution
space. The statistics on computational effort presented suggest that canonical formu-
lation presents advantages over its non-canonical counterpart. Non-canonical variables,
however, cannot be entirely dismissed since they may present advantages in situations
where a small number of bodies have many interactions between themselves. Further
investigation will be presented later, which characterizes the systems of constraints that
are efficiently modeled by each method. The application of Grobner Basis to the GCS/SF
allows the consideration of geometrical as well as topological aspects in the constraint
set. It is not limited to trivial constraints as is the case with techniques associated with
group theoretic approaches. The next chapters deal with the possibility of pre-processing
the local parts of the constraint network, by using the Grobner basis method itself, which

will produce a reduced set of constraints.
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CHAPTER 5

Constraint Reduction

5.1 Introduction

In previous chapters, the methodology for the formulation of the GCS/SF problem
in terms of non-canonical variables was discussed. Being a first attempt at solving the
problem, this formulation resulted in a large number of variables. Also, it presented
difficulties for determining of the mapping between variables and the physical degrees of
freedom of the entities. As a response to these shortcomings a second formulation was
proposed, based on the subgroups of the Special Euclidean Group of displacements in
E?, SE(3). By exploiting the fact that the GCS/SF problem originates from a geometric
domain, this formulation uses variables that directly relate to the degrees of freedom of
the entities. As a consequence, the size of the GCS/SF problem was reduced and the
remaining degrees of freedom could be determined in a straightforward manner. In spite
of this improvement, the computational complexity of the GCS/SF problem requires
additional efforts to exploit the physical characteristics of the set of constraints.

This chapter discusses how the structure of a particular instance of a GCS/SF problem
might be exploited to obtain a further reduction of the computational effort of producing
its Grobner Basis. The general idea is to identify local subproblems whose solution might
be easily obtained and then merged to produce a solution to the overall set of equations
of the GCS/SF problem. These techniques, called Divide & Conguer techniques in this
investigation, will be discussed here.

It will be shown that the Spatial Constraint (SC) graph structures the set of equations
of the GCS/SF problem. Additionally, the basic cycles in the SC graph map into local
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subproblems which can be solved separately, thus contributing to the complete solution.
Therefore, the issue of identification and classification of GCS/SF subproblems requires
a theoretical background which is related to the topological ! properties of graphs. This
chapter addresses such theory and translates it into algorithms for identifying subgraphs
in the SC graph. An example of the application of Divide & Conquer techniques is
presented at the end of this chapter.

5.2 Background

The SC graph conveys the topological and geometrical information of the GCS/SF
problem. In the context of the SC graph, cycles represent constraint intersections. They
are named by the corresponding constraint sequences. For example, Cs—Cy—C7—C5—Cy
is composed by constraints Cs, C, C7, C5 and Cl.

It is assumed that the graphs in the discussion have the following characteristics:

(1) G = (E,V) is an undirected graph, with node set V = {vy...v,} and edge set
E = {e;....e;,}. Although the edges in the SC graph are directed, edges representing
constraints can be inverted; the corresponding degrees of freedom 8, z,y, z change

sign, and the order of the matrices in the chain is inverted:

(C1(0).Ca(0))™" = Ca(6) .01 (0) ™" = Ca(—9).C1(=0) (5.1)

Therefore the structural properties of the SC graph can be calculated based on the

assumption of non-directedness.
(2) G has only one component.

(3) Every edge ¢; € F belongs to a cycle. This assumption follows from the fact that

an open chain of constraints does not present interest from the point of view of

Tn the context of graph theory, topology refers to the connectivity of the graph. In the context of the
GCS/SF problem it includes the constraint network between entities and the type of constraint relations
between them.
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solution space reduction, since it doesn’t include the simultaneous satisfaction of

constraint conditions.

In an abuse of notation, and since vertices in graphs are implied by the edges in which

they participate, sometimes the graph is equated to its set of edges.

(b) acircof G

Cc2
e« B=— >
V)
:

c6
—(— >
c3

(c) acircof G (d) aset of cyclesfor G

@ v
C1

C5

C6 C4

(e) aspanning tree for G (f) cords, cycles and spanning tree for G

Figure 5.1 Sub-Graphs of the Spatial Constraint Graph

Under the assumption that the graph of Figure 5.1(a) represents a Spatial Constraint
graph, the cycle equations can be stated as part of the solution of the GCS/SF problem.
As an example, the simultaneous satisfaction (intersection) of constraints C; indicates

that

Cg o] CQ o] 07 = 09 ¢] 03 (52)
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In a similar manner, all the relevant equations should be expressed, and no redundant
equations should be included. Several problems are immediately evident: (i) how to
determine formally when an equation is redundant; (ii) how to determine formally that
all the relevant equations have been included; (iii) which set is more convenient for solving
the GCS/SF problem among the many sets of complete, non-redundant equations; and
(iv) how to obtain it?

Since the equations of the GCS/SF problem directly relate to the cycles of the SC
graph, the questions stated above can be expressed in other ways: (i) what does it mean
for a cycle to be redundant and how to identify it; (ii) how to enumerate the cycles of
a graph; (iii) which set of cycles in the SC graph has special meaning in the context of
the GCS/SF problem; and (iv) what kind of cycle partitions exist in graphs and how
expensive is to extract them. The theoretical background and algorithms presented in
this chapter are essential in properly stating the GCS/SF problem to answer the questions
above. Beyond this consideration, it will be seen that careful manipulation of the SC
graph presents attractive ways to improve the efficiency of the solution of the GCS/SF

problem.

5.3 Definitions

To develop a basis for the discussion ahead, some standard definitions( [12, 11]) are

reviewed here:

Spanning Tree: In a connected graph GG = (V, E), a spanning tree ST'((7) is a subgraph
of G which contains all the nodes of V and a set of arcs which make it connected,

and acyclic (Figure 5.1 (e)).

Branch b;: Is an edge in ST(G) (for example, ¢4, ¢5, ¢s and ¢4 are branches in Figure 5.1

(e)).

Cord ¢;: Isan edge in G—ST(G) (for example, ¢q, ¢35, ¢7, ¢s and ¢g are cords in Figure 5.1

(f)).
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Cord set: Is the set of all edges removed from G to convert it into a spanning tree.

Therefore, C'S = G — ST(G).

Cycle: A cycle (or loop) L; = {€w, €wi1,-., €} is a subgraph of G whose nodes have

exactly two incident edges.

Set of Basic Cycles: A set of cycles SBC = {4, Ly, Ls, .., L, } in a graph G(V, E) is
called a Basic Set of Cycles if:

(1) YI' cyclein G, I' = L; & Ly... ® L. It means I' can be expressed as a linear
combination of the cycles L; in SBC.

(2) No Ly basic cycle in SBC can be written as a linear combination of other

cycles in SBC.

For example, SBC = {{c1,¢2},{cs,ca}, {cs,¢8}, {cs, 0}, {c1,¢5,¢6,c4,c7}} in Fig-
ure 5.1 (d).

Circ: A circis an undirected graph C' = (V,, E.) whose nodes have even degrees; all of

them receive an even (nonzero) number of incoming arcs (Figure 5.1 (b),(c)).

Ring Sum: & is the ring sum operation between edge subsets F and H of £ (F C F ,
HCE):
HeF=(HUF)—(HNF).

5.3.1 Structure of the Set of Circs of a Graph

To present the algorithms for extraction of a basic set of cycles in a graph and to
give them theoretical support, a short discussion follows concerning the mathematical
structure of subgraphs in a graph, and in particular, the classes of circs and cycles. In
this review, standard graph theorems and lemmas relevant to this research are presented
as propositions, with no formal proof. For a deeper insight the reader can consult [11].

Proposition 1

The set S of all subgraphs of graph G = (V, E) is an abelian group with operation &.
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Each element G; of S is a subgraph whose inverse is G itself. The element identity is
the empty graph @ (see [33, 11]).

Definition: Consider the set F'= {0, 1} with operations 45 (addition module 2) and
ko (multiplication module 2). F' has the properties of a field, and serves to introduce the

scalar product . : F' xS — S which can be defined as:

OGZ = (I); 1.Gi = GZ (53)

Comment: Informally, the operation 0.G; means "neglect subgraph &7, while the
operation 1.G/; means ”choose subgraph G;”. This operation is necessary when a set of
subgraphs {G4, G5...G.} is used to build any other subgraph G,, of G. The following
proposition formalizes that concept.

Proposition 2: Let (5, @) be the abelian group, (F, +2,*,) the field and . the scalar
multiplication as defined above. Then, S is a linear space over F' (see [33, 11]).

Comment: Given the graph G = (V| F) with edge set £ = {e1,e2,..e.}, a possible
basis for the linear space S could be the canonical set (in the sense of linear algebra)
{Gh = {e1}, Gy = {esx},..G. = {e.}}. In this way, any subgraph G, € S can be
expressed as:

Go = (01.G1) @ (09.G2) @ .. @ (0. G (5.4)

by choosing convenient values for the «; € F. Therefore if a subgraph s; contains the

edges ey, e, €y, then s; can be written as:

s:= (0.G1) & o @ (LGR) 8 (L.G)) & (1.Gy).oo & (0.G,) (5.5)

The following propositions move the emphasis from the general set of all subgraphs to
the particular case of circs, from which the cycles are a subset. From Figure 5.1 (b) and
(¢) several formal properties can be observed: (i) a circ is either a cycle or the (set) union
of edge-disjoint cycles; and (ii) the ring sum of two cycles is either a cycle or the union

of edge-disjoint cycles. The application of these properties is the construction of the
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set of circs. In order to parallel the construction procedure used for general subgraphs,
it should be noticed that (iii) the set of all circs in a graph is an abelian group under
@. With these foundations, the construction of the set of the circs in a graph can be
undertaken.

Proposition 3: The set of all circs in a graph is a subspace S, of S (see [33, 11]).

Once the elements which allow the construction of the subspace of circs are identified,
the dimension of such subspace becomes relevant. This dimension indicates how many
independent cycles are required to obtain a complete coverage of the set of cycles in a
graph. Therefore, it is a termination condition for a basis construction algorithm.

The extraction of a set of independent cycles is closely linked to the determination of
a spanning tree T for a graph G. It is a well known fact [12, 33, 11] that a spanning tree
has |V| — 1 edges. Therefore, there are |E| — (|V]| — 1) edges in the corresponding set of
cords. Since the T" has no cycles but covers all the nodes, the addition of each cord ¢;
produces exactly one cyclein T'U{¢;}. Each cycle is independent from the others because
it contains a new cord. Therefore, there are |E|— (|V|—1) different, independent cycles.
The following propositions formalize such a concept.

Proposition 4: Let ¢; € GG— ST(G) be a cord. Then, ST(G)+ {¢;} contains exactly
one cycle {¢;, b, by, by, ¢} (see [33, 11, 12]).

Proposition 5: Let (¢ be a one component graph with G = (V| F)). Then, there are
exactly |F| — |[V| 41 cords in G — ST(G) (see [11, 12]).

Proposition 6: The set of all circs in a graph is a subspace of dimension |E|—|V|+1
(see [11, 12, 38]).

Proposition 7: Let cycle_set = {Ly, Ly, Ls, .., Lig|—jv|4+1} be a set of cycles, with the
following characteristics: each cycle L; is the form L; = {¢;, by, b..., by, ¢;} with ¢; a cord
and the b; being branches of a spanning tree ST. Then, cycle_se contains |F| — |V|+ 1
independent cycles, and cycle_set constitutes a basis for the set of cycles for the graph
G (see [33, 11, 12, 38]).

Figure 5.1 illustrates these concepts; the spanning tree in (e) contains |[V| —1 =4

edges. This spanning tree produces a cord set of |E| — (|[V| — 1) = 5 elements, which

75



immediately implies that the S. subspace has dimension 5. Given the spanning tree of
(e), restoring each cord ¢; (marked in dashed lines in (f)) produces an independent cycle.
Notice that although the basis produces the circ subspace, since the cycles are a subset
of the circs, having a basis for the circs ensures the production of the cycles.

The facts mentioned above suggest that the construction of a basic set of cycles for a
graph can be achieved by obtaining a spanning tree T' and the set of corresponding cords
(sometimes called cotree T'). Fach time a cord ¢; is added to T', one and only one cycle
is produced. Since exactly |F| — |V|+ 1 cycles are needed and there exist |E| — |V]+ 1
cords, it follows that the set of cycles obtained in this way serves as a basis for the set
of circs (and therefore cycles) of the graph. Obviously, the equations for the GCS/SF
problem only need to be written for the cycles which form the basis for the S. subspace
in the SC graph; any other set of equations can be written as a linear combination of the

equations for the set of basic cycles.

5.4 Extraction of the Basic Set of Cycles

The following algorithm makes use of the fact that once |F| — |V| 4 1 independent
cycles have been identified they form a basis for the set of circs of the graph. As a
by-product, the original graph G has been partitioned into a spanning tree T' and the
corresponding cotree T".

For the present application, namely the solution of the GCS/SF problem, it is im-
portant that the cycles belonging to the basic set of cycles be as small as possible. This
requirement allows the application of the Divide & Conquer method to sets of polyno-
mials involving easily reducible solution spaces. These partial solutions can be used to
attack the complete GCS/SF problem.

In this section, an algorithm is considered which constructs the basic set of cyclesin a
graph by using a low-depth spanning tree T'. In a spanning tree T" every cord completes

a cycle that in the worst case has length 2H + 1, where H is the depth of the tree. By
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using a low-depth spanning tree, the largest cycle length is limited, therefore producing

a set of small cycles.

5.4.1 Extracting the Basic Set of Cycles Given a Spanning
Tree

If the existence of a spanning tree T for a graph G is assumed, the construction of the
actual cycles would follow, with the procedure cycles_from_tree(T : tree,T" : graph; C :
set of graph) which takes the partition of a graph into a tree T and a cotree T and
constructs the set of cycles C'. With no loss in generality it can be assumed that T" has
indeed a tree data structure which can be used to retrieve the ancestors of a node in the
tree all the way to the root. This assumption facilitates the task of extracting the cycles

from the original graph G, by using the following algorithm:

procedure cycles_from_tree(T :tree, T : graph;C : set of graph)

0 {

1 CO=A{}

2 do(T"#{})—

3 ¢; = first_cord(T");

4 [vi,v2] = extremes_of edge(c;);
5 li = path_to_root(T, v1);

6 ly = path_to_root(T, vs);

7 [common, taily, tails] = common_path(ly, l2);
8 cycle = [invert(taily), taila, {¢;}];
9 C = C U {cycle};

10 T =T —{e};

11 od

12}

Intuitively, cycles_from_tree(T,T’,C) takes each cord ¢; in the cotree T" (line 3),
and determines the cycle that such a cord completes in the spanning tree T'. For this
purpose, the first node in the tree that is common ancestor of nodes v and v, is searched

by determining the path from root to vy (/1) and from root to vy (I3) (lines 5, 6). If these
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paths are cross-examined, the common ancestors will be found (l.ommon), as well as the
two non-common paths, tail; and taily to vy and vy respectively (line 7). If the two tails

are glued together with the closing edge ¢;, the cycle is determined (line 8).

5.4.2 Extraction of a Low-Depth Spanning Tree

In order to guarantee the input for the procedure cycles_from_tree(), a pre-processing

procedure spanning_tree() extracts a spanning tree 7' from a graph G.

procedure spanning_tree(G : graph; T : tree)
0{
1 head = max_degree_node(G);
2 T={}
3 wisited = {};
4 towisit = {head};
5 do (to_visit £ {}) —
6 node = max_degree_node(to_visit);
7 branching = incident_edges(node);
8 do (branching # {}) —
9 edge = first_element(branching);

10 v = opposite_extreme(edge, node);
11 if ((v & visited)and(v & to_visit)) —
12 to_visit = to_visit U{v};

13 T =T U {edge};

14 fi

15 branching = branching — {edge};
16 od

17 visited = visited U {node};

18 to_visit = to_visit — {node};

19 od

20 }

The algorithm is biased to heuristically extract a low-depth spanning tree. As a start,
it chooses the root of the tree to be a large-degree node (line 3), and each time a node in

a set is considered for branching, the chosen candidate is also the one which presents the
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largest degree. In this heuristic way, by forcing a large branching in the tree, its depth
would be expected to be low.

spanningtree() constructs a list of the nodes that have to be visited, along with the
ones already branched. The strategy of developing the tree lies in the administration of
such a list (line 6). If the list is managed strictly as a queue, a breadth-search strategy
would result. If instead a stack management is used, a depth-first strategy results.
Departing from these two alternatives, in this research the list is sorted by size of the
degree of the nodes involved.

FEach time a node is included in the tree (line 6), its neighbor nodes are scheduled to
be visited (line 12) if they haven’t been visited already (line 11). The algorithm stops
when the to_visit set is empty (line 5).

An execution of the spanning_tree() routine for the graph in Figure 5.1 would start
with node Bs (whose degree is 4) and continue with nodes By and Bs, eventually produc-
ing the spanning tree 7' = {Cy, (5, Cg, Cy4}. The cotree T' = {Cr, Cy, Cs, Cy, C3} provides
the cords, each one of them completing a cycle in the graph . In this case four of the

completed cycles have length 2 and one has length 5.

5.4.3 Complexity Analysis

In the spanning_tree() procedure, the external loop (line 5) is executed O(V') times.
Internal to that loop, the largest operation is the branching loop (line 8) with complexity
O(FE). Inside such a loop there is an O(F) operation in first_element() and an O(V)
operation in the ¢f (line 11). From these considerations it can be concluded that the
complexity of the spanning_tree() algorithm is O(V E? + EV?). The analysis for the
cycles_from_tree() procedure indicates that since T' is assumed to have tree structure,
the operation path_to_root() can be completed in O(V') (lines 5, 6), and the execution
of common_path() in O(V?) steps. Next, the two legs taily, taily are appended, together
with the cord ¢; to make the cycle (line 8). Since the loop (line 2 ) has to be performed
exactly £ —V +1 times, the complexity of this procedure is O( EV?) (assuming FE > V).
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From the considerations above, it can be concluded that the complexity of the extraction

of a set of basic cycles from a graph is G = (V, E) is O(VE? + EV?).

5.5 Constraint Reduction for the GCS/SF Problem

Before starting the application of the algorithm just presented, a short recapitulation
may be useful. In Chapter 4 and Chapter 5, methodologies for the statement of the
GCS/SF problem using non-canonical and canonical variables were discussed. Regardless
of the methodology used, the complete and non-redundant set of constraints has to be
used in the production of a set of polynomials to be input to the Grobner Basis algorithm.
The partition of the original GCS/SF problem into a basic set of cycles for the SC graph
produces exactly a complete and non-redundant coverage of the SC graph (and of the
problem). Additionally, the cycles of the graph represent local GCS/SF subproblems.
By analyzing these subproblems, conclusions about local scenes can be drawn, lowering
the overall computational expenses. In some domains of application, such as assembly
planning, sub-assemblies can be identified by this method. Therefore, the partition of
the GCS/SF problem presents direct applications in CAD / CAM environments. The
strategy called here Divide & Conquer comprises the subdivision of the GCS/SF problem,
the analysis of its local sub-problems and the integration of such analysis into the solution
for the original system. In this section such a strategy is developed, and a variant of it,
called Incremental Instancing, is discussed. An example illustrates the application of

these concepts.

5.5.1 Divide & Conquer Algorithm

The Divide & Conquer (D&C) algorithm showed below assumes the existence of a
fundamental set of basis cycles for the SC graph. It extracts the polynomial equations
for each cycle L; (lines 2, 4) and calculates its Grobner Basis ¢b; (line 5). The equations

obtained in this way are put together into the set full_equations (line 7), whose Grobner
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Basis is finally calculated. Obviously, if any one of the ¢; sets shows any inconsistency

(gb; = {1}), the process should stop (line 9).

procedure Divide_and_Conquer(G set of Graph )
0 {Pre: G ={Ly,Ls,..Ly} basic cycles in Spatial Constraint Graph}
1 full_equations = {};
2 do not_empty(G)
3  {Inv:  full_equations has same roots as {L1, Lo, ..L;} }
4 L; = next_cyele(G);
5 gb; = GB(equations(L;), <1) ;
6 b £ —
7 full_equations = full_equations U gb;;
8
9

else —
exit;
10 fi
11 G=G—-{L;};
12 od

13 full_ GB = GB(full_equations, <;) ;
14 {Post: full_G B is the Grobner Basis for equations(G) }

The rationale behind the partition technique just discussed is based on several facts:
(i) the individual ¢gb; are Grobner Basis for the polynomials representing each basic cycle.
Therefore, they have no internal redundancy; (ii) local inconsistencies are filtered before
the full GCS/SF problem is addressed; (iii) local solutions to subproblems can be found
and used towards the solution of the full problem; and (iv) the g¢; sets represent an
already (triangularly) ordered set of polynomials. Although it is not within the scope
of this investigation to examine the details of Grobner Basis calculation, it is possible
that in later work the pre-ordering in the individual Grobner Bases could be exploited

to speed up the processing of the full set.
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5.5.2 Incremental Instancing Algorithm

The Incremental Instancing (II) method is a variant of the D & C technique, in which
variables that can be given a value by the characteristics of the local constraint scenario
are instanced immediately, therefore progressively reducing the size of the variable and

polynomial sets.

procedure I'ncremental_Instancing(G set of Graph )
0{
1 {Pre: G = {Ly, Ly,..Ly} basic cycles in Spatial Constraint Graph}
2 full_equations = {};

3 free_variables = {};

4 instanced_variables = {};

5 do not_empty(G)

6 {Inv:  full_equations has same roots as {L1, Lo, ..L;} }

7 L; = next_cyele(G);

8 Vi = variables(L;) — instanced_variables;

9 gb; = GB(equations(L;), Vi, <) ;

10 if (¢b; # {1}) —

11 instanced_variables = instanced_variables U instanced_vars(Vi, gb;);
12 full_equations = full_equations U instanced_form(gb;);
13 else —

14 exit;

15 fi

16 G=G-{L;};

17 od

18 free_variables = all_variables(G) — instanced_variables ;

19 full GB = GB(full_equations, free_variables, <) ;

bl

20 {Post: full_G'B is the Grobner Basis for equations(G) }
21}

In this algorithm a set called instanced_variables is maintained which contains the
variables that have taken a value at any point in the execution. Subsequently, only
variables not contained in this set can be considered for Grobner Basis calculation (lines
8,9). If a Grobner Basis is successfully calculated for a cycle (line 10), the set of instanced

variables is augmented by its contribution (line 11), and the general set of polynomials,
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full_equations | is augmented by the partially instanced version of its set of polynomials
gb; (line 12). When the solution of the overall GCS/SF problem is finally undertaken,
only the free variables and the instanced version of the individual Grobner Bases ¢gb; are

used (lines 18, 19).

5.5.3 Application of Constraint Reduction. Cartesian Table

C7=PLN-PLN

C1=LN-PLN C2=LN-PLN

A

C4=LN-PLN

Figure 5.2 Piece Disassembly of Cartesian Table

The Cartesian Table example is presented to illustrate how the theory for partitioning
and solving the GCS/SF problem discussed in this chapter can be applied. Given the
constraint configuration (the topological information), and the dimensions of the entities
(the geometrical part), the goal is to determine the degrees of freedom of the different
bodies in the mechanism. The Cartesian Table (see Figure 5.2) is intended to undergo
orthogonal movement, which involves two translational degrees of freedom, therefore

producing a planar translation between bodies By and Bs. Notice that with the specified
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Table 5.1 Joint List of the Cartesian Table

‘ Constraint ‘ Constraint Type ‘ Elements ‘ Canonical Representation ‘

4 LN — PLN i,y | Ry (Gl)oT(yl,zl)oR (¢1)
o LN — PLN | Fy,Fiq | Ru(02) 0 T,(y2, 22) 0 Ru(63)
Cs LN — PLN Fia, Fis Ru( 3) Tp(3137273) u(¢3)
Cy LN — PLN Iy, Fis Ru( 4) Tp(y4724) u(¢4)
Cs LN — LN Fis, Fyy Co(05, x5)

Ce LN — LN Fis, Py Co(6, 6)

07 PLN — PLN 17247 F25 Gp((97, Y7, 27)

C's LN — LN Fys, Fyy Co(0s, )

o LN — LN Fis, Py Co(9, o)

constraints, the bodies By, By and Bj have zero degrees of freedom relative to each other.
This fact, together with constraints Cy, Cy, C5 and Cy, forces the planes Fi5 and Fi4 to
remain perpendicular to each other. An additional GGp (planar sliding) constraint forces
planes Fy5 and Fyy to stay in contact, therefore producing the desired X — Y movement.
The types of joints present in this mechanism appear in Table 5.1. The features Fj;
involved with each constraint C} appear in column 3. The compositions of subgroups of
SE(3) that constitute each Cy appear in column 4. Notice that this example includes

non-trivial constraints such as 4, Cy, C's and Cj.

5.5.3.1 A Partition of the Cartesian Table Problem

Figure 5.3 shows the SC graph for the Cartesian Table and a simple abstraction of it.
The Divide part of the Divide & Conquer strategy includes the identification and solution
of local GCS/SF subproblems. The set of basic cycles contains four cycles of length 2,
and one cycle of length 5. The SC graph presents |V| = 5 nodes (entities) and |E| = 9
edges (constraints). Since the set of basic cycles must have |E| — |[V|+ 1 = 5 cycles, it
follows that, since the cycles mentioned above are independent, they constitute a basis
for the set of circs (and cycles) of the graph. In this example, the algorithm discussed
for partition of the SC graph produced the following set of basic cycles:

SBC = {{Cy — C3},{C5 — C4},{Cs — Co},{Cs — C5},{C5s — C; — Cr — C3 — Cg} }(5.6)
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Figure 5.3 Spatial Constraint Graph for Cartesian Table

Table 5.2 Constraint Graph Basic Cycles

‘ Cyele Name ‘ Cycle Equations
Chp— O, .Cy = 15,.Cy
(s — (Y4 F5.C3 = I9,.C4
Cs — Co Fi3.Ce. ) = I53.09.F5!
Cs — Cs Fys.Cs. Fot = Fi3.C5. F "
Cs—C1 —Cr—Cs— Cg | C5.C1.F 3 Fyy.Cr = Co.Cs. F2 Fys

In Figure 5.1(f) the spanning tree corresponding to this example is shown, as well as
the corresponding set of cords, ¢;. It can be observed that every cord closes exactly one
independent cycle when added to the spanning tree. The matrix equations describing
the constraint chains for each cycle appear in Table 5.2.

At this point in the context of the Cartesian Table example, a partition of the original
GCS/SF problem has been determined by using a basic set of cycles for the SC graph.
This set of cycles serves the purpose of stating the complete and non-redundant set
of simultaneous equations to be input to a Grobner Basis algorithm. In what follows,
the canonical formulation for the Cartesian Table will be processed by the Brute Force,

Divide & Conquer and Incremental Instancing approaches.
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5.5.3.2 Brute Force Procedure

The Brute Force approach directly processes a polynomial set that contains all the
cycle-matrix equations originated from the partition of the SC graph (Table 5.2). A
lexicographically ordered Grobner Basis is then calculated for this complete set, with no
calculation of partial or intermediate solutions. The Grobner Basis considering the order
S = Coy = y1 = 21 = 501 = Cly = Sy = Cdg = yg = 29 = SOy = ClOy = S5 =
Coz = ys > 23 = S0 CO3 = Sy = Cog = yg = 24 = S04 = Cly = SO5 = CO5 = x5 =~
Sls = Clg = xg > SO7 = Clr > yz > 27 = Slg > Clg > x5 > SOy > Cly > xg9 is as

follows:

5S¢+ 50,Cy =0 (5.7)
Cé =0
i — 8032 —3 =0
521 — 10505 + ya SOsyr + 5504 ys — 2504 yr — Cdy 27 S04y —5C by 27 50, = 0
580, — Céuzrtys—2=0
o, =0
Sy =0
Cy — 50,50, = 0
Yo+ SO4yz + 5505, —2 =0
52y — 80424 Cyzr—2C by 2+ S04 zays+2ys — 250, 24 — 4 = 0
S0, =0
5C0,+ Coyzr—ys+2=0
Sés+ 50, Chs=0
Cos=0
ys— 1 — 80,2 =0
23— 2505+ SO4ys = 0
505 =0
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Chs+ S0, =0
Sgs=0
Co* —1=0
Coays—2Chs+550; — 2z =0
5C ¢y S0 +ys—Coyzr —2=10
Coyzr® + 220 —25Chs — zrys — 5507 y4 + 1050, = 0
Yyl —Ays —21 410507 2 — 2 =0
S0 —1=0
Chy=0
S054+1=0
Chs =0

This lexicographic Grobner Basis, presented as a triangular set, allows the evaluation of

the Zero dimensionality properties for the polynomial ideal. By applying the method-
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ology and algorithms developed in previous chapters the following conclusions can be
drawn: (i) the ideal is not Zero-dimensional; (ii) the table is restricted to move in planar
translation, T'p(yz, z7), with two degrees of freedom, yrandzz; and (iii) a careful exam-
ination of the example indicates that the remaining degree of freedom, z4, indeed has
a physical significance, since the sub-assembly By — By — Bj still keeps one degree of
freedom when all the other objects in the space are positioned. It can move along the
line intersecting planes Fis and Fiy. Although in real machine tool design such a de-
gree of freedom is unrealistic, in this example it has the capability to demonstrate that
confining the sub-assembly B; — By — B3 onto a plane Fys is not a necessary condition
for the cartesian movement of the table. In more general terms, this rather fine detail
demonstrates that a formal degree of freedom analysis is necessary in an increasingly

computerized design environment. The problem is intuitively simple to a human being.

5.5.3.3 Divide & Conquer Procedure

This section shows the results of the preprocessing (Divide & Conquer) applied to
the individual cycles presented in Table 5.2. Observing Figure 5.2 and considering the
constraints in cycles C7 — Cy, (5 — Cy, C5 — Cs and (g — Cg, it is intuitively evident
that the constraint intersections represented by those cycles are indeed reducible, and the
resulting constraints should be as shown in Table 5.3. However, they cannot be reduced
by the topological techniques introduced by Herve and/or Thomas & Torras [19, 36]
because this mechanism involves non-trivial constraints. It will be shown here that the
results in Table 5.3 can be obtained in a local preprocessing of the constraints by using
Grobner Basis techniques. This preprocessing requires the application of the relations,
established in this investigation, between the properties of the Grobner Bases and the
solutions for the GCS/SF problem. The application of the Divide & Conquer strategy
to the Cartesian Table problem follows.

Local Preprocessing. Cycle (7 — (5
The (non-trivial) constraints C; and Cy are of the type LN — ON — PLN, with the

feature lines Fy; and Fy being non-colinear. The simultaneous enforcement of the two
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Table 5.3 Topological Basic Cycle Reductions

Cycle Path 1 Path 2 Reduced Defining
Constraint | Geometry
Ci=Cy | Ci=Fyy —ON = Fiy | Cy=Fy —ON — Fyy G, Fiy
C3—=C4 | COy3=Fiy—ON = Fi5 | Cy=Fy —ON — I G, Fis
U5 —Cs | U5 = Fiz—ON = Iy | Cg = Fys —ON — Fy Iy -
Co—Cy | Cg = Fi3— ON = Fiy | g = F33 — ON — Iy Iy -

constraints under such a geometric condition produces a (trivial) constraint of the type

Gy, planar sliding. It is expected that the following procedure will confirm this intuitive

conclusion.

By using the cycle equations shown in Table 5.2 for cycle ¢y — (5, and the order
S¢1 - C¢1 - 51 > 21 - 5(91 - 0(91 - S¢2 - C¢2 - Y2 > Zo 5(92 - 0(92, the

lexicographic Grobner Basis resulted in:

S¢1— CO,Cdy =0

%-I—C(%S%ZO

y1—1+C020=0

Z_1—|—20(92—C(92y2 =0

80+ C0y =0
Co =0

565" + Cdy® —1=10

56, =0
Co?—1=0

(5.8)

Using the interpretation background developed in chapter 3, it can be seen that ys, z5 and

C ¢4 are free variables since they appear in no polynomial p as head(p). Consistently, the

result of this preprocessing indicates that two angular degrees of freedom #; and 65 are

fixed. The degrees of freedom can be extracted from path Cy, and they clearly represent

the planar sliding G,(¢2, y2, 22)-

89



Local Preprocessing. Cycle (5 — (4
From Table 5.2 and Figure 5.2 it can be determined that the cycle C's — C4 presents an
identical situation as cycle C'y —Cy does. By using the cycle equations shown in Table 5.2
for cycle C's — (4, and the order S¢3 = Cds = y3 = 23 = SOz = Cl3 = Soq = Coy =

Yg = 24 = S04 = C0, , the following lexicographic Grobner Basis is calculated:

S¢s+ 50,Cdy =0 (5.9)
Cgs — S0, 5¢4 =0
Yz — 1 — S0,24 =0
23— 28504+ S04y, =0
Sh3 =0
Chs+ 50, =0
S+ Cos? —1=0
S0 —1=0
Chy

From this triangular Grobner Basis one can see that the free variables are z4,y4 and
C ¢4; therefore, three degrees of freedom z4,y4, ¢4 are left in the (trivial) constraint
G'p(z4, Y4, P1). Asin the previous case, the cycle could not be reduced by a topology-based
re-writing strategy for trivial constraints.
Local Preprocessing. Cycle (5 — Cy

The satisfaction of constraints (5 and Cy at the same time can be assimilated to the
simultaneous positioning of two pegs into holes whose azes are perpendicular. This geo-
metric condition suppresses all degrees of freedom of the cycle. As before, this conclusion
is expected from the calculation of the Grobner Basis for the polynomials corresponding

to this cycle. The ordering x5 = S5 = Cl5 = x5 = SO = COs leads to a (lexicographic)
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Grobner Basis:

25—1=0 (5.10)
S054+1=0

;=0

25— 2=0

565 =0

Chs—1=0

In this case no free variables are left and, as a consequence, bodies By and Bs have their
relative movement completely constrained.

Local Preprocessing. Cycle (g — Cy
As in the case of the cycle C5 — Cg, it is expected that all movement between bodies Bj
and B, should be restricted. The ordering xz¢ = S8 > Clg = x9 = Sy = C8y produces

the (lexicographic) Grobner Basis:

25 +1=0 (5.11)
50— 1=10

Chs=0

29— 2=10

S0y =0

Chy—1=0

Again in this case, the triangular presentation of the Grobner Basis helps to show the
Zero-dimensionality of this ideal; therefore all the variables are instanced, and the body
Bjs is rigidly attached to body Bj in this cycle of the constraint graph.

Global Processing. Full Graph
In this section the (g;) Grobner Bases already calculated for the individual cycles
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{gb1_2, gb3_4, gbs_s, gbs_o } are used towards the calculation of the Grobner Basis for the
whole constraint graph.

The same variable order was used as for the full cycle, Brute Force approach; the
Grobner Basis obtained is the same as in Equation 5.7. The Grobner Bases for the
individual cycles replaced the original constraint equations in the calculation of the overall
Grobner Basis, which would therefore include all the variables and constraints in the

graph.

5.5.3.4 Incremental Instancing Procedure

According to the Incremental Instancing algorithm presented in previous sections, the
sequence of cycles considered in the execution is presented in Table 5.4. Cycle Cy — ()
produces an instancing of variables C'6y, S60,, S0y and C#;. This result confirms the
fact that, as mentioned before, two rotational degrees of freedom are lost in this cycle.
Cycle (5 — (4 presents a similar situation for variables S#s, C'f3, S0, and C84, and so
on. Notice that, in general, the order in which the cycles are considered is significant
if they share variables (line 8 of the Incremental Instancing algorithm). In that case, a
variable instanced in a processed cycle would become a constant for the later stages of
the algorithm. In this particular example, the first four cycles considered do not have
variables in common among themselves. Therefore they do not influence each other.

However, they share variables with, and therefore contribute to lower the computational

burden of, the last cycle, Cs — C7 — C7 — C3 — C.

5.6 Summary

This chapter has presented an algorithm for the determination of a basic set of cycles
for the Spatial Constraint graph of the GCS/SF problem. The SC graph is a formalism
which allows the automatic expression of the GCS/SF problem and its set of governing
equations. The set of basic cycles for the SC graph indicates the minimum set of cycle

equations that contain all the information of the problem.
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Table 5.4 Statistics for Incremental Instancing Execution

Subgraph

Instanced
Values

# Vars

Fquations

GB Size

Ch — Oy

Ch, — 1
S0, — 0
S0, — —1
Ch — 0

12

16

Cs—Cy

S0; — 0
Chs — 1
S0, — —1
Chy — 0

12

16

Cs5 —Cs

x5 — 1
rg — 2
S0, — —1
Chs — 0
S0y — 0
Clhs — 1

14

Cs — Cy

r6 — —1
Tg — 2
S — 1
Clhs — 0
S0y — 0
Clhy — 1

14

Full Graph

Cop— 0
Sop — 1
Sy — 0
Cpy — 1
Sz — 1
Cos — 0
Soq— 0
Cog — 1
Ch, — 0
S0, — —1

20

65

20
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The set of basic cycles of the SC graph induces a complete enumeration of the equa-
tions governing the GCS/SF problem, regardless of the methods used to solve them.
Additionally, each cycle can be separately processed in order to detect local inconsisten-
cies, solution spaces of low dimensionality, or subproblems with weak dependencies to
the general GCS/SF problem. Therefore, the problem of the identification of convenient
basic cycles becomes relevant. A convenient cycle, in this context, is the one whose
equations represent an ideal of low dimensionality. In other words, it allows one to draw
conclusions or detect inconsistencies in the configuration of the entities involved in the
cycle. Since such cycles tend to be small, a desirable set of cycles contains as many small
cycles as possible. The algorithm presented here to extract a basic set of cycles from an
SC graph uses a heuristic strategy to limit the size of the cycles that results in a com-
plexity of O(VE? + EV?). It should be stated that although other algorithms studied
are able to find sets with smaller cycles, their computational expense is exponential and
outweighs the advantages of the Divide & Conquer techniques.

The application of the algorithms discussed to the kinematic analysis of the Cartesian
Table mechanism illustrates how a set of basic cycles of the SC graph, can be used in
the solution of the problem in terms of sub-assemblies. Within the Divide & Conquer
techniques, the method of Incremental Instancing proved to be more efficient for this
particular example. Incremental Instancing not only solves the small subproblems sepa-
rately, but, by partially instancing the set of variables, it further reduces the size of the
problem. The evaluation of the convenience of D&C and II techniques in the context of

diverse GCS/SF problems will be carried out in later chapters.
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CHAPTER 6

Comparison of Solution Techniques for the

GCS/SF Problem

The goal of this chapter is to evaluate the performance of different techniques in
modeling and solving the GCS/SF Problem as the characteristics of the physical problem
change. These characteristics involve the number of entities present in the world (two-
body vs. multi-body systems), and the nature of the constraints (trivial vs. non-trivial)
imposed upon them. A set of examples illustrating a full combination of types of physical
problems against methods of modeling and methods of solution would involve a large
number of situations. Since many of them are not significant from the point of view of
their applicability, they will not be considered. This aspect will be developed in following
sections.

Given a specific GCS/SF problem, the investigator must chose techniques for modeling
and solution. In modeling the problem, the alternative of using canonical vs. non-
canonical variables needs to be addressed. This choice has important implications for the
solution process: canonical variables seem to be a smaller and physically more meaningful
way to express the GCS/SF Problem. In this chapter, examples to test this statement
are presented.

Once a modeling technique is chosen, the issue of the solution method arises. Several
methods have been developed in this work, and the purpose of this chapter is to provide

a comparison of their performance. They are represented in two main strategies:

(1) The solution of a large, non-structured set of polynomial equations modeled using

either canonical or non canonical variables.
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(2) The processing of local subproblems as part of the solution for the general GCS/SF

problem and the consolidation of the partial solutions into the general one.

6.1 Design of Examples

To identify modeling and solution techniques appropriate for each physical situation

of the GCS/SF problem, the following aspects have to be considered:

o Physical characteristics of the problem:
Two Body vs. Multi Body Systems, and Trivial vs. Non-trivial Constraints between

the entities.

o Method of modeling:

Canonical vs. Non-canonical formulations.

e Processing method:

Preprocessing (PP) vs. Non-preprocessing (NPP) techniques.

In Figure 6.1 the different combinations of the factors presented above are shown
in a tree diagram. Branches which are trimmed are considered superfluous or of little

applicability in common situations:

(1) Systems with trivial constraints are not discussed extensively due to the scarcity
of applicable situations. In almost any case of multi-body or multiple constraint

systems, the SC graph produces non-trivial interactions.

(2) In dealing with multi-body systems and non-trivial constraints, the use of non-
canonical variables makes the computations expensive. Therefore no further effort
was made to assess preprocessing techniques in multiple entity problems expressed

with non-canonical formulation.

Two restrictions to the physical problems dealt with in this chapter are:
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(1) In general, the number of entities involved in the GCS/SF problem is larger than
two. Although examples using two-body scenarios are discussed, the emphasis in
the modeling and solution of the GCS/SF problem will be directed to systems with

multiple entities.

(2) Due to their applicability, this investigation focuses on contact constraints, which
are mainly non-trivial. Although trivial constraints are not excluded altogether,

this chapter will emphasize non-trivial cases.

GCS/SF

Non-Ffivial

Non
Canonic Canonica

NPP/ \PP  NPP/ \ PP NP \PP @

NonTfivial \al

. Non
Canonical  Canoni Canonical

Figure 6.1 Layout of Examples

Figure 6.1 relates the examples presented later (BC, DPH, CT, T&T) with the char-
acteristics and formulations of the GCS/SF problem. The first example, called Double
Peg and Hole (DPH), involves the simultaneous positioning of pegs into holes with
parallel axes. DPH is used to illustrate the modeling and solution in the case of two-body
systems with trivial constraints.

In order to explore the characteristics of systems with two bodies and multiple, non-

trivial constraints, a configuration placing a block on a corner of the world is used.
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Table 6.1 Entity Relations in Vector Form

‘ Relation ‘ Entity 1 ‘ Entity 2 ‘ Vector Equation
P—-—ON-P m s P’ = P2
P—-ON - LN P LN = (pa,v2) | (pr—p2) Xvg =0
P—ON—-PLN 2 PLN = (p2,n2) | (p1 —p2)-n2 =0
LN —-ON — LN LN = (pl,vl) LN = (pg,vg) V1 X Vg = 0

(pL—p2) X v2 =0
LN — ON — PLN LN = (pl,vl) PLN = (pz,ng) (pl —pg) Mg = 0

U1 - N2 =0
PLN—ON—PLN PLN = (pl,nl) PLN = (pz,ng) (pl —pg)'nz =0
nq - Na ==+l

This example (called Block on Corner (BC)) presents a degree of redundancy in the
constraints and is also suitable for application of preprocessing techniques.

An assembly adapted from [36] shows the interaction of more than two bodies with
trivial constraints. It is referred to as Thomas & Torras (T&T) example. The case
of multiple bodies with non-trivial constraints is illustrated by the modeling of a Carte-

sian (or X-Y) Table (CT). Given the complexity of the SC graph, techniques for

preprocessing become a necessity for this type of situations.

6.1.1 Terminology and Notation

In addition to the notation used in previous chapters, new terms are introduced here:

o (;; is the origin of the feature frame ¢ relative to entity B;.

Xi; is the orientation of z axis of the feature frame ¢ relative to entity B;.

B;.0;; is the absolute position of the point O;;.

B;.X;; is the absolute orientation of the vector Xj;.

(;: Constraint Relations

They are modeled following the formulations in Tables 6.1 and 6.2, repeated in

this chapter for convenience.
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Table 6.2 FEntity Relations Using Canonical Formulation

‘ Macro ‘ Joint Chain ‘ Kinematic Joints in Chain ‘ dof‘
P—-—ON-P S spherical 3
P—-—ON - LN TioS linear translation, spherical | 4
P—-ON—-PLN Ty0S8 planar translation, spherical | 5
LN —ON — LN Cy cylindrical 2
LN —-ON — PLN GpoR, planar sliding, revolute 4
PLN —ON — PLN Gp planar sliding 3

6.2 Two Body Systems

This section discusses the modeling and solution of GCS/SF problems in scenarios
with two bodies. First, DPH will illustrate the case for trivial constraints. Second, BC

will demonstrate the case when non-trivial constraints are present.

6.2.1 Trivial Constraints. Double Peg and Hole (DPH)

Figure 6.2 Double Peg and Hole (DPH) Example Scenario

Consider a scene in which there are two straight lines Fi1 = (P, v1) and Fyy = (P, v2)
(see Figure 6.2) expressed parametrically, and assumed to be rigidly linked to each other

by a displacement M. Another set of lines, with similar conditions is given by Fjs =

(Ps,vs) and Fhy = (Py,v4). The proposed relations place Fyy ON Fiy and Fyy ON Fay (Fn
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Table 6.3 Constraints for the Double Peg and Hole (DPH) Example

Constraint Non-canonical Equations Canonical
Fquations
Cl: LN -ON — LN (B1.X11 X B2.X12) =0 B, .F1.C,.F5' = By
Fi1 —ON — Fi5 | (B1.011 — B2.013) X (B3.X13) =0
C2: LN —ON — LN (B1.X21) X (B2.X22) =0 By .Fyn.Cy. Fs5 = B,
Fo1 — ON — Fyy | (B1.021 — B2.033) X (B3.X33) =0

Table 6.4 Statistics for the DPH Example

‘ Example ‘ Variable Type ‘ Variables ‘ Equations ‘ GB Size ‘ Time (secs) ‘

DPH Non-canonical 12 20 16 1.53
DPH Canonical 6 14 6 0.25

and Fhy also being rigidly joined). Table 6.3 presents the canonical and non-canonical
formulations for this example.

This problem presents a configuration similar to an electric outlet plug, with cylin-
drical legs. If considered separately, each peg-hole pair allows a cylindrical movement
with axes [};’s. However, by joining them with a rigid link the rotational component of
each pair is suppressed, leaving only the translational one in the direction of the lines
F;. The statistics comparing the canonical and non-canonical modeling for this example
are shown in Table 6.4. A detailed account of the modeling and solution of this case was

presented in chapter 3.

6.2.2 Non-trivial Constraints. Block and Corner (BC)

An interesting situation for the application of non-canonical variables is an scenario
with small number of entities, and a large number of (trivial or non-trivial) constraints
among them. This situation originates in the fact that non-canonical modeling presents
a number of variables proportional to the number of entities in the scene. Meanwhile,
the number of variables for the canonical formulation is proportional to the number of
constraints. Therefore, in this case, by using non-canonical modeling a smaller GCS/SF

problem results. Since this example (Figure 6.3) presents large number of constraints
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C1: P-ON-LN

F12=F22=L.Nz
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F31=Ln2 =4
N /
VA
....... _ Z
y "C3.LN-ONI-PLN
c X 7 z
FA1=P] F42=PLNyz Y
Yy T y
C4:P-ON-PLN \J
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Figure 6.3 Block and Corner (BC) Example Scenario

with a low number of entities (B; and By), it is expected to show advantages in the
non-canonical formulation.

The spatial relations specified in this example are shown in Table 6.5, column 1. The
set of proposed constraints presents redundancies; for example constraint Cy : Fy —
ON — Fy (LN-ON-LN) is stronger than Cy : Fi1 — ON — Fi5 (P-ON-LN). The general

goal in this example is to place the block B; in the corner Bj.

Table 6.5 Constraints for the Block & Corner (BC) Example

Constraint Non-canonical Equations Canonical
Fquations
Cl: P=ON — PLN | (B1.011 — B2.012) X (B2.X12) =0 | By1.F11.Tp.S, = By. Fiy
Fii —ON — Fy,
C2: LN —ON — LN (B1.X21) X (B2.X22)=0 B, .[5.C, = By Fyy
Fo1 — ON — Fyy | (B1.021 — B2.033) X (B3.X52) =0
C3: LN -ON - PLN (B1.X31).(B2.X32) =0 B, F51.R,.Gp = By.Fs
F51 — ON — Fsy | (B1.031 — B2.033).(B2.X33) =0
C4: P—ON — PLN | (B1.041 — B3.043).(B2.X42) =0 B,.Fn1p.S, = By. Fyy
Fy — ON — Fyy

101



Table 6.6 Canonical Formulation for Basic Cycles in the BC Example

‘ Cycle Name ‘ Cycle Fquations ‘
Cl — 02 F11.01F1_21 — FQI.CQ.FQ_QI
02 — 03 FQl.CQ.FQ_Ql — F31.C3.F3_21
02 — 04 FQl.CQ.FQ_Ql — F41.C4.F4_21

The set of equations of this example (Table 6.5) is dealt with by using both non-
preprocessing and preprocessing techniques. In the first case (NPP or Brute Force tech-
niques), the equations are directly included in a general, non-structured set. Their solu-
tion space is then calculated by the Grobner Basis methods discussed in previous chapters.
In the second case, advantage is taken from the opportunity of applying the Preprocess-
ing (PP) or Divide and Conquer (DE&C) techniques based on the spatial constraint graph
(Figure 6.4).

F11 [c1] F12
@ @ Body Frame
@ F31 @ @7 Feature Frame
Fa1 @ F10 Constraint

Figure 6.4 Constraint Graph for the BC System

The non-canonical and canonical formulations are presented in Table 6.5. Since a
detailed discussion of these techniques was presented in chapters 3, 4 and 5, no further
elaboration will be made here. Only the results of the different methods are shown in
Table 6.7. For each case (canonical and non-canonical), the Brute Force approach uses the
complete collection of constraints in the GCS/SF problem and determines the Grobner
Basis for that set. In contrast, the D&C technique determines the equations originating

in the basic cycles (Table 6.6) of the SC graph. These equations are required to calculate
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Table 6.7 Statistics for the BC Example
‘ Example ‘ Variable Type ‘ Variables ‘ Equations ‘ GB Size ‘ Time (secs) ‘

Brute Force | Non-canonical 12 18 12 2.334
Cl-C2 Non-canonical 12 15 10 2.10
C2-0C3 Non-canonical 12 14 11 2.25
C2—-C1 Non-canonical 12 13 11 1.916

Joint Cycles | Non-canonical 12 32 12 1.983

Total D&C | Non-canonical 3.249

Brute Force Canonical 24 47 23 22.783
Cl-C2 Canonical 10 16 7 2.850
C2-0C3 Canonical 9 15 8 1.083
C2—-C1 Canonical 11 16 10 6.150

Joint Cycles Canonical 24 25 23 6.916

Total D&C Canonical 16.27

partial Grobner Bases GGB;. The (GB; bases are subsequently used in determining the
Grobner Basis for the whole problem.

As expected, the non-canonical formulation exhibits an advantage with relation to the
canonical one. However, D&C was largely unsuccessful. The added cost of calculating
the cycle-based, local Grobner Bases along with calculating GB for the general set is
higher than the direct approach of attacking the whole set of original equations. The
small size of the problem makes the overhead of setting up the local subproblems more
expensive than the solutions themselves. Therefore, in small systems the D&C approach

is not desirable.

6.3 Multi-body Systems

Most of the instances of the GCS/SF problem correspond to multi-body systems,
with trivial and non-trivial constraints. Therefore, it is important to find an efficient
methodology for stating and solving such problems. The first study case presented here
corresponds to a trivially constrained system with several bodies. It is a modification of
an assembly presented in [36] (T&T). The second, non-trivially constrained, multi-body
system corresponds to the modeling of a Cartesian (or X-Y) Table (CT).
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Table 6.8 Constraints for the T&T Example

Constraint Non-canonical Equations Canonical
Fquations
Cl: LN —ON — LN (B1.X21) X (B2.X12) =0 B, .f5,.C, = Bs. I3
Fy1 —ON — Fi3 | (B1.021 — B3.013) X (B5.X13) =0
C2: LN —ON — LN (B1.X31) X (B2.X12) =0 B, .f5.C, = By. I,
F51 — ON — Fi5 | (B1.031 — B2.013) X (B3.X12) =0
C3: LN —-ON — LN (B3.X23) X (B2.X22) =0 B3 . [55.C, = By. I,
Fos — ON — Fyy | (B5.023 — B2.033) X (B3.X323) =0
C4: LN —ON — LN (B4.X14) X (B2.X32) =0 By 11,.C, = By. I3,
Fia— ON — Fs3 | (B4.014 — B2.033) X (B3.X33) =0
Ch: LN —ON — LN (B3.X33) X (B4.X14) =0 Bs. f53.C, = By I,
Fs53— ON — Fiy | (B5.033 — B4.O14) X (B4.X14) =0
C6: LN —ON — LN (B1.X11) X (B4.X14) =0 B,.[.C, = B,. I,
Fi1 —ON — Fiy | (B1.011 — B4.O14) X (B4.X14) =0

Table 6.9 Canonical Formulation of Basic Cycles in the T&T Example

‘ Cyele Name ‘ Cycle Equations ‘
Ce — Cy — Ol F1.C6.04.F5" = F3 . C2. 175
Ce — Cs — Cy F1.C6.05.Ft = Foy .C1.FG
Cy—Cs—Cs5 —Cs | Fay.C2.F1271 F22.C3.F237" = [,.06.C5.F5!

6.3.1 Trivial Constraints. Torras & Thomas (T&T)

The assembly for this example is shown in Figure 6.5. Its constraint specification
appears in Table 6.8, column 1. The two internal bodies B, and Bj; are allowed a
cylindrical movement about each other using the axes Fy, and Fy3 respectively. However,
both degrees of freedom, the translation and the rotation are restricted by the slides Fy;
and Fj3; in the interior of body B;. The remaining movement of the assembly By — Bj,
the sliding granted by the features Fy; and Fiy, is avoided by the pin By through the
enforcement of constraint pairs (Rs, Rs) and (Rg, R4). For the whole scenario, the only
degrees of freedom left (rotation and translation) are associated with the pin Bs. The
SC graph for this example is shown in Figure 6.6. The cycle decomposition of the SC
graph used for the statement of equations and application of D&C techniques is shown

in Table 6.9.
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Figure 6.5 Torras & Thomas (T & T) Example Scenario

The non-canonical formulation for this example translates into the vector equations of
Table 6.8, column 2. The canonical formulation appears in matrix form in column 3. The
constraint graph includes three basic loops of constraints that must be simultaneously
satisfied. Their expression in the form of matrix equations appears in Table 6.9.

Table 6.10 presents statistics for the T&T example. From these results, it can be
concluded that in multibody, trivial constraint problems: (i) canonical formulation results
in smaller polynomial sets, therefore lowering the computational expenses; (ii) for small
problems (such as T&T), D&C refinements simply don’t justify their own expense in

problem formulation; and (iii) although D&C is comparatively more useful with non-
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Figure 6.6 Constraint Graph for the T&T Example

canonical modeling because (ii), it simply becomes unpractical for large scale problems
(with or without D&C). Even canonical formulation will solve the proposed problems
only with the help of D&C techniques. The next example explores these statements in

larger scenarios.

6.3.2 Non-trivial Constraints. Cartesian Table (CT)

In order to evaluate different modeling and solving techniques in multibody, non-
trivial constraint systems, a mechanism called a Cartesian Table will be analyzed (see
Figure 6.7). The account of constraints for this mechanism appears in Table 6.11, column
1. The spatial relations imposed in this example produce a constraint graph (with several
cycles) which requires the application of D&C techniques for its solution. Although the
comparison between non-canonical vs. canonical modeling is (tangentially) discussed in
this example, the main purpose of it is to compare the application of Brute Force and
D&C techniques. Local treatment of subproblems should offer advantages in lowering the
computational resources expended. For the application of D&C techniques, it is necessary
to extract a set of basic cycles in the constraint graph of Figure 6.8, as discussed in chapter

5. The result of the algorithms determining such a set of cycles is shown in Table 6.12.
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Table 6.10 Statistics for the T&T Example.

Example ‘ Variable Type ‘ Variables ‘ Equations ‘ GB Size ‘ Time (secs) ‘
Brute Force Non-canonical 36 54 37 403.3
Cl—-C5—-C6 Non-canonical 24 30 25 117.0
C2—-C4-C6 Non-canonical 24 30 25 117.1
C2—C6—C5—(C3 | Non-canonical 36 16 - o0
Joint Cycles Non-canonical 36 56 37 20.400
Total D&C Non-canonical 254.5
Brute Force Canonical 18 42 16 5.800
Cl—-C5—-C6 Canonical 9 15 7 1.400
C2—-C4-C6 Canonical 9 15 7 1.600
C2—-C6—-Ch—-C3 Canonical 12 16 12 4.817
Joint Cycles Canonical 18 26 16 3.233
Total D&C Canonical 11.05

Table 6.11 Constraints for the CT Example

Constraint Non-canonical Equations Canonical
Fquations
Cl: LN —-ON — PLN (B1.X11).(B1+.X14) =0 By.F'n.R,.G, = By.Fu,
Fii —ON — Fiy | (B1.011 — B4.014).(B4.X14) =0
C2: LN —ON — PLN (B1.X21).(B1+.X14) =0 By.F59.R,.G, = By.Fu,
Foy —ON — Fiy | (B1.021 — B4.014).(B4.X14) =0
C3: LN —-ON - PLN (B2.X12).(Bs5.X15) =0 By . I3 R,.Gy = Bs. Iy
Fis —ON — Fi5 | (B3.013 — B5.015).(B5.X15) =0
C4: LN —ON — PLN (B2.X22).(B5.X15) =0 By. Iy R,.Gy = Bs. 5
Fyo — ON — Fi5 | (B3.023 — B5.015).(B5.X15) =0
Ch: LN —ON — LN (B3.X13) X (B1.X11) =0 B3 . Fi5.C, = B,. 11
Fis— ON — Fiq | (B5.013 — B1.011) X (B5.X13) =0
C6: LN —ON — LN (B3.X13) X (B2.X12) =0 B3 . F15.C, = By . Fis
Fis— ON — Fiy | (B5.013 — B2.013) X (B5.X13) =0
C7: PLN —ON — PLN (B4.X24) X (B5.X25) =0 By . 154.G, = Bs. Fas
Fou — ON — Fos | (B4.024 — B5.045).(B5.X25) =0
C8: LN —-—ON — LN (B3.X23) X (B1.X21) =0 B3 . Fy3.C, = By Fyy
Fos — ON — Fy | (B5.023 — B1.091) X (B5.X53) =0
C9: LN —ON — LN (B3.X33) X (B2.X22) =0 B3 . F55.C, = By . Fyy
Fs3— ON — Fyy | (B5.033 — B2.033) X (B5.X33) =0
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C7=PLN-PLN

C2=LN-PLN

C1=LN-PLN

A

C4=LN-PLN

Figure 6.7 Cartesian Table (CT) Example Scenario

The CT example was initially modeled using non-canonical variables. This modeling
was not successful since the execution calculating the Grobner Basis corresponding to
the complete set of equations (Table 6.13) did not terminate. Therefore, pursuit of the
modeling by non-canonical means was stopped, and the emphasis of this section was
placed in evaluating variants using the canonical modeling. Using this formulation and
a Brute Force (non-preprocessing) approach, the Grobner Basis was successfully deter-
mined. However, the high cost of this result forced the exploration of D&C techniques,

presented next.

6.3.2.1 Divide & Conquer Preprocessing

As explained earlier, the Divide & Conguer approach uses the Grobner Bases cor-
responding to the local GCS/SF subproblems GB; = G'B(S;) instead of the original

subproblem equations 5;. The theoretical justification for this substitution lies in the
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Figure 6.8 Constraint Graph for the CT Example

Table 6.12 Basic Cycles in the CT Example

‘ Cyele Name ‘ Cycle Equations
Chp— O, .Cy = 15,.Cy
(s — (Y4 F5.C3 = I9,.C4
Cs — Co Fi3.Ce. ) = I53.09.F5!
Cs — Cs Fys.Cs. Fot = Fi3.C5. F "
Cs—C1 —Cr—Cs— Cg | C5.C1.F 3 Fyy.Cr = Co.Cs. F2 Fys

fact that the two sets, the original 5; for subproblem (or cycle) ¢ and the corresponding
basis GGB; generate the same ideal. Refer to chapter 5 for a closer analysis of the D&C
techniques.

The set of basic cycles which resulted from the partition algorithm applied to the SC
graph is (see Figure 6.8):

SBC = {{C — C3},{C5 — C4},{Cs — Co},{Cs — C5},{C5s — C; — Cr — C3 — Cg} }(6.1)

Since these cycles are formed by non-trivial constraints, direct application of the
reduction technique described in [19] by Herve is not possible. However, by using the
canonical formulation, in combination with the properties of the Grobner Bases and the

cycle preprocessing, the reduced constraints of Table 6.14 were obtained. In two cases
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Table 6.13 Statistics for the CT Example. Divide & Conquer Strategy

Example ‘ Variable Type ‘ Variables ‘ Equations ‘ GB Size ‘ Time (secs)
Brute Force Full Graph | Non-canonical 48 58 - 00
Brute Force Full Graph Canonical 40 73 40 107.416
C; — O, Canonical 12 16 9 1.883
Cs—C4 Canonical 12 16 9 2.050
Cs — Cy (Canonical 6 14 6 0.617
Ce — Cy (Canonical 6 14 6 1.034
Full Graph Canonical 40 43 40 54.333
Total D & C Canonical 59.9

Table 6.14 Topological Basic Cycle Reductions for the CT example

Path 1 Path 2 Reduced Constraining
Constraint Geometry
Ci=F1—ON—-F, | Cy=Fyy —ON — Fiy G Fiy
Cs=Fi9—ON —Fi5 | Cy=Fyy —ON — Fi5 G Fis
Cs=1Fi3—ON—Fi; | Cg=Fy3—ON — Fy Iy -
Ce=Fis—ON — Fiy | Cg = F33 — ON — Fyy 1y -

(cycles Cs — Cg and Cg — (), the enforcement of all the constraints in a cycle produced
a complete instancing of all variables. This instancing implies that bodies By, By, and
Bj are rigidly linked together, and the role of this cluster body Bjas is to eliminate from
the constraint C; the rotational degree of freedom 87, thereby producing the cartesian

movement sought.

6.3.2.2 Incremental Instancing

A variant of the D&C strategy, the Incremental Instancing (I11) technique (see chapter
5) implies the progressive elimination by instancing of variables from the problem as a
consequence of solutions found by calculating the local bases G'B;. This section examines
this approach and reports its results.

According to the procedure defined in chapter 5 for Incremental Instancing, the vari-
ables instanced during the execution of the algorithm appear in Table 6.15. The com-

parison of the results of Incremental Instancing with those of D&C (Table 6.13) show
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Table 6.15 Statistics for the CT Example. Incremental Instancing.

Subgraph Instanced # Vars | Equations | GB size | Time

Values (secs)

Chy—Cy Coy,—1; S0, —0 12 16 9 1.883
S0 — —1; CO — 0

Oy —Cy S0; —0; (b3 — 1 12 16 9 2.200
S04 — —1; COy — 0

Cs — Cy x5 — 15 xg — 2 6 14 6 0.717

SO — —1; COs — 0
Shs — 0; Clsg — 1
Ces — Cy xg — —1; g — 2 6 14 6 0.717
SO — 1; Clg — 0
SOy — 0; Clyg — 1
Full Graph | C¢; — 0; S¢p — 1 20 65 20 10.23
Spp —0; Cgy — 1
Sez —1; Cg3—0
Sog—0; Oy — 1
Cl; —0; S0 — —1
Total Time 15.747

that the first method presents definite advantages. These advantages can be traced to
the decreasing size of each subproblem being subsequently solved.

The examples developed showed that results in Table 6.14 can be obtained by a
local preprocessing of the constraints using an algebraic method which: (i) identifies the
degrees of freedom lost in local sub-problems; (ii) detects local geometric or topological
inconsistencies; and (iii) reduces the size of the GCS/SF problem to the degrees of freedom

left by the local instancing processes.

6.4 Summary

This chapter discussed the techniques most suitable to model and solve the different
types of GCS/SF problems. Systems with only trivial constraints and two bodies are
considered rare, as are systems with several bodies and only trivial constraints between
them. For the rest of the cases, the following conclusions have been drawn from the

experiments:
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(1)

Systems with a small number of bodies and large number of (possibly) redundant
constraints between them are more effectively modeled by non-canonical methods.
In either case (non-canonical or canonical), the use of D&C techniques does not
reflect a definite improvement. A conjecture about this result lies in the fact that
computations spent in problem set-up may be heavier than the actual Grobner

Basis calculation for a small polynomial set.

In systems with a larger number of bodies, canonical variables are definitely needed.
The computation effort for the non-canonical version of the examples in most such

cases is extremely heavy.

For larger systems, the Divide & Conguer techniques are advisable, since they
take advantage of the existence of sub-systems strongly constrained internally, and
weakly related to the external world. These sub-systems correspond to cycles in the
SC graph which have some of their degrees of freedom internally instanced. If D&C
techniques are used, the local Grobner Bases are used in the solution of the general
system. These G/B; sets are already ordered (lexicographically or by degree order)
and free of redundancy and inconsistencies. Therefore, they contribute towards the

computation of the final solution.

Incremental Instancing presents the advantage of actually eliminating degrees of
freedom from the variable set, therefore contributing to lower the computational
expense of the solution. This technique, as demonstrated in the examples of the
Cartesian Table, is frequently the only alternative in dealing with large systems.
By exploiting the Incremental Instancing technique, the size of the entity set can
be decreased due to clustering of several entities into one. Divide & Conquer (and
Incremental Instancing) techniques have the characteristic that they are effective
only in situations in which the burden of the original Brute Force approach is high.
If the collateral burden of the numerical solution of triangular subsystems and other
book-keeping activities is large compared to the size of the problem, the Divide &

Conquer techniques are not justified.
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This chapter has shown that problems with large numbers of entities and constraints
can be modeled in a more efficient way using the canonical formulation. Not only does
it produce smaller and more compact sets of polynomials, but the results of the Grobner
Basis can be easily related to the physical degrees of freedom of the entities. For large
problems, D&C becomes a necessary tool for solution. Since in any case a partition of
the GCS/SF problem is required in order to establish the complete, non-redundant set of
equations for the problem, the D&C (and Incremental Instancing) techniques can benefit

from such calculation.
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CHAPTER 7

Applications

The formulation and solution of the GCS/SF problem were discussed previously in
this thesis. Canonical variables and Divide & Conquer strategies were presented as means
to make the tasks of formulation and solution more efficient and physically meaningful.
This chapter addresses the applicability of the concepts developed. First, it presents
the services provided by the Static Geometric Reasoning library to a client program
for Feature Extraction. The scope and usability of these services are discussed. The
second application corresponds to Kinematic Analysis of Mechanisms. The proposed
algorithms for constraint management are used to analyze the Oldham coupling [15]. The
characteristics of Grobner Bases for the GCS/SF problem are mapped into variations of
the kinematic structure of the mechanism. As third case study, the theory developed
for evaluation of the solution space for the GCS/SF problem is applied to Mobility
Analysis. The study case is the Bennett mechanism [4], a classical example of solution
space topology being dependent on problem geometry. These three cases, in addition to
the other examples in this document, demonstrate the relevance and applicability of this

investigation.

7.1 Geometric Reasoning for a Feature Extraction
Application

The Static Geometric Reasoning library has been used to serve a client application

in Automatic Feature Recognition. Traditional solution approaches to the problem of
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Feature Recognition formulate general algorithms for the identification of features from
the solid model of a part. This approach has not been successful because the hard coded
algorithms make underlying functional assumptions about the definition of the feature.
Therefore, they have the following negative effects: (i) the process may identify as features
sets of entities whose functionality is completely unrelated; and (ii) it may fail in identi-
fying evident features, which could be extracted by using a more customized algorithm.
Such an algorithm could apply the expert knowledge of a user, who could devise more
efficient, although less general, identification strategies. This approach would avoid the
interaction with large search spaces, therefore making the recognition computationally
feasible.

In order to avoid these drawbacks, Marin & Ferreira [31] have proposed to take the
feature recognition process a step early. Instead of writing hard coded algorithms which
are intended to recognize features in all the cases and situations, they designed a a Fea-
ture Declaration and Recognition language which allows for the automatic production of
recognition algorithms. Although automatic, this process produces highly customized
strategies for recognition of the predominant features in a given manufacturing environ-
ment. Instead of being forced to use existing feature definitions, the user is equipped
with the tools to (i) declare features; (ii) automatically produce recognition code; and
(iii) control the efficiency of the algorithm by using the semantic context related to the
feature in pruning the search space. The code thus produced can be attached to the
model of a part, in the same way in which tolerance or dimension specifications are. It
can be used at any required stage in the process of design / manufacture.

The feature definitions written in this language are compiled into a C++ program and
linked with the Static Geometric Reasoning library. A brief description of the character-

istics of the language and its interaction with the Geometric Reasoning library follows.
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Figure 7.1 Feature Definition and Extraction System

7.1.1 Structure of the Reconfigurable Feature Definition and
Extraction Application
The Reconfigurable Feature Definition and Extraction (RFDE) system is conceptually

divided into two parts according to the service that it renders. The user interacts with

the system in two stages:

(1) In the first stage the feature and its recognition strategy are defined and com-
piled into C++ routines. Figure 7.1 shows different aspects of the declaration and

automatic routine generation processes.
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(2) In the second stage, the extraction programs produced in the first one are exe-
cuted when needed, using as input the solid model of the part. At this stage, the
Extraction program makes extensive use of geometric and connectivity reasoning,

administration of partial results, graphic display, etc.

To illustrate the above description, an example [31] is displayed and discussed. The fea-
ture to be recognized is a step, and its declaration / recognition program is transcribed
here. The program is divided into definition and recognition sections. The definition sec-
tion allows the user to establish the entities that constitute the feature, their properties,
and the relations among them. The recognition part allows the expertise of the user to
be expressed in the sequence of steps taken to identify the different entities which are

components of the feature. These aspects are discussed next.

#£Definition section
0 DEFINITION
1 NAME STEP ;
2 ENTITIES:
3 F1, F2 : FACE ;
4 El: EDGE ;
5 EDGE TYPE:
6 El: STRAIGHT ;
7 FACE TYPE:
8 F1, F2 : PLANAR ;
9 CONNECTIVITY:
10 F1: (F2, E1, CONCAVE) ;
11 ORIENTATION:
12 F1, F2 : PERPENDICULAR ;
13 END DEFINITION
#Recognition section
14 BEGIN
15 find [E1] based on edge convexity ;
16 find [F1] based on connectivity with [F2] ;
17 verify [E1] derived connectivity from [F1, F2]
18 END
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Figure 7.2 Simple step feature

7.1.2 Services Provided by the Geometric Reasoning System

Based on the example displayed here, the services provided by the Static Geometric

Reasoning and other modules to the Feature Recognition module follow:

o type of entities:
This call to the extraction routines is used to identify and extract entities by type

(EDGE, FACE, STRAIGHT, etc) from the solid model. The entity types are

declared in lines 2-4. They are (implicitly) enforced in lines 15-17.

e characteristics of entities:
In this case, a geometric characteristic of the extracted entity is imposed; for ex-
ample, the EDGEs are declared to be STRAIGHT, or the FACEs to be PLANAR

(lines 5-8). The enforcement of these conditions is implicit in lines 15-17.

e conneclivily:
This statement identifies topological connections between entities in the solid model.
In the example (lines 9-10), it is declared that the (FACE) entities F} and F, are
connected by an EDGE (FE;), which should be concave. The Geometric Reasoning
server produces the list of FACE entities connected to Fj. Enforcement of concavity

on the common EDGE results from the compilation of line 15.

e orientation:
Several orientation conditions (lines 11-12) may be requested between different
entities. For example an EDGE perpendicular to another EDGE, two FACEs being

parallel, etc. The role of the server is to test such relations in candidate sets
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submitted to it. This conditions are implicitly used to reduce the search space (line

16).

From the discussion above it is clear that the language of the Reconfigurable Feature
Definition and Recognition application is designed to have the description and recognition
parts complement each other. Capabilities imparted to the language for feature descrip-
tion are met by corresponding types of enforcement statements that command actions
on the recognition process. In this way, the language allows flexibility in the semantics
associated to a feature name. In addition, the recognition process can be made more
efficient by allowing the expertise of the user to dictate the order of enforcement of the

descriptions.

7.1.3 Table Manager

From the point of view of the Feature Recognition process a Feature is an ordered set
of n entities, or n — tuple, where each place of the tuple corresponds to a role specified
in the recognitions program. In the example shown in Figure 7.2 a typical tuple would
have the form (Fy, Fy, Eq). Fi, F> and F; have to be considered as roles which are to
be fulfilled by real instances of entities. Therefore, the result of the recognition process
is a set of tuples, each one of them holding different instances of entities from the solid
model for the declared roles. This form of the result suggests that the administration of
the set of results of the recognition process can be managed in similar way to a relational
database. The manager of the data base, called Tuple Manager, handles the instancing of
the roles in the tuples by real entities, deletes tuples which do not satisfy the requirements
(verify statements), and finishes the process returning a set of tuples, with their roles
completely instanced. These tuples represent different combinations of entities in the
solid model which satisfy the Feature Declaration. The recognition program fills up each
tuple in the result set with pointers to the candidate entities in the model, as shown in

Figure 7.1. The Tuple Manager is given the name Partial Recognition Administration,
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since it manipulates the partially filled tuples until the recognition process finishes. At
that point each surviving tuple is completely and consistently filled.

Figure 7.1 illustrates the modules serving the client program. They include (i) the
Connectivity module, which serves the topological queries searching in the solid model;
(ii) Geometric Reasoning module, which verifies geometric relations such as perpendic-
ular(), parallel(), etc.; and (iii) the Tuple Manager, which administers the consistency
and evolution of the Tuple Table.

7.1.4 Feature Extraction Client Program. Summary

This section has shown the use of the Geometric Reasoning server by a client applica-
tion, a Reconfigurable System for Feature Description and Extraction. Besides the purely
geometric queries performed by the server, other services such as topological (connectiv-
ity) queries, table administration, graphic display, etc., are provided for this application.
These services are also organized in form of libraries and separate modules to be used by
a client (human or program).

The following sections of this chapter involve the application of the theoretical back-
ground developed for the Dynamic Reasoning problem. The applications presented here
are in the areas of Kinematic Analysis of Mechanisms and Mobility Analysis. These
domains are particularly suitable for the application of this work since a mechanism is,
by definition, the materialization of geometric constraints imposed upon its constitutive
links. As a complement, Mobility Analysis implies the inventory of degrees of freedom

of entities. The following sections expand on these topics.

7.2 Kinematic Analysis. Oldham Coupling

The purpose of this section is to show how the kinematics of mechanisms can be
expressed in terms of the GCS/SF problem, and how the methods of solution for GCS/SF
can be applied to analyze the characteristics of kinematic chains. Specifically, the Oldham

coupling and several variations of it will be discussed.
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Table 7.1 Joint List of the Oldham Coupling

‘ Joint ‘ Joint Type ‘ Canonical Representation ‘

R,y Tu trans(ay)
R, Tu trans(as)
R Ru twia(0s3)
R, Ru twia(0y)

The relevance of the GCS/SF problem in the context of Kinematic Analysis of Mech-
anisms is obvious given that kinematic joints are precisely constraints on the relative
position of entities. A solution in the context of the GCS/SF problem corresponds to a
physically realizable configuration (or a set of configurations) in the domain of kinemat-
ics. Continuous regions of the solution space for the GCS/SF problem directly map to
the possible motion (degrees of freedom) of the mechanism. This correspondence allows
a two way analysis: (i) a given kinematic arrangement can be screened by looking at
the solution space of its expression as a GCS/SF problem; and (ii) it is possible to infer

(new) kinematic arrangements based on desired properties of the solution space.

7.2.1 Kinematics of the Oldham Coupling

The Oldham coupling is shown in Figure 7.3. This mechanism is designed to connect
two parallel, non-colinear axes, allowing the transmission of rotational movement [15].
Using canonical variables, the types of joints present in this mechanism are modelled in
Table 7.1

The ground frame is called By, and supports the Oldham coupling through the fea-
tures Fho and Fio which are the parallel, non-colinear axes. The two central joints Ry and
Ry are prismatic, with their grooves Fi, and Fy being non-parallel. R3 and R, represent

the rotatory movements (input / output) that are to be transmitted by the coupling.
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Figure 7.3 Piece Disassembly of Oldham Mechanism

7.2.1.1 Modeling of Oldham Coupling with Canonical Variables

Using the methodology developed in [29, 30] and the SC graph (Figure 7.4), the

kinematic relations may be expressed by the following matrix equations:

Bl.Fll.Rl.Fl_Ql - B2 (71)
BQ.FQQ.RQ.FI_SI - B3
B3.F23.R3.F2_01 - BO

Bo.Flo.R4.F2_11 - B1

In this case the graph of constraints contains only one loop and it can be expressed by

the equation:
Fro. Ry BV Fy Ry By Ry 5 Fos R Fygt = I (7.2)

where I, is the 4 x 4 identity matrix. This equation conveys the topological configuration

of the coupling.
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Figure 7.4 Graph of Spatial Constraints for Oldham Coupling

Figure 7.5 shows an abstraction of the Oldham coupling. It displays the dimensions
L; (the geometry) of the coupling. The non-colinearity between axes Fhy and Fig is
expressed by Li3. The total length of the mechanism is determined by parameter Lq,.
According to the equation 7.2 and the degrees of freedom of the joints as per Table 7.1,

the polynomials which express the kinematics of the mechanism are:

Lo+ Ls—Lu+ L+ L1+ Ls=0 (7.3)
504805 —chych;—1 =0
—s8, ¢35 — chy 505 =0
L3804 ¢05 + L1304 805 — 804 29 + i1 =0
by 503+ 50,05 =0
504805 —chych;—1 =0
—1q3804505+ Li3c04c03 —clyx9 — 5040, =0
$052 4+ efs2 —1=0

8(942 —|—Ce42 —1=0
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Figure 7.5 Dimensional Parameters for Oldham Coupling

Under the specification presented, the analysis of the Oldham coupling should predict
the transmission of non-colinear, rotatory movement. In a first approximation, however,
the Grobner Basis of this set of polynomials happens to be GB = {1}. This implies a
topological or geometrical inconsistency. A careful examination of Equations 7.3 reveals
that the inconsistency stems from the fact that in the present configuration the first
equation in 7.3 cannot be made equal to zero if L5 is an independent parameter. Indeed,

what this equation indicates is that

Lig=Ls— L+ Lo+ Ly + Ls (7.4)

is a necessary condition for the mechanism to be realizable. This detection of geo-
metrical inconsistencies in relation to the prescribed topology is a positive feature of
using algebraic geometry techniques in the solution of the GCS/SF problem. The length
Ly is therefore defined as in Equation 7.4. Under those conditions, the first equation

in 7.3 becomes 0 = 0. The lexicographic Grobner Basis, calculated under the order
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X1 = w9 = 8l3 = b3 = sy = cby, is:

21+ L3504 =0 (7.5)
2o+ Liscty =0

565 — 504 =0

cts +cty =0

ﬂ2+0042—1:0

This triangularized Grobner Basis presents a free variable, ¢f4, responsible for the one-
dimensionality of the polynomial ideal [7, 22, 30]. It represents the rotational degree of
freedom transmitted. As expected, the prismatic joints R1 and R2 (variables ay and x3)

are controlled by the separation between the two axes, Li3.

7.2.1.2 Variation 1. Cylindrical Joints in Central Connector

A question arising from the previous section is whether other configuration different
from the Oldham coupling would also transfer rotational movement between non-colinear
axes. One of such variations is achieved by replacing joints Ry and Rs, which originally
are prismatic (T'u), by cylindrical ones (C'u). Cylindrical joints present two degrees of
freedom, (C'u = trans(xz,0,0).twixz(f)). The translational degree of freedom x is essential
to the functioning of the coupling, and it would be expected that the rotational degree of
freedom 6 introduced be inoperant, since the nature of joints R3 and R4 forces a defined
angular position in Ry and R,. This intuitive reasoning will be formally supported by
the information contained in the Grobner Basis. Table 7.2 summarizes the degrees of
freedom of the modified kinematic chain.

Using the cycle formulation from Equation 7.2, and the joint specification of Table 7.2,
the kinematic equations can be formulated. Under the ordering 1 = sy > ¢y = x5 >

sy = cly = sbs = cbs — sOy = cb, this equation set has the following lexicographic
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Table 7.2 Joint List of the Oldham Coupling. Variation 1

‘ Joint ‘ Joint Type ‘ Canonical Representation ‘

Ry
Ry
R
R4

Cu
Cu
Ru
Ru

trans(xy).twiz(fy )

trans(axy).twiz(by )
twia(0s3)
twia(0y)

Grobner Basis:

The variable ¢, the angular input /output of the mechanism, impedes the zero-dimensionality

21+ Ligs0y =0
0, =0
cth—1=0

o+ Ligcly =0

sy +1=0
ety =0

sb3 — s, =0

cts +cty =0

ﬂ2+0042—1:0

(7.6)

of the Grobner Basis. Therefore, it is effectively the degree of freedom left. All other

variables appear as head() of some polynomial. On the other hand, as expected, the an-

gular freedoms given to the central joints Ry and Ry do not affect the degrees of freedom

of the whole coupling, since they are immediately instanced. Therefore, the joints act as

prismatic rather than cylindrical ones.
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Table 7.3 Joint List of the Oldham Coupling. Variation 2

‘ Joint ‘ Joint Type ‘ Canonical Representation ‘

R,y Tu trans(ay)
R, Tu trans(as)
R Cu trans(xs).twiz(0s)
R, Cu trans(xy).twiz(0y)

7.2.1.3 Variation 2. Cylindrical Joints in Input/Output Links

Under the condition of B3 and R4 being strictly rotational joints Ru, L1 was found
dependent on other dimensions of the mechanism. This dependency suggests a variation
in the basic Oldham coupling, namely the one obtained by allowing axial movement in
joins R3 and R4. The expected result should be that the distance L1, can be consid-
ered an independent parameter and also that the coupling as a whole should act as a
transmitter of cylindrical movement along two non-colinear parallel axes.

The constraint polynomials are built under the joint configuration of Table 7.3 and
the matrix Equation 7.2. Their Grobner Basis under the ordering x; > x5 > x5 > sb5 >

s > x4 = 50, = cly 1s:

21+ Ligs0y =0 (7.7)
o+ Ligcly =0
3+ x4+ Lo —Ls+Lin—Lr—L1 —Ls=0
sl3 —s0, =0
cls+chy =0

ﬂ2+0042—1:0

This Grobner Basis represents a two-dimensional ideal with two free variables; x4 and
¢4. Variable ¢4, as before, represents the rotational movement transmitted by the mecha-
nism, while variable x4 represents the translational degree of freedom. As predicted, the

mechanism transmits cylindrical movement between non-colinear, parallel axes. Notice

127



that the variables x4 and x3 act as slack variables with regard to Lis, Ls, L11, L7, L1 and
Ls. This allows to have Ly # Lg — L11 + L7 + L1 + L3, in contrast with the original

Oldham coupling in which such condition would render the mechanism unrealizable.

7.2.1.4 Variation 3. Parallel Prismatic Joints in Central Link

In this variation the topology of the Variant 2 is maintained while the geometry is
modified in such a way that the solution space changes radically. The features [,
and Fyy, the grooves of the prismatic joints Ry and Ry, are made parallel. Since the
original Oldham coupling was based on the fact that the link By acted as an hypothenuse
with sliding ends following the orthogonal features Fiy and F, it is expected that this
movement would be restricted if Fi; and F3y are parallel. This effect would preclude the
whole joint for transmitting rotational movement through the non-aligned axis Fjg and
Fy. Under the order xq > x9 > sb3 = cf3 = s, = cb, the lexicographic Grobner Basis

of this arrangement would be:

21+ 22+ Lizsly, =0 (7.8)
05 =0
s + 50, =0
50, —1=0

004:0

This triangular Grobner Basis indicates that all the angular variables are locked (in-
stanced), which means that the mechanism cannot transmit rotatory movement. As
expected, zq, the translational variable, is the only degree of freedom left. The freedom

of x5 implies that By is able to slide, supported by By and Bs.
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7.2.2 Oldham Mechanism. Summary

It has been shown that the kinematics of mechanical link arrangements can be ex-
pressed in terms of the Geometric Constraint Satisfaction or Scene Feasibility (GCS/SF)
problem. Therefore, the methods of solution for such a problem can be applied in order
to analyze the characteristics of kinematic chains.

By using the set of canonical variables, a direct map between the kinematic char-
acteristics of the mechanism and the algebraic properties of the Grobner Basis for the
corresponding GCS/SF problem can be established. This direct map can be taken advan-
tage of in inferring possible variations of the mechanism by elaborating about variations
in the basis of the polynomial ideal. In the the GCS/SF problem a scenario was pro-
posed, and the configuration of the solution space was found. The discussion presented
in the previous sections shows that, constraints or specifications on the solution space
can also be mapped back to the problem scenario in the form of conditions on the di-
mensions of the links. Other variations of the coupling have been presented to illustrate

the statements above.

7.3 Mobility Analysis. The Bennett Mechanism

The Bennett mechanism, proposed in 1903 [4], is an example of a closed kinematic
chain that in the general case behaves as a static structure, but presents mobility under
certain lengths of its links and certain orientations of its joints. This mechanism is
discussed to (i) demonstrate that Algebraic Geometry and Group Theory techniques
can be used as tools for mobility analysis in problems which do not admit Thomas &
Torras solution; and (ii) illustrate why a reasoning approach based on pure topology of
the problem cannot succeed in the solution of the GCS/SF problem. In terms of the
GCS/SF problem that is the object of this investigation, the Bennett mechanism is a
classical case of the influence that the geometry of the scene has on the dimension of the

solution space.
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Among the general class of kinematic chains with multiple rotational joints, two
variants are the ones that have parallel, no coincident axes (for example, the traditional
four bar mechanism), and the ones whose axes intersect at one point (for example, the
spherical joint). Let the class be of closed chains in which each link has rotational
joints in the extremes, with arbitrarily oriented rotation axes on them. In general, such

arrangements of links do not present mobility.

X1 X2
X1

B.A

Figure 7.6 Basic Parameters of a Link

Each link can be abstracted as a central line perpendicular to two arbitrarily oriented
rotation axes called X7 and X3 (Figure 7.6). Two parameters are needed to characterize
this configuration: (i) the length L; of the segment AB which is perpendicular to both
axes; and (ii) the angle o; between them. A disassembly of the mechanism proposed by
Bennett is shown in Figure 7.7.

Bennett established the following sufficient conditions for the mobility of this mech-
anism: (i) pairs of links B;-Bs and By- B4 must present identical parameters «; and L;;

and (ii) the following relation must be satisfied:

sin(ay)  sin(ag)
LI, (7.9)

This section analyzes a Bennett-compliant mechanism with the help of the canonical
variables and the properties of Grobner Basis discussed in previous chapters. An example

of a static structure, resulting from a four bar mechanism non-compliant with Bennett’s
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Figure 7.7 Bennett Mechanism

conditions, will also be examined. It illustrates a case in which departure from the
Bennett conditions produces a realizable but yet rigid structure. Although Bennett’s
conditions ensure a mobile spatial kinematic four bar chain, the converse is not true.
There could be realizable, (mobile) mechanisms which are not compliant with Bennett’s

conditions. One such case is discussed.

7.3.1 Modeling of Bennett-Compliant Mechanism

Figure 7.7 shows a Bennett-compliant mechanism. For simplification purposes, it
has the central rod in every link By coincident with the segment perpendicular to the
rotational axes of its joints Fj (¢ = 1,2). If the conventions for assignment of frames
are respected, the angle « is simply the angle between the X axes of the frames Fi; and
Fyi. The cycle equation used to model this mechanism, as derived from the SC graph
(Figure 7.7) is:

For Ry I Fyy Re F5 = Py Ry Fy  Fiy Ry Py (7.10)
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Its lexicographic Grobner Basis, calculated with the order: sf; = cb; = sy = cly >

803 = cls = s, = cly4, resulted in:

501+ 505 =0
ety —cb; =0
sy 4 s8s =10
by —cly =0

55>+ chs? —1=0
50,505 =0
sbs 4 cly 505 =0
5044 s04c03 =0
s+ 1+ cl3¢04+ cl, =0

ey’ + 50,2 —1=0 (7.11)

In agreement with Bennett’s findings, the mechanism presents one degree of freedom,
represented by the variable sf;. The fact that variable 84 is free, permits to use this
mechanism to transmit rotatory movement between non-parallel axis. Notice that it

presents more flexibility than the Oldham coupling, which required the axes to be parallel.

7.3.2 A Structure not Compliant with Bennett Conditions

The goal of this section is to find a physically realizable kinematic chain that is not
mobile. In terms of the Grobner Basis, this represents a mechanism whose constraint
equations produce a zero-dimensional ideal. Figure 7.8 shows a case of a four bar mech-
anism in which although the links By and Bs are identical (as well as the By and Bjy),
the later ones present rotation axis Xy intersecting Xo, therefore violating Bennett’s suf-

ficiency conditions. The cycle equations are identical to Equation 7.10. Specifying the
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Figure 7.8 A static degeneration of a four bar mechanism

same lexicographic order as before, the following Grobner Basis is produced:

5sby +cby+4=0
By — 2y +2 =0
s6; =0
Ay —chy =0
50— cly — 4 =0
By — 2y +2 =0
sy =10

g —1=0 (7.12)

From the account of the head terms in the polynomials it is evident that this is indeed
a zero-dimensional ideal, representing a kinematic chain physically realizable with zero
degrees of freedom, therefore producing a static structure. This situation must be dis-

tinguished from the simpler case in which the kinematic chain is simply not realizable,
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for example, due to dimensional incompatibility among the links, which would produce

a Grobner Basis equal to {1}.

Figure 7.9 A variant of a four bar mechanism

7.3.3 A Mechanism not Compliant with Bennett Conditions

This section discusses a four bar mechanism, that demonstrates that Bennett’s condi-
tions are sufficient but not necessary; This mechanism does not comply with the Bennett
conditions. Yet, it presents a degree of freedom.

The mechanism is shown in Figure 7.9. Its deviation from the Bennett’s prescription
lies in the coincident X axes of frames Fi4 and Fy4 in link By. The corresponding Grobner

Basis is

56, — S0, =0 (7.13)
Cl+CO, =0
50, —1=0
Cy =0
505 —1=0
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Chs =0
50,240 —1=0

in which the variable C'f; represents the remaining degree of freedom.

7.3.4 Bennett Mechanism. Summary

This example illustrated the following conclusions in the area of Mobility Analysis:

(1) The Grobner Basis analysis can be applied to a general case. Therefore, it com-
plements methods (Thomas & Torras), which only apply to trivial constraints, and
configurations which are topologically reducible. In this example, no reductions
are possible, and however, the mobile mechanism presents a unique degree of free-
dom. These degrees of freedom are successtfully identified by jointly applying the
canonical formulation along with the relations between the Grobner Basis and the

solution space for the GCS/SF problem.

(2) This application shows the need for the joint consideration of geometrical and topo-
logical conditions in determining the dimension of the solution space. In particular,
Bennett conditions represent the geometrical information required to give mobility

to a purely topological specification.

7.4 Summary

This chapter has shown additional applications of the techniques and algorithms
developed in chapters 2, 3, 4, 5 and 6. The three areas addressed correspond to (i)
application of the Static Reasoning Server to a client program for Reconfigurable Feature
Definition and Extraction; (ii) application of Algebraic Geometry theory to Kinematic
Analysis of Mechanisms. It demonstrates that specifications made in the solution space
for existence of degrees of freedom can be mapped back to the physical domain of the

GCS/SF; and (iii) Analysis of Mobility, applied to the Bennett Mechanism. It illustrates
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the interdependency between topology and geometry in the configuration of a solution

space for the GCS/SF problem.
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CHAPTER 8

Conclusions and Recommendations

Application of geometric reasoning is central in CAD/CAM/CAPP environments.
This investigation has undertaken the theoretical background, design and partial imple-
mentation of a Geometric Reasoning Server. This system is aimed at offering geometric
manipulation and reasoning services to users (humans and computer programs). By us-
ing them, the user can access a series of routines and algorithms, which represent a large
amount of research and work in the area of Computational Geometry applied to design
and manufacture. The impact of such a set of routines is significant in industrial research
and development environments, in which repetition of efforts is costly.

The existence of a Geometric Reasoning Library frees the user, a research or applica-
tions engineer, from the arduous work of programming a geometric reasoning algorithm.
Such programming efforts include several steps: (i) understanding the central idea; (ii)
mathematical formalization; (iii) development and formal test of a solution; (iv) design
and implementation of supporting data structures, and of the algorithm itself; (v) de-
bugging of topological and geometrical degeneracies; and (vi) display of the result, or
communication of it through data structures to other programs or users.

The need for a library which supports reasoning in geometric scenarios in which the
actual configuration is well defined (static reasoning) has been discussed in the initial
chapters. However, an increasing number of applications in CAD / CAM / CAPP envi-
ronments interact with partially defined scenarios (dynamic reasoning). Such situations
occur when the scenario is a virtual world specified by relations among its components.

Although in the static case there exist extremely hard problems in computational geom-

137



etry, the complexity of the problems in the dynamic case is much larger, starting with
the evaluation of the existence of the scene itself.

This investigation has attacked the first problem by creating a geometric reasoning
library which works with deterministic scenarios (static reasoning). The second type
of problems has been addressed by identifying the theoretical basis for the characteri-
zation of uncertain scenarios (dynamic reasoning), by taking this theory to applicable
methodologies and by showing its application in several domains. Uncertain scenarios
are specified by geometric relations which translate into sets of polynomial equations.
Techniques in Algebraic Geometry allow the characterization of the solution space of
such sets of polynomials. A direct relation has been established in this work between the
properties of polynomial ideals and the existence of feasible geometric "worlds”.

In what follows, comments and conclusions relevant to specific areas of this work are
presented. Finally, recommendations for future research are given, which signal the most

promising areas of research. In addition, potentially difficult areas are identified.

8.1 Static Reasoning

A static reasoning library has been designed and developed, offering two types of
services to human and program clients: (i) logical queries, which test the objects in the
world for satisfaction of a given relation (parallelism, perpendicularity, inclusion, etc.);
and (ii) construction queries, which create entities satisfying non-ambiguous relations
with other ones in the existing world. Examples of this type of queries are the construction
of lines perpendicular to other two lines, intersections of surfaces, lines, minimum distance
between points and surfaces, etc. In addition to that, other entities are built whose
mathematical specification may be very cumbersome, but whose algorithmic construction
is well defined. Examples of this type of entities are the intersections between polygonal
regions in 2D and 3D space, the convex hull enclosing a set of points in 2D and 3D space,

the projections of lines and points, etc.
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In addition to the purely geometrical tasks, the static reasoning system performs

a variety of other roles. These roles are mediate the interaction of the user with the

geometric world of objects, through the following modules:

(1)

naming and attribute managing:
This module ensures the uniqueness of names for the objects in the world, and

the consistency of object definition in cases where other objects in the world are

deleted.

parsing and script interfacing:
This module manages the interface language created for this application, which
allows script- and user-driven interaction with the geometric world. It includes

lexical and syntactic analyzers, and a uniform interface for user interaction.

object storage and retrieval:
This module contains the data structures and classes of container objects which

allow the client to organize, store and efficiently retrieve the entities in the world.

graphic interface:
This module lends semantic effects to the subset of the interface language which

deals with displaying tasks.

identification and extraction:
This module extracts selected objects from more complex ones. It allows the flex-
ible managing of entities resulting from geometric constructions whose nature and

number are not known in advance.

8.1.1 An application of Static Reasoning

The static geometric reasoning library was used to service geometric and database

requests from a Reconfigurable Feature Definition and Extraction client program. As de-

scribed in chapter 7 (applications), this client program made use of the geometric reason-

ing services of a central kernel. These services covered tests for orientation, parallelism,
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perpendicularity, metrics between the entities, etc. The Static Geometric Reasoning li-
brary also provided supporting routines assessing connectivity relations in the objects.
The Feature Recognition client was served by an additional module functioning as data
base administrator, which produced solution tables for the feature recognition program.

To close this subsection, it can be said that the static geometric reasoning kernel has
proven the point for the convenience of the existence of a centralized server in compu-
tational geometry in CAD / CAM / CAPP tasks. Thanks to the emphasis placed on
an open design, both in the algorithmics and in the interface, the server continues being

expanded by other researchers, to include additional types of objects and services.

8.2 Dynamic Reasoning

Dynamic Reasoning covers the Geometric Constraint Satisfaction or Scene Feastbility
(GCS/SFE) problem. For convenience, the definition of the GCS/SF problem is repeated
here: Let a World W be a closed, homogeneous subset of E*, and a set of geometric
entities S = {eq,..e,,} which are closed, connected subsets of W. A set of spatial relations
(or constraints) among pairs of entities B = {R;;} is specified, where R; ;; is the k"
relation between entities 2 and j. The solution to such a problem is constituted by either
a diagnostic of inconsistency in the formulated relations, or an instance of a set of entities

e; in the world W consistent with all constraints R specified on entity .

8.2.1 Algebraic Geometry Background

In this investigation the problem of reasoning about geometric constraints was ad-
dressed using Grobner Bases. A Grobner Basis of a polynomial set F' = {p1,ps,..pn}
has several properties which characterize the variety of the polynomial ideal. From the
GCS/SFE problem perspective, these properties allow the user to determine: (i) if there
are remaining spatial degrees of freedom among the entities in a given scenario or world
(which would imply the existence of an infinite number of solution configurations); (ii)

the redundancy of a constraint in the context of a pre-existent set of constraints; and (iii)
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the (in)consistency of the set of constraints F', which would produce an empty solution
space. The application of Grobner Bases to the GCS/SF problem allows the treatment
of geometrical as well as topological inconsistencies in the constraint set. An algorithmic
explanation of how the Grobner Bases properties can be exploited in a constraint-based

scenario was proposed and applied in several examples.

8.2.2 Methodologies for Modeling

A drawback of the direct application of the Grobner Bases analysis technique is the
growth of computational effort with problem size. Therefore, the set of variables used for
modeling is an important consideration. The first alternative explored in this work for
modeling of the GCS/SF problem was the use of position (non-canonical) variables for
the specification of the entities in the world. Although theoretically sound, it produces
a large problem formulation and computing expenses for the Grobner Bases calculation.
This disadvantage was offset by the choice of a convenient set of (canonical) variables,
dictated by the conjugation classes of the subgroups of the group SFE(3) of the Eu-
clidean displacements. Canonical variables proved to be a compact representation of the
GCS/SF problem constraints and to have a direct physical interpretation. Therefore,
they facilitate the interpretation and analysis of the solution space of the constraints and
the degrees of freedom of the entities involved.

The evaluation of the two methods proposed showed that systems with small num-
bers of bodies and large numbers of (possibly) redundant constraints between them are
more effectively modeled by non-canonical methods, while systems with large numbers
of bodies and few constraints in each pair of bodies are better modeled by canonical
variables. The explanation for this behavior lies in the fact that non-canonical variables
are positional while canonical ones are motion- or freedom-related. Since with a constant
number of bodies the number of positional variables remains constant regardless of the
number of constraints, this type of modeling is attractive for problems with small num-

bers of entities, and possibly large numbers of constraints between them. In problems
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with large numbers of entities, the usage of their degrees of freedom instead of their

positional variables produces a physically meaningful and compact problem formulation.

8.2.3 Methodologies for Solution

In spite of the improvement in performance achieved by the use of canonical formu-
lation of the GCS/SFE problem, additional efforts were made to find opportunities to
lower the computational burden of solving this problem. The Divide & Conquer (D&C)

techniques, discussed next, illustrate such efforts.

8.2.3.1 Divide & Conquer Techniques

Divide & Conquer techniques take advantage of strongly constrained subproblems
which can be efficiently solved given their small size. Once these subsystems have been
identified and processed, the partial answers can be applied towards the solution of the
general problem.

If the GCS/SF problem is expressed using the Spatial Constraint (SC) graph, strongly
constrained clusters of geometric entities can be recognized in the cycles of the SC graph
(discussed ahead).

Upon identification of the GCS/SF subproblems, their Grobner Bases can be used
in the calculation of a general Grobner Basis instead of the original equations of the
subproblem. As a natural step further, Incremental Instancing presents the advantage of
actually eliminating a degree of freedom from the variable set, therefore contributing to
lower the computational expenses of the solution. The intuitive meaning of this action is
obviously the fact that, in local instances of the GCS/SF problem, entities may be locked
into definite positions, therefore forming clusters which behave as new, unique entities in
later stages of the problem. The incremental instancing technique, discussed in chapters

5 and 6 indeed showed the advantages just mentioned over the other techniques applied.
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8.2.3.2 Spatial Constraint Graphs

A partition of the GCS/SF problem is required for the statement of a complete,
topologically non-redundant polynomial set from the set of constraints. This basic step
has to be taken regardless of the subsequent application of D&C techniques. A partition
of the GCS/SF problem into subproblems is also needed if D&C techniques are used
to solve it. If the GCS/SF is modeled with the help of the SC graph, identification
of such subproblems maps to the partition of the SC graph into a set of basic cycles.
Chapter 5 discussed two issues: (i) counting and identifying sets of basic cycles in the
SC graph; and (ii) choosing a convenient set of basic cycles which allows partial, local
solutions for the GCS/SF problem. The requirements of the GCS/SF problem demand
the partition of the SC graph into a set of short basic cycles. This research has proposed
an algorithm that limits the size of the cycles by extracting them with the help of a
low-height, large-branching spanning tree for the SC graph. By applying the D&C and
Incremental Instancing techniques to problems with large number of entities and complex

SC graphs, significant improvements were achieved.

8.3 Recommendations for Future Research

Improvement in the solution techniques for the GCS/SF problem can be achieved by

working in the following directions:

e Applications of Divide & Conquer techniques to the solution of this problem are an
absolute requirement if real applications are pursued. In chapter 5 a sound theo-
retical ground for partition of graphs was identified from the literature and applied
to the SC graph. Even in the case of numerical solutions for the GCS/SF problem,
the use of D&C techniques is promising; in the face of symbolic computation, such
as Grobner Basis applications, D&C is frequently the only way to effectively attack

a given problem.
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o Integer arithmetic, used in the calculation of Grobner Basis, is unstable when ap-
plied to floating point problems. A Grobner Basis calculation technique which
makes use of symbol re-definition for calculating the coefficients of the polynomials
in the Grobner Basis can be used. This solution was not explored in this work
because the Grobner Basis calculation routines from packages such as Mathemat-
ica, Maple, or Macaulay were used. The possibility of implementing an in-house

Grobner Basis Algorithm can be considered for later stages of this research.

e The mapping of characteristics of the solution space onto the physical scene for the
GCS/SF problem represents a promising area of research. This process (Oldham
coupling example in chapter 7) would allow the formulation of functional conditions
on the polynomial ideal corresponding to the problem, and their translation into
physical (design) parameters which satisfy those requirements. Notice that the
original goal in the GCS/SF problem was to find the solution space corresponding
to a basic scenario with constraints. With the proposed methodology, the contrary
problem could be undertaken: to re-define the basic scenario and the constraints

based on conditions imposed on the solution space.

o The so-called operational methods correspond to an intuitive administration of de-
grees of freedom in the face of sequential application of constraints. These methods
are not complete [17, 23, 37] in the sense that they do not guarantee a correct
answer in all cases. However, if they are implemented on the theoretical back-
ground developed in this investigation, a compromise of speed vs. completeness
can be achieved. More importantly, Algebraic Geometry techniques can be used to
identify and solve situations in which these methods fail. Algebraic Geometry tech-
niques are most effective for problems whose solution space has low dimension. On
the other hand, operational methods have good performance in problems of high di-
mensionality of the solution space. These relative advantages of the methods could
be complemented by each other. For example, some open chain manipulators can

be analyzed by an operational approach, while application of Algebraic Geometry
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would render no results. On the other hand, cases such as the Bennett mechanism
have been reported as out of the reach of operational techniques [23], while it was

successfully analyzed by the Grobner Basis method.

Direct application of built-in Grobner Basis routines for floating point manipulation
do not produce robust results. Tests run under constant topological (constraint type)
conditions and varying geometrical (dimensional) conditions produce execution errors
for some of the geometries tried. The natural conclusion in this case is that built-in
Grobner Bases routines are not robust when floating point arithmetic is involved. This
drawback can be averted if more control is provided on the Grobner Basis calculation.
This task would require a strong background both in programming skills and in concepts

of algebraic geometry.
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