John Congote!#, Iiiigo Barandiaran®, Javier Barandiaran', Tomas Montserrat?,
Julien Quelen? Christian Ferran?, Pere J. Mindan?®, Olga Mur?, Francesc Tarres?,
Oscar Ruiz* 'Vicomtech
Research Center
San Sebastian — Spain 2Telefonica Research
Barcelona — Spain 3UPC
GTAV Group
Barcelona — Spain *EAFIT University
CAD CAM CAE Laboratory
Medellin — Colombia

Real-time depth map generation architecture for
3D videoconferencing

May 31, 2010

Abstract

In this paper we present a reliable depth estimation system which
works in real-time with commodity hardware. The system is specially
intended for 3D visualization using autostereoscopic displays. The core
of this work is an implementation of a modified version of the adaptive
support-weight algorithm that includes highly optimized algorithms for
GPU, allowing accurate and stable depth map generation. Our approach
overcomes typical problems of live depth estimation systems such as depth
noise and flickering. Proposed approach is integrated within the versatile
GStreamer multimedia software platform. Accurate depth map estimation
together with real-time performance make proposed approach suitable for
3D videoconferencing.

depth map, stereo vision, 3D videoconferencing, autostereoscopic displays,
stereo matching

1 Introduction

During the last years, videoconferencing has become a widely extended applica-
tion. Companies and individuals use this technology to reduce transportation
costs and to improve communication between distant parties. However, tra-
ditional 2D videoconferencing still fails to produce natural impressions to the
remote conferees. 3D videoconferencing is a logical evolution: a better feeling
of presence is provided to conferees by leading them to believe that they are
closer to each others. Currently, the emerging 3D displays and the increase of
mainstream hardware computation capabilities make telepresence feasible.

Our contribution is a 3D videoconferencing approach which implements a
visually accurate stereo algorithm running over GPU. The outline of the paper
is as follows: In section 2, a short review of different approaches and techniques
related with 3D videoconferencing is presented. Methods and algorithms imple-
mented in our approach are shown in 3. Then, an architecture where proposed
approach is validated is described in section 4. Finally, we detail some conclu-
sions and suggestions for future work in section 5.

2 Related Work

Many important topics related to videoconferencing must be addressed to en-
hance user experience. One of such issue is eye-contact or gaze. Research [1, 2]

has shown that gaze is one of the most important non-verbal cues, responsible
for giving feedback or expressing feelings and attitudes. Another problem re-
lated with videoconference is the lack of perception of depth wrt the analyzed
scenario. In a 2D videoconference, traditional displays are used. The absence
of depth information in this type of displays, in addition to the problem of gaze
results in an unnatural experience.

An accurate and efficient depth map estimation mechanism is needed for
both problems to be addressed. For example, depth information is used by
autostereoscopic displays to render multiple novel views. These generated views
can be used to tackle the problem of eye-contact, by generating views that agreed
with the user eye-sight, as in [3]. Moreover, autoestereoscopic displays typically
use depth maps information to generate 3D perception, [4](See Figure 1).

In [5] Scharstein presents a set of stereo matching methodologies used to
calculate dense disparity maps from stereo images, which can be classified in
local, global and semi-global algorithms. The depth calculation process is done
by identifying correspondences between pixels in two images. Given the location
of corresponding pixels in the images, their 3D coordinates can be retrieved by
means of triangulation. Applications like 3D Videoconferencing imposes strong
time restrictions, thus only real-time methods are suitable.

Figure 1: 2D+Depth image result of our system

3 Methodology

In this section we describe in detail the methods implemented in our architec-
ture, which allow us to achieve accurate depth information in real-time.

3.1 Image Rectification

Depth map calculations rely on the estimation of relative pixel positions between
two images. The position of the cameras and lens distortions make necessary
some previous corrections. These corrections are carried out before depth map
calculation takes place in order to improve the process efficiency. Moreover, it
is also necessary to align the horizontal lines of both images in order to reduce
the search process of the pixels to a 1D problem. The tools needed to carry out
this transformation are the camera calibration parameters, which should have
been calculated previously. Results of this process can be observed in Figure 2.

Figure 2: Top: Left and right captured images. Bottom: Undistorted and
rectified images, yellow frame denotes cropping area.

Although camera calibration can be carried out just once and off-line, recti-
fication should be done online and for each pair of acquired images. As we work
with large images, we need a fast and effective algorithm. The solution adopted
in our approach is the use of GPU algorithms implemented in CUDA. Our im-
plementation processes the pixels in parallel, taking advantage of the multicore
architecture of the GPU. Execution of our algorithms on the GPU outperforms
General Purpose Processors (GPP) based solutions and obtains real-time per-
formance at a reasonable cost. Rectified images have a resolution of 960 x 540
pixels as required by our 3D display. After undistortion and rectification pro-
cesses, some points of the image may lay outside the working frame, producing
some empty parts (see Figure 2). In order to eliminate these unwanted regions,
input images are captured at higher resolution (1200 x 600) and cropped after
rectification process takes place as seen in Figure 2.

3.2 Adaptive support-weight

Adaptive support-weight AW is a local algorithm to calculate dense stereo dis-
parity maps, presented by Yoon[6]. The algorithm is a window based method
for correspondence search using varying support weights. The support weights
of the pixels in a given support window are based on a combination of color
similarity and geometric proximity to reduce ambiguity. AW gives a cost to
a pair of pixels depending on their support windows, representing how related
the pixels are. Afterwards, each pixel is correlated to the pixel that has the
associated minimal cost in the matching set.

A dense disparity map can be represented as an image D of the same size
of the input rectified images L, R. Where D; ; represents the displacement of
the coordinates of a given pixel from L to R, consequently L[i—s-D[i,j],j] ~ Ry j-
Image pixels p, ¢ are commonly represented as an RGB 3-tuple then p, is the
Red component of the pixel p as p; and p, the Green and Blue components,
hence the color distance between two pixel is defined as (eq: 1, 2) following the
L, and L, distance norms.

fe(, @) = Ipr — @ | + [pg — gl + IP6 — (1)

0e(p, @) = \ (0 — 0 + 0y — 0)° + (00— @)’ (2)

Equation 3 shows the m image (left or right) weight contribution of the
pixel in the position (k,l) in a window centered at coordinates (i,j). The ~.

and v, values are empirical factors that modify the color and space similarity
respectively. In our implementation, we set these factors to 7. = 20 and v, = 1.
The 7, factor depends on how close the values in the RGB color space are, while
~vs modifies the space similarity, which is closely related to the support window
size.

Ye Ts

mi g -J%,z) i \/(i—k)2+(j—L)2))

ﬁxﬂutikJ)=e<(h(3)

Calculation of the disparity map D for each pixel D; ; in the reference image
L is made by the Winner Takes All method as show in (eq: 6), where d rep-
resents the range of values where the correlation of pixels will be tested. This
value depends on the camera parameters and the depth search range defined,
furthermore the parameter w presented in (eq: 5) indicates the size of the square
support window for pixel correlation. Finally SW (eq: 4) is a component used
in (eq: 5) representing Support Weights used to influence the difference of the
color and position in the window (eq:1). Notice that the cost support weight
for a given pixel in L depends on the matching candidate, so normalization is
required in (eq: 5).

SW i= fu(L,i,j,8,8) fu(Ryi + d, j, s + d, 1) (4)
i+w Jtw
Z Z Sch(Ls,thS-i-d,t)
L. s=i—wt=j—w
Faw(L, Ry i, 5, d) = e (5)

>y sw

s=i—w t=j—w

fa(L, R, i, j) = argmin [, (L, R, 14,7, d) (6)
deZ

Although AW is a local stereo matching algorithm, real-time performance

is difficult to achieve with CPU implementations. However, the local nature of
the algorithm allows an easy implementation in parallel architectures such as
GPUs, achieving real time performance. We use a support window of 1 x 15
in size and only for the reference image, a maximum disparity of 30 pixels and
an image size of 480 x 270 pixels. With this specifications we can calculate
the depth map for both images in 8ms. Note that the depthmap is processed
at a quarter of the resolution of rectified images. Post-processed depth map is
upscaled afterwards to match the reference image resolution. Mentioned modi-
fications to the original AW algorithm caused a loss of quality in the resulting
depth map. However, our proposed post-processing technique is able to correct
most of the wrong matches introduced by the algorithm simplification while still
keeping real-time performance. Cross-checking is a common process for iden-
tifying unreliable pixels in the calculated depth maps. Matched pixels in left
and right disparity maps are tested for consistency, where inconsistent matches
are discarded. These pixels are later approximated by an anisotropic diffusion
post-processing step. Even though regions with no texture cannot be correctly
calculated, it is assumed that these regions are part of the background which
is removed from our depth map. This background segmentation process is ob-
tained using the statistical method described in [7], also implemented on GPU.
The integration of a segmentation process allows us to obtain a more accurate

depth map even on untextured regions, avoiding uncomfortable flickering effects
during the conference.

3.3 Post-Processing

As mentioned before, cross-checking is used in our system to detect wrong corre-
spondences by building a mask with them. This mask also includes information
regarding foreground segmentation. The main objective of post-processing is to
assign correct disparity values to all unreliable pixels detected in the previous
step. Moreover, the disparity map is improved by removing the quantization
effect introduced by the lack of sub-pixel accuracy during disparity estimation.

Mismatches basically occur in occluded regions as well as in homogeneous
texture areas. A common hole-filling criterion is that occlusions must not be
interpolated from the occluder, but only from the occluded to avoid incorrect
smoothing of discontinuities. Thus, an extrapolation of the background into
occluded regions is necessary. In contrast, holes generated due to mismatches
can be smoothly interpolated from all neighboring pixels. If we assume that
discontinuities in both disparity and color images are co-aligned, the previous
interpolation criterion can be achieved by relying only on reference image color
cues.

We use a variation of the classic Perona-Malik anisotropic filter [8] in order
to propagate correct disparity values through the image. Anisotropic diffusion
is a non-linear smoothing filter. It produces a Gaussian smoothed image, which
is the solution to the heat equation, with a variable conductance term to limit
smoothing at edges. For this particular implementation, the conductance term
is a function of the reference image gradient magnitude at each pixel and for each
color channel. As we can partially rely on foreground segmentation information,
unreliable pixels are initialized to their known background disparity value. An-
other difference between standard Perona Malik discrete filter implementation
and our approach is that in initial iterations we only modify values of unreliable
pixels, avoiding them to influence on correctly assigned disparities. These ini-
tial iterations are intended to fill the disparity map holes. Subsequently, after
convergence of discarded pixel values, we apply a reduced number of additional
diffusion iterations modifying all pixels (see figure 3). This second diffusion step
is intended to remove the quantization effect of the disparity map. This post-
processing algorithm also allows an efficient and easy implementation in GPU
architectures.

4 Results

Current 3D displays are capable of providing multiple stereoscopic views in or-
der to support head motion parallax. Hence, the user is able to perceive depth
when uses these types of displays. This 3D perception can reinforce the feeling
of volume and therefore the feeling of “tele-presence”. In our prototype, we are
using a 42” Wow display designed by Philips. This display can generate several
views of the same scene, by using a 3D data interface in the form of image-plus-
depth with a resolution of 960 x 540. This input format was standardized by
MPEG and is currently implemented in many commercial 3D displays. This
format proposes the use of images that are double the size of the native reso-

:)
o L

Figure 3: Post—Processing (from left to right and up to down): Reference Image. Initial
Disparity Map (Black pixels are wrong pixels). Final Disparity Map. Ground truth

lution, where the reference frame is disposed in one side of this image, and the
corresponding disparity or depth map on the other, as depicted in figure 1. In
order to be able to estimate a disparity map, two or more images of the same
scene are needed. In our prototype we use two Pixelink digital cameras for stereo
image acquisition. These cameras capture images at a resolution of 1200 x 600
pixels and with 25 fps framerate. We use RAW Bayer native image format, and
compute Bayer demosaicing and white balance, inside the GStreamer pipeline.
By using RAW images the required bandwidth is reduced, optimizing memory
usage and allowing better off-camera Bayer demosaicing.

4.1 Integration Pipeline

Our streaming architecture is based on GStreamer software[9]. This library is an
open source framework for creating streaming media applications. The design
of the framework is based on modularity, where any process in the stream-
ing pipeline can be encapsulated in an independent module or plug-in. This
modularity provides flexibility and allows the user to easily test different config-
urations and approaches. Moreover, threading and buffering architectures are
controlled. Our architecture is divided in two separated parts. One of these
parts works as the content generator or server, where the videoconference con-
tent, i.e, 3D images for visualization, is generated. The second part of the
architecture represents the client side, where these images are received and dis-
played to the conferees. In the following section, we describe in more detail
both parts of the proposed architecture.

4.1.1 Server Side

This part of the architecture runs as a content generator. It manages the digital
cameras that capture the scene, the depth estimation and encoding modules.
Cameras are externally triggered by using specific hardware, in order to have
a perfectly synchronized image acquisition. This synchronization significantly
increases the accuracy of disparity estimation. Figure 4 shows the complete
processing pipeline integrated into the server side of the architecture. The core
of the pipeline is the plugin called Depthestplugin. This plugin receives two
video streams from two synchronized threads, and executes image rectification

2 Pixelink synchronized cameras

tiddc1394src
Left input image Right input image
Video/x-raw-bayer Video/x-raw-bayer
Width=1200, height=600 Width=1200, height=600
A Y
queue queue

! !

Depthestplugin
e g Foreground

‘ Rectification ‘ ‘ Segmentation ‘

‘ Depth Estimation ‘ ‘ Post-processing ‘
Reference frame Disparity map
Video/x-raw-rgh Video/x-raw-gray

Width=960, Width=960,
height=540 height=540
A A 4
queue queue
ffmpegcolorspace ffmpegcolorspace
I YUV420 '
ffenc_h263p ffenc_h263p
rtph263ppay rtph263ppay
udpsink udpsink

To Philips TV Server To Philips TV Server

Figure 4: GStreamer 3D videoconference Server Side

and depth map estimation procedures. The output of the plugin is composed
of a reference image and the corresponding disparity map. These streams are
queued in two buffers before encoding them by using the h.263 video compression
format. Finally, encoded video streams are rtp-packetized and sent through udp
socket.

4.1.2 Client Side

This part of the architecture runs as a content receiver. It represents the end
point of the entire pipeline, where the output device, i.e. the autostereoscopic
display, is active. As shown in Figure 5, the first part of the processing pipeline
consists of the network and video decoding of both streams. Before the video

Reference Frame Disparity map
Y

udpsrc

udpsrc

rtph263depay rtph263depay

fidec_h263

fidec_h263

‘ SideBySide Image Plugin ‘

!

[Philips TV display]

Figure 5: GStreamer 3D videoconference Client Side

content can be visualized on the display, it must be processed by the SideBySide
image plug-in. This plug-in adapts the content by merging the reference image
and disparity map with a resolution of 960 x 540 into one single 1080p video
stream compliant with the format supported by the Philips Wow display, (See
Figure 1).

5 Conclusions and Future Work

We have proposed an approach that achieves real-time performance in a 3D
videoconferencing application using autosterescopic displays. We have imple-
mented and optimized several algorithms on GPU trying to find the best com-
promise between quality of visualization and computational cost. Our approach
runs at 25 fps at SD image resolution on an usual PC, with commercial hardware
(dual core Intel processor with a NVIDIA GTX 295 GPU), using a multimedia
architecture based on GStreamer. We achieve this performance by implementing
an optimization of the Adaptive support-weight algorithm. This optimization

is able to calculate disparity maps accurately in a short time, with low compu-
tational consumption. This efficiency allows us to add some other optimizations
such as a background subtraction, cross-check consistency testing or error cor-
rection mechanisms such as gap-filling with Anisotropic diffusion. All of these
developments have been successfully implemented in GPU using CUDA in order
to obtain the highest levels of parallelization and performance possible.

We are currently integrating a Time of Flight (ToF) camera into our ar-
chitecture. In the future we plan to use this type of camera in combination
with digital camera pairs. This combination will result in an hybrid approach
that could overcome the problems of each technology when working indepen-
dently. With this approach we hope to obtain better disparity maps at higher
resolutions.

6 Acknowledgements

This work has been partially supported by the Spanish Administration agency
CDTI, under project CENIT-VISION 2007-1007.

References

[1] Milton Chen, “Leveraging the asymmetric sensitivity of eye contact for
videoconference,” in CHI ’02: Proceedings of the SIGCHI conference on
Human factors in computing systems, New York, NY, USA, 2002, pp. 49—
56, ACM.

[2] Tam T, Cafazzo JA, Seto E, Salenieks ME, and Rossos PG., “Perception of
eye contact in video teleconsultation,” Journal of telemedicine and telecare,
vol. 13, no. 1, pp. 9-35, February 2007.

=)

http://www.3dpresence.eu, “3dpresence,” .

=

A. Vetro, S Yea, and A. Smolic, “Towards a 3d video format for auto-
stereoscopic displays,” Proc. Conference on Applications of Digital Image
Processing, vol. 7073, 2008.

[5] Daniel Scharstein and Richard Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision,
vol. 47, no. 1-3, pp. 742, 2002.

[6] Kuk-Jin Yoon and In So Kweon, “Adaptive support-weight approach for
correspondence search,” IEEFE Trans. Pattern Anal. Mach. Intell., vol. 28,
no. 4, pp. 650, 2006.

[7] Thanarat Horprasert, David Harwood, and Larry S. Davis, “A statistical ap-
proach for real-time robust background subtraction and shadow detection,”
in ICCV Frame-Rate WS, 1999.

[8] Pietro Perona and Jitendra Malik, “Scale-space and edge detection using
anisotropic diffusion,” Tech. Rep. UCB/CSD-88-483, EECS Department,
University of California, Berkeley, december 1988.

[9] http://www.gstreamer.net, “Gstreamer,” .

10

