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ABSTRACT 

Geometric characteristics of 2-manifolds embedded in R3 space have been analyzed from the point of 
view of differential geometry and topology.  In the past, results relevant to these areas have been found 
for C∞ curves and surfaces. However, current scientific, industrial, entertainment and medical 
applications, and availability of more powerful point sampling systems, press for characterization of 
discrete counterparts for the continuous properties and characteristics evaluated previously in C∞ curves 
and surfaces. Recent works have presented estimation methods for properties such as the principal and 
rotated quadrics of point sampled surfaces.  The present article uses the findings of previous 
investigations to propose and implement a method for evaluation of planarity of surfaces. It is based on: 
(i) Estimation of a C0 partial mesh fitting sets of planar or grid sample points. (ii) Evaluation of the 
piecewise - linear (PL) version of families of geodesic curves on the mesh.  (iii) Diagnostic of the 
property of planarity based on the behavior of the families of geodesic curves.  The present work can be 
applied in the area of design and manufacturing of products based on sheet materials, such as apparel, 
metal stamping, thin structures, etc.  

Keywords: discrete differential geometry, PL geodesics, partial meshing, geometric algorithms, shape 
reconstruction. 

 
 
 
Glossary 
M 2-manifold in R3  (C∞ or C0 or PL, with / 

without boundary).  
PL Piecewise Linear. 
(u, v) pixel coordinates in range picture space. 
a, b limits of parameterization interval for a path 

in R3. 
p, q, pi, qj points in R3. Vertices of triangular facets. 
α(t) parameterized path in R3. 
vi directing vector of the i-th section of a PL 

path. Coincident with constant velocity of the 
PL geodesic on the i-th facet.  

λ, t parameter in the parametric form of a section 
in a PL path. 

face domain on 2-manifold M in R3 whose 
boundary is a disjoint union of simple closed 
paths. 

facet triangle in R3. 
fi  facet. 

n , ni , nh normal vectors. 
δ distance between two points on M, below 

which they belong to the same facet.  
shell synonymous with a “connected PL 2-

manifold with boundary”, and with “partial 
mesh”. 

nh normal vector. Parameter of the Householder 
transformation. 

  K simplicial complex in R3. 

⎥K⎥ polyhedron defined by the simplicial 
complex K. 

S digitization point set in R3. 

1. INTRODUCTION 

Traditionally, differential geometry has developed 
results for C∞ curves and surfaces in R3. In this 
direction, many important results have been found 
and applied in other areas of shape analysis, such as 
differential topology. It is the case of geometric 



characterization of critical points, n-handles, etc., as 
a resource to diagnose the topological characteristics 
of manifolds ([Fomen97]). Currently, popularization 
of data capture from shapes by using range images, 
contact devices, magnetic resonance, ultrasound, 
tomographies, etc., makes available large sets of 
point data.  This popularity of point sets has stressed 
the needs for estimating differential geometry 
properties of surfaces and curves from which only a 
partial, discrete and noisy sample is available.  The 
parameters estimated include Gauss and mean 
curvatures, normal planes, Frenet frames, bilinear 
and trilinear surface approximations, principal 
frames, etc.  Statistical methods applied to the data 
in some cases facilitate the estimation of such 
properties. In others, quantification of the effects of 
the statistical tools applied is not a trivial task, and 
therefore they are applied in an empirical way. Such 
is the case of filtering.  Efforts in the direction of 
controlled application of both pre-processing and 
meshing tools render satisfactory results. Specific 
works are addressed in the literature review. 

Authors have reported that estimation of 
discrete differential geometry properties from 
meshes is more accurate and efficient than 
estimation from (treated) point data ([McIvo97]).  
Following this experience, this investigation anchors 
the estimation of interesting constructions (in this 
case geodesic curves) on the consistent topological 
representation of partial meshes, rather than on the 
point data  (raw or treated).  Partial B-reps have 
been incorporated in [Ruiz99, Ruiz00] to manage 
partially sampled objects (for example, from range 
images). This representation naturally supports the 
estimation of discrete geodesics on partial meshes.   

Geodesics are of interest since they are 
effective tools to assess the flatness of a surface. 
Informally, a surface is “flat” if geodesics which are 
parallel at some neighborhood remain parallel when 
prolonged (they keep the angle and distance between 
them). As a consequence, orthogonal families of 
geodesics remain orthogonal. Wrapped surfaces 
such as cylinders or cones are flat since geodesics 
drawn on them keep always their distance and angle 
to each other.  Once a surface is assessed as flat, the 
geodesics themselves render the procedure to map it 
to R2 with no deformation. Therefore, flatness 
assessment is useful when material must be 
accounted for in the production of inherently thin 
goods: clothes, metal panels, structures, etc.    

In this paper, section 2 discusses relevant 
literature. Section 3 presents the methodology for 
partial mesh construction. Section 4 proposes the 
calculation of piecewise - linear geodesics based on 
the partial B-rep of section 3. Section 5 displays the 
results and section 6 concludes the paper.  

2. LITERATURE REVIEW 

For a panoramic review of shape reconstruction see 
[Varad97]. In the present review only focused topics 
will be addressed. 

Data Acquisition: Range imaging records a 
depth field in grid patterns corresponding to pixel 
arrays. A range picture is represented as a 
rectangular array with coordinates (u , v). If pixel (u 
, v) actually corresponds to a piece of the object 
calibrated (which is not a shadow or background) it 
has associated the coordinates (x , y , z) of the 
surface point p hit by the ray passing through the 
pixel, as well as the vector ( vx , vy , vz ) describing 
the ray ([Turk94, Curle96, Neuge97]).  The grid 
data so obtained contains implicit neighborhood 
information that facilitates topology reconstruction. 
However, such reconstruction is not trivial because 
the picture may register surface regions that are 
distant to each other, and there is no direct 
information as to whether they are actually different 
objects or self occluding parts of the same one.  

Topology Recovery: In the surveyed 
literature Alpha Shapes ([Edels94]) and Marching 
Cubes ([Loren87]) are used as engines for 
recovering topology information ([Guo97, 
Neuge97]). In this article an alternative scheme will 
be followed as regular watertight closed B-Rep 
models ([Mantÿ88]) do not serve partial surface 
reconstruction. Therefore, an extended B-Rep 
structure is devised here to record absence of surface 
and existence of borders on some parts of the 
recognized surface or partial mask (possibly with 
holes as in a carnival mask) in which no completion 
should be made .  

Some authors have tried to directly assess 
differential geometry properties with sampled point 
data ([McIvo97]). Their conclusion is that facetting 
information renders more precise and 
computationally effective results. DigitLAB 
[Ruiz99, Ruiz00] is reported as an environment with 
statistical, filtering and topology tools for 
construction of partial and complete B-reps and 
facetting information.  

Regarding the carrier geometries of the 
partial B-rep, this investigation uses very simple 
geometries such as 3 and 4 - vertex facets. The last 
ones are of course not flat in general, but can be 
easily subdivided into triangles. These primitives 
have been found sufficient to support a correct 
topology. The issue of generalized parametric 
smoothing will not be addressed here, but may be 
browsed in [Grimm95]. 

The calculation of differential geometry 
properties of objects (geodesics, tangent planes, etc) 



on planar faceted representations present two 
aspects (see following sections): (i) Representation 
of topological information into a piecewise - linear 
2-manifold with boundary (implemented with a 
partial B-rep), so that its geometrical properties can 
be calculated. (ii) Translation and application of 
continuos version of differential geometry formulae 
to a discrete CO surface.  

3. RECOVERY OF A 2-DIMENSIONAL 
MANIFOLD WITH BOUNDARY 

The first step in calculating discrete geodesics is to 
determine the surface or manifold in which they are 
embedded. The following definitions assist in such a 
task ([Dodso91, Fomen97]): 

2-dimensional manifold with boundary in R3: M ⊂ 
R3 is a smooth (or C∞) 2-manifold with boundary if 
∀ x ∈ M, ∃ open U ⊂ R3 with x ∈ U and U ∩ M is 
diffeomorphic to an open set of R2

+ ( R2
+ = {(x , y)⎥  

y  ≥ 0} ) ([Guill74]).  If one replaces diffeomorphic 
by homeomorphic in this definition, M would be a 
topological (or C0)  2-manifold with boundary. 

Piecewise - linear Manifold with Boundary. If M ⊂ 
R3 is a topological 2- manifold with boundary such 
that M = ⎥ K⎥  where K is a simplicial complex in 
R3, we say that M is a PL 2-manifold with boundary 
or (if connected) a shell. Manifolds without 
boundary are a special case of those with boundary. 

Fig. 1 shows a series of calibrated and 
registered range pictures in the SCULPTOR 
software (Fraunhofer Institute for Computer 
Graphics). Each pixel (u , v) in a picture contains the 
information of the (x , y , z) coordinates of the object 
surface that are touched by the view ray passing by 
the pixel (along with other data not discussed here). 

SCULPTOR makes the necessary calculations to 
present the data as would be produced by rays 
impacting the object. From the calibration process, 
the black areas are considered either as background 
or shaded in the image, and therefore the range 
picture presents no evidence of object existence in 
the those pixels (u , v). 

The immediate goal when having range 
pictures is to recover neighboring information 
present in them. However, care must be exercised 
since neighboring pixels in the range image ( Fig. 2 ) 
may correspond to points that are too distant on one 
surface or, lie on different surfaces or different 
objects.  This consideration leads to two 
conclusions: (i) The topological data chosen must be 
flexible enough to express separate shells on each 
picture, each one incomplete and possibly with 
holes. (ii) The algorithms to recognize and extract 
those shells must account for propagated 
neighborhoods based on a transitive proximity 
relation, rather than a direct, simple Euclidean 
criteria. Based on this concept, points p and q will 
enter the same shell (left case), while points r and s 
will never share a shell.   

3.1 Spatial Relations for Shell Building 

The definition of the basic relations between points 
are discussed next. Let  (u0 , v0), (u1 , v1) and (u2 , v2) 
be three pixel vertices, representing p0, p1, p2 points 
on the object surface. The goal is to calculate a 
partition on the set of pixels, defined so that its 
equivalence relation is the belonging to the same 
topological shell apparent from the range picture. 
The following relations are formalized: 

image_unit_triangle: three pixel vertices (u0 , v0), 
(u1 , v1), (u2 , v2) form an image_unit_triangle if: |ui 

– uj| ≤ 1 and |vi – vj| ≤ 1 , 0 ≤ i , j ≤ 2 (i.e. they are 
immediate neighbors in the grid). 

Aphrodite data set as processed by registration 
software (SCULPTOR,  Fraunhofer IGD). 

Figure 1. 
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Variation in the topological location of 
neighboring pixels in the range image. 

Figure 2. 



object_triangle: three points p0 , p1 , p2 form a 
triangle on the object surface ( object_triangle ) if: 
(i) image_unit_triangle((u0 , v0), (u1 , v1), (u2 , v2)) 
and (ii) || pi – pj || ≤ δ , ( 0 ≤  i , j ≤ 2).  

This means, the three vertices are 
immediate neighbors on the grid and represent 
samples closer than δ (see Glossary) on the object.  

transitive_neighbors: two points p, q on the object 
are transitive_neighbors if ∃ path(p , q)=[ p=p0 , p1 
,...,pn=q ] sequence of points pi such that 
object_triangle( pi  , pi+1 , r ) (0 ≤ i ≤ n-1, for some 
vertex r ). Therefore, || pi – pi+1 || ≤ δ (0 ≤ i ≤ n-1). 
This means, they are part of a chain of neighboring 
triangles, and path(p , q) is a path with traversal 
steps no larger than δ. Informally, there is a trail of 
object triangles that contains p and q. 

Notice that transitive_neighbors( ) is an 
equivalence relation (i.e. it is symmetric, reflexive, 
transitive). Therefore it induces a partition on the 
point set S (see Glossary). The equivalence classes 
are the point sets Si of the separate shells registered 
in the range picture.  
  S = U Si , SiWSj=φ , iKj           (1) 

No two shells may share a vertex 
(otherwise they would be one). In the 
implementation, isolated surface points are not 
considered, and they are purged, as each of them 
would form a zero size, isolated triangle. Notice that 
the definitions above allow shells with holes, as 
required. 

3.2 Partial Mesh Boundary Representation  

Figs. 3 and 4 display a sketch of the data 
organization implemented to represent partial 
meshes.  Observe that the neighborhood information 
is fundamental in this application, since properties 
of surfaces (curvatures, geodesics, etc) must be 
calculated based on sets of neighboring faces. Fig. 5 
shows a macro algorithm that builds a partial mesh 
from range picture information. This algorithm uses 
the equivalence relations just discussed, to extend a 
seed mesh via its internal and external contours until 
it includes all possible “transitive neighbors”. 

4. GEODESIC CONSTRUCTION ON A PL 2-
MANIFOLD WITH BOUNDARY 

The following definitions are a needed introduction 
on the calculation of geodesics: (i) Geodesics on a 
smooth 2-manifold with boundary M : A geodesic is 
a smooth path α : (a , b) → M ⊂ R3 whose 
acceleration α’’(t) is always normal to M 
([O’Neil66,  Stoke89]). In the following, M will 
denote a PL 2-manifold with boundary in R3.  

(ii) Piecewise - linear (PL) path. A path α: [a,b] → 
M is PL if there is a partition a=t0 < t1 < .. < tn-1 < tn 
= b   such that on each subinterval [ti, ti+1], α takes 
the form  

 α : [ti, ti+1] →  fi 
  t  →  α(ti) + ( t -  ti ) vi          (2) 

where fi is the facet of M, crossed by the i-th stage 
of the PL path and vi is a vector on the plane 
containing  fi. Notice that it has been implicitly 
assumed that the numbering of the facets coincides 
with the numbering of the stages in the PL path. 
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Therefore, if the PL path crosses the same facet 
more than once, such facet will reappear with 
different index each time.    

(iii) Acceleration of a PL path. The acceleration of α 
(a PL path) is defined by  

α ″(t) =  0   if t ≠ a, t1 ,... , tn ,b  
α ″(t) =  vi – vi-1   if t= ti for some i in 1..n-1 

(iv) normal vector n(p) at each point p of M: Under 
the assumption that M is orientable, let ni be the unit 
vector normal to facet fi induced by a fixed 
orientation on M. We define:  

n(p) = ni,  if p ∈ Int(fi) 
n(p) = ni + nj,  if p ∈ Int( fi ∩ fj ) and fi ∩ fj ≠ φ . 
n(p) = ni1+ ni2+...+ nir,  if p ∈ fi1 ∩ fi2  ... ∩ fir. 
and fi1, fi2  ,..., fir are all the facets that have p as 
common vertex. 

In addition to the above definition, the 
normalization of n(p) is required. In what follows, 
n(p) denotes a unit vector. 

(v) PL Geodesic. A PL path α: [a,b] → M is a PL-
geodesic iff  α″(t) is parallel to n(α (t)) for each t in 
interval (a,b).  

In consequence: (a) For each facet fi, α has 
constant velocity vector on each connected 
component of the set α−1(Int(fi)) . This means that 
on each facet the geodesic does not zig-zag or 
changes its velocity magnitude. It may cross several 
times the same facet. (b) A portion of the geodesic 
on facet fi can be expressed as αi(λ)= oi + λ.vi, 
where oi is the point on the boundary of facet fi, 
where α  enters the facet. vi is the constant velocity 
of the geodesic on facet fi. 

In this subsection we give a method to 
construct a PL geodesic, starting at a given point on 
the interior of a facet Int( f0 ), and with a given 
initial velocity vector v0, contained in the plane of 
the facet f0. The case in which the geodesic 
eventually hits a vertex or coincides with an edge of 
the B-rep is discussed separately.  

4.1 Generic PL Geodesic Stage 

The present discussion addresses the generic case in 
which the geodesic only touches facet boundaries in 
two non - vertex points.  Fig. 6 shows the case in 
which the i-th stage of the geodesic is known, and 
the goal is to compute the stage i+1. The following 
notation is used: 

ni , ni+1: unit vectors, normal to facets fi and fi+1. 
Their precise definition appears in section 4, 
entry (iv). 

αi(λ ) = oi + λ . vi: parametric form of the geodesic 
on facet fi (known). 

αi+1(λ ) = oi+1 + λ . vi+1: parametric form of the 
geodesic on facet fi+1  (to determine). 

ni

ni+1

n=ni+1 + ni
vi

αi+1= oi+1 + λ . vi+1

facet fi+1

facet fi

oi

αi = oi + λ vi

vi+1

oi+1

nh=ni+1 - ni

p

p’

plane Π

 
Generic discrete geodesics on facets fi and fi+1. 

Figure 6. 

function range_pict_to_shells(rp:range_picture ): 
         shell : B-rep 
 shell = find_isolated_triangle( rp ) 
 contours_to_expand = {contour(shell) } 
 while contours_to_expand 
  contour = first(contours_to_expand ) 
  mesh_is_expandable = TRUE 
  e = first_expandable_edge( contour, rp ) 
  done_contour = FALSE 
  while (e) 
   v=vertex_to_expand(e, rp)  
   if expansion_splits_contour( contour, e, v) 
    [c1,c2]=split_contour(contour, e, v) 
    contours_to_expand= 
     contours_to_expand + {c1,c2} 
    e = NULL ; 
   else 
    t=make_new_triangle( e, v) 
    shell = shell + {t} 
    update(contour(shell), t) 
    e = next_expandable_edge(e, contour, rp) 
    if (not( e )) 
     done_contour = TRUE ; 
    end if 
  end while 
  if ( done_contour ) 
   contours_to_expand = 
     contours_to_expand – {contour } 
  end if 
  contour = first( contours_to_expand  ) 
 end while 
end function 

 
Macro-Algorithm for construcion of the 2-

manifold M 
Figure 5. 



p, p’ : end points of the edge between facets fi and 
fi+1. 

n = ni+1 + ni: approximate normal vector on the limit 
between facets fi and fi+1 (edge  p p’ ). 

Formula 3 allows to calculate oi+1, the origin of αi+1: 

       [ ] [ ]ii op'ppv −=⎥
⎦

⎤
⎢
⎣

⎡
−

ρ
λ

     (3) 

where 
oi+1 =oi + λ . vi , and oi+1= ρ.p + (1-ρ).p’ (0 ≤ ρ ≤ 1 ). 

Formula (3) has less unknowns than 
equations. This characteristic obeys to the fact that 
in this case vector vi is constrained to be on facet fi. 
To actually solve the system one introduces a slack 
variable β, which takes value 0 whenever vi is 
contained in the plane of fi (as in the present 
conditions). 

Once oi+1, the initial point of the geodesic 
αi+1 in the facet fi+1 is known, vi+1 must be 
determined. The condition for geodesics forces the 
relation:  

 (vi+1 - vi ) x (ni + ni+1 ) = 0  
         (4) 

A geometrical argument can be used to find 

vi+1:   It must be noticed that vi+1 is the mirror image 
of vi about the plane that is normal to the vector n x 
vi ( n = ni+1 + ni  with  ni , ni+1 unit vectors). The 
vector vi+1 can be found by applying the 
Householder transformation ([Golub94]), that 
mirrors a vector about a plane with a given unit 
normal nh . In this case: 

 nh = n x (n x vi ) / || n x (n x vi )  ||       (5) 

The Householder transformation with parameter nh, 
applied to ( – vi ) would be: 

 vi+1 = Hnh(– vi) = (I – 2 nh   nh
T) (– vi)    (6) 

Where vi+1, vi and nh are column vectors, I 
is the 3x3 identity matrix, and all products are 
matrix ones. As a by-product of condition (4), in this 
case the magnitude of the vi and vi+1 vectors is the 
same. The Householder transformation indeed 
reflects this fact. 

4.2 Vertex-crossing PL Geodesic Stage 

The calculation of geodesics is based on the normal 
vector to the surface. In the generic case, described 
before, such a normal is approximated by the 
summation of the two normals of incoming facets on 
the edge p-p’. When the geodesic hits a vertex of the 
B-rep, determining a vector that behaves formally as 

 

 “Aphrodite” data set. Two views of a partial 
shell from a range picture. 

Figure 7. 

 

 
Star pattern geodesics on facetted partial b-reps. 

Data sets woman torso and teddy bear. 
Figure 8. 



the normal to the surface at that point is a complex 
task.  Also, the facets that the geodesic traverses 
when leaving the vertex must be determined. This 
investigation attacked those exceptions by defining 
the vector normal to the PL manifold in a vertex as 
the normalized summation of the normals of the 
incident facets to that vertex n=Σ ni / || Σ ni ||. 
Observe that this approach does not ensure that the 
vi+1 vector leaving the vertex (applying 
Householder) would lie on any of the facets fi 
incident on vertex oi+1.  Therefore, one approximates 
the exit vector by: (1) Defining Π as the plane that 
contains oi+1 and vectors n and vi. (2) Determining 
the intersection between Π and the incoming facets 
to oi+1 . This determines which facet is crossed by 
vi+1 when leaving the vertex oi+1. (3) Ensuring that 
the magnitude of vi+1 equals that of vi .  In order to 
apply this approximation it is assumed that vertex 
oi+1 is a convex one. This ensures that (i) there will 
be exactly one exit facet containing vi+1 and, (ii) 
n=Σ ni / || Σ ni || ≠ 0.  

5. RESULTS 

Fig. 7 presents the reconstruction of the PL 2-
manifold with boundary from range picture data for 
the Aphrodite data set.  As requested, the proposed 
structure accommodates disjoint portions, different 
objects on the picture, and holes that may be present 
either because the original object has them, or 
because there is a dark region in the picture.  Fig. 8. 
shows the results of star pattern geodesics on data 
sets “teddy bear” and “woman torso”.  The 
algorithm implemented works also in degenerate 
cases in which the geodesic hits a vertex or 

coincides with an edge in the extended B-rep 
representing the PL 2-manifold. In the case shown, 
the geodesics keep no particular relation among 
themselves. Initially orthogonal, evenly spaced 
geodesics, converge or grow apart as they develop, 
changing also their intersection angles. This is, of 
course, a consequence of the fact that the manifolds 
are intrinsically non-flat.  In contrast, Fig. 9 presents 
a pattern of two families of geodesics. Within a 
family, these curves are evenly spaced, parallel to 
each other. They are perpendicular to the geodesics 
in the other family when they are born (t=0 in 
parameter space). The goal is to test whether they 
keep such relations as they develop (parameter t 
grows).  In effect, the crossing angles keep 
remarkably close to 90 degrees over all the 
intersections, and their distance (parallelism) is also 
kept.  

Complexity of Algorithms Presented. The 
discrete geodesics algorithm has as pre-condition the 
availability of facet neighboring information, 
naturally available in the partial B-rep implemented. 
The geodesics algorithm proceeds by traversing the 
partial B-rep, passing from a facet to the neighbor 
until a “border” is found. That means, places where 
a facet has no neighbor via a particular edge. The B-
rep construction algorithm (Fig. 5) costs O((N.M)3) 
where N and M are the number of pixels in 
horizontal and vertical directions in the range 
picture. Calculating each stage of the geodesic has 
constant cost. Since the geodesic could involve 
every facet, it might be executed O((N.M)2) times.  
This argument concludes that the partial B-rep or 
shell construction plus the geodesics calculation cost 
O((N.M)3) operations.  

6. CONCLUSION 

The algorithms presented for calculation of discrete 
or piecewise - linear geodesics could diverge 
because of numerical error and the approximations 
to the continuous counterparts. However, in the 
examples run they present extremely good numerical 
stability. In these conditions, they could be used to 
unroll the manifold, since the relative position of 
surface points in “geodesic” space is exactly 
replicated in R2. Therefore, surface point geodesic 
coordinates serve to map manifold points to R2, and 
with them all the B-rep structure just created.  In the 
cases shown, material stock evaluation follows 
immediately, as well as hits on the manufacturing 
process.  In the cases in which the deformation of 
the geodesic pattern indicates non-flatness of the 
surface, in the future, the deformation itself may be 
used as an estimator of the deviation between the 
manifold and its “nearest” flat image. This 
estimation allows the quantification of material 
needed, and the effect of deformation processes such 
as thermoforming (for example in the manufacture 
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of women underwear, metal sheet stamping, etc.).  
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