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ABSTRACT

Surface reconstruction from point samples must take
into consideration the stochastic nature of the sample.
This means, geometric algorithms reconstructing the
surface should not insist in following in literal way
each sampled point. Instead, they must interpret the
sample as a “point cloud” and try to build the surface
as passing for the best possible (in statistical sense)
geometric loci that represents the sample. Two meth-
ods are presented in this paper, which respond to the
stochastic nature of the sampling of a 1-manifold (a
wire in 3-D). Both of them reduce the problem of
quasi-planar samples to a problem in the XY plane.
One of them uses the Voronoi Diagram and Delone
Triangulation of the planarized sample to calculate the
best possible tape-shaped polygon covering the point
set, and then approaching the manifold with the me-
dial axis of the polygon. The other method applies
Principal Component Analysis to find a Piecewise Lin-
ear approximation of the same aforementioned medial
Axis. Results are presented in the realm of Computer
Vision applications. The authors seek to integrate the
two methods in the near future.
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1. INTRODUCTION

Reconstructing a curve or a surface from a point set is
one of the most important problems in the reverse en-
gineering of geometric models. In some cases curve
reconstruction plays an important role in the surface
reconstruction problem (Lee, 2000). It is the goal

of this paper to present two methods involving sta-
tistical (Principal Component Analysis (PCA), Least
Squares Fitting) and deterministic (Delone Triangu-
lations) techniques for reconstructing a set of curves
from clouds of unorganized points, and its applica-
tion to surface reconstruction, using data sets resulting
from optically capturing objects through range images.

This work will concentrate on planar or quasi-planar
curves, since the statistical methods involved can be
directly extended into R3. Two types of clouds of un-
organized points have been considered. One of them
consists in the clouds resulting from sampling and
adding statistical noise to a set of C''-continuous para-
metric curves C;j(u) in R3. The point samples are sup-
posed to comply with the Shannon or Nyquist criteria
for digital sampling.

Problem Statement. Given a sample § =
{Py, Pr,...,Py_1,Pn} from an (unknown) set of
C'-continuous (open or closed) parametric curves
C;(u) in R, a PL. (Piecewise Linear) estimation of
each C;(u) will be found.

The second type of clouds is related to range imag-
ing. Range imaging offers an inexpensive and accurate
means for digitizing the shape of three-dimensional
objects. Because most objects self occlude, no sin-
gle range image suffices to describe the entire object
(Turk & Levoy, 1994), which makes necessary com-
bining a collection of range images into a single polyg-
onal mesh that completely describes the object. One
of the steps of the proposed combination method, dis-
cussed in Section 5, involves generating several copla-
nar samples of points Si,Ss,...,Sk,..., Sk, where
Sy = {P,.P,,...,Pn_1,,Pn,}, from the collec-
tion of shells recovered from the range images. The
second type of clouds of unorganized points consists



in such clouds of coplanar sampled points (see Figure

2(a)).

In this case, we intend to find a P.L. estimation of the
curve C;j(u) that adequately fits the points in each of
the clouds.

The mentioned types of planar or quasi-planar point
samples are likely to include quasi-self-intersecting
sections. For instance, in the case of a sample of an
“8”-like section, two legal cross sections are equally
likely: (a) two separate circular polygons, and (b) one
polygon with thin waist. It is clear that near the self-
intersecting point any algorithm may be confused. An-
other typical situation in surface reconstruction from
planar samples is the one in which a particular level k&
is missing or incomplete (in the case of range imaging,
this occurs when a portion of the object is not captured
by any of the images). In such case, point samples
from levels k£ —1 and £+ 1 are borrowed, and projected
onto the insufficiently sampled plane. Naturally, the
resulting cross section on plane k£ must then be recov-
ered from a fuzzy point set. This point set should be
treated with statistical tools, and the cross sections re-
covered should be the best fit to the planar point cloud
contained in plane k.

Several solutions are available for curve reconstruction
from organized point sets. However, the ordering of
the points is unknown in most real problems. Sev-
eral methods have been proposed for non-fuzzy sets.
A survey on techniques for the case of closed, smooth,
and uniformly sampled curves can be found in (Edels-
brunner, 1998). Methods for non-uniformly sampled
smooth curves, and for uniformly sampled non-smooth
curves are cited in (Althaus et al., 2000). Some TSP
(Traveling Salesman Problem) and tour improvement
heuristics were used by (Althaus & Mehlhorn, 2000),
and good experimental results were reported. How-
ever, the reconstructed curve returned by these algo-
rithms passes through each of the sampled points, and
this type of solution is not adequate for the fuzzy point
sets considered in this paper.

The methods proposed for the case of non-self-
intersecting unorganized fuzzy sets include spring en-
ergy minimization (Fang & Gossard, 1992), implicit
simplicial curves (Taubin & Ronfard, 1996), a-shape
polygonal boundaries and medial axes (Edelsbrun-
ner & Miicke, 1994), and moving least squares (Lee,
2000). A review of these methods along with their
difficulties can be found in (Lee, 2000). A local
search heuristic approach for self-intersecting unorga-

nized fuzzy sets was used by (Verbeek et al., 2001) in a
soft k-segments algorithm for principal curves. Good
solutions were reported using this method. However,
high values of £ are required in order to return smooth
P.L. approximations, and with the method involving
local search algorithms, computational time might not
be kept at reasonable levels.

Two methods for curve reconstruction that combine
statistical and deterministic techniques are discussed
in this paper. Section 2 examines the literature review
of the statistical methods used. In Section 3 we dis-
cuss concepts necessary to implement the algorithms
and their articulation in reaching the solution. Results
for several types of point sets including non-smooth,
self-intersecting, and non-uniform sets obtained with
both methods are presented in Section 4. Section 5
describes an interesting integration of one of the meth-
ods to surface reconstruction from range images, and
presents the results obtained for a real object. Finally,
in Section 6 we draw the relevant conclusions, and pro-
pose bases for future work.

2. STATISTICAL APPROACH

The statistical approach for curve reconstruction from
point samples had ancient precursors in Hastie and
Stuetzle, 1989 (T & Stuetzle, 1989). In this refer-
ence, the authors define Principal Curves as smooth
ones, which pass through the middle of, are self-
consistent with, or are a principal curve of, a cloud of
d-dimensional data sample with a probability distribu-
tion (u, o).

2.1. Principal Component Analysis

Although the following discussion treats point clouds
in R? and R?, for the reader may be useful to know
that the stochastic analysis presented is applicable to
samples in N dimensions (in fact, the Principal Com-
ponent Analysis method was developed for treatment
of samples in n-dimensional space, with n >> 3).

Given S = {pilpi € R",1 < i < m} asetof m
samples in R™ . Without loss of generality one may
assume that

p1=p2 = .. = fin =0 (1

meaning that the expected value of the n-dimensional
distribution or the p;’s is the origin of R”. Let 3 be the
covariance matrix of the m-size sample, where 3J; ; is
the covariance of the ;;, against the j;, component of
the n-component p; points.
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One is interested in rotating S with a transformation R
such that the new set S' = {¢;|qg; € R",1 <7 < m} of
transformed samples ¢; = Rx*p; presents maximal dis-
persion in the direction of the first axis of R™, the sec-
ond maximal dispersion in the direction of the second
axis, and so on. For a point cloud that has a stochastic
linear trend, establishing the direction of maximal dis-
persion is equivalent to identifying the direction vector
of the line from which the sample was taken. For a
point cloud with an stochastic planar trend, establish-
ing the direction of minimal dispersion identifies the
normal vector of the plane from which the sample was
taken.

Let X, Y, Z, unit vectors which note the directions in
which S has the largest (0,), second largest (o) and
smallest variance (o) respectively. It may be shown
that

1. The pairs (£X,,0;), (£Y),0y), and (£Z,,0,)
are eigenvector - eigenvalue pairs of the > matrix.

L (£X,) = (£X,) * 0,
Yx (£Y)) = (£Y)) x 0y
Y« (£2Zy) = (£Z)) x 0, (2)
2. £X,, £Y),, £Z, are mutually orthogonal.

XpoYy=X,0Z)=2,0Y,=0 3)

3. R« [Xpa)/bazp,op] = [Xwaywazwan} and
therefore:
XTI o
_1 B,
R= Xp Yy Zp Op _ Y}; 0
0 0 0 Zé 0
Op 1
4

[Xw, Y, Zw, O] is the World Coordinate System or
a fixed reference frame. Without loss of general-
ity, one may assume that X,, = [1,0,0]7,Y, =
[0,1,01%, Z, = [0,0,1]7,0, = [0,0,0]” and there-
fore the right hand side of entry (3) above is a clipped
4 x 4 identity matrix. Equation (4) results from the
completion of the identity matrix in entry (3) and its
(trivial) inversion.

As a result, [X,,Y,, Z,0,] is easily found and con-
forms a right handed coordinate system. In partic-
ular, [X,Y), Zy] is an orthonormal matrix. As de-
sired, a parametric line L(n) = O, + n * X,, which

crosses through the center of gravity of the point cloud
S is found by sorting and naming the eigenvector-
eigenvalue pairs such that o, > 0 > 0.

Because of facts (2) and (4) it is clear that for quasi-
planar data, the eigenvector Z,, associated to o is the
estimation of the direction normal to the plane, since
o, is by definition the direction of minimal dispersion
of the (planar) points. In converse way, for line data,
the estimation of the direction vector of the line is the
eigenvector X, since it is associated to the o, eigen-
value representing the maximal dispersion.

2.2. Least Squares Fitting

Section 2.1 illustrated how the coordinate system
(X}, Yp, Zp, Op) is calculated using PCA, by com-
puting the eigenvector-eigenvalue pairs (£X),0,),
(£Y,,04), and (£Z,,0,), of the ¥ matrix. Be-
cause geometric kernels do not usually have avail-
able routines for calculation of n-dimension eigen-
pairs, a method was devised for the 3-dimensional
case at hand. The method takes advantage of the fact
that point samples from Coordinate Measurement Ma-
chines, Machine Tool stylos, CAT scans, etc., are pla-
nar or quasi-planar. As a consequence, a very close es-
timation of the lowest dispersion direction (the plane
normal vector, Z,) is easily achieved. The point cloud
projected on this plane loses one dimension and there-
fore the problem becomes a 2-dimensional one. A so-
lution of the eigenpair problem in Equation (2) can
then be achieved as an extension of a Least Squares fit-
ting. The LS method cannot be directly applied since it
is dependent on the implicit form y = mx + b, which
has no solution if m is the tangent of £90°. A ran-
dom rotation, LS fitting and the corresponding counter
rotation of the point data set avoids this problem and
allows us to express the 3-D trend of the point cloud in
terms of a parametric equation L(n) = O, +n * X,
which has no such indefinition.

In 2 dimensions, the Least Squares Method detects the
trend m of a linear process. Since the 3-dimensional
problem at hand is projected into 2-dimensional space,
finding m in 2-dimensions is equivalent to calculating
the projection of the direction vector X, of L(n) onto
a plane. Because our point sample is quasi-planar only
because of (machine tool) sampling errors, such a pro-
jection may be assumed 7o be X,,.

2.3. Point Sample Partition

Regardless of the method employed to estimate a PL
approximation for the curves, it is capital to recognize
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the fact that the data set must be partitioned into the
data sets originated from the individual curves. For
such a partition let us define an equivalence relation
on the S point set:

An equivalence relation among points in .S is defined,
which considers equivalent all points sampled from
the same curve C;(u), whenever the sampling condi-
tions are anisotropic and constant over R3. For all
p,q € S = {po,p1,p2,....0n} C R3 one defines the
Extended Neighbor relation r() as:

T(p7 q) <~ (EI[CH,(]Q,-”,C]U;} ‘ (qZ € S)
NMar =p) ANMagn =q) ANlgi — qiv1] <€)  (5)

Intuitively, a point p is in the extended neighborhood
of a point ¢ , if and only if there exists a sequence of
points of the sample S between them, starting at p and
ending at g such that no two points of the sequence are
farther apart than a distance € from each other.

The () relation defined above is an equivalence rela-
tion. It holds that:

r(P;, P;) (6)
T(PL’P)]) A T(PJ)P]C) — T(P’Lapk)
T(PHF)]) - T(PJ)B,)

The properties of the relation 7 (), Extended Neigh-
bor, in (6) allow to partition the set S into a num-
ber of subsets 57,59, ..., Sy such that U;S; = S and
S; N Sj = ¢,i # j. BEach S; of the partition is the set
of points sampled from the curve C;(u). The partition
of the set S by using the equivalence relation r() is re-
alized by using an algorithm of transitive closure. For
details about transitive closure algorithms or equiva-
lence relations see (Suppes, 1972).

3. ALGORITHMS

Algorithms for determining a PL approximation for
quasi-planar 1-manifolds in R3 are presented in this
section, along with two figures that show partial results
obtained at the main steps of each algorithm.

3.1. Data Pre-Processing

The point data must be pre-processed in this sequence:
(i) Scaling: to guarantee that a standard bounding box
of the S set is available, since both PCA and Least
Squares estimation is sensitive to such aspects. (ii)
Partition: to identify point subsets of S which are orig-
inated in the sample of disjoint C;(u) curves. (iii)
Identification of Best Plane: to find a statistically plane

IT fit to the quasi-planar point set S. (iv) Correction
to Planar Set: to project S onto II in order to have a
perfectly planar point set. (iv) Transformation of XY
Plane: to use the algorithmic results in literature which
deal with point sets in plane XY. Step (i) is required
since cross cuts of branched shells lead to unconnected
regions. A post-processing step consists in (v) the ap-
plication of inverse transformations, in order to bring
the found solution back to the original space.

3.2. Optimal Local Point Set Estimation

Given a point cloud in space 7;, result of a statistical
sample with variance [0, 0,,0,] from a 1-manifold
C(u) (possibly with border) in R3 one is interested in
estimating the tangent line dC;(u)/du|,—,+, at point
C;(u*) of the curve C;(u). PCA and Least Squares are
applied on points of the sample which are contained in-
side a ball B(P;, R), centered at a seed point Py with
a radius R. Two competing aspects must be compro-
mised: (i) a small enough neighborhood ( R ) in the
data set S must be considered to fit a linear estima-
tion of the local tangent. (ii) as the population of point
samples decreases with R, the goodness of the linear
estimation decreases as well. To achieve (i) and (ii) a
search is conducted for a local optimal combination of
P and R for the linear fitting of local neighborhoods
of S.

The search basically starts with a ball B(Py, Ry) en-
closing a set Sy of points. Applying the PCA to
the point set, a measurement of the fitting error is
found. Lowering such an error by variating Ry, within
a fixed interval generates changing point sets, which
have evolving centers of gravity P. With this ad hoc
process it was found a good convergence to find a com-
bination of Py and Ry, to produce a local minimum of
the fitting error.

3.3. Principal Curve with PCA and Delone
Triangulation

The following discussion will be illustrated using a
planar 1-manifold with Border (open Cj(u)). Later
on, the concepts explained will be applied on self-
intersecting planar 1-manifolds.

For planar self-intersecting curves PCA alone is not
robust enough. Additional processing is required since
the points in the neighborhood of the intersection are
exhausted for purposes of PCA estimation as the PL
approximation crosses the first time over the intersec-
tion neighborhood. As the PL curve revisits the inter-
section neighborhoods no points are available for iden-
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tifying the trend of curve, and the algorithm tends to
look for another point (i.e. curve) neighborhood where
to work, without really having reproduced the intersec-
tion. The result is an incomplete curve stage, therefore
missing the self-intersection detail.

Because of this reason, it was decided to determine
the minimal tape-shaped polygon 7' covering S, the
point sample of Cj(u). The minimal tape-shaped
polygon for a point sample in R? is the boundary of
the minimal-area, connected 2D region, possibly with
holes, and not necessarily convex, including all points
in the set. This polygon will have holes for closed or
self-intersecting C;(u). T will be carved from the De-
lone Triangulation DT'(S) of the point set S (see (For-
tune, 1995) and (Guibas & Stolfi, 1985)). The extent
of the carving to get a minimal T covering S is decreed
by the PCA estimations run on the point set. Finally,
an approximation of the medial axis of T', called here
the skeleton of T, is the PL approximation of the C;(u)
curve.

Figure 1(a) shows a data set from a planar non self-
intersecting curve sampled with a stochastic process.
The figure presents a data set which has been already
resized, its best plane estimated, and their points pro-
jected onto this plane, which produces a coplanar sub-
set. The Delone Triangulation of this point set is dis-
played in Figure 1(b).

Filtering of Delone Triangles

The minimal polygon T is found by eliminating trian-
gles from the Delone Triangulation of the points set .S.
The Delone Triangles will be filtered out based on the
following criteria: (a) Area, (b) Approximate enclo-
sure in the PCA neighborhood (optimal ball), (c) Edge
Length, (d) Vertex perpendicular departure from local
tangent lines to C;(u) and (e) Aspect Ratio. However,
in order to apply such methods, “reasonable values” of
the area and edge length of Delone triangles belong-
ing to the “tape” containing the point set need to be
estimated. For such purpose a PCA is run iteratively
on neighborhoods of the data set, thus determining the
line L(n) = P, + 1 % v that best approaches the tan-
gent to the Cj(u) curve in that neighborhood. Delone
triangles contained within a scaled version of this ball,
namely fp * B(P,, R,) (with fp = 1.3 an enlarging
factor) might be considered as “typical” of the ones
forming the 7', and therefore rendering “typical area”
A and “typical edge length” [ values. The criteria to
classify a Delone triangle as belonging (or not belong-
ing) to the tape are:

1. Enclosure: Accept a Delone triangle DT; if it
is contained within the local PCA ball, that is, if
DT; C B(P,,R,) where B(P,,R,) is the best
local PCA ball (see Figure 1(c)).

2. Area and Edge Length: Reject a Delone triangle
DT; if its Area or maximum Edge Length are too
large. That is, if (Area(DT;) > fa * A) or if
(Emaz > f1 * 1) respectively, for constants f4 and
fi. Figure 1(d) shows Delone Triangles surviving

this criterion.

Polygon Synthesis based on Filtered Delone
Triangulation

Polygon after application of criteria 1 and 2 is shown
in Figure 1(d). The triangles surviving the area cri-
terion are dark colored, while the ones surviving the
edge length criterion are light colored. Each edge of
a Delone triangle DT has 1 or 2 triangles which are
incident to it, with the following characteristics:

1. Edges e; ; in which Delone triangles DT; and DT}
are incident are not internal to the tape-shaped 2D
region.

2. Edges e; in which only one Delone triangle DT;
is incident are the boundary 9T of the tape-shaped
2D region T'. They may be either in the outermost
loop, or in the internal loop.

The classification of internal vs external edges in a 2-
manifold with boundary (Fomenko & Kunii, 1997),
(Morse, 1934) is characteristic of Boundary Represen-
tations. Additional information on Boundary Repre-
sentation may be found in (Mantyla, 1988).

Medial Axis VS. Principal Curve

Figure 1(d) presents the 1" minimal polygonal region
that covers the point set S. The boundary 0T of the
2D band-shaped polygon 7', built by filtering the orig-
inal Delone Triangulation, is colored black in Figure
1(e). Care must be exercised, however, because such a
figure shows a new Delone Triangulation (for the point
resample of the boundary 97"). Therefore, the point set
for this second Delone Triangulation is not the original
S-shaped point set.

An approximation to the medial axis MA(T) of T'is a
skeleton SK (T'), which is built in this manner (Geiger,
1993), (Boissonnat, 1988):

PIECEWISE LINEAR CURVE RECONSTRUCTION FROM POINT CLOUDS 5



1. Construct the Voronoi Diagram V D(T) and De-
lone Triangulation DT(T) of the vertices of T
(see Figurel(e)).

2. Keep from DT (T) only the Delone triangles con-
tained in T'. Call this set DT(T').

3. Keep from V. D(T') only the Voronoi edges which
are finite and are dual to the edges in DT'(T). Call

this set V.D(T).

4. If VD(T) ¢ T then re-sample 9T with a smaller
interval and go to step 1 above. Otherwise,
V D(T) is the sought skeleton of T, SK(T).

As evident from Figure 1(f), a PL approximation of
the 1-manifold C;(u) is the skeleton axis of SK(T)
the polygonal region 7.

Notice that several resamples of 07" may be needed to
converge to SK (T'). Figure 1(e) shows one of such re-
samples. The boundary 07T of the S-shaped polygon T’
in Figure 1(f) is sampled with a small enough interval.
This tight sampling guarantees that the portion of the
Voronoi Diagram confined to ', SK (T'), is acceptable
as an approximation of M A(T'), the medial axis of 7.

Figure 4 presents a comparison of the two skeletons:
(a) the interrupted one is achieved by direct applica-
tion of PCA. (b) the continuous skeleton is found by
filtering of the Voronoi Diagram assisted by PCA as
per the process in Figure 1.

3.4. Curve Reconstruction with Least
Squares

After the data pre-processing steps mentioned in Sec-
tion 3.1, the Least-Squares-based algorithm takes as
input a set S of quasi-coplanar points, and returns a
polyline that fits these points by performing the steps
listed below.

Radius Variation

An initial ball By (pg, 7o) and the set Pgy composed
by the points in S that lie inside of it i.e. Ppy =
{p € S :pe By} is defined. Since py is a point ran-
domly selected from S, the polyline reconstructed
from a same point set may vary at each run. The mag-
nitude of the radius and the coordinates of the center
of By, are then repeatedly varied so that the fitting er-
ror of a least square regression calculated for Ppy, is
minimized. Let € (p, ) be a function that associates a
least-square regression fitting error to the points inside

a ball with center p and radius r. Tt is desired to find the
values of p and r that minimize . We first proposed an
algorithm that calculated e for several values of r and
several values of p, and returned the pair of values that
minimized e among the values analyzed. The follow-
ing variation of this algorithm was used for this case.
The radius of the ball is varied from an upper bound 7,
to a lower bound 7, using a step dr. Let R denote the
set of possible radius for each ball:

R = {ry,ry — ldr,ry —2dr,...,ry —i-dr,... 7}

Now, let By, and By, , be two consecutive possible
balls. In order to also vary the center of the ball in
each iteration, the centroid of the points contained in
By, is calculated, and it will be used as the center for
the ball By, ,.

Polyline Reconstruction

The centroid of the points contained in the ball for
which the fitting error was minimized in the previous
step, is added to the ordered set of vertices of the re-
covered polyline. For each r € R the slope my, of
the correspondent least-square regression is calculated.
The error between a line with slope my,, pivoted in the
center of the ball By, and the points in By, is calcu-
lated. The ball By, for which the error was the lowest
among all analyzed balls is selected as the best ball.
The centroid of the points in S that lie inside By, is
calculated, and added to the recovered polyline.

Then, an initial center for By, is determined. For this
purpose my, is vectorized i.e. a vector

Vier = (1, M, 0)

is associated to my,. Since two vectors with opposite
directions can be associated to my,, a comparison be-
tween the vector associated to my_1, and V}, is made,
by calculating the angle between them. If the value of
this angle is not within —7 /2 and 7/2, then

Vir = (=1, =mp4, 0)

Let Biy1 (pr+1, 7k+1) denote the new ball whose cen-
ter is to be calculated. py4; is obtained by moving
along Vi, a certain distance. In this case

DPk+1 = Pkx T+ AThs + Vies

where pg. and 7, are respectively the center and ra-
dius of By, and X is an advance ratio. An adequate
value for \ was calculated after applying the algorithm
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(b) Delone Triangulation of S-shaped Planar Point Sample.
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(c) Filtering of Delone Triangulation with PCA Balls. (d) Selected Triangles by Area and Length Criteria.

(e) Band Polygon and its Delone Triangulation (f) Filtered DT and Skeleton

Figure 1 Piecewise Linear Approximation of S-shaped C;(u) by Combined PCA and Voronoi-Delone Methods
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to several different sets of points.

The steps mentioned above are iterated for each of the
S;, until all points in .S have been covered by at least
one ball (see Figure 2(b)). Figure 2(c) shows the curve
reconstructed from the point cloud (see Figure 2(a))
obtained from a Range Images Multi-Mesh sample.

4. RESULTS

Section 4.1 illustrates the results of the PCA and De-
lone Triangulations methodology in dealing with the
PL Approximation of planar 1-manifolds without Bor-
der (closed Cj(u)). Section 4.2 illustrates three curve
reconstructions obtained for open, non-smooth, self-
intersecting, and non-uniform sets, using the Least-
Squares-based process.

4.1. PCA and Delone Triangulations Re-
sults

As before, the point sample of C;(u) renders a quasi-
planar point set. According to the discussion, an
isotropic scaling was applied to the point set, because
PCA is sensitive to dimensional issues. PCA was then
applied to estimate the best plane II fit to the point
set, and the modified Householder transformation was
used to project all points onto II. In addition, a rigid
transformation is used to bring the (now perfectly) pla-
nar point set on the plane XY, where the process de-
scribed in section 3.1 is followed. Figure 3(a) shows
the initial point set, along with a coordinate frame at-
tached to the plane II. The Delone Triangulation of
the point set projected onto 1I is illustrated in the Fig-
ure 3(b). An intermediate stage of the acceptance of
triangles included in the PCA balls is shown in the
Figure 3(c). This is a very conservative criterion and
therefore Delone triangles rejected in this part are not
so in definitive manner. They may still be included if
the Edge Length or Area criteria determine that they
are part of the 7T tape-shaped polygon covering the
point cloud path (see Figure 3(d)). After the region
T has been synthesized by clustering Delone trian-
gles chosen according to the PCA, Edge Length, and
Area criteria, the boundary 9T of the 2-manifold T,
must be determined. This step is a standard procedure
in Boundary Representation construction and is con-
ducted according to rules in section 3.3. Out next goal
is to identify the Medial Axis (MA) for polygon T'. An
exact calculation is out of question because MA re-
sults in curved portions. However, if a resample RT'
of T is fine enough, its medial axis may be approxi-
mated as the sequence of Voronoi Edges of RT', com-

pletely included in T. The border OT is resampled
(see Figure 3(e)) and a new Delone Triangulation cal-
culated and purged for this new point set. The purged
Delone Triangulation is intended to keep only the De-
lone Triangles which cover or include the point cloud.
Triangles from the Delone Triangulation which com-
plete the convex hull of the point set but do not include
points of it are eliminated. In this form, again, the T'
polygon is re-triangulated, but this time with triangles
whose circumscribed center lies inside I". The loci of
such centers is SK (T'), the skeleton approximation for
M A(T), the medial axis of T' (see Figure 3(f)).

As seen in Figure 3(f), it is possible that the re-
triangulation of 7' breaks this region into separate
ones. This result is expected, since it indicates the
presence of self-intersections in the original set, and
corrects them by splitting the tape polygon 7' into an-
nulus sub-parts 7;. Care must be still exercised, as
SK(T) may be outside of a T; region, as shown in
Figure 3(f). This situation, however, is not harmful
since the skeletons SK; do not intersect each other,
and therefore serve as PL approximations for the orig-
inal C;(u) curves.

Figures 4(a) and 4(b) show in red the PL approxima-
tion by using combined Voronoi-Delone methods plus
PCA. Interrupted segments originate in the usage of
PCA alone. Both Figures correspond to different point
sets scaled in the Y direction, therefore rendering dif-
ferent PL approximations. In both examples, (i) the
combined algorithm has superior performance, and (ii)
the continuous skeleton approximates very closely the
original curve C;(u).

4.2. Least Squares Fitting Results

The Least-Squares-based algorithm was tested on sev-
eral unorganized and fuzzy point sets, which include
non-uniform, non-smooth, near self-intersecting, and
self-intersecting ones. Figure 5 presents the results ob-
tained for three of these sets. Near self-intersecting,
non-uniform point clouds, as the one shown in Fig-
ure 5(a), can be adequately reconstructed by varying
the length of the segments of the reconstructed poly-
line, considering the dispersion of the sample of points
contained in each ball. The radius variation process,
described in section 3.4, results useful for this purpose.
As mentioned in Section 3.3, a PCA (Least Squares in
this case) algorithm alone is not robust enough for re-
constructing self-intersecting point clouds. However,
due to the randomness of the starting point of the re-
construction, mentioned in Section 3.4, certain runs
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(a) Point Cloud from Range Images Multi-Mesh sample

(¢) Reconstructed Curve

(b) Balls used for reconstructing the curve

Figure 2 Least-Squares-Fitting-based Reconstruction of Piecewise Linear 1-Manifold

can result in adequately-reconstructed self-intersecting
point clouds (see Figure 5(c)).

In order to reconstruct point clouds with non-smooth
sections (see Figure 5(b)), additional tools that con-
sider the angles between the segments of the re-
constructed polyline were included in the algorithm.
Weighted Least Squares method was initially consid-
ered also for this purpose, but was temporally dis-
carded since weighting criteria were not carefully de-
termined. Notice also that criteria for identifying
the endings of open point clouds are needed in order
to correctly reconstruct open curves. A point-cloud-
ending identification criterion based on the length of
the reconstructed polyline segments, was included in
our algorithm.

5. SURFACE RECONSTRUCTION FROM
RANGE IMAGES

Range imaging is a technique for digitizing three-
dimensional objects, given a set of range pictures. A
range picture is a function [I x J] — R3, (i, j) — P,j,
where [I x J] is the grid of pixels in the range picture,
and Pj; = (ij, yij, zi;) is the point in the surface of
the optically sampled object, captured by the pixel in
position 75 of the grid of pixels.

It might be the case that no single range pictures suf-

fices to describe the entire object, which makes neces-
sary combining a collection of range images (see Figs.
6(a) and 6(b)) into a single triangular mesh that com-
pletely describes the object. The steps listed below
were followed in order to generate such mesh: (i) De-
termining an initial alignment of the meshes with each
other; (ii) Building a sample of points on the meshes;
(iii) Using the algorithm discussed in Section 3.4 to re-
construct a set of curves (contours) from the sampled
points; and (iv) Linking the recovered contours to gen-
erate the resulting mesh. In order to illustrate the mesh
integration process, we present the results obtained
when reconstructing Aphrodite’s sculpture head. The
Range Images data are courtesy from Fraunhofer Insti-
tute Computer Graphics, Darmstadt, Germany.

In step (ii), a set of K parallel planes are de-
fined, and the intersection between each plane and
the collection of shells recovered from the range im-
ages is calculated. A set of coplanar samples of
points S1,S5s,...,5%,...,Sk is generated by sam-
pling the polylines resulting from each intersection.
Figure 2(a) shows one of such coplanar samples
Sy = {P0k7P1k7 ce 7PN—1k7PNk} for Aphrodite’s
head model.

More than 100 levels (the number and separation dic-
tated by the Nyquist criterion applied in the axial direc-
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Figure 3 Process of PL Approximation of Double-8 self-intersecting C;(u) by Combined PCA and Voronoi-Delone

Methods
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Figure 4 Final Results. PL Approximations of Double-8 self-intersecting C;;(u) by Combined PCA and Voronoi-Delone

Methods

10

Oscar E. Ruiz, Carlos A. Vanegas



(b) Non-Smooth Non-Uniform Point Cloud

(c) Self Intersecting Non-Uniform Point Cloud

Figure 5 Curve reconstructions obtained for three different point sets by Least-Squares-based process.
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Figure 6 Range Image Data Set. Courtesy from Fraunhofer Inst. Computer Graphics, Darmstadt, Germany
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Figure 7
Computer Graphics, Darmstadt, Germany

tion) of coplanar points were obtained from sampling
the collection of meshes corresponding to Aphrodite’s
sculpture head and neck, and same number of poly-
lines were reconstructed from these sets (Figure 7). In
spite of the large number of range pictures available
for Aphrodite’s sculpture, some of its regions were not
covered by any of these, and therefore several sets of
points needed to be manually completed. Once the
sets were completed, none of the reconstructed poly-
lines were edited. The surface reconstructed from the
integrated, stochastically recovered contours is shown
in Figures 8(a) to 8(c). Figures 8(a) and 8(b) corre-
spond to resampling planes which are not orthogonal,
and to an unfinished reconstruction (there is still a bor-
der). Figure 8(c) represents the integrated result for
XY digitization planes. The final Aphrodite’s surface
reconstruction, composed by more than 65 000 trian-
gular faces, is shown in figure 8(d).

6. CONCLUSIONS AND FUTURE WORK

Two methods, combining statistical and determinis-
tic techniques, for reconstructing PL 1-manifolds from
unorganized coplanar, fuzzy point sets have been dis-
cussed. The first method (PCA-assisted Voronoi-

12

Z

Aphrodite’s head contours recovered from coplanar samples of points. Test data courtesy from Fraunhofer Inst.

Delone) reaches the point of synthesis of the SK(T)
skeleton of the tape-shaped 2D region covering the
point set S. This skeleton is a planar graph, but is
not necessarily a 1-manifold, as it has branchings. The
elimination of the branches is needed, but represents
no significant demeanor in the presented results, as ex-
isting algorithms for graph splitting are applicable.

The second method (Least-Squares fitting march along
the point cloud) is useful for cases when calculating
eigenvalues and eigenvectors is not possible. This
method returned correct reconstructed PL 1-manifolds
for non-trivial point sets (open, unorganized, fuzzy,
non-uniform, non-smooth, near self-intersecting). A
Least Squares assisted Voronoi-Delone method is de-
sired for reconstructing self-intersecting point sets.
Additional criteria to obtain a more robust reconstruc-
tion algorithm for point sets with non-smooth sections
could be provided by using Weighted-Least-Squares
technique.

An application of the second method to surface re-
construction from Range Imaging was also discussed,
and results for a real model were presented. Our in-
tegration method correctly joined together a set of
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(a) Integrated Aphrodite with border. Smooth Render (b) Integrated Aphrodite with border. Wireframe
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(c) Integrated Aphrodite without Border. Wireframe (d) Integrated Aphrodite without Border. Smooth Render

Figure 8 Results of Range Picture Integration. Test data courtesy from Fraunhofer Inst. Computer Graphics, Darmstadt,
Germany
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meshes obtained from several Aphrodite’s sculpture
head Range Images, into a 65 000-triangles model.
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