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Abstract

This doctoral work contributes in two main aspects: (i) closed form (analytical) force-deformation
models for compliant mechanisms, and (ii) assessment of permanent deformations and / or manu-
facturing errors in mechanisms and manipulators (i.e. kinematic identification).

In aspect (i) above, we augment the current state of the art in the following areas: (1) For
planar compliant mechanisms whose elasticity is concentrated in limbs with cantilever geometry a
kinematic solution is developed in this work which relies on: (1.a) The mapping of the compliant
mechanism to an equivalent one based on kinematic pairs. (1.b) A decomposition of the equivalent
mechanism in Assur Groups by using partitions of the equivalent mechanism, which also produces
as a bi-product the formation law of the parallel mechanism. (1.c) A calculation of the kinematic
solution of the individual Assur-equivalent mechanisms, possible since the compliant zones accept
closed solutions. (1.d) An integration of the closed kinematic solutions by using the formation
law of the mechanism. (2) For general compliance mechanisms we present a Design of Computer
Experiments (DOCE) formulation which is able to produce an invertible closed force-deformation
model suitable for real-time control applications.

Regarding aspect (ii) above, we advance the known methodologies for kinematic pair-based
parallel planar mechanisms by implementing a Divide-and-Conquer approach for the planning
of the mechanism poses that are to be performed in order to apply Kinematic Identification al-
gorithms. For the symmetric subclass, we present an algorithm which exploits the symmetrical
dihedral groups present, in order to mirror already calculated pose plannings.

v



Dedicado a Andrea, Ana Marı́a y Valentina,

la luz en mi vida

vi



Acknowledgments

I want to express my sincere gratitude to my Doctoral thesis advisor, Professor Oscar E. Ruiz
Salguero for his guidance, encouragement and support in the course of this work.

I thank professors John Restrepo-Giraldo and Sofiane Achiche from Technical University of
Denmark, who guided and supported me academically during my research internship at DTU.
They gave me valuable advice to develop this thesis. Also Prof. Diego A. Acosta Maya from
EAFIT, for his advice and collaboration in the area of Design of Computer Experiments. I owe
special recognition to Professor Gabriel Calle Trujillo from Technical University of Pereira, my
advisor in the Masters program, for the encouragement, fairness and respect that he always had for
me.

It is my pleasure to thank faculty members from Autónoma de Manizales University for their
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Prof. Fabio M. Peña Bustos.

Deep thanks to my partners at the CAD CAM CAE laboratory at EAFIT (Jorge Correa Panesso,
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Introduction

Compliant and parallel mechanisms are two types of mechanical devices aimed at performing
high-precision tasks, having their accuracy related to their closed-loop kinematic structure. The
design, analysis, and operation of compliant and parallel mechanisms requires the development of
accurate kinematic models.

Compliant Mechanisms (CMs) comprise the mechanisms that derive their mobility from the
deflection of flexible elements rather than from kinematic pairs [1]. The term force-displacement
analysis is used for CMs since the kinematic analysis cannot be isolated from the force analysis as
it is done on rigid-body mechanisms. Two main techniques are currently available in the literature
for the force-displacement model of CMs: techniques using an equivalent rigid-body mechanism
and FEA-based techniques.

Two novel analysis alternatives are herein proposed:

1. Force-displacement model of compliant mechanisms using Assur sub-chains (chapter 1).

2. Force-displacement model of compliant mechanisms by Design of Computer Experiments
(DOCE) (chapter 2).

The first alternative models flexure-based CMs by assigning an equivalent rigid-body mechanism
that is divided into statically determinated kinematic chains (Assur groups) whose kinematics and
force models are well known. An iterative scheme is implemented to assess the large deflection
behavior. The second alternative presents a DOCE methodology in which a force-displacement
(Input / Output) function is obtained. The function is a polynomial suitable for real-time control
application.

Furthermore, article 1.2 develops a contribution to the force analysis of Assur groups in which
friction on kinematic pairs is considered [2].
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The kinematic analysis of parallel mechanisms addresses the challenge of assessing the kine-
matic parameters that improve their end-effector accuracy. End-effector pose errors are related to
several aspects of the mechanism structure. Such errors are caused by:

1. Manufacturing tolerances and assembly errors of the machine elements.

2. Weight of the links.

3. Elastic deformations due to inertial and workload forces and thermal sources.

4. Natural oscillations of the kinematics due to the operation of the machine.

Source errors varying slowly in time (quasi-static) are recognized to be a main error source [3] (see
Fig. 1), and can be modeled as geometric parameters associated to the structure of the machine
since they are closely related to it. These parameters are formally denoted as kinematic parameters,
and their calibration is mandatory in order to improve the accuracy of the end-effector [4].

102

102

101
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100

100 Error in μm

Frequency 
in Hz

Drive
errors
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force and inertial forces
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gravitation Transf errors
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of the drive 
controllers
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Figure 1: Impact of error sources according to size and frequency [5]

The process of estimating the kinematic parameters and updating the kinematic model is for-
mally known as kinematic identification or kinematic calibration [6]. The kinematic calibration of
parallel mechanisms is traditionally carried out through four different strategies [7]:

1. Constrained calibration, where mechanical systems are used to restrict the motion of the legs.
The calibration efficiency decreases because the constraints limit the available workspace,
leading to a possible non-optimal selection of calibration poses.
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2. Self calibration, it relies on the use of redundant metrology (instrumentation of some passive
joints) in order to replace the information provided by external measurement devices.

3. Forward kinematics calibration, adapted from the calibration methods of serial mechanisms.
It requires the evaluation of the forward kinematics, resulting in a major drawback related to
the instability associated with the numerical evaluation of the forward kinematics of parallel
mechanisms.

4. Inverse kinematics method, accepted as the natural and most numerically efficient among
the identification algorithms for parallel mechanisms. The kinematic parameters are esti-
mated by minimizing the difference between measured and computed active-joint variables,
calculated through the inverse kinematics of the end-effector pose measurements.

The contribution of this dissertation to this matter is a new Divide-and-Conquer (DC) protocol
for the kinematic identification of parallel mechanisms (chapter 3). This protocol is based on the
inverse calibration method, and unlike available kinematic identification methods, it exploits the
usual structural symmetries of parallel mechanisms in order to set a symmetrically independent
identification for each leg.

This dissertation is a compendium of six articles divided into three chapters. Two additional
published articles are not included because their contents are included in one or more of the pre-
sented articles (see Summary of Publications on page 5). Each article is self-contained (introduc-
tion, literature review, methodology, results, and conclusions. Some figures and tables are repeated
for the sake of clarity. The layout of the compendium is as follows:

Chapter 1 is devoted to the Force-Displacement Model of Compliant Mechanisms based on

Assur-Groups Decomposition and the Force Analysis of Assur Groups. It includes three articles:
two published ones, and an accepted one (see items 1, 2 and 3 on Table 1).

Chapter 2 presents the Force-Displacement Model of Compliant Mechanisms by Design of

Computer Experiments. It contains two articles: a published one and asubmitted one (see items
3 and 4 on Table 1). Only one of them is included in the present work (article 4 in Table 1),
corresponding to an invitation to rework the paper [8] for republication in the Special Issue of
the Journal of Engineering with Computers (Elsevier) on “Engineering Analysis and Simulations
Based on Virtual Prototypes”.

Chapter 3 develops the Kinematic Identification of Parallel Mechanisms by a Divide-and-

Conquer Strategy. It consists of three articles: a published one, an accepted one, and a submitted

3



one (see items 6, 7 and 8 on Table 1).

General concluding remarks are presented in chapter 4.
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List of Publications

This Table presents the list of publications related to this doctoral research. In general, a con-
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Chapter 1

Force-Displacement Model of Compliant Mechanisms based on Assur-Groups

Decomposition and Force Analysis of Assur Groups

This chapter presents a contribution to the force-displacement model of flexure-based compliant

mechanisms. The contribution is presented in article 1.1 and relies on a novel force-displacement
model in which the kinematics and force analysis are carried out onto an equivalent rigid-body
mechanism that is divided into statically determinated kinematic chains (Assur groups) whose
kinematics and force models are well known. An iterative scheme is implemented to assess the
large deflection behavior.

Complementary to this contribution, a new analytical method for the force analysis of Assur
groups that allows for friction on their kinematic pairs [2] is presented in article 1.2. The method
was developed as an intermediate research step related to the kinematics and force models of the
Assur groups.

Finally, an erratum article [9] of position analysis of planar compliant mechanisms is developed
in article 1.3. It presents two corrections to [11], which is a seminal paper in force-displacement
of flexure-based compliant mechanisms.
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1.1 Force-Displacement Model of Compliant
Mechanisms using Assur Sub-Chains

Sebastián Durango, Jorge Correa, Oscar Ruiz, Mauricio Aristizabal
{sdurang1, jcorre20, oruiz, maristi7}@eafit.edu.co

CAD CAM CAE Laboratory
EAFIT University

Medellı́n, Colombia

John Restrepo-Giraldo, Sofiane Achiche
{jdrg, soac}@man.dtu.dk

Engineering Design and Product Development
Technical University of Denmark

Lyngby, Denmark

This article was accepted to the 13th World Congress in Mechanism and Machine
Science, June 19–25 (2011), Guanajuato, México (IFToMM conference).

Abstract

This article develops a modular procedure to perform force-displacement modeling of planar
flexure-based Compliant Mechanisms (CMs). The procedure is mostly suitable for planar lumped
CMs. To achieve the position analysis of CMs requires: (i) to implement the kinematic analysis
as in the case of ordinary mechanisms, (ii) to solve the equilibrium problem by means of a static
analysis and (iii) to model the flexures behavior through a deflection analysis. The novel contri-
bution of this article relies on the fact that a division strategy of the CM into Assur sub-chains is
implemented, so that any CM subjected to such disaggregation can be accurately modeled. For
this purpose a mathematical model for the leaf-spring flexure type is presented and used through
this paper. However, any other flexure model can be used instead. To support the technique, a three
Degree-Of-Freedom (3-DOF) flexure-based parallel mechanism is used as case study. Results are
compared with a Finite Element Analysis (FEA).

keywords: Force-displacement Model, Compliant Mechanism, Large-deflection Analysis, Pseu-
do-Rigid-Body Model, Assur Group.
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Glossary
A Assur group
D Driving mechanism
E Young module
F Force
I Cross section area moment of inertia
L Rigid segment length
M Moment
OXY Global coordinate system
P Set of external loads and its application points
R Set of position vectors
l Flexure length
oxy Flexure local coordinate system
q Set of joint input angles
r Position vector
s linear coordinate along a beam
u, v Flexure free-end local coordinates
Θ Flexure effective rotation
Ω Number of Assur groups
α, β Rigid segment orientation
γ Number of flexures
ϕ Set of geometric parameters and material properties
τ Set of driving torques
ω Number of driving mechanisms

1.1.1 Introduction

Compliant Mechanisms (CMs) concern those mechanisms which derive their mobility from the
deflection of flexible elements rather than from kinematic pairs [1].

Flexure-based CMs are instances of CMs in which the flexibility is located in slender regions
that provide a rotation between rigid parts. The narrow flexible regions are denoted as flexure

hinges or simply flexures. The relative rotation between two paired rigid links is obtained through
the bending of its connecting flexure. In this sense the flexure has the same function as the rota-
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tional joint connecting two rigid links.

Some of the main aspects that encompass the analysis and design of CMs include the force-
displacement behavior, topology optimization and fatigue analysis. The displacement analysis
of flexure-based CMs cannot be isolated from the deflection analysis of its flexures. The most
common methods used for force-displacement model of flexure-based CMs are the Pseudo-Rigid-
Body Modeling (PRBM) and the finite element analysis (FEA). In PRBM the deflection of flexible
elements is modeled by rigid-body systems that have equivalent force-displacement characteris-
tics [12], and the force-displacement behavior of the CM is accomplished using classical rigid
mechanism theory. FEA advantages include a wide choice of analysis type (static, dynamic, modal,
thermal, etc.) and analysis of geometries with complex shapes [13].

An alternative force-displacement method where an iterative scheme is used to perform non-
linear position analysis of planar CMs is presented by Venanzi et al [11]. The technique considers
large deflections and allows for different mathematical models for the compliant kinematic pairs,
thereby producing a modular approach.

The novel contribution of this article is a new force-displacement model procedure that merges
the technique proposed in [11] with a divide-and-conquer strategy, in which a number of flexure-
based compliant chains (modules) are assembled to yield almost any practical planar CM, leading
to an improved modularity. Two basic compliant chain families are conceived for this purpose:

1. Equivalent driving mechanisms.

2. Equivalent Assur groups.

1.1.2 Literature Review

The analysis of flexure-based mechanisms can be classified into two main categories.

1. Strategies in which an equivalent rigid-body mechanism is used to perform kinematic and force
analyses [1]. In this strategy, the deflection of the flexures is assessed in two ways.

PRBM. In this model the flexures are replaced with rigid bodies connected by kinematic
pairs that attempt to assess their force displacement characteristics. For this purpose, springs
are added to the model to account for the flexure stiffness. In [14], a flexure-based five-bar
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mechanism is designed and analyzed through an established kinematic model. No force anal-
ysis model is implemented on the formulation. However, validations are carried out by FEA.
In [15], a PRBM with a lumped mass-spring model is implemented in the solution of the dy-
namics of a three Degree-Of-Freedom (3-DOF) flexure-based parallel mechanism. The kine-
tostatic model of a 3-RRR compliant micromotion stage is derived in [16]. The model has
a closed form solution and different sets of flexure hinge compliant equations are used and
compared with the FEA. It should be noted that the aforementioned references ( [14–16]) use
particular kinematic and dynamic solutions for their models.

Euler-Bernoulli flexure models. In this technique the deflected shape of the flexures is cal-
culated directly by solving the Euler-Bernoulli equation for long-beam like members. This
differential equation can be solved either by using a numerical method [11, 17], e.g. finite
differences, or by the implementation of elliptic integrals [18, 19], e.g. solved by numerical
integration or series expansion. An input/output model of an XY micromanipulator is pre-
sented in [17] in which a full kinematic model that considers the elasticity of the whole CM
is proposed allowing to establish the kinematic relationships between output motion and input
variables. An iterative technique in which the equivalent rigid-body mechanism dimensions
are updated by a large deflection analysis is proposed in [11]. Several types of flexures models
can be included into the formulation. The technique can be used to achieve the mechanism
pose and required driving loads when subject to a set of input conditions (external load and
input links prescribed rotations).

2. Strategies in which FEA is used to solve the force-displacement problem. In [20] a compliant
parallel-guiding mechanism is designed and both its force-displacement model and guiding ac-
curacy are obtained through FEA. Reference [21] presents a study of the mobility of different
types of flexure hinges. A Roberts-Chebyshev straight-line mechanism is analyzed to validate
the study. The design of a compliant robotic wrist able to perform spherical motions is dis-
cussed in [22]. The inverse and direct kinematics and the design of its flexures are computed
by FEA.

Contribution. Compared to the PRBM, the procedure proposed in this article represents both a
more accurate model and a more general approach in which a wide variety of flexure-based CMs
can be assessed without the use of closed-form kinematic solutions. Instead, a chain-based analysis
technique supported in the Assur group concept is designed and implemented.

Results reported in this work present a good match when compared to FEA. In addition, the
alternative here presented allows for the use of analysis and synthesis tools coming from the rigid-
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body mechanism theory.

The article is organized as follows: section 1.1.3 summarizes the the force-displacement it-
erative technique adopted in this work, section 1.1.4 presents the new algorithm for the force-
displacement model of CMs in which kinematics and force analysis are based on a division of the
mechanism into Assur groups, in section 1.1.5 the algorithm is tested with a 3-DOF flexure-based
mechanism, finally, section 1.1.6 develops concluding remarks.

1.1.3 Background

The iterative technique to perform the force-displacement analysis of flexure-based CMs intro-
duced in [11] is suitable for modeling those CMs that take the form of ordinary mechanisms
whose kinematic pairs have been replaced by flexure hinges (Fig. 1.1). Unlike other methods,
such as non-linear FEA or PRBM, the flexures are considered as whole parts that undergo large
deflections and are not divided into smaller elements, this allows for a modular approach where
the large displacement analysis of different kinds of flexures is developed so that a great variety of
mechanisms with such flexure hinges can be designed and analyzed.

(a) 3-DOF flexure-based mechanism (b) Rigid-equivalent mechanism of
Fig. 1.1(a)

Figure 1.1: 3-DOF flexure-based parallel mechanism and its rigid-equivalent mechanism

To achieve the position analysis of CMs requires not only to implement the kinematic rela-
tions used for ordinary mechanisms but also to include static (equilibrium) and elasticity equations
that rule the flexure behavior into the formulation of the model. In order to implement the kine-
matic equations, conventional rotational pairs must be introduced between one of the extremities
of each flexure and its adjacent rigid segment (see section 1.1.4.2), therefore allowing at the cur-
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rent point the relative rotation between the flexure and its rigid segment. Once the input variables
are established (input rigid links orientations), the kinematic analysis is solved as for ordinary
rigid-equivalent mechanism.

After the kinematic analysis solution is reached, the equilibrium problem is solved by means
of a static analysis to the rigid-equivalent mechanism on its new configuration. The static analysis
returns the internal forces acting in each joint together with the moments to be applied on the input
links in order to achieve their prescribed orientations and equilibrate the external loads acting on
the mechanism.

Finally, the flexure elastic behavior is modeled by means of a deflection analysis where each
flexure present in the CM is modeled as an independent part. A differential equation modelling
large deflections of the flexure hinge is used to relate the deflected shape of each flexure with
the load applied upon it, which results in the computation of a new rigid-equivalent mechanism
geometry. In this manner new results of kinematic and force analysis are obtained that leads to a
loop. The loop is iterated until all variables converge.

1.1.4 Force-Displacement Model of Compliant
Mechanisms using Assur Sub-Chains

The methodology of this work relies on the division of the CM into rigid-equivalent sub-chains
derived from its kinematic structure, so that the kinematic and force analyses can be solved in-
dependently (within an iteration step) for the sub-chains instead of formulating a solution for the
entire mechanism. After that, a deflection analysis is carried out to each flexure within the mech-
anism where new equivalent dimensions of the sub-chains are estimated. The procedure is mostly
suitable for planar-flexure-based compliant mechanisms since this type can be mapped into planar-
rigid-body mechanisms by replacing the flexure hinges with traditional kinematic pairs. Further-
more, it is well known that the rigid-body mechanism kinematics and kinetostatics can be solved if
a disaggregation of the mechanism into Assur groups is implemented. In this case, particular kine-
matic and kinetostatic solutions for the groups are used instead of formulating a fully analytical
solution for the entire mechanism. The procedure is presented in algorithm 1, and stated through
this section in three steps. Prior to that, the topology and geometry of the rigid-equivalent mech-
anism must be determined together with its disaggregation into driving mechanisms and Assur
groups, as pointed out in sections 1.1.4.1 and 1.1.4.2.
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Algorithm 1 Force-Displacement Model of Compliant Mechanism.

Require:

(T,G0) Mechanisms with topology T and relaxed geometry G0

q =
[
q1 q2 . . . qω

]T Required orientations of driving mechanisms
ϕi Flexures geometry and material properties
P External loads and application points

Ensure:
Gf Deflected mechanism geometry
τ =

[
τ1 τ2 . . . τω

]T Driving torques to archive the prescribed orientations q given the
external loads P

1: G = G0 (*G is a reference mechanism geometry*)
2: Mi = 0 (*Mi is the ith-flexure internal moment*)
3: error = tol
4: while error ≥ tol do
5: (*Step 1. Modular kinematic analysis*)
6: {Gf ,Θi} = Modular kinematics(T,G,q) (*Θi is the ith-flexure effective rotation*)
7: (*Step 2. Modular static analysis*)
8: {Fxi, Fyi, τ} = Modular statics(T,Gf , P,Mi) (*Fxi, Fyi are the internal forces acting on the

ith-rotational joint*)
9: (*Step 3. large deflection analysis*)

10: {G,Mi} = Large deflection(T,Gf , Fxi, Fyi, ϕi,Θi)
11: error = |Gf −G|
12: end while
13: Gf = G (*Mechanism final geometry (deflected configuration)*)

1.1.4.1 Structural analysis of rigid-equivalent mechanism

To perform a structural analysis of the CM, a rigid-equivalent mechanism must be determined.
This task can be accomplished by replacing each flexure hinge of the CM with a rotational joint.
At this point we are only concerned with the topological characteristics of the rigid-equivalent
mechanism. Geometrical characteristics will be determined after the disaggregation into Assur
groups of the rigid-equivalent mechanism and its generation principle(generation of a mechanism
by the successive joining of Assur groups) are established (section 1.1.4.2).

Figure 1.1 presents a 3 DOF flexure-based parallel mechanism (Fig. 1.1(a)) and its rigid-
equivalent mechanism (Fig. 1.1(b)). If the rigid-equivalent mechanism is simple enough, its
disaggregation into Assur groups and the determination of its kinematic structure can be accom-
plished by inspection. However, if the mechanism possesses a complex kinematic structure, there
exist available computational methods that allow the separation of planar mechanisms into Assur
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groups (e.g. [23]). For the sake of brevity, it is assumed along this work that the disaggregation
into Assur groups and the generation principle are established. Two basic groups families are
considered:

1. One degree of movability kinematic chains formed by a driving link, a rotational joint and
the fixed link and denoted as driving mechanisms.

2. Zero degrees of movability kinematic chains denoted as Assur groups.

The generation principle of a mechanism can vary depending on the selection of its input links.
There exist several types of Assur groups from which a mechanism can be formed. Nevertheless,
only CMs whose rigid equivalent mechanism include Assur groups of the second and the third
class within their kinematic structure are to be considered through this article. The combination of
this groups yields almost any practical planar mechanism [24]. Figure 1.2 illustrates the generation
principle of a 3-DOF flexure-based parallel mechanism after its three links connected to the ground
have been selected as driving links.

0 dof

+
0 dof 3 dof+

1 dof

+
1 dof

1 dof = 

Generation principle

Figure 1.2: 3RRR mechanism generation principle

1.1.4.2 Convention for rigid-equivalent mechanism determination

The initial step in the iterative force-displacement modeling of CMs is the calculation of its rigid-
equivalent mechanism kinematics. Prior to that, it is necessary to determine the geometry of the
rigid-equivalent mechanism. The dimensions of the links are determined by the location of the
equivalent rotational joints. Moreover, the location of the joints is determined specifically by each
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Assur group type present in the generation principle. Two kinds of joints within the Assur groups
are considered:

1. External or free joints: joints that connect the Assur group to other groups, the fixed link or
the driving links.

2. Internal joint: joints that connect two Assur group internal links.

The following convention to locate the equivalent rotational joints is adopted:

1. Equivalent external joint. The rotational joint is located in any of the two edges between the
rigid section and the flexure (Fig. 1.3).

2. Equivalent internal joint. The rotational joint is located in any two of the edges between the
joined rigid sections and the flexure (Fig. 1.3).

External
flexure

Internal
flexure

Equivalent
rigid link

Equivalent
internal joint

Equivalent
external joint

Equivalent
rigid link

Joints with other
group, a driving link, 
or the fixed link.

Figure 1.3: Equivalent Assur group convention

According to conventions (1) and (2), the equivalent second and third class Assur groups are
defined as illustrated in Fig. 1.4(a) and Fig. 1.4(b) respectively. Similarly, Fig. 1.4(c) shows the
convention to assign the rotational joint of an equivalent driving mechanism.

The purpose of locating the rotational joints between one of the extremities of the flexure
and one of its adjacent rigid segments is to ensure that the internal forces coming from the static
analysis are located such that each flexure can be modeled as a constant cross-section cantilever
beam with its free tip under the action of two forces, Fx and Fy, and a moment M (Fig. 1.5).
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External
flexure Internal

flexure

External
flexure

Equivalent
external joint

Equivalent
internal joint

Equivalent
external joint

(a) Equivalent second-class Assur group

External
flexure

Internal
flexure Equivalent

internal joint

Equivalent
external joint

(b) Equivalent third-class Assur group

Internal
flexure

Rigid
section Equivalent

rigid link
Equivalent internal
(fixed) joint

Free-end joints with an Assur group

(c) Equivalent driving mechanism

Figure 1.4: Equivalent Assur groups and driving mechanism convention

y

x
Θ

M
Fx

Fy

[u,v]

[x(s),y(s)]
s

Figure 1.5: Flexure hinge deflection analysis [11]

1.1.4.3 Force-displacement model

The concept of modular kinematics and force analysis is based on a divide-and-conquer approach:
the analyses are solved by the disaggregation of the mechanism into simpler kinematic chains that
can be analyzed in a hierarchical order rather than analyzing the complete mechanism. The kine-
matic chains are the so called driving mechanisms and Assur groups. The hierarchy is determined
by the order in which the chains must be added to form the mechanism (generation principle) [25].
An Assur group is defined as a determinated kinematic chain that cannot be disaggregated into
lower class Assur groups [24,25]. As a consequence, its kinematic and static models can be stated
independently being this property the keystone of the modular approach. Standard solutions for
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the kinematics and statics of different classes of groups are available in the literature [24,25]. The
solution of the modular kinematics and force problems requires:

1. To know the generation principle of the mechanism as pointed out in section 1.1.4.1.

2. To have the solution modules of the position and force problems of the driving mechanisms
and Assur groups within the generation principle of the mechanism.

3. To have the geometry (dimensions) of the equivalent driving mechanisms and Assur groups
withing the generation principle of the mechanism as pointed out in section 1.1.4.2.

Considering requirements (1–3), the force displacement procedure is carried out in the follow-
ing manner:

Step 1. Modular kinematics

Given:

1. A rigid-equivalent mechanism reference configuration (non-deflected configuration at fist iter-
ation) determined by:

(a) The position of driving mechanisms joints given by the set {rD1, . . . , rDω}.

(b) The position of Assur groups joints given by the set {RA1, . . . , RAΩ}.

Ω and ω are respectively the number of Assur groups and driving mechanisms within the
generation principle of the mechanism. rDi is the position vector of the ith driving mechanism
rotational joint and RAj is the set of position vectors of the jth Assur group rotational joints.
Both the rDi vector and the RAj set of vectors are referenced to the global coordinate system
(OXY ).

2. The prescribed orientation of the driving mechanisms,

q =
[
q1 q2 . . . qω

]T
, (1.1)

where q is a column vector of input joint angles.
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Goal. To find:

1. An updated (deflected) rigid-equivalent mechanism configuration determined by:

(a) The updated position of the driving mechanisms joints as a function of the input joint
angles

(
{rD1, . . . , rDω}(q)

)
.

(b) The updated position of Assur groups joints
(
{RA1, . . . , RAΩ}

)
.

2. The effective rotation of the flexures (Θi, i = 1, 2, . . . , γ, where γ is the number of flexures).
Θi is evaluated after the position ri of every equivalent joint (updated rigid-equivalent mecha-
nism configuration) is determined. If the flexure is placed between two rigid segments whose
orientations are described by the α and β angles (see Fig. 1.6), then the flexure effective
rotation referenced to the local coordinate system oxy is given by

Θi = β − β0 − α + α0, (1.2)

Eq. (1.2) reduces to Eq. (1.3) using the angle differences.

Θi = ∆β −∆α. (1.3)

y i

x i

α0

β0
y i

x i

Θ i

β

α

Reference configuration
Updated (deflected)
configuration

Figure 1.6: Flexure effective rotation

The modular kinematic analysis is carried out as illustrated on Fig 1.7. The mechanism refer-
ence configuration is used to calculate the current dimensions of the rigid equivalent mechanism.
After that, the position of each rotational joint within the equivalent mechanism is obtained ac-
cording to the mechanism generation principle. This implies that the driving mechanisms position
problem is first solved, which determines the position of any point laying on the driving links
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that might connect to the remaining Assur groups. As a result, the positions (constraints) of the
free-joints of the first Assur group in the sequence are obtained.

Generation principle direction

Driving
mechanismEquivalent 

rigid-body
mechanism =

Driving
mechanism

+...+ +
Assur group Assur group

+...+

Analysis direction

The sequence of generation governs the ordering of the kinematic analysis

Figure 1.7: Kinematic analysis of a rigid-body mechanism

The solution of the first Assur group position problem provides the free-joint positions of the
following Assur groups. The sequence advances in the direction of the generation principle until
the position problem of all Assur groups are solved.

Step 2. Modular force analysis

Given:

1. The rigid-equivalent mechanism updated (deflected) configuration is determined by:

(a) The position of driving mechanisms rotational joints at updated configuration(
{rD1, . . . , rDω}

)
.

(b) The position of Assur groups rotational joints at updated configuration(
{RA1, . . . , RAΩ}

)
.

2. The set of external loads (P ) applied to the Assur groups and their application points.

3. The internal moment (Mi, zero at first iteration) that equilibrates the flexure tip loads (FXi , FYi)

at the deflected configuration (see Fig. 1.5).

Goal. To find:

1. The internal forces (FXi , FYi) acting on each joint of the rigid-equivalent mechanism refer-
enced to the world coordinate system OXY .
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2. The set of driving loads (τ ) that has to be applied to the driving links to equilibrate the external
loads (P ) and achieve the prescribed rotations (q).

τ =
[
τ1 τ2 . . . τω

]T
, (1.4)

where τ is a vector of driving loads.

The procedure for the modular static analysis is illustrated in Fig. 1.8. The solution is achieved
sequentially in the opposite direction of the generation principle. First the last Assur group static-
problem is solved determining a set of joint reactions that are introduced as external loads acting
on the previous groups. After that, the previous group is solved and the sequence goes on until
all the groups within the mechanism are solved. Finally, the solution of each driving mechanism
equilibrium-problem is reached determining the driving loads (τ ) and the fixed joint reactions.

Generation principle direction

Driving
mechanismEquivalent 

rigid-body
mechanism

=

Driving
mechanism

+...+ +
Assur group Assur group

+...+

Analysis direction

The inverse of the sequence of generation governs the ordering of the 
kinetostatic analysis

Figure 1.8: Static analysis of a rigid-body mechanism

Step 3. Large deflection analysis

After the kinematic and force analysis problems are solved, the next step is to model the be-
havior of the flexure hinges through a deflection analysis stated in the following manner:

Given:

1. The flexures effective rotation (Θi).

2. The internal forces (FXi , FYi) acting on each rotational joint (flexure hinge free-end) of the
rigid-equivalent mechanism.
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3. The flexure geometry and material properties (ϕi).

Goal. To find:

1. The flexures free-end position vector (ri) at deflected configuration. This corresponds to the
correction to the position of all joints and therefore, to the new mechanism reference configu-
ration required for the next iteration.

2. The internal moment (Mi) that equilibrates the flexure tip loads (FXi , FYi) at the deflected
configuration.

The deflected shape of a flexure is described by its relative free-end position vector (oxyri =

ui + vi, see Fig. 1.5) and its free-end rotation (Θi). The left superscript oxy refers ri to the flexure
local coordinate system.

Similarly, the load applied to the flexure is described by the forces (Fxi, Fyi) and the moment
Mi acting on the flexure hinge free-end (Fig. 1.5). It should be noted that the forces (Fxi, Fyi) are
the axial and shear components of the force acting on the flexure hinge and they correspond to the
projection of the global forces (FXi , FYi) to local coordinate system oxy.

The following deflection analysis is adopted from the work by S. Venanzi et al. [11], and it is
summarized as follows:

The Euler-Bernoulli equation (for long-beam like members) is used to model each flexure hinge
when large deflections are considered by relating both the deflected shape and the forces applied
upon it. The non-linear aspect is introduced by combining the bending effects of three end loads
(Fxi ,Fyi, Mi), as it is well known that linear displacement theory disregards the contribution of
the axial force to the bending.

The bending moment acting on a section s is defined as:

M(s) = M + Fy(u− x(s))− Fx(v − y(s)), (1.5)

where s is a linear coordinate along the beam, (x(s), y(s)) are the local coordinates of the point (s)
where the bending moment is evaluated and (u, v) are the local coordinates of the free-end (Fig.
1.5). The Euler-Bernoulli differential equation states

dθ(s)

ds
=
M(s)

EI
, (1.6)
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where θ(s) is the beam rotation, E is the material elastic modulus and I is the cross section area
moment of inertia. The following identities are valid for a point of the deflected beam:

dx(s)

ds
= cos θ(s),

dy(s)

ds
= sin θ(s).

(1.7)

Combining and reorganizing Eqs. (1.5)–(1.7), the Euler-Bernoulli equation for a deflected beam
is formulated as a system of first order differential equations (Eq. (1.8)).

d

ds

θ(s)x(s)

y(s)

 =


M+Fy(u−x(s))−Fx(v−Y (s))

EI

cos θ(s)

sin θ(s)

 , (1.8)

subject to the boundary conditionsθx
y


∣∣∣∣∣∣∣
s=0

=

0

0

0

 ,
θx
y


∣∣∣∣∣∣∣
s=L

=

Θ

u

v

 . (1.9)

The boundary conditions are applied to both bounds of the independent variable s, which varies
between 0 and L for the length of the beam. Six parameters are related in Eq. (1.8) and (1.9):
M , the moment on the beam free end, Fx and Fy, the components of the load acting on the free-
end of the beam (referenced to the local coordinate system oxy), the effective rotation Θ, and the
components of the relative free-end position vector of the beam (u, v).

It should be noted that the flexure free-end position vector ri (see Sec.1.1.4, step 3, goal 1)
corresponds to the projection of the relative free-end position vector oxyri to the global coordinate
system (OXY )

If the effects of the internal axial force acting on the beam are added to Eq. (1.8), then the
accuracy of the solution is reported to be increased [11]. The boundary value problem solution
required the parameters Θ, Fx and Fy as known inputs and provides the output parameters M , u
and v. A numerical method might be implemented for this purpose [11, 17].
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1.1.5 Results

In this section the force-displacement model of a 3-DOF planar CM is performed. The symmet-
rical mechanism is capable of setting its end-effector pose and consists of an equilateral moving
platform connected by three identical compliant legs to an equilateral fixed base (Fig. 1.9). Each
compliant leg is formed by an alternating pattern of three flexures connecting two rigid segments.
The mechanism is actuated from the rigid elements connected to the base. Dimensions are de-
scribed on Table 1.1, and aluminum 7075 (E = 70 GPa) is assumed as material.

l
L1

l

l

L2

L3

L4

Compliant leg.

Fixed platform.

Moving platform.

Figure 1.9: Compliant mechanism case study

Parameter Value
l 10 mm
L1 20 mm
L2 30 mm
L3 40 mm
L4 100 mm
Flexure width 5 mm
Flexure thickness 0.1 mm

Table 1.1: Case study dimensions

24



1.1.5.1 Generation principle

The topology of the rigid equivalent mechanism is obtained after the flexures are replaced with
rotational joints (see Fig. 1.1). If the three links connected to the fixed base are selected as driving
links, then the mechanism generation principle is (see Fig. 1.2):

IR → IR → IR → IIIRR−RR−RR, (1.10)

where IR denotes a first-class driving mechanism and IIIRR−RR−RR denotes a third class Assur
group.

1.1.5.2 Rigid-equivalent mechanism

Figure 1.10 shows the assigned rigid-equivalent mechanism at its relaxed position. According to
the proposed convention of section 1.1.4.2, the mechanism parameters at relaxed configuration are
EH = FI = GJ = 30.00 mm, HK = IL = JM = 40.00 mm, KL = LM = MK = 40.00 mm,
rE = (−41.74,−34.51) mm, rF = (50.76,−18.90) mm, rG = (−9.01, 53.40) mm, θ1 = −0.599 rad,
θ2 = 1.495 rad, and θ3 = −2.694 rad.
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Figure 1.10: Compliant mechanism and rigid equivalent
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1.1.5.3 Force-displacement model

At this point, the previous conditions (see requirements 1–3 of Section 1.1.4) to the force-displace-
ment procedure are met:

1. The generation principle of the mechanism is known, expression 1.10.

2. The solution of the position and force problems of the driving mechanisms and the third-class
Assur group are known, e.g. it is possible to solve the position problem of the third-class Assur
group using a numerical strategy such as virtual variable searching. [25].

3. The parameters of the equivalent mechanism at relaxed configuration (see section 1.1.5.2).

The force-displacement model procedure (section 1.1.4), is carried out as follows:

Step 1. Modular kinematics

Given:

1. The rigid equivalent mechanism non-deflected configuration:

(a) Position of driving mechanisms rotational joints:

rD1 = rE,

rD2 = rF ,

rD3 = rG.

(1.11)

(b) Position of third-class Assur group rotational joints:

RA1 = {rH , rI , . . . , rM}. (1.12)

2. The prescribed orientation of the driving mechanisms:

q = [θ1 θ2 θ3]T . (1.13)

Let the following orientations be imposed to input links, θ1 = −0.349 rad, θ2 = 1.745 rad and
θ3 = −2.444 rad.
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Goal.
The mechanism updated configuration is calculated using the kinematic solutions of the first class
driving mechanism and third-class Assur group. For the sake of brevity the H and I joints are
proposed as control points through the whole procedure:

1. Third-class group joints positions, RA1:

rH = (−13.56,−44.78) mm,

rI = (45.56, 10.65) mm.
(1.14)

2. Flexure effective rotations Θ (Eq. (1.3))

ΘH = −0.104 rad,

ΘI = −0.104 rad.
(1.15)

Step 2. Modular force analysis

Given:

1. The rigid-equivalent mechanism updated configuration ({rD1, rD2, rD3, RA1}), calculated in
Step 1.

2. The set P of external loads and their application points.

P = {F, rP}, (1.16)

where F = (−400, 0) mN and rP is the middle point between M and L (see Fig. 1.10).

Goal.
The force analysis is solved using the kinetostatic modules of the third-class Assur group and
first-class driving mechanism in two aspects:

1. The joint forces acting on the rigid equivalent mechanism.

FH = (9.27,−41.06) mN,

FI = (131.7, 121.6) mN.
(1.17)
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2. The set of driving loads τ required to equilibrate the mechanism in the prescribed configura-
tion:

τ = [τ1 τ2 τ3]T , (1.18)

where τ1 = −0.594 N mm, τ2 = −3.485 N mm, τ3 = 6.107 N mm.

Step 3. Large deflection analysis

Given:

1. The flexure effective rotations ({ΘE, . . . ,ΘM}), calculated in Step 1.

2. The joint forces ({FE, . . . ,FM}), calculated in Step 2.

3. The flexures geometry and material properties (Table 1.1).

Goal.
The large deflection analysis is calculated solving the differential equation (1.8), by means of a
standard numerical finite difference algorithm. The solution consists of two aspects:

1. The flexures free-end position vectors ({rE, . . . , rM}), used to update the mechanism reference
configuration required in Step 1. The updated position of the fixed points H and I are selected
as control points:

rH = (−13.05,−44.00) mm,

rI = (43.98, 10.62) mm,
(1.19)

2. The internal moments ({ME, . . . ,MM}), used to update the force analysis (see Step 2). The
MH and MI flexure moments are selected as control points:

MH = 0.468 N mm,

MI = 1.639 N mm.
(1.20)

Finally the procedure returns to Step 1 (kinematic analysis), where new dimensions of the rigid-
equivalent mechanism are calculated from the mechanism new reference configuration. Steps
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(1–3) are iterated allowing for a maximal difference of 1 · 10−6 N mm between two successive cal-
culations of driving input moments τ . The problem converges after 20 iterations to the following
results:

τ = [2.207 − 2.286 9.575]T N mm,

ro = (−1.044,−0.062) mm,

ψ = −0.277 rad,

(1.21)

where ro and ψ are the moving-platform center position and orientation respectively. The deflected
shape of the mechanism is illustrated in Fig. 1.11.
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Figure 1.11: Compliant mechanism at deflected configuration

1.1.5.4 Workspace analysis and numerical validation

In this section a workspace analysis of the above described 3-RRR compliant mechanism is carry
out both with the herein proposed technique and with non-linear FEA for numerical validation
purpose. The workspace of the mechanism consists of the joint and its correspondent end-effector
workspaces. The joint workspace is the set of Cartesian points q = [θ1 θ2 θ3]

T , each of them
representing the prescribed orientation of the mechanism at a particular configuration. Correspon-
dently, the end-effector workspace is the set of points [x y ψ]T , where x and y are the Cartesian
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components of the end-effector displacement vector (ro) and ψ is the end-effector orientation (see
Fig. 1.10). The joint workspace carries the input data and the end-effector workspace the output
one. Therefore, to each point on the joint workspace corresponds one point on the end-effector
workspace. The following criteria was used in the presented study

1. Besides from the driving loads, no external loads were applied to the mechanism.

2. The workspace of the mechanism was limited to those deflected configurations in which non
of the flexure hinges of the mechanism presents an axial bending stress grater that 250 MPa.

3. The prescribed rotation range for each driving mechanism was assumed to be the same, re-
sulting from the mechanism structural symmetry and any possible prescribed orientation q =

[θ1 θ2 θ3]T within that range was evaluated.

To build up the mechanism joint workspace, a rotation range for each driving link of 0.44

rad was determined. Greater rotation range values led axial bending stresses that exceeded the
250 MPa limit. The ranges were divided into an arbitrary number of 22 intermediate values for
a total number of 223 simulations accounted into the joint workspace analysis. The end-effector
workspace was obtained through the evaluation of deflected configuration cause by each of the
prescribed orientations q on the joint workspace.

A numerical validation of the obtained end-effector workspace with ANSYS R©non-linear FEA
was conducted. To model mechanism behavior the beam4 (suitable for large deflections) element
was implemented. Each flexure was modeled using a mesh of one hundred elements in order
to obtain accurate results. For the rigid segments the same type of element was implemented.
However a mesh of ten elements was used to model each segment and the value assigned to their
stiffness was of the order of 1000 times grater than the one of the elements used to model the
flexures. Figures 1.12–1.14 illustrate both the joint and end-effector workspaces. In Fig. 1.12,
the color assigned to each of the points of the workspaces represents the mechanism maximal
axial bending stress at a this particular configuration. Similarly, the colormap used in Figures 1.13
and 1.14 represent the prediction error of the end-effector displacement and the orientation error
respectively, between the presented method and the FEA.
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Figure 1.12: Joint and end-effector workspaces with maximal axial bending stress (colormap)
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Figure 1.13: Joint and end-effector workspaces with end-effector absolute position error compared
to FEA (colormap)
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1.1.6 Conclusions

This article addresses the force-displacement model of flexure-based planar CMs considering large
deflections under quasi-static conditions. Unlike other procedures, the kinematic and force anal-
yses are solved through the decomposition of a rigid-equivalent mechanism into Assur groups.
This enables for an extended analysis capability in which the force-displacement model of a wide
variety of mechanisms can be assessed depending on the amount of Assur groups available in a
kinematic and force analysis solution library.

To validate the performance of the proposed procedure a 3-DOF CM case study was carried
out (section 1.1.5). Two simulations were conducted. First, the mechanism pose assessment under
an applied load and a prescribed orientation of the driving links. Second, a workspace analysis
subjected to axial bending stress restrictions.

The mechanism axial bending streets analysis (see Fig. 1.12) shows that the device presents
a non-symmetrical rotational stiffness, since higher stress values arise when the mechanism is
actuated to achieve counter-clockwise rotations on its end-effector. Comparisons with FEA led in
general to a good match, as the maximal error values of the end-effector position and orientation
were found to be 0.026 mm and 6.1 mrad through end-effector displacement and orientation ranges
of 15 mm and 500 mrad respectively. The maximal position error (regarding only the end-effector
displacement vector ro) took place at the most distant deflected configuration, as illustrated in Fig.
1.13. In the same manner, the highest orientation error occurred at the deflected configuration of
maximal end-effector orientation ψ value (see Fig. 1.14). According to this, considering a more
extensive workspace that conveys the mechanism to reach more distant configurations, might result
into an increase in the error between the introduced technique and the FEA predictions. However,
such considerations are not practical, since operating the device at this configurations might result
into mechanical failure.

Scope and Future Work. Only CMs whose rigid equivalent can be dissagregated into Assur
groups might be modeled with the proposed technique. No consideration of buckling effects is
taken into account into the deflection analysis.

Real experimental test to validate the procedure, together with the implementation of a dynamic
model, and a capable model of fully compliant mechanisms are proposals for future work.
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Abstract

The calculation of forces in the kinematic pairs of mechanisms by inverse dynamics is usually per-
formed without friction considerations. In practice, when examination of articulated mechanisms
takes into account friction, the solution of the inverse dynamics results in a complex procedure. If
a modular approach for the inverse dynamics is used, then exact solutions are available, but not
necessarily practical. For example, the analytical solution for a second-class first-type Assur group
is a 16th degree equation. Previous researches proposed an approximated but practical (graphical)
method to determine the forces on the kinematic pairs taking into account the friction forces. In this
article, an analytical interpretation of the Artobolevski approximated method is developed for the
second-class Assur group with three rotational pairs. The final results for the reactions calculated
with the implemented method present a good approximation with respect to the graphical solution.
Future work should consider friction forces not only in second-class groups with rotational joints
but in second-class groups with prismatic joints and higher-class Assur groups.
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Glossary
f ′ Non-dimensional friction coefficient of a rotational pair.
F Force magnitude. [N].
J Inertial moment of mass. [kg m2].
l Link length. [m].
m Mass of a link . [kg].
M Moment of a force, force pair. [Nm].
P Power. [W].
r Shaft radius of a rotational pair. [m].
R Rotational kinematic pair.
RAB Relative position vector of point A with respect to point B.
sgn() Sign function.
Tc Drive input torque of a driving mechanism. [Nm].
Greek symbols
γ , δ Angular parameters. [rad].
η Mechanical efficiency of a mechanism.
ω Angular velocity of a link. [rad/s].
Subscripts

f Friction component of a force or moment.

h,i,j,k Link h, link i, link j, link k.
Supperscripts
n Force component normal to a link.
t Force component parallel to a link.

1.2.1 Introduction

In the context of the dynamic analysis of the articulated mechanisms, it is usual to neglect friction
effects in the kinematic pairs. However, when calculating performance, accurate dynamics or
power consumption are required, and friction in the kinematic pairs needs to be considered.

The accurate calculation of friction forces and moments (by inverse dynamics) in the kinematic
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pairs of articulated mechanisms results in a complex procedure [26]. The problem complexity is
due to the non-linear character of the required models. A graphical iterative solution to the problem
of inverse dynamics (kinetostatics) of planar mechanism taking into account friction was proposed
by [27]. This solution is limited by its graphical nature.

This paper presents a practical alternative to the kinetostatic analysis of second-class mech-
anisms with rotational pairs allowing friction in the kinematic pairs. The developed approach is
based on the modular concept developed by [28] for the analysis of planar mechanisms based on
their structure. The approach corresponds to a chain-based general purpose program in terms of
computer aided analysis of mechanical systems [24]. Major advantages of chain-based general
purpose programs are flexibility and computer efficiency, being possible to analyze a great variety
of mechanisms [24]. To develop a modular approach it is necessary to codify independent analyti-
cal solutions (modules) for a number of kinematic chains with a special condition (Assur groups).
The analysis of a particular mechanism is performed by assembling the modules corresponding to
the driving mechanisms and the Assur groups forming the mechanism.

A methodology to obtain a kinetostatic model allowing for kinematic pair friction in any struc-
tural group is proposed (see section 1.2.3, Fig. 1.18). The proposed methodology is applied to the
kinetostatic modeling of the second-class first-type Assur group (see section 1.2.3.1). A four-bar
mechanism formed by a driving rotational mechanism and a second-class first-type Assur group is
used as a case study of the modular kinetostatic analysis (see section 1.2.4.1). Finally, conclusions
are drawn and future work is proposed (see section 1.2.5).

1.2.2 Literature Review

1.2.2.1 Computer aided analysis methods for mechanical systems

Computer aided analysis methods for mechanical systems are divided into two categories [29]:

1. Special Purpose (SP).

2. General Purpose (GP).

GP methods are codified as libraries without any specific mechanism, but including the nec-
essary elements to virtually assembly a mechanism. GP libraries could be developed over the
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kinematic joint concept or over the kinematic unit concept. For planar mechanisms a kinematic
unit corresponds to a structural group or Assur group.

For joint based GP programs the library contains a number of kinematic joints and bodies.
Multi-body system (MBS) dynamics became the basis of joint based programs for dynamic analy-
sis of planar and spatial mechanisms. A modern tendency in MBS dynamics is to develop modular
methods and hierarchical simulations [30–32]. For planar linkages [33] present an MBS dynamic
simulator that allows (Dahl) friction in the kinematic pairs. Dynamics of a planar rigid-link mech-
anism with rotating slider joint and simplified friction calculations are presented in [34,35]. In [36]
a specific case of static analysis of spherical closed chains allowing joint friction calculations was
developed. The estimation of friction is developed using a successive approximation method, how-
ever, with respect to the approach presented here, the methodology requires to formulate a new set
of equations for each new mechanism structure to be analyzed.

GP programs based on kinematic units. Libraries developed using the kinematic unit GP ap-
proach contain a number of kinematic chains with a special characteristic that is, they can be
assembled in some way to form a mechanism. In the case of planar chains such characteristic cor-
responds with the definition of Assur groups. The most important feature of this kind of programs
is that it comprises the advantages of both SP programs and joint based GP programs, [24] lists
them as: computational efficiency (like SP programs) and flexibility (like GP programs).

Kinematics of mechanisms by a kinematic unit GP approach are reported as follows: Refer-
ence [37] presents an iterative method for the forward kinematics of higher-class Assur groups
by decomposing it into dyadic (second-class) forms. Reference [25] develops a virtual searching
method for the position analysis of higher-class Assur groups, [23] presents a general and optimal
numerical method to calculate the kinematics of a mechanism when its structural classification is
given, [38–40] develop a position analysis in polynomial form of Assur groups of class 4 and 3
including some prismatic joints, [41] research a modular approach for the kinematic analysis of
mechanisms, [42] analyze the position of an eight-link Assur group using a vector technique.

GP programs based on kinematic units for kinetostatic analysis (inverse dynamics) of mecha-
nisms were developed by [43–45] for second-class mechanisms and [46] for second and third-class
mechanisms. Friction in the kinematic pairs is neglected in those works.

Dynamics of mechanisms by a kinematic unit GP approach are reported as follows: Reference
[47] presents a method for the dynamic analysis of planar mechanisms using Assur groups and
a state-space formulation of the dynamics. Reference [24] develops a general method for the
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dynamic analysis of mechanisms using a modular approach based on the concept of neutral (Assur)
and expansion modules. There are no kinematic pair friction considerations in those programs.

The present article proposes an analytical but practical method to the inverse dynamics of Assur
groups allowing friction in the kinematic pairs. The analytical and modular form of the method
allows to develop a modular approach for the kinetostatic analysis of planar mechanisms.

1.2.3 Methodology

Methods for the kinematic, inverse and forward dynamic analysis based on structural groups are
general and modular. A structural group can be identified as a kinematic chain without degrees
of freedom with respect to the links which with it forms pairs and such that it is not possible to
divide in simpler chains with the same characteristic [41]. The analysis of a structural group can
be established independently and then codified as a computer function or module in a library. The
variety of mechanisms that could be analyzed with a library depends on the number of modules the
library includes. However, most industrial mechanisms are formed by combinations of first-class
(driving) mechanisms (Fig. 1.15) and second-class structural groups (Fig. 1.16).
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Figure 1.15: First-class (driving) mechanisms

B

C

D
a. First type (RRR) b. Second type (RRP)

D

B
C

c. Third type (RPR)
B

C
D

e. Fifth type (PPR)
B

C

D
d. Fourth type (PRP)

C

B D

Figure 1.16: Second-class structural groups
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In inverse dynamics we assume that the laws of motion of the driving mechanisms are given.
Therefore it is possible to stream the kinematics from group to group until the entire mechanism
is solved. The solution is developed in the direction of the structural sequence of the mechanism
using the required modules (Fig. 1.17). To complete the force analysis the last group in the
structural sequence is isolated. The pair reactions are solved using the correspondent kinetostatic
module. The solution comes from group to group in the opposite way of the structural sequence
until the driving force or torque is solved (Fig. 1.17).
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Figure 1.17: Kinematics and kinetostatic analysis of mechanisms with a modular approach

The analytical solution of the kinetostatics of structural groups without friction in the kinematic
pairs results in a linear problem. However, when friction in the kinematic pairs is allowed the
problem becomes non-linear and complex. In particular, for a second-class first-type structural
group an exact analytical solution allowing friction results in a 16-degree equation [26]. Therefore
a simpler estimation method is needed.

Reference [27] proposed a graphical approximated method for the inverse dynamics of struc-
tural groups allowing friction. This method could be implemented with a parametric CAD pro-
gram, but it is not practical for the analysis of complex mechanisms nor for multiple configurations
of a mechanism. [26] recommends not applying this method when the analyzed mechanism is close
to a self-locking configuration. In such configuration friction forces dominate and the approxima-
tion could not be valid. In mechanisms self-locking is defined when the work of the driving forces
is not enough to overcome the resistive forces different from the workloads, e.g. the friction forces
actuating on the kinematic pairs. When a mechanism is close to a self-locking configuration its
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mechanical efficiency comes to zero, Eq. 1.22.

η =
Wl

Wd

≈ 0 (1.22)

where the mechanical efficiency η is defined as the ratio of the work of the useful resistive loads
(Wl) to the work of the driving forces (Wd). To analyze complex mechanisms and for multiple
configuration analysis a computer aided analytical solution is desirable.

The following methodology (see Fig. 1.18) is proposed to obtain an iterative analytical solution
of the kinetostatics of a structural group allowing friction in the kinematic pairs:

Kinetostatic formulation of the 
  structural group without 
  friction in the kinematic pairs

Implement analytical force calculation without 
friction for the structural group

Implement analytical iterative pair friction 
force calculation for the structural group

Graphical validation by parametric CAD 

Module for the kinetostatics 
  of  the structural group 
  (neglecting friction in the pairs)

Module for the kinetostatics of 
  the structural group allowing for 
  friction in the kinematic pairs

Module for the kinetostatics of 
  the structural group allowing for 
  friction in the kinematic pairs

Friction models for 
  the kinematic pairs

Figure 1.18: Kinetostatic modeling of structural groups allowing friction in the kinematic pairs

1. Obtain a kinetostatic (D’Alembert) formulation without friction forces and moments for the
structural group. Analytical solutions of the pair reactions within the group are formulated.

2. Establish a friction model for the kinematic pairs in the structural group. Several options are
acceptable for the pair friction models, from a simple Coulomb model to a Dahl one [33].

3. Include the friction forces and moments in the kinetostatic formulation (as external loads).

4. Codify an independent computer function with successive approximation process for the
pair force calculation in the structural group.

39



5. Develop a parametric computer aided drawing (CAD) validation for pair forces in the struc-
tural group. [48] proposed a parametric CAD method for the kinematics of planar mecha-
nisms that is expandable to kinetostatics.

As an example of the proposed methodology, the kinetostatic model allowing friction of the
second-class first-type structural group is developed in section 1.2.3.1. This methodology is ex-
pandable to other second-class or higher-class Assur groups.

1.2.3.1 Kinetostatics of the second-class first-type Assur group

For the kinetostatic analysis of the second-class first-type Assur group neglecting friction in the
kinematic pairs, the known parameters are:

1. The geometry of the links,

2. The kinematics of the structural group, and

3. The inertial parameters of the links.

Figure 1.19 presents a dynamic equilibrium diagram of the second-class first-type structural
group neglecting friction in the kinematic pairs. Solving the dynamic equilibrium over the entire
group by the x and y components:

Fhi,x + Fi,x + Fj,x + Fkj,x = 0 (1.23)

Fhi,y + Fi,y + Fj,y + Fkj,y = 0 (1.24)

where Fpq corresponds to the force of link p over link q, pq = hi, kj. Fi, Fj are the sum of the
external and inertial forces over links i and j respectively.

Taking force moments around C, for links i and j :

RBC,xFhi,y −RBC,yFhi,x +Mi +MFi,C = 0 (1.25)

RDC,xFkj,y −RDC,yFkj,x +Mj +MFj,C = 0 (1.26)
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Figure 1.19: Second-class first-type Assur group, dynamic equilibrium diagram

where Mp is the sum of the external and inertial moments over link p, and MFp,C is the sum of the
force moments of external and inertial forces actuating on link p with respect to C, p = i, j.

Equations (1.23)–(1.26), form a linearly independent system for the reactions Fhi and Fkj

neglecting friction in the kinematic pairs. To calculate the reaction on the C pair the sum of forces
over link i or j can be solved. Taking the sum of forces over link i by the x and y components:

Fhi,x + Fi,x + Fji,x = 0 (1.27)

Fhi,y + Fi,y + Fji,y = 0 (1.28)

To estimate the kinematic pair reactions with friction effects it is necessary to calculate the
friction moments in the kinematic pairs (Mhi,f , Mij,f , Mji,f andMkj,f , Fig. 1.20). A model for the
friction in the kinematic pairs is required. A simplified Coulomb model is assumed (Eq. (1.29)).
However, a sophisticated model can be used, e.g. a smooth (Dahl) friction model is proposed
by [33]. The assumed model for friction in rotational kinematic pairs is

Mf = Frf ′ (1.29)

where r is the radius of the cylindrical element on the pair, f ′ is the friction coefficient on the
rotational pair and F is the load over the shaft. The friction moment is opposite with respect to
the relative movement of the links forming the pair. The friction coefficient for a rotational pair is
greater than the nominal friction coefficient between the materials forming the pair. An accepted
estimation is to calculate it as 4/3 of the friction coefficient between the materials [26]. However, a
more sophisticated estimation of the coefficient can include mechanical characteristics of the joint,
e.g. parameters of the bearing forming the pair. With the assumed model (Eq. 1.29) the initial
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estimation of the friction moments in the kinematic pairs of the second-class first-type structural
group is as follows:

Mhi,f = −sgn(ωi − ωh)Fhif ′BrB (1.30)

Mji,f = −Mij,f = −sgn(ωi − ωj)Fjif ′CrC (1.31)

Mkj,f = −sgn(ωj − ωk)Fkjf ′DrD (1.32)

were ωp is the angular velocity of the link p, f ′Q is the friction coefficient in the rotational pair
Q, sgn() is the sign function and rQ is the radius of the cylindrical element forming the pair,
p = h, i, j, k, Q = B, C, D. Including the friction moments in the kinetostatic formulation, Eqs.
(1.25)–(1.26):

RBC,xFhi,y −RBC,yFhi,x +Mi +MFi,C +Mhi,f +Mji,f = 0 (1.33)

RDC,xFkj,y −RDC,yFkj,x +Mj +MFj,C +Mij,f +Mkj,f = 0 (1.34)
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Figure 1.20: Second-class first-type Assur group, dynamic equilibrium diagrams with friction
moments

In Eqs. (1.33)–(1.34) the friction moments are functions of the magnitude of the radial forces
on each rotational pair. Therefore it is not possible to determine directly the reactions Fhi, Fji, and
Fkj by means of Eqs. (1.23), (1.24), (1.27), (1.28), (1.33) and (1.34). A practical form to solve
this problem is to use a method of successive approximations:

1. For the first approximation the moments of the friction forces are equal to zero. Mhi,f = 0,
Mji,f = −Mij,f = 0, and Mkj,f = 0. The problem is reduced to the solution of the
kinetostatics neglecting friction by the linear set of Eqs. (1.23)–(1.28).
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2. Assuming a friction simplified model Eq. (1.29), the initial estimation of the friction mo-
ments is calculated by the Eqs. (1.30)–(1.32).

3. Using the estimated values of the friction moments calculated in step 2, a new set of reactions
Fhi, Fji, Fkj is determined by the set of Eqs. (1.23), (1.24), (1.27), (1.28), (1.33) and (1.34).

4. Iterate the calculation process the new values for Fhi, Fji, Fkj are used in step 2 for friction
moments. A new set of kinematic pair reactions is determined in step 3.

5. The iteration process finishes when the difference of the magnitude of the reactions in con-
secutive calculations is small enough. The maximum difference can be defined depending
on the units and magnitudes of the reactions calculated in the analysis. In this sense, the
difference depends on the analyzed mechanism. As an example, the four-bar mechanism
analyzed in section 1.2.4.1 contains a second-class first-type Assur group. The magnitude of
the reactions in the Assur group is of order 1 · 103 N. The reference value for the difference
of the reactions between calculations was defined as 1 · 10−3 N.

Figure 1.21 presents a diagram for the proposed model. The obtained model for the second-
class first-type Assur group can be codified as an independent module or computer function. Such
function could be included in a GP chain based library for the analysis of planar mechanisms.

The method of modeling presented here for the kinetostatic analysis allowing friction in the
kinematic pairs of the second-class first-type Assur group is expandable to any other second-class
or high-class Assur group. Section 1.2.3.2 presents the modeling of the rotational driving mecha-
nism allowing friction in the rotational pair.

1.2.3.2 Kinetostatics of the rotational primary mechanism

Figure 1.22 presents the dynamic equilibrium diagram for a rotational driving mechanism with
a torque input and friction moment in the rotational pair. The sum of forces for the dynamic
equilibrium is:

F0h + Fh = 0 (1.35)

where Fh is the sum of the external and inertial forces over link h and F0h is the reaction in the
rotational pair. The effect of other links forming pairs with link h is included as an external force
and moment.
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Figure 1.21: Kinetostatic model of a second-class first-type Assur group allowing friction in the
kinematic pairs

It is possible to solve the reaction F0h using directly the Eq. (1.35). Once the reaction is solved
it is possible to determine the required input torque for dynamic equilibrium. Calculating the sum
of moments with respect to A (Fig. 1.22):

Tc +M0h,f +Mh +MFh,A = 0 (1.36)

where Tc is the required input torque for the dynamic equilibrium, Mh is the sum of the external
and inertial moments andMFh,A is the sum of the force moments of the inertial and external forces
with respect to A.

The friction moment M0h,f can be determined assuming a model for the friction in the rota-
tional pair. Assuming a simplified friction model, Eq. (1.29), and including the sign function to
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Figure 1.22: Rotational primary mechanism: dynamic equilibrium diagram allowing friction in
the rotational pair

determine the direction of the friction moment:

M0h,f = −sgn(ωh − ω0)F0hf
′
ArA (1.37)

where ωp is the angular velocity of link p, f ′A is the friction coefficient on the pair, rA is the radius
of the cylindrical element on the pair, and p = 0, h. The input torque (Tc) can be solved directly
from Eq. (1.36).

Equations (1.35)–(1.37) can be codified as an independent module or computer function. Such
function could be included in a chain-based GP library for the analysis of planar mechanisms.

As an application and validation the inverse dynamics of a four-bar mechanism allowing fric-
tion in the rotational kinematic pairs is developed in section 1.2.4.

1.2.4 Results

In this paper a kinetostatic model of the second-class first-type Assur group is presented. The
model allows friction in the kinematic pairs. The pair reactions are calculated using an iterative
method avoiding non-linearities and complicated solutions. Although the obtained model is for
the second-class first-type structural group, it is possible to extend the method of modeling (Fig.
1.18) to any second-class or higher-class structural group.

A simplified friction model is assumed to estimate the friction moments in the rotational pairs
(Eq. 1.29); however, other models are allowed, e.g. a Dahl model for friction in rotational pairs
[33].
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Analytical models for the kinematics and kinetostatics of first-class mechanisms and second-
class structural groups were codified as modules of a computer library. If a graphic user interface
(GUI) is used to develop the modules, then each structural group or driving mechanism is repre-
sented by a block. The structural sequence of the mechanism can be established wiring properly
the blocks, Fig. 1.23.
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Figure 1.23: Kinematic modular analysis of a four-bar mechanism using a graphic user interface
(GUI). Structural sequence: IR0,1 → IRRR2,3

A computer aided graphical validation of the presented modules was developed using a para-
metric CAD software (SolidWorks). SolidWorks is a product of Dassault Systèmes SolidWorks
Corp. A second-class mechanism including a first-class rotational mechanism and a second-class
first-type structural group is used as a validation model (section 1.2.4.1).

1.2.4.1 Modular kinetostatics of a four-bar mechanism

Figure 1.24 presents a four-bar mechanism with parameters specified in Table 1.2. For the analysis,
the mechanism is assumed to be in steady state. The input angular velocity is assumed to be
constant (ω1 = 10 rad/s). The structural classification of the four-bar mechanism is:

IR0,1 → IIRRR2,3 (1.38)

where IR is for a driving mechanism with a rotational pair and IIRRR is for a second-class first-
type Assur group.

We assume that the kinematics of the four-bar mechanism is given. The kinetostatic analysis
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Figure 1.24: Four-bar mechanism

Parameter Magnitude Parameter Magnitude Parameter Magnitude
lAB 2.00 m lDS3 1.50 m F2,external 1.0 kN ↓
lBC 6.00 m m1 4.8 kg M3,external −250 N m
lCD 3.00 m m2 30.0 kg J1 1.70 kg m2

lAD 5.50 m m3 7.2 kg J2 48.80 kg m2

lBS2 2.80 m δ 0.152 rad J3 5.50 kg m2

lBS 2.50 m γ π/6 rad f ′ (a) 0.40
lAS1 1.00 m r (a) 7.50 mm

(a) Same radius and friction coefficient for all joints

Table 1.2: Four-bar mechanism: geometric and inertial parameters

is developed for the range of movement of the input link with evaluations each π/180 rad. The
modular kinetostatic analysis allowing friction in the kinematic pairs of the four-bar mechanism is
as follows:

1. Solve the kinetostatics of the second-class structural group formed by links 2 and 3. The
module for the kinetostatics of the second-class structural group corresponds with the codi-
fication of the methodology described in section 1.2.3.1.

2. Stream the solutions in step 1 to the first-class mechanism and solve the input drive torque
and reactions. The module for the kinetostatics of the first-class mechanism corresponds
with the codification of the solution of the set of Eqs. (1.35)–(1.37), section 1.2.3.2.

Figure 1.25 shows the kinetostatic analysis process of the four-bar mechanism.

The results of the inverse dynamic analysis of the four-bar mechanism are presented in Figures
1.26, 1.27 and 1.28. Three solutions are calculated:
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Figure 1.25: Kinetostatic analysis of a four-bar mechanism with a modular approach

1. Calculating pair friction effects using a modular approach and the successive approximation
method proposed here,

2. Calculating pair friction effects using a joint-based MBS dynamic program (rough calcula-
tion of pair friction forces without iteration in SimMechanics). Most of commercial MBS
simulation software uses an approximate calculation of friction forces without iteration, e.g.
classical (stiction) friction.

3. Neglecting friction in the kinematic pairs.

The presented outputs are: the required driving torque (Fig. 1.26), the required power to
overcome the friction in the kinematic pairs (Fig. 1.27), and the reaction at pair D (Fig. 1.28).
The criterion for breaking the iteration process was established as 1 · 10(−3) N for the difference
on consecutive calculations of the magnitude of the pair reactions in the IIRRR structural group.
SimMechanics is a product of the MathWorks Inc. The results solving the inverse dynamics prob-
lem by the method of successive approximation developed here and by using an MBS dynamic
simulator are basically coincident. However, the solution presented here is straightforward with
respect to the MBS dynamic simulation because it does not require the solution of any differential
equation of movement.
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Figure 1.26: Kinetostatic analysis of a four-bar mechanism. Required driving torque

Figure 1.27: Kinetostatic analysis of a four-bar mechanism. Required power to overcome pair
friction
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Figure 1.28: Kinetostatic analysis of a four-bar mechanism. Pair D reaction

1.2.4.2 Computer aided graphical validation

A computer aided graphical solution using a parametric CAD software (SolidWorks) was devel-
oped as a validation of the second-class first-type structural group module. Such validation uses
the successive approximation method by [27] with three iterations. The validation was performed
using the four-bar mechanism proposed in section 1.2.4.1. Ten equally-spaced configurations of
the driving mechanism were evaluated for the reactions at pairs B, C and D. The maximum dif-
ference between the calculation of the pair reactions using the analytical method of successive
approximations proposed here and the graphical method with 3 iterations was lower than 0.1 %.

1.2.4.3 Known limitations

The analytical method for the kinetostatic analysis of Assur groups allowing friction in the kine-
matic pairs presented here is not adequate in cases in which the mechanism is close to a self-locking
configuration. Self-locking occurs when the work of the driving forces is not enough to overcome
the resistive forces different from the workloads. In such configurations the influence of friction
forces is important and an approximated estimation leads to big calculation errors [26].
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The proposed analysis method does not consider singular configurations of the mechanism.
The definition of singular configurations adopted here corresponds to the definition of [49]. For
serial singular configurations the analysis is not adequate if the mechanism is near to self-locking.
For parallel and architectural singular configurations the proposed kinetostatic analysis method
must be avoided.

1.2.5 Conclusions and Prospective

The performance of a mechanism during its periodic movement depends on the work needed to
overcome the productive and non-productive resistances. Usually non productive resistances are
mainly the result of friction. In mechanisms, the calculation of reactions with friction usually leads
to a non-linear problem. Therefore, approximated methods of calculation as the one developed
here (section 1.2.3) are practical and useful.

The analytical solutions for the kinetostatics of structural groups allowing friction in the kine-
matic pairs presented in this paper correspond to the so called general purpose programs based on
chains (modular approach). The modular approach allows codifying computer functions with em-
phasis in making input data structure easy to understand. Therefore, very complex planar linkages
may be described using a simple and familiar form of the input data.

For the development of the kinetostatic analytical models for structural groups allowing friction
in the kinematic pairs a methodology was proposed (section 1.2.3, Fig. 1.18). Such methodology
is based in an iterative but practical solution. With respect to commercial software, the proposed
modular approach for the kinetostatic analysis of mechanisms has the following advantages:

1. The modules for mechanism analysis developed by this method preserve the characteristics
of the GP programs based on kinematic chains: computational efficiency and flexibility. In
consequence, with respect to commercial MBS simulation software the flexibility is com-
parable. In the case of MBS simulation software the complexity of the mechanisms that
can be analyzed depends on the number of joints that are coded. In the case of the modular
approach the complexity depends on the structural groups that are coded. However, most of
industrial mechanisms are formed only by driving mechanisms and second-class structural
groups.

2. With respect to commercial MBS simulation software the proposed methodology is straight-
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forward because it does not require the solution of any differential equation of movement.

Future work is proposed developing modules for the analysis of higher-class structural groups,
structural groups with prismatic joints, and the inclusion of more elaborated friction models of the
kinematic pairs.
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1.3 “Erratum to A Novel Technique for Position
Analysis of Planar Compliant Mechanisms [Mech.
Mach. Theory 40, 2005, pp. 1224–1239]”

Authors of the Erratum:
Jorge Correa, Oscar Ruiz, Sebastián Durango
{jcorre20, oruiz, sdurang1}@eafit.edu.co

CAD CAM CAE Laboratory
EAFIT University

Medellı́n, Colombia

Authors of the original article:
S. Venanzia, P. Giesenb, V. Parenti-Castellia

a DIEM Department of Mechanical Engineering, University of Bologna
b TNO TPD, Institute of Applied Physics, DOI Division Optical Instrumentation

This article was published in Mechanism and Machine Theory 45 (5), 2010, p. 811,
ISSN 0094-114X.

By kind information of the below cited authors of the present errata, the following two errors
have been found:

1. In Section 4 of paper [11], end of first paragraph, the correct external load compatible with
the results reported in the case study is FR = (−0.3, 0.0) N instead of FR = (0.5, 0.0) N.

2. In Section 4.2, the correct expression for the angle θ3 is θ3 = −(γ − γ0− β + β0) instead of
θ3 = γ − γ0 − β + β0.

The authors of the original paper thank the commentators for their detailed analysis and for
kindly conveying this information both to them and to the readers of this journal.

Authors of the errata:

Jorge E. Correa, Oscar E. Ruiz, Sebastián Durango
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Chapter 2

Force-Displacement Model of Compliant Mechanisms by Design of Computer

Experiments

This chapter is devoted to the force-displacement model of compliant mechanisms (CMs) by De-

sign of Computer Experiments (DOCE). Different from chapter 1, this contribution is available not
only for flexure-based CMs but for CMs with distributed flexibility and spatial movement.

The contribution is presented through the article 2.1 corresponding to an invitation to rework
the paper [8] for republication in the Special Issue of the Journal of Engineering with Computers
(Elsevier) on “Engineering Analysis and Simulations Based on Virtual Prototypes”.
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Abstract

This article discusses a procedure for force-displacement modeling of Compliant Mechanisms
(CMs) by using Design-Of-Computer Experiments (DOCE). The application discussed produces
a force-displacement meta-model, or closed analytic vector function, that aims at controling CMs
in real-time. In our work the meta-modeling (factorial and space-filling DOCE) of CMs is sup-
ported on FEA. The procedure discussed is used to model the HexFlex mechanism functioning
under quasi-static conditions. The HexFlex is a parallel CM for nano-manipulation that allows six
degrees of freedom (x, y, z, θx, θy, θz) of its moving platform. In the multi-linear model fit of
the HexFlex the products or interactions proved to be negligible, therefore yielding a linear model
for the operating range. The accuracy of the meta-model was calculated conducting a set of com-
puter experiments with random uniform distribution of the input forces. Three error criteria were
recorded comparing the meta-model prediction with respect to the results of the FEA experiments
by determining: i) maximum of the absolute value of the error, ii) relative error, and iii) root mean
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square error. The maximum errors of our model are lower than high-precision manufacturing tol-
erances. These errors are also lower than those reported by other researchers who have tried to fit
meta-models to the HexFlex mechanism.

keywords: Design of Computer Experiments, Design of Experiments, Compliant Mechanism,
Meta-modeling, Plackett-Burman Design, Uniform Design.

Glossary
XY Z Fixed reference coordinate system
T1 Input force port on Tab1
T2 Input force port on Tab2
T3 Input force port on Tab3
D1 Direction parallel to the connection beams in the HexFlex
D2 Direction perpendicular to the plane that contains the HexFlex on its relaxed position
τ Vector of input forces and torques
r End-effector pose vector
x, y, z Coordinates of a point in XY Z frame
θx, θy, θz Set of Euler angles
DOE Design of Experiments
DOCE Design of Computer Experiments
CM Compliant Mechanism
DOF Degrees of Freedom

2.1.1 Introduction

In traditional mechanisms movement is achieved using kinematic joints (cylindrical, spherical,
prismatic, etc.) and links that are as rigid as possible. In contrast, Compliant Mechanisms (CMs,
[50]) are mechanical devices which undergo elastic deflections to transmit motion, force or energy
from specified input ports to output ports. The main advantage of CMs with respect to traditional
rigid-link mechanisms is that fewer parts, and assembly processes, and no lubrication are required.
However, due to the complexity of their motion (which is actually a deflection), CMs cannot be
designed and analyzed by traditional kinematic methods [51].
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In addition, CMs’ force-displacement (Input/Output or I/O) model is required for a signifi-
cant number of applications. In particular, closed form models are required in real-time control
applications.

A common tool in designing a CM is the optimization of its geometry or topology according to
a proposed performance function. Achieving “good” values of the performance functions closely
relates to a “desirable” structure, both geometrically and topologically [52–54]. Each instance of
the CM produces values of the function to be optimized, and the search of a desirable geometry or
topology is therefore a minimization problem. This approach reduces human intervention in the
design but gives as a result structures that can be impossible to build [55], (e.g. because they might
have unconnected components).

Two methods are used to relate CM deflections against forces and/or torques [12]: 1- Pseudo
Rigid Body Model (PRBM) and 2- Numerical methods (FEA).

PRBM considers a CM as being a traditional static structure where the joints are produced
by concentrated elasticity zones [11, 56, 57] which produce the flexibility or lumped compliance

while the rest of the mechanism may be considered rigid. To be useful, PRBM must deal with
lumped compliance zones which have closed analytic solutions relating force/torque vs. deflection.
This aspect considerably limits the applicability of PRBM. On the other hand, if FEA is used to
model CMs, the designer is basically solving solid mechanics differential equations by numerical
methods. Since each run of the solution requires considerable numerical processing, numerical
methods are not suitable for time-critical applications (e.g. real-time control). In general, the lack
of tools to model CMs is recognized as an open research problem [11].

This article presents a methodology to synthesize a Force (Input) - Displacement (Output)
model of CMs working under quasi-static conditions. It is required that the model be suitable for
real-time applications and therefore it must be a low degree polynomial Multi-Input Multi-Output
(MIMO), which we will refer to as meta-model. Besides being fast, the sought model is able to
address both lumped and distributed compliance. Obviously, to determine such a model using
Design-Of-Experiments (DOE) methodologies, series of experiments must be conducted. In our
case, we will call experiment an FEA simulation of force/torque vs. displacements. This is a
Design-of-Computer-Experiments (DOCE) methodology.

The layout of this article is as follows: section 2.1.2 presents a literature review and compares it
with the contributions of this work; section 2.1.4 presents the proposed methodology and its scope
for force-displacement modeling of CMs under quasi-static conditions. The case study “HexFlex”
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CM is developed in section 2.1.5, and section 2.1.6 concludes the article.

2.1.2 Literature Review. Modeling of Compliant
Mechanisms

2.1.2.1 Meta-models

The term meta-model in computer experiments represents a surrogate model based on the use of
statistical techniques to yield mathematical equations that approximate the results rendered by
computer algorithms such as FEA [58]. If the true nature of a computer analysis code is u = w(v)

where v are the inputs and u are the outputs of the computer code then a surrogate model or meta-

model of the analysis code is û = z(v) where û is an approximation of the outputs of the computer
code so that û = u+ ε with ε being the approximation error.

Meta-models have benefits in screening variables, reducing design costs and optimizing de-
signs [59]. They are applied here to model the quasi-static behavior of the HexFlex mechanism.
The HexFlex is a six degrees of freedom parallel CM with distributed compliance for nano-
manipulation created at MIT by Martin L. Culpepper and Gordon Anderson [60, 61].

2.1.2.2 Analysis and Design of Compliant Mechanisms

Topology and geometry optimization methods applied to CMs allow to tune up shapes, dimensions
and connectivities to achieve a good numerical value of a function which evaluates the efficiency of
the CM. The optimization (see [12]) relies in any case on the possibility of relating forces/torques
vs. positions/deflections in the mechanism. For such a purpose, structural optimization uses either
PRBM or numerically solved differential equations (FEA).

2.1.2.3 Topology Optimization

Topology optimization consists of finding the optimal connectivity and geometry of a loaded struc-
ture within a specified region and with specified performance criteria. Reference [62] discusses
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the topology optimization method for designing CMs. Reference [63] proposes honeycomb tes-
sellation and material-mask overlay methods to obtain optimal single-material compliant topolo-
gies. Topology optimization methods based on material distribution are reported to be usually
ill-posed [50]. Alternatives to this problem are proposed in the form of homogenization [64], the
Solid Isotropic Material with Penalization method (SIMP, [65]) and level set methods [50]. Ref-
erence [66] uses topology optimization methods to develop constant output force CMs for a given
actuator characteristic. Reference [62] proposes a method for non-linear optimization based on
geometric and material non-linearities to obtain a desired displacement under a specific load.

The topology optimization methods are limited to the design stage. The majority of the meth-
ods that use topology optimization for the synthesis of CM are applied about a particular operation
point of the mechanism. Topology optimization requires relating force/torque conditions with po-
sition/deflection of mechanisms/structures. To find this relation, PRBM and FEA are used, as
discussed next.

2.1.3 Pseudo Rigid Body Modeling

PRBM is used to design static structures which behave as movable mechanisms. In the structure,
local regions (e.g. flexural joints, notch hinges) are chosen and intentionally weakened so that
they undergo large deflections having what is called lumped compliance. In this way, the structure
behaves as a mechanism (i.e. has degrees of freedom) although strictly speaking no kinematic
joints are present.

In the designed structure the PRBM differentiates stiff from flexible components. The former
are modeled as completely rigid while the latter provide mobility to the mechanism (displace-
ment and torsional springs, non-linear elastic beams, etc.). These hyper-flexible members can be
analyzed with closed differential equations (e.g. flexural cantilever beam). In the PRBM model
the stiff members do not deflect, so that deflected ones absorb the whole angular displacement
becoming rotational joints.

A key step of the PRBM is to estimate the equivalent application point and equivalent elastic
constant of the spring represented by the flexible cantilever beam.

The PRBM approach is mathematically addressed under linear and non-linear strain formula-
tions. This means that the strains are expressed in terms of linear and non-linear displacements.
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From theory of elasticity, strains can be formulated as functions of the partial derivatives of
the displacement functions, and higher-order partial derivatives are usually involved. The linear
formulation neglects partial derivatives that have an order or power larger than one. The follow-
ing articles present linear PRBM as fundamental part of their formulation: In [67], an analytical
scheme for the displacement analysis of micro-positioning stages with flexural hinges is presented.
The scheme replaces the hinges by linear springs, allowing the creation of simple I/O models of
the mechanisms based on their elastic energy equations. Analytical models of rotational and trans-
lational compliant joints are presented in [68]. In [69], PRBM is applied to predicting the behavior
of a nano-scale parallel guiding mechanism which uses two carbon nano-tubes as flexural links.
The kinematic behavior was reported 92,7% accurate with respect to a molecular simulation. Ref-
erence [70] presents the design of a three degree of freedom planar CM based on the 3RRR rigid
mechanism. The design of bistable CMs based on the PRBM and calculations of the potential en-
ergy and moment required to move it to a particular position is presented in [71]. In reference [72]
the kinematic and force analysis of compliant driven robotic mechanisms is made based on equa-
tions that relate joint torques, joint angles and displacements. The I/O model of a 3RRR compliant
micro-motion stage replacing its flexures with a set of equivalent springs is presented in [16].

Non-linear PRBM is based mainly on the application of Euler beam models or deflection mod-
els based on the Castigliano’s second theorem to model the flexible members of the CM solving
higher order partial derivatives of the strain formulation. The following articles present non-linear
PRBM as part of their formulation: Reference [73] discusses conic section flexure hinges using
Euler beam model and Castigliano’s second theorem. Reference [74] develops an extension of
the Frenet-Serret beam equations to apply it on the synthesis of CMs. Reference [75] introduces
an analytical approach to corner filleted flexure hinges using the Castigliano’s second theorem.
In [18] a PRBM is developed and solved for the tip deflection of flexible beams under combined
loads. It uses a numerical technique to solve the large-deflection Euler-Bernoulli beam equation.
Reference [57] develops a synthesis and analysis PRBM for the limit positions of a four-bar mech-
anism with an output compliant link (one end pinned to the coupler, one end fixed to the ground).
The lumped compliance is modeled by non-linear beam theory, allowing for large non-linear de-
flections of the pinned end of the compliant link. The model only applies for a given topology.
In [11], PRBM is enhanced to allow large deflections of elastic hinges. Four elastic hinges (leaf
spring, cross, notch, and Haberland) are modeled and a joint-based modular approach is obtained.
The modeling technique reported reduces the time needed for off-line modeling and design but not
enough for real-time control. Reference [76] presents the mathematical model, derived from the
second Castigliano’s theorem, for a 6 DOF CM. The forward and inverse analyses of an open loop
CM are developed in [77] by using numerical methods to solve large deflections of the mechanism.
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Reference [78] develops a mathematical dynamic model, based on large-deflection beam models,
for compliant constant force compression mechanisms.

In general, PRBM is useful to model lumped compliance. Models obtained with linear PRBM
can be applied in real-time control but is restricted in precision engineering applications because of
its low accuracy [11, 50]. Non-linear PRBM is suitable for accurate modeling and design, but it is
not computationally efficient for real-time control. At any rate, PRBM requires that the geometry
and loads of the elastic links allow for a closed-form analytic solution. These considerations
seriously hinder the application of PRBM.

2.1.3.1 Numerical Methods

PRBM works when parts of the structure analyzed are significantly weaker than others in the
body. The weaker ones concentrate the movement. The stiffer ones are considered totally rigid.
In addition, the weaker parts must have a geometry that accepts close forms of force-deflection
equations [11]. When the mechanism hinges do not accept closed analytical force/deflection so-
lutions, and computing time is not an issue, FEA is applicable for their analysis and simulation.
Reference [79] presents a procedure for the optimal design of flexural hinges for compliant micro-
mechanisms. The optimal design is developed by coupling an FEA model to an optimization
algorithm. The optimization is intended to maximize the rotation of the hinges under kinematic
and strain constrains of the material of the hinge. Because of its time expenses, a pure FEA mod-
eling of CMs is restricted to the design stage of the mechanism, being excluded from real-time
control applications.

Reference [80] presents a localized application of FEA in CMs. In the design stage, two main
steps are taken to complete a force/deflection model: 1- The elastic properties of the hinges are
estimated by an independent 3D FEA. 2- The FEA-estimated properties are incorporated into a
general CM model by the use of equivalent beams. This hybrid model may be applied in a reduced
manner for real-time I/O models of CMs. However, the method is limited because the geometry of
the zones in which the equivalent flexible beam meets the rigid parts has a considerable influence
on the predictions of deflections and stress concentrations of the CM.

Reference [81] presents the synthesis of CMs. The merit of the article is that, unlike others, it
extensively presents the usage of highly non-linear Finite Elements, allowing the modeling of very
large deflections.
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Reference [22] describes the design of a compliant robotic wrist able to perform spherical
motions. The inverse and direct kinematics and the design of flexures of the spherical compliant
mechanisms are computed by FEA. In [82], the stiffness properties of a (compliant) notch hinge
are computed using FEA relating the initial and final positions of the mechanisms under known
loads. The procedure is only used to find the properties of the flexures and not to find an I/O model
of the CM.

In [83], a synthesis method for spatial CMs is proposed. The mechanisms are modeled as
a set of connected three dimensional wide curves. A three dimensional wide curve is a spatial
curve with variable cross section. Deformation and performance of the mechanism are evaluated
by an iso-parametric degenerate-continuum nonlinear FEA procedure. Notice that no analytical
force-deflection model is sought in this reference.

Summarizing, numerical methods such as FEA are useful in determining the deflection and
stresses in CMs because they allow to analyze CMs that have a geometry that is not easily modeled
using methods like the PRBM. However, FEA cannot be used in a real-time scenario to control
CMs. For this purpose, an intermediate I/O model must be estimated. This is the purpose of our
current investigation.

2.1.3.2 Contribution of this Article

This article presents a new general procedure for modeling CMs under quasi-static conditions by
DOCE methodology. The proposed approach allows to model CMs that have lumped or distributed
compliance. The main advantages of the proposed approach with respect to traditional modeling
methods (PRBM, topology optimization, FEA) are:

1. The methodology is general enough to cover both lumped and distributed CMs.

2. The obtained I/O model might be simple enough to be used in real-time control.

3. Real experimentation is replaced by computer simulations reducing costs in product devel-
opment.

It is clear to us that DOCE does not replace DOE (i.e. with physically conducted experiments).
However, the pre-fitting of the model by using DOCE serves to identify and avoid ranges, interac-
tions and limitations that would make the DOE extremely expensive.
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As an application of the methodology, the 6 DOF CM HexFlex is modeled by finding an
accurate model with respect to FEA simulations.

The differences in application domains between PRBM, FEA and DOCE techniques should be
emphasized here: PRBM is only applicable to mechanisms whose geometry can be decomposed
into links for which an analytical expression for force/torque vs. deflections is possible. PRBM
is fast and accurate but its application domain is reduced. FEA presents no restrictions in the
geometry of the mechanisms or bodies being analyzed. However, it is a slow method and definitely
not suited for real-time applications. DOCE allows to calibrate systems (not only mechanisms) and
to obtain an I/O model which is fast and accurate for the particular operation point chosen. In our
case, DOCE uses FEA as a subsidiary tool to carry the computer experiments and therefore allows
to tune up the I/O model. In DOCE, if the mechanism or the operating point are changed, a new
DOCE model is required. In a typical application of DOCE for mechanisms, a given mechanism
is calibrated or modeled via computer experiments. Next, it is installed in the host device and then
controlled via the analytical I/O model previously obtained.

2.1.4 Methodology for Meta-modeling of Compliant
Mechanisms.

2.1.4.1 Workflow and Used Software Packages

Figure 2.1 displays the assembly of computational tools to fit the DOCE model. This model is a
set of hypersurfaces (r1, r2, etc.) in the multidimensional space of the input variables τ1, τ2, ... (Eq.
(2.1)), as shown in the upper right corner. The statistical fitting of the model (upper left corner of
Fig. 2.1) is carried out with MATLAB c© code, by using a Plackett-Burman DOE shown in Table
2.2. Such values are calculated by a number of FEA simulations in ANSYS c© (lower row of Fig.
2.1) controlled from the MATLAB c© programs. ANSYS c© , therefore, acts in this case as a FEA
server subordinated to MATLAB c© programs.
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Figure 2.1: ANSYS c© as a FEA server controlled from MATLAB c©

2.1.4.2 Design of Computer Experiments

In Meta-modeling of CMs we are looking for a function f that relates the input forces and torques
(τ ) with translations and rotations of the end-effector (r) under quasi-static conditions:

f : τ → r,

τ =
[
τ1 τ2 · · · τn

]T
,

r =
[
r1 r2 · · · rm

]T
,

(2.1)

where m ≤ n.

For an end-effector taking an arbitrary pose, we have m = 6. We assume that the mechanisms
are not redundant (i.e. m = n).

To model CMs under quasi-static condition using meta-models from computational experi-
ments, the methodology presented in Fig. 2.2 is proposed and summarized as follows:

1. Define the CM topology. The set of factor parameters is the vector of input forces and
torques (τ ).

2. Propose a virtual model of the CM. This model is usually MIMO polynomial model, calcu-
lated in the vicinity of the operating point.
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3. Use a Fractional Factorial DOE (e.g. Plackett-Burman) to screen variables. The main factors
and interactions are obtained by virtual experiments.

4. Use an Space Filling DOE (e.g. Uniform Design [84]) to fine-tune the mathematical model
of the mechanism by virtual experiments.

5. Construct the surrogate model of the kinematics of the CM.

6. Verify the accuracy of the meta-model using extra experiments [58].

Computer ExperimentsComputer Experiments

Experiments design
matrices

Metamodeling

Virtual model of the
compliant mechanism 

Verify the metamodelVerify the metamodel

Main Factors and
interactions

End-effector poses

Compliant mathematical
metamodel 

Verified metamodel

Compliant mechanism 
topology and force 
actuation scheme
Experiment parameters:
-Number of runs
-Factors and its levels

Design Of Experiments
(Space filling design - Factorial Design)

Figure 2.2: Methodology for force-displacement meta-modeling of compliant mechanisms

The previous steps define the scope of our article. However, it must be kept in mind that actual
experiments must be conducted to fit an industrially applicable meta-model. Our contribution
permits to execute this material experiments with a minimum of cost overhead.

In section 2.1.5 the proposed methodology is applied to obtain a mathematical meta-model of
the HexFlex parallel CM. The developed meta-model relates the actuator forces at the input ports
with the position and orientation of the end effector.

2.1.4.3 Methodology Scope

The presented methodology for modeling CMs is limited to:
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1. CMs that allows small displacements of its end-effector.

2. Input forces and moments slowly varying in time (quasi-static conditions).

3. The model is restricted to the neighborhood of the the operation point for which was calcu-
lated.

4. Although the proposed methodology is general for CMs, the obtained force-displacement
models are specific for each individual case.

In spite of these limitations, the proposed force-displacement modeling of CMs by DOCE is rel-
evant for a wide range of applications because most CMs are designed for small displacements
of its end-effector under quasi-static conditions, specially in compliant parallel nano-manipulating
mechanisms.

It must be pointed out that the DOCE methodology applied in this article is specifically pre-
scribed when an I/O model is required of a largely or totally unknown phenomenon or system. We
fit a DOCE model which relates forces (Inputs) to end-effector positions (Outputs) of a mecha-
nism. The application scenario of such a model is the real-time control of the mechanism, in the
neighborhood of an operating point. Because one is interested in real-time control, an accurate
but slow FEA model is out of question. The DOCE model might be a linear, quadratic, cubic,
etc. approximation around the operating point. DOCE allows to trim the polynomial model by
neglecting high level interactions if their statistical significance is low. In this article this trimming
led to a linear meta-model.

Section 2.1.5 shows the meta-modeling of the HexFlex CM under quasi-static conditions.

2.1.5 Case Study. Force-displacement Meta-modeling
of the HexFlex Mechanism

Applying the procedure described in section 2.1.4 the HexFlex parallel CM is meta-modeled.

The meta-model of the HexFlex mechanism is developed in detail as follows: in section 2.1.5.1
the mechanism is described. The input factors (input forces) and its levels are determined. Section
2.1.5.2 develops the Fractional DOE to determine the main factors and interactions. Section 2.1.5.3
presents the Space Filling DOCE and the meta-modeling of the HexFlex CM by conducting FEA
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tests. Finally, section 2.1.5.5 successfully validates the meta-model just obtained by running 1000
FEA tests and comparing their results against the meta-model predictions.

2.1.5.1 The HexFlex Mechanism

The topology and dimensions of the HexFlex mechanism are shown in Fig. 2.3. This mechanism
allows the moving platform translation and rotation of the X , Y and Z axes as shown in Fig. 2.4.
The HexFlex is consist of a triangular moving platform, three tabs to provide an interface with the
actuators, and six connection beams between the moving platform and the grounded zone (Fig.
2.3(a)).

Tab 3

Fixed Fixed

Fixed

Tab 1

Tab 2

Connection beam

Moving
platform

X

Y

Z

(a) HexFlex components

12
4.

5

20

8

1.27

40 1.
27

Units:
Thickness:

mm
3.05

(b) HexFlex main dimensions

Figure 2.3: Six DOFs compliant mechanism [85]

To control the moving platform there are two actuators in the external edge of each tab. For
each tab, one actuator acts in direction parallel to the connection beams (called direction one and
denoted D1) and, the other actuator acts perpendicular to the tab (Z direction, D2) as shown in
Fig. 2.5. The tabs are denoted T1, T2, T3. The motion of specific actuator is denoted by the tab
followed by the direction using the convention shown in Fig. 2.5.

The actuators used in the experiments allow a force of 1 N. The positive direction of actuators
for D2 coincides with the direction in which Z is positive, and for D1 the positive direction of
actuators is as shown in Fig. 2.5. Slowly varying in time forces are assumed for the experiments
(quasi-static experiments). Planar and non-planar displacements may be made simultaneously.
The material selected to model the mechanism is Aluminum 7075.
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Figure 2.4: Six DOFs complaint mechanism in deflection

To define the meta-model function, the vector of input forces (τ ) and pose of the end-effector
(r) are defined by:

τ =
[
T1D1 T1D2 T2D1 T2D2 T3D1 T3D2

]T
, (2.2)

r =
[
x y z θx θy θz

]T
, (2.3)

where the end-effector pose (position and orientation) is defined by three translational components
(x, y, z) and three differential Euler XY Z angles (θx, θy, θz), and the input forces correspond to
the actuators in the tabs. Differential Euler angles are commutative and therefore the order of the
x, y and z rotations do not affect the final orientation [86].
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Figure 2.5: HexFlex actuators direction

The reference frame or World Coordinate System is chosen to be at the center of gravity of
the moving platform in its relaxed position (Fig. 2.6). The moving platform coordinate frame is
attached at its centroid. Therefore, in a relaxed position the reference frame and the moving frame
coincide.

Using the symmetry of the mechanism and the dimensions shown on Fig. 2.3(b), a sixth part of
the mechanism was modeled and meshed to make a geometric FEM model of the mechanism (Fig.
2.6(a)). Using geometric transformations, the mechanism was completed developing a symmetri-
cal mesh. Then the mesh was exported to ANSYS c© (Fig. 2.6(b)) using quad shell elements to run
the virtual DOE . For a given set of input loads in the tabs, the computer experiments produce the
position and orientation of the moving frame on the mechanism.

Operation Ranges. The selection of operation ranges for the DOCE is based on the recommen-
dations of the HexFlex mechanism designers [85], corresponding to a force range of ±1 N. As for
the operating point for the HexFlex mechanism, we adopted the usual one in the literature, which
is x = 0, y = 0, z = 0, θx = 0, θy = 0, and θz = 0. It must be pointed out that, in addition to the
reviewed literature, the ranges, convenience of the operating point, and elimination of high degree
and crossed-influence terms were verified by the series of computer experiments carried out by the
methodology applied in this article.

The upper and lower levels of each factor for the Fractional Factorial and Space Filling DOE
are displayed on Table 2.1. The factors or inputs of the experiments are defined by Eq. (2.2) and
correspond to the actuation forces of the mechanism, which are the controllable input variables
(i.e. factors) of the experiment.
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Figure 2.6: FEA model of the HexFlex Mechanism

Factor Low level High level
T1D1 −1 N +1 N
T1D2 −1 N +1 N
T2D1 −1 N +1 N
T2D2 −1 N +1 N
T3D1 −1 N +1 N
T3D2 −1 N +1 N

Table 2.1: Studied Factors. Forces in Tabs of the HexFlex

Sections 2.1.5.2 and 2.1.5.3 develop the Factorial and Space Filling DOCE defining the meta-
model of the HexFlex.

2.1.5.2 Fractional Factorial DOE

To screen factors a Plackett-Burman DOE (see [87, 88]) with 12 runs is made. Plackett-Burman
designs are very economical and efficient when only main effects are of interest. A script was
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developed to automatically generate the virtual experiments and their results. The DOE matrix
and the results of each response are shown on Table 2.2.

Design Matrix Responses
T1D1 T1D2 T2D1 T2D2 T3D1 T3D2 x y z θx θy θz

[N] [N] [N] [N] [N] [N] [µm] [µm] [µm] [µrad] [µrad] [µrad]
1 −1 1 −1 −1 −1 115056 0, 6 −862976 0, 0001 −0, 0001 3, 10176
−1 −1 1 1 1 −1 −57529 99636, 5 −287659 −39, 3596 −68, 0656 3, 10183

1 −1 −1 −1 1 1 −3 −0, 6 −287655 −39, 2665 68, 1194 −9, 30545
−1 −1 −1 −1 −1 −1 −57525 −99636, 5 −862976 0, 0001 −0, 0001 3, 10186

1 1 −1 1 1 −1 −3 −0, 6 287655 39, 2665 −68, 1194 −9, 30545
1 1 1 −1 1 1 57525 99636, 5 287659 39, 3596 68, 0656 −3, 10186
−1 −1 −1 1 1 1 −115056 −0, 6 287662 −78, 6262 0, 0539 −3, 10176
−1 1 −1 −1 −1 1 −57525 −99636, 5 287659 39, 3596 68, 0656 3, 10186
−1 1 1 1 −1 1 3 0, 6 862976 −0, 0001 0, 0001 9, 30545
−1 1 1 −1 1 −1 −57529 99636, 5 −287662 78, 6262 −0, 0539 3, 10183

1 1 −1 1 −1 −1 57529 −99636, 5 287655 39, 2665 −68, 1194 −3, 10183
1 −1 1 1 −1 1 115056 0, 6 287662 −78, 6262 0, 0539 3, 10176

Table 2.2: Plackett-Burman DOE Matrix for Six factors and 12 runs

To analyze the results of the Plackett-Burman DOE, Half Normal Probability (HNP) (Fig.
2.7) and Pareto (Fig. 2.8) plots are made. These analyzes provide a simple way to examine the
response variables (i.e. x, y, z, etc) and the relative importance of the factors and interactions of
the experiment.

The Pareto charts results coincide with Half Normal Probability (HNP) showing that the main
effects are consistent with the symmetries of the topology of the mechanism (Fig. 2.5). The
symmetries of the mechanism also caused that some effects had the same value.

In addition to the Pareto charts and HNP analysis, another way of looking at the resulting
effects consists of using Lenth’s plots [89]. The absolute values of the aliasing of the effects are
sorted in ascending order to calculate the median (ν). Once the median is calculated a pseudo-
standard error (S0) is estimated using the formula: S0 = 1.5ν. The pseudo-standard error serves to
define the margin of error (ME) and the simultaneous margin of error, by using the 0.975-quantile
and tg,m/3 of the t-student distribution allowing fractional degrees of freedom. The results for these
analyses are displayed on Table 2.3 and indicate which independent variables (T1D1, T1D2, T2D2,
T3D2, T2D1, T3D1) have effects on which dependent variables (x, y, z, θx, θy, θz). Because this
is a fractional factorial design, we can only screen at this point the existence of such dependency.
Later on, using a Space Filling technique we will confirm and quantify them. The responses are
affected as follows:
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Figure 2.8: Pareto Charts. Placket-Burman DOE for 12 runs and 6 factors for HexFlex quasi-static
conditions
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1. x and θz are mainly affected by T1D1, T2D1, and T3D1.

2. z and θx are mainly affected by T1D2, T2D2, and T3D2.

3. y is mainly affected by T2D1 and T3D1.

4. θy is mainly affected by T2D2 and T3D2.

x y z θx θy θz
[µm] [µm] [µm] [µrad] [µrad] [µrad]

T1D2 0,17 0 575314 78,63 0,05 0
T2D2 0,17 0 575317 39,36 68,07 0
T3D2 0,17 0 575321 39,27 68,12 0
T2D1 57527,50 99637,1 0 0 0 6,20
T3D1 57531,50 99635,9 0 0 0 6,2
T1D1 115053,50 0 0 0 0 6,20
ν 19,63 0 287657 19,63 0,03 3,10
S0 29,45 0 431486 29,45 0,04 4,70

ME 110,73 0 0 0 0 0
SME 265,34 0 0 0 0 0

Table 2.3: Lenth’s analysis of Six DOF HexFlex Mechanism

Also, it is evident that to obtain in-plane displacements (x, y, θz) the actuators should exert
force in direction one (D1) and that out-of-plane displacements (z, θx, θy) are generated when
actuators act in direction two (D2).

2.1.5.3 Space Filling DOE and Meta-model of the HexFlex

To generate a valid meta-model of the HexFlex mechanism a Uniform DOE (see [90]) with six
factors and six levels is used (see Table 2.1). A Uniform Design is a modification of fractional
factorial designs that provides scatter design points in the experimental domain space. The design
matrix and the FEA output displacements found using Ansys c© are shown on Table 2.4.

2.1.5.4 HexFlex Mechanism Meta-modeling

After running the space filling DOE (section 2.1.5.3), the next step consists of choosing an appro-
priate approximation model.
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Design Matrix Responses
T1D1 T1D2 T2D1 T2D2 T3D1 T3D2 x y z θx θy θz

[N] [N] [N] [N] [N] [N] [µm] [µm] [µm] [µrad] [µrad] [µrad]
0,6 -0,2 -1,0 -1,0 1,0 -0,2 -23,00 0,00 -403,37 15723,33 27294,40 -8057,19

-0,6 -0,6 0,2 1,0 -1,0 0,2 0,00 -39,85 172,88 -47310,09 -27294,38 5583,32
-0,2 0,2 -0,2 -1,0 -1,0 0,6 11,5 -59,78 -57,63 15769,99 54588,86 3098,05
-1,0 -0,2 1,0 0,6 -0,2 1,0 -23,01 39,85 403,37 -39390,09 13647,29 6831,66
1,0 0,2 1,0 1,0 0,6 0,2 69,02 79,71 403,37 -15723,33 -27294,40 -1883,93

-1,0 -1,0 -0,2 -1,0 -0,2 -1,0 -57,52 -19,93 -864,35 -116,71 -0,06 3120,86
-0,6 0,2 -1,0 1,0 0,2 0,6 -69,02 -39,85 518,61 -23596,69 -13647,16 -1838,28
0,6 -0,6 0,6 0,6 0,2 -1,0 46,01 39,85 -288,11 -15816,67 -54588,89 -635,59

-1,0 1,0 -0,6 -0,2 -0,6 0,2 -57,52 -59,78 288,10 39483,43 13647,20 3120,87
0,2 1,0 0,2 1,0 -0,2 -0,6 23,01 0,00 403,35 31610,14 -54588,88 612,76

-0,6 0,6 0,2 -1,0 0,2 1,0 -34,51 19,93 172,86 23690,01 68236,09 1872,51
1,0 -1,0 -0,2 0,6 -0,6 -0,2 69,02 -39,85 -172,86 -47356,77 -27294,41 -1883,92

-1,0 0,6 -0,2 0,6 0,6 -0,2 -80,53 19,93 288,11 15816,74 -27294,44 646,99
-1,0 0,2 0,6 -0,6 1,0 -0,6 -69,02 79,71 -288,12 31516,73 -0,05 1883,92
1,0 1,0 0,6 -1,0 -0,2 0,2 80,52 19,93 57,61 55230,10 40941,61 -646,99
1,0 0,6 -1,0 0,2 0,2 -0,6 23,01 -39,85 57,61 31563,44 -27294,47 -6831,66
0,2 1,0 -0,6 -0,6 0,6 -1,0 -23,01 0,00 -172,89 70976,84 -13647,30 -4334,97
0,6 0,6 -0,6 0,6 -1,0 1,0 46,02 -79,71 633,86 -7803,34 13647,27 -635,57
0,2 0,2 0,6 0,2 -0,6 -0,2 46,01 0,00 57,62 7896,70 -13647,22 3086,63
0,6 -0,2 0,2 -0,6 -1,0 -0,6 69,02 -39,85 -403,37 15723,35 -0,04 1838,29
0,6 -0,6 1,0 -0,6 -0,6 0,6 80,52 19,93 -172,86 -23690,10 40941,67 3075,22
0,2 -1,0 0,2 0,2 1,0 1,0 -11,50 59,78 57,64 -63103,51 27294,51 -3098,05

-0,2 0,6 1,0 -0,2 -1,0 -1,0 46,01 0,00 -172,88 47310,13 -27294,50 6808,84
-0,6 -1,0 1,0 -0,2 0,6 -0,2 -23,01 79,71 -403,35 -31610,10 0,00 3109,44
-0,2 -0,6 -0,6 -0,6 0,2 0,2 -34,51 -19,93 -288,11 -15816,74 27294,44 -1849,69
-0,2 -0,6 -0,6 1,0 1,0 -0,6 -57,52 19,93 -57,62 -31563,37 -54588,85 -4323,57
-0,6 -0,2 -1,0 0,2 -0,6 -1,0 -46,01 -79,71 -288,12 7850,04 -40941,69 635,59
-0,2 1,0 0,6 0,2 1,0 0,6 -23,01 79,71 518,60 23736,74 13647,23 -612,77
1,0 -0,2 -0,2 -0,2 0,6 1,0 34,51 19,93 172,88 -23643,42 40941,70 -5594,73
0,2 -1,0 -1,0 -0,2 -0,2 0,6 -11,50 -59,78 -172,85 -47356,81 27294,48 -3098,03

Table 2.4: Uniform DOE and results of the Experiments

Low-order polynomials have been used effectively to build approximations in a variety of
applications including force-displacement modeling [91]. Here a second order polynomial with
interactions is used for meta-modeling an input-output of the HexFlex mechanism.

The chosen polynomial model for the input-output meta-model of the HexFlex mechanism is
shown in Eq. (2.4).

ri = β0 +
k∑
i=1

βiτi +
k∑
i=1

βiiτ
2
i +

k∑
i=1

k∑
j=1

βijτiτj, (2.4)

where i = 1, . . . , 6, j = 1, . . . , 6, i < j, and τ and r are defined in Eq. (2.2) and Eq. (2.3)
respectively.
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The Placket-Burman DOE analysis reveals out which interactions of the behavior of the mech-
anism are not important and are therefore negligible in Eq. (2.4). Also, preliminary experiments
showed that the quadratic terms of Eq. (2.4) do not influence the behavior of the mechanism and
are therefore neglected. The resulting force-displacement meta-model of the HexFlex mechanism
is shown on Eq. (2.5).[

x y z θx θy θz

]T
= ST

[
T1D1 T1D2 T2D1 T2D2 T3D1 T3D2

]T
, (2.5)

where the matrix ST (Eq. (2.6)) represents the I/O matrix of the mechanism. Each term of ST is
found using a penalized least-squares regression [92, 93]. The units associated to the elements ST
for the HexFlex are as follow: rows 1 to 3 µm/N and rows 3 to 6 µrad/N.

ST =



57, 5 0 28, 8 0 −28, 8 0

0 0 49, 8 0 49, 8 0

0 287, 7 0 287, 7 0 287, 7

0 39313, 0 0 −19679, 9 0 −19633, 3

0 0 0 −34032, 0 0 34060, 2

−3101, 8 0 3101, 8 0 −3101, 8 0


. (2.6)

2.1.5.5 Validation of the HexFlex Meta-model

To validate the accuracy of the the meta-model, 1000 random experiments with uniform distri-
butions and factor levels between −1 N and 1 N are made. The found forward model is used
to compare the pose estimations using meta-modeling against the FEA software Ansys c©. The
precision of the model is calculated using three error criteria:

1. The maximum absolute error (MAXABS Eq. (2.7)).

2. The relative error between the meta-model and the FEA model.

3. The root mean square error (RMSE Eq. (2.8)) over the set of experiments.

The MAXABS and relative % of error, allows the calculation of the local error. The RMSE

provides good estimate of the global error. The error between meta-model predictions and the
Ansys c© results is shown in Table 2.5. The deformed shape of the mechanism for one of the
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experiments made to validate the accuracy of the meta-model is shown in Fig 2.9.

MAXABS = max
{∣∣∣ψi − ψ̂i∣∣∣}

i=1,...,nerror
, (2.7)

RMSE =

√∑nerror
i=1 (ψi − ψ̂i)2

nerror
. (2.8)

MAXABS MAX RMSE
%error

x [µm] 4,01E-04 1,08E-03 8,67E-05
y [µm] 4,18E-04 3,59E-04 2,07E-05
z [µm] 2,85E-04 2,41E-04 4,19E-05

θx [µrad] 2,41E-02 2,26E-03 9,78E-04
θy [µrad] 4,16E+00 6,21E-01 5,57E-03
θz [µrad] 2,10E-02 2,30E-03 2,23E-03

Table 2.5: Error between meta-model estimations and Ansys c© simulations for 1000 random ex-
periments with uniform distribution

X
Y

Z

Undeformed shape

Input forces

T1D1
T1D2

T3D2

T2D2

Deformed shape

Figure 2.9: Deflected shape of the HexFlex mechanism for one meta-model validation experiment

2.1.6 Conclusions

This article presented a computer-based meta-modeling methodology for the force-displacement
modeling of CMs under quasi-static conditions using DOCE. The methodology is applied to obtain
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a force-displacement model of the six degrees of freedom HexFlex CM. To obtain the meta-model
of the HexFlex, virtual experiments based on Plackett-Burman and Uniform DOEs are performed
using FEA. The obtained meta-model of the HexFlex is linear for the movement range of the
mechanism. The accuracy of the meta-model was calculated by running 1000 FEA-based com-
puter experiments. The values found in the experiment were compared against those generated by
the meta-model. The results of the comparison can be observed in Table 2.5. These results led us
to conclude that the meta-model is sound for the ranges and operating point chosen.

Performing Factorial DOE it was possible to identify characteristics of the behavior of the
mechanism, such as the presence of symmetries in the actuation and the quasi-static behavior of
the mechanism. A Uniform DOE was employed to fine tune the model of the mechanism. The
mechanism was modeled using a low-order polynomial, because of its quasi-static behavior and
small displacements. The model found allows to have an I/O model of the mechanism yielding
a transfer function for developing real-time control. It should be noticed that the (linear) model
obtained is easily invertible, which adds to its applicability. However even if the model obtained
was not linear, its invertibility is guaranteed because it is a polynomial approximation around the
vicinity of the operating point.

Nonetheless DOCE is not intended to replace real-experiment-based DOE but to forecast /
ignore possible interactions and to fine-tune ranges, thereby reducing costs of experimentation and
model/product development.

Scalability and Symmetry. The scalability and symmetry of the discussed method deserve the
following comments: 1- A scaled copy of the mechanism does not have the scaled I/O function
of the original mechanism. A reason for this behavior is that size has effects on the flexibility of
the material. 2- A scaled copy of the mechanism accepts the same DOCE methodology propose,
to reach its I/O function. 3- The DOCE method applied here does not make use of symmetries of
the modeled mechanism. However, we did use symmetries in checking the values of the obtained
coefficients (Eq. (2.5) and Eq. (2.6)) with the purpose of finding possible modelingor calculation
errors. Symmetries helped us to find and correct such procedural errors, reaching a meaningful
equation. Although it was not a goal for this article, future work might include the consideration
of mechanism symmetries to find the coefficients (not only to check them).

Applicability to Other Mechanisms. DOE, and DOCE in particular, are methods that can be
applied to complex systems whose I/O function is fully or partially unknown. A mechanism is
not different, in this sense, to a chemical or a biotechnological process. DOCE methodology is
able to model other mechanisms, even if they are not of the HexFlex types. The numerical models
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obtained for different mechanisms will indeed be different in the classification of input and output
variables, sensitivities, etc. However, the DOCE methodology will still be valid to find the I/O
function of such mechanisms.
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Chapter 3

Kinematic Identification of Parallel Mechanisms

This chapter is devoted to the kinematic identification of parallel mechanisms. Its contribution is
a new Divide-and-Conquer (DC) protocol for the kinematic identification of parallel mechanisms
based on the inverse calibration method introduced by [4]. Different from available kinematic
identification methods, the proposed protocol exploits the structural symmetries of parallel mech-
anisms in order to set a symmetrical-independent identification for each leg.

Two articles are presented. In article 3.1 the new DC protocol is developed. The protocol
includes the novel symmetrical aspects of kinematic identification. However, it is centered on the
identification itself. Article 3.2 is focused on the symmetrical observability of leg parameters what
represents its novel contribution. Kinematic identification is proposed as a natural application of
symmetrical observability.

Both articles 3.1 and 3.2 are based on the published conference paper [10]. Article [10] is not
included in this dissertation, nevertheless its content is covered in articles 3.1 and 3.2.
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Abstract

This article presents a new kinematic identification protocol suitable for symmetrical parallel
mechanisms, with the following contributions: (i) a Divide-and-Conquer (DC) strategy in which
the kinematic identification is developed independently on each leg of the mechanism using the
inverse calibration method, and (ii) a symmetric groups application that takes advantage of the
symmetrical observability of the leg parameters sets. Compared to traditional identification meth-
ods, the main advantages of the proposed DC protocol are: (i) cost reduction in the design of
identification poses using observability symmetries. The pose selection is carried out only for a
reference leg, allowing the poses of the remaining (nlegs − 1) legs to be dictated by symmetrical
operations performed on the selected poses, and (ii) improvement of the numerical efficiency of the
procedure for the selection of optimal identification poses. We adopted a pose selection algorithm
supported on determinant-based index instead of traditional eigenvalue-based ones, reducing the
computation complexity of the optimal identification poses. The kinematic identification of a 3
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degrees-of-freedom symmetrical parallel mechanism is discussed as a case study, and the perfor-
mance of the calibrated mechanism is evaluated through forward kinematic simulations.

keywords: Kinematic Identification, Parallel Mechanism, Divide-and-Conquer Strategy, Symmet-
ric Group, Symmetrical Observability.

Glossary
C Jacobian identification matrix
F Constraint kinematic equation
G Group
L, l Length of a link
N Number of identification poses
Q Column matrix of active-joint configurations
Q Q matrix of a QR decomposition
P Column matrix of parametric representations of the end-effector orientation
R Column matrix of end-effector position vectors
R R matrix of a QR decomposition
RRR Rotational - rotational - rotational kinematic structure
V Polygon
g Inverse kinematic equation
k Gain of an active-joint sensor
nDOF Number of degrees of freedom
nlegs Number of legs of a parallel mechanism
nϕ Number of parameters to be identified
q Active joint variable
q Vector of active joint variables
r Position vector
s Singular value

Greek symbols
α, β Planar angles
γ Offset of an active-joint sensor
ϕ Set of kinematic parameters of a parallel mechanism
λ Symmetry operation
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θ Active-joint angle
ρ Parametric representation of an orientation, e.g. a set of Euler angles
σ Standard deviation
ψ Reading of an active-joint sensor

Subscripts

C Symmetrical observability

M Mechanism

Q Active joints

W Workspace

i Indexing variable

κ κth leg of a parallel mechanism

Superscripts
T Transpose
j jth pose of the mechanism

3.1.1 Introduction

In mechanisms and manipulators, the accuracy of the end-effector critically depends on the knowl-
edge of the kinematic parameters that rule the control model, [4]. Thus, the kinematic parameters
of a mechanism have to be estimated precisely to improve its accuracy [7]. The process of estimat-
ing the kinematic parameters and updating the kinematic model is formally known as kinematic
identification or kinematic calibration [6, 7].

This article addresses the kinematic identification of symmetrical parallel mechanisms which
are defined as follows:

1. The number of legs equals to the number of degrees of freedom of the mechanism.

2. Each leg is controlled by one actuator.

3. Each leg has the same pattern of joints and links.

4. In at least one particular pose the kinematic structure of the mechanism defines a symmetric
group GM [94]. A group is a set G equipped with an internal operation �, such that the
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operation is associative, has closure, and has both a neutral and an inverse element inG [95].
A particular example of a symmetric group is the one of all the rigid motions λ such that
λ(V ) = V , V being a polygon [94].

Most industrial parallel mechanisms can be classified as symmetrical [94].

We updated the Divide-and-Conquer (DC) kinematic identification protocol presented in [10]
with a symmetrical pose selection procedure. The DC protocol requires independently identifying
the legs using the inverse calibration method proposed in [4, 7], this allows the design of exper-
iments to optimize the observability of the set of parameters on each leg [10]. However, by the
symmetries of the mechanism it is possible to express leg parameters in coordinate systems which
allow symmetrical observability, and as a result, symmetrical pose selection. Consequently, this
article presents a contribution to improve the pose accuracy in symmetrical parallel mechanisms
using a new DC kinematic identification protocol based on inverse kinematic modeling and a sym-
metrical planning of the identification experiments.

Compared to traditional identification methods, the main advantages of the proposed DC iden-
tification protocol are:

1. Cost reduction in the design of identification experiments by the use of observability sym-
metries. The pose selection is carried out on a reference leg and for the remaining (nlegs−1)
legs the poses are determined by symmetrical operations performed on the poses of the ref-
erence leg.

2. Improvement of the numerical efficiency of the procedure for the selection of optimal iden-
tification poses by the adoption of the active robot calibration algorithm of Sun and Holler-
bach [96]. Traditional pose selection algorithms are based on observability indexes that
are calculated through eigenvalue decomposition of the covariance observability matrix,
whereas the active robot calibration algorithm is determinant-based, resulting in higher com-
putational efficiency.

The layout for the rest of the article is: section 3.1.2 which develops a literature review on
inverse calibration and analysis of symmetries in parallel mechanisms; section 3.1.3 presents the
new DC kinematic identification protocol for symmetrical parallel mechanisms. Results are sum-
marized in section 3.1.4 through the simulated kinematic identification of a 3RRR symmetrical
parallel mechanism using the DC protocol. Finally, concluding remarks are presented in section
3.1.5.
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3.1.2 Literature Review

Parallel mechanisms are reported to bear higher loads, at higher speed and often with a higher re-
peatability compared to open-loop kinematic chains [7]. However, the accuracy of parallel mech-
anisms is usually restricted by the knowledge of the kinematic parameters that rule their control
models. [4]. Therefore, when working with parallel mechanisms it is essential to calibrate the
kinematic models with estimated parameters so that accurate motion at high-speed rates can be
achieved [7]. The following categories of kinematic identification are proposed by [7] in the case
of parallel mechanisms:

1. Constrained calibration. This method relies on the use of mechanical systems that constrain
the end-effector or the legs motion during calibration. The workspace size is reduced by the
constraints which restrict the identification pose selection and the identification efficiency
[6, 7].

2. Self calibration. These methods rely on the use of redundant metrology. Some passive-
joints are instrumented in addition to the active-joints. The redundant metrology replaces
the information provided by external measurement devices. However, the actual task of
adding the redundant sensors to the passive-joints is quite complex [7, 97].

3. Forward kinematics calibration. These methods are directly adapted from the serial mech-
anisms calibration methods [98]. The identification is performed by minimizing the dif-
ference between an end-effector pose measurement and its corresponding value, calculated
from measured active-joint values through the forward kinematics model. A major drawback
of this approach is the instability associated with the numerical evaluation of the forward
kinematics of parallel mechanisms which does not have an analytical solution [7, 99].

4. Inverse calibration method. This method developed by [4], is accepted as the natural [4, 7]
and most numerically efficient [6] among the identification algorithms for parallel mecha-
nisms. The kinematic parameters are estimated by minimizing the difference between mea-
sured and computed active-joint variables calculated through the inverse kinematics of the
end-effector pose measurements. In this article, we adopt this method for the calibration of
symmetrical parallel mechanisms.

A set of inverse kinematics equations are used as constraint equations in the inverse calibration
method. These equations can be linearized in terms of the unknown parameters, producing a
differential error model with an identification Jacobian matrix that allows the measurement of the
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observability of the parameters [4, 96]. This observability matrix is usually block diagonal on
parallel mechanisms, with each block depending only on the parameters of one leg, allowing the
independent leg identification [4].

In [7] the inverse calibration method is updated for the vision-based calibration of parallel
robots, identifying camera parameters in addition to the kinematic ones. In [3] a kinematic cali-
bration method for parallel kinematic machine-tools that replaces the end-effector position mea-
surements by measurements on a dedicated machined part is presented. This method is aimed at
process calibration and is performed only on a sub-region of the workspace, resulting in a part-
dedicated calibration. Reference [100] presents the kinematic calibration problem as a non-linear
constrained optimization problem formulated in a geometric context. Geometrically, the kinematic
calibration consists of determining a best fitting parametrized multi-dimensional surface to a given
set of measured points in the environment (joint variables and parameters) and task (end-effector
pose) space manifolds. The formulation is general enough to cover most of the allowable identifi-
cation methods, including inverse calibration.

In [10] a DC kinematic identification protocol based on the inverse calibration method is pre-
sented. The identification experiments are independently planned for each leg, optimizing the
observability of leg parameters. Compared to traditional identification methods, the protocol has
reported the following advantages:

1. The identification poses are optimized for the estimation of reduced sets of parameters (the
sets corresponding to each leg).

2. The independent identification of the set of parameters of each leg improves the numerical
efficiency of the identification algorithms.

The calibration of the kinematic model with the identified set of parameter achieves a better end-
effector accuracy as a result of (1) and (2) .

A common characteristic of [3, 4, 7, 10, 100] is the lack of use of the kinematic structure sym-
metries present in most parallel mechanisms. These symmetries have been used for workspace and
singularity analysis of parallel mechanisms, but not for kinematic identification.

The fundamentals of workspace analysis of symmetrical parallel mechanisms are presented
in [94, 101], where a theorem that reveals a relation between the mechanism symmetries and the
workspace symmetries is formalized. The use of the theorem allows to reduce the computational
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cost of workspace calculations to 1
n

of a full search, n being the order of the symmetries. In [102]
the symmetric theorem is used to analyze the symmetrical characteristics of the singularities of
symmetrical parallel mechanisms. The special case of workspace and singularity symmetries of
parallel spherical mechanisms is presented in [103].

In this article we extended the use of symmetries to express sets of leg parameters in coordi-
nate systems, allowing symmetrical observability of kinematic parameters for identification. This
enables the updating of the DC kinematic identification protocol with a symmetrical pose selection
procedure that reduces the cost of the experimental design. In this sense, the main contributions of
the article are:

1. A DC kinematic identification strategy suitable for symmetrical parallel mechanisms (sec-
tion 3.1.3.1)

2. A set of conditions to obtain symmetrical observability of the sets of leg parameters of
symmetrical parallel mechanisms (section 3.1.3.2).

Contributions (1) and (2) result in a new DC kinematic identification protocol for symmetrical
parallel mechanisms, which is presented in section 3.1.3.

3.1.3 Divide-and-Conquer Kinematic Identification
Protocol for Symmetrical Parallel Mechanisms

The set of conditions that define a symmetrical parallel mechanism are summarized as follows:

1. The number of legs (nlegs) is equal to the number of degrees of freedom (nDOF ) of the
mechanism.

nDOF = nlegs (3.1)

2. All the legs have an identical kinematic pattern. That is, each leg has the same number of
active and passive joints, and the joints are arranged in an identical pattern.

3. The constraint kinematic equations (Fκ) for each leg of the mechanism can be expressed in
their implicit form:

Fκ = gκ(ϕκ, r, ρ)− qκ = 0 (κ = 1, 2, . . . , nlegs), (3.2)
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where κ denotes the κth leg, gκ is an inverse kinematic function, ϕκ is the set of kinematic
parameters, r is the position vector of the end-effector, ρ is a parametric representation of
the platform orientation (e.g. a set of Euler angles), and qκ is the active-joint variable. The
set of constraint equations for the complete mechanism is defined in the following manner:

F (q) =


F1(q1)

F2(q2)
...

Fnlegs(qnlegs)

 =


g1(ϕ1, r, ρ)− q1

g2(ϕ2, r, ρ)− q2

...
gnlegs(ϕnlegs , r, ρ)− qnlegs

 , (3.3)

where q = [q1 q2 · · · qnlegs ]T is the vector of active joint variables.

4. The kinematic structure of the mechanism describes a symmetric group GM on a particular
pose of the end-effector.

In a practical way, the definition of symmetrical parallel mechanism covers most of the indus-
trial parallel manipulators.

Conditions (1) to (4) configure a symmetrical workspace and are necessary for the symmetrical
planning of the kinematic identification experiments. The symmetry of the workspace of spatial
parallel mechanisms is proved in [94]. In addition to the conditions of the symmetrical mechanism,
we assume the following condition to obtain a symmetrical active-joint workspace:

5. The active-joints reference systems are defined in such a way that the active-joint variables
are also symmetrical in the particular pose defining the symmetric group of the kinematic
structure (GM ). For the active-joints this implies to have the same value in the symmetrical
configuration. The symmetric group of the active-joint variables is denoted as GQ.

If the active-joint workspace is symmetrical, then the following relation holds:

F (λi(q)) = λi(F (q)) (i = 1, 2, . . . , nlegs), (3.4)

where F is the set of constraint kinematic equations of the mechanisms (Eq. (3.3)), and λi ∈ GQ

is a symmetric operation of the active-joint workspace symmetric group.

The proof of Eq. (3.4) is analogous to the forward kinematics of parallel mechanisms: it
requires the solution of the constraint kinematic equations given the vector of joint variables. In
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general it is not possible to express the forward kinematics of parallel mechanisms in an analytical
manner [7]. In consequence, a proof of the symmetric conjecture of active-joint workspace is not
straightforward and is not provided in this article. However, in section 3.1.4.1 the conjecture is
validated through a numerical analysis of the workspace and active-joint workspace of a three-
degrees-of-freedom parallel mechanism formed only by rotational joints.

3.1.3.1 Kinematic identification by a divide-and-conquer strategy

A kinematic identification based on inverse kinematics and independent estimation of the sets of
leg parameters (DC strategy) is stated as follows:

Given

1. A set of nominal kinematic parameters (ϕκ) for the κth leg. nϕ parameters are assumed to
be identified:

ϕκ =
[
ϕκ,1 . . . ϕκ,nϕ

]T
(κ = 1, 2, . . . , nlegs). (3.5)

2. An inverse kinematic function (gκ) that relates the κth active joint variable (qκ) with the
end-effector position (r) and orientation (ρ). For the jth pose of the mechanism the inverse
function of the κth leg is defined to be:

gjκ : ϕκ × (rj × ρj)→ qjκ (j = 1, 2, . . . , N). (3.6)

3. A set of end-effector measured poses {R̂κ,Pκ}:

R̂T
κ =

[
(r̂1
κ)
T · · · (r̂Nκ )T

]
(κ = 1, 2, . . . , nlegs),

P̂T
κ =

[
(ρ̂1
κ)
T · · · (ρ̂Nκ )T

]
(κ = 1, 2, . . . , nlegs),

(3.7)

where R̂κ is a column matrix of N measured position vectors and P̂κ is a column matrix
of N measured end-effector parametric representations of the orientation. Here, we assume
that all unconstrained end-effector degrees of freedom are measured, and that its number
equals the number of actuated legs (see Eq. (3.1)).

4. A set (Q̂κ) of N measurements of the κth active-joint variable, corresponding to the set of
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end-effector measurements:

Q̂κ =
[
q̂1
κ · · · q̂Nκ

]T
(κ = 1, 2, . . . , nlegs). (3.8)

Goal

1. To find the set of unknown kinematic parameters (ϕ̄κ) that minimizes the error between
the measured set of active-joint variables (Q̂κ) and its corresponding estimated set (Q̄κ)

calculated from the measured end-effector poses through the inverse kinematic model (gκ).
The problem can be formally stated as the following non-linear minimization:

min
ϕκ

N∑
j=1

(
gjκ(ϕκ, r̂

j, ρ̂j)− q̂jκ
)2

(κ = 1, 2, . . . , nlegs),

subject to : rj ∈ Rκ, ρ
j ∈ Pκ (j = 1, 2, . . . , N),

(3.9)

where {Rκ,Pκ} is the set of identification poses, Rκ ⊂ R, Pκ ⊂ P, and {R,P} is a
singularity-free workspace that constrains the optimization problem.

A kinematic identification protocol for parallel symmetrical mechanisms based on the DC
identification strategy and kinematic structure symmetries is proposed in section 3.1.3.3. It is
necessary to set the kinematic parameters before performing the identification protocol in order to
obtain a symmetrical observability of the legs. The conditions for the symmetrical observability
are summarized in section 3.1.3.2.

3.1.3.2 Symmetrical observability of leg parameters

The kinematic identification planning of a parallel mechanism could be symmetrical if its kine-
matic parameters are carefully set in order to meet conditions (1) to (4) of section 3.1.3 required
for a symmetrical workspace. Moreover, the planning of the kinematic identification experiments
may be reduced according to a subset (GC) of the symmetric group (GM), of the kinematic struc-
ture (Eq. (3.10)). The subset GC is defined by the symmetry operations that allow to super-impose
a reference leg with the κth leg (κ = 1, 2, . . . , nlegs):

GC =
{
λ1, λ2, . . . , λnlegs

}
(GC ⊆ GM), (3.10)
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where λ ∈ GM is a symmetry operation of the mechanism kinematic structure symmetric group.

In order to design a symmetrical kinematic identification, we assume the following conditions:

1. The symmetries of the kinematic structure are described by the symmetric group GM .

2. The mechanism has a symmetrical workspace characterized by a symmetric group GW .

3. The geometric method is adopted for the kinematic modeling of the mechanism. An inde-
pendent vector-loop kinematic constraint equation is written for each leg in the form of Eq.
(3.2). Consequently, the following hypotheses are assumed to be valid:

(a) Each U-joint forming a leg is modeled as perfect.

(b) Each spherical joint forming a leg is modeled as perfect.

(c) Each prismatic joint is modeled as perfectly assembled to its neighboring joints (U-
joints, spherical joint, rotational joints, etc.).

(d) The axis of each rotational joint is modeled as perfectly orientated.

(e) If the mechanism is planar, then all the links are modeled as constrained in a plane.

The hypotheses (3a) to (3e) are consequent with realistic operational conditions, where the
influences of defects in the joints have a minor effect on pose accuracy compared with errors
in the location of the joints [97].

4. The position of each base fixed point Aκ (U-joint, spherical joint, etc.) is defined by three
parameters (see Fig. 3.1, κ = 1, 2, . . . , nlegs):

(a) The magnitude of the OAκ segment.

(b) The angle ακ of the OAκ segment with respect to the Z axis of the base reference
system.

(c) The angle βκ of the projection of the segment OAκ on plane XY with respect to the X
axis of the base reference system.

5. The position of each platform point bκ (U-joint, spherical joint, etc.) is described by three
parameters defined analogously to the base fixed points (Fig. 3.1). The ouvw reference
system is analogous to the OXY Z. The three parameters are denoted as obκ, αbκ , and βbκ
(κ = 1, 2, . . . , nlegs).
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Figure 3.1: Position of fixed point Aκ

We assume a linear model for the active joints of the mechanism (Eq. (3.11)), requiring the esti-
mation of two additional kinematic parameters for each leg: the joint gain (k), and the joint offset
(γ). Therefore, additional symmetrical conditions are required to allow a symmetrical kinematic
identification:

6. Each active joint has the same nominal gain kκ (κ = 1, 2, . . . , nlegs).

7. The mechanism has configured a symmetrical active-joint workspace characterized by a
symmetric group GQ. The conditions to configure a symmetrical active-joint workspace are
proposed in conditions (1) to (5) of section 3.1.3.

The linear active-joint model is defined by:

θκ = kκψκ + γκ (κ = 1, 2, . . . , nlegs), (3.11)

where θ is the active joint angle, ψ is the sensor reading, k is the gain in the active-joint, and γ is
the offset of the sensor.

To plan a symmetric identification, the observability of the ith kinematic parameter of the
κth leg in the jth mechanism pose must be the same that the observability of its corresponding
parameter of a reference leg in a symmetrical pose. To compute the observability we calculate the
Jacobian identification matrix of each leg independently. That is

CT
κ =

[
(C1

κ)
T (C2

κ)
T · · · (CN

κ )T
]

(κ = 1, 2, . . . , nlegs),

Cj
κ(ϕκ, r

j, ρj) =
∂Fκ(ϕκ, r

j, ρj)

∂ϕT
κ

(j = 1, 2, . . . , N),
(3.12)

where the Fκ function is the κth constraint kinematic equation of the set of Eqs. (3.3), and each row
of the Jacobian matrix Cκ corresponds to an identification pose of the mechanism. To calculate
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the observability of the parameters we adopt the QR decomposition of the Jacobian identification
matrix (Eq. (3.12)) presented in [6]:

QTCκ =

[
R

0

]
, (3.13)

where Q is aN×N orthogonal matrix, R is a nϕ×nϕ upper triangular matrix, 0 is a (N−nϕ)×nϕ
zero matrix, and nϕ is the number of parameters to be estimated.

The observability of the ith parameter is estimated by its corresponding element on the diagonal
of the R matrix, stating the symmetrical observability for the independent kinematic identification
of the legs as:

|Rκ
ii (Cκ(ϕκ,R,P))| =

∣∣R1
ii (C1 (ϕ1, λκ(R),P))

∣∣
(i = 1, 2, . . . , nϕ)(κ = 1, 2, . . . , nlegs), (3.14)

where, without loss of generality, the first leg is assumed as the reference and λκ is the κth sym-
metrical operation of GC that is applied individually over each end-effector position on R. The
smaller the norm of the parameter,the lower the observability, and the non-observable parameters
are those for which |Rii| = 0.

Section 3.1.3.3 proposes a kinematic identification of symmetrical parallel mechanisms proto-
col based in the symmetrical observability of the legs, and the DC identification strategy.

3.1.3.3 Kinematic identification of symmetrical parallel

mechanisms protocol

For the DC kinematic identification protocol we assume:

1. The parallel mechanism is symmetric (see conditions (1) to (5) of section 3.1.3).

2. The kinematic parameters of the mechanism are set so as to obtain a symmetrical observabil-
ity of the legs and the symmetric observability group (GC) is specified (see section 3.1.3.2).

The DC identification protocol is presented in Fig. 3.2 and stated in the following procedures
(DC steps):
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Nominal parameters, φ1

Inverse kinematics
equation of leg 1:
g1: φ1 × r → q1

End-effector position and
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Inverse kinematics equations, gκ

Set of nominal parameters, φκ

Estimated parameters, φκ

Updated kinematic model

DC3. Update kinematic model

Observability symmetry 

group, GC =  {λ1,..., λnlegs
} 

Set of end-effector and 
active-joint external 
measurements, {Rκ, Pκ}, Qκ

ˆˆˆ

Sets of identification poses,
{Rκ, Pκ}    (κ = 1, 2,...,nlegs)

DC1. Symmetrical pose selection procedure

Kinematic parameters identification          N
min ∑(gκ

j(φκ, r
j, ρj) - qj)2     (κ = 1, 2,...,nlegs)

  φκ

         
j=1

subject to : rj    Rκ, ρ
j    Pκ   (j=1,2,...,N)

ˆ ˆˆDC2.

Figure 3.2: Divide-and-conquer kinematic identification of symmetrical parallel mechanisms pro-
tocol

DC1. Symmetrical pose selection. This step is detailed in Fig. 3.3.

(a) Calculation of the Jacobian identification matrix. Given the nominal parameters (ϕ1)

for a reference leg, the corresponding kinematic function (F1), and a representative set
of postures of a workspace without singularities {R,P}; the Jacobian identification
matrix (CR

1 ) is calculated as:

CR
1 (ϕ1,R,P) =

∂F1(ϕ1,R,P)

∂ϕT1
. (3.15)

here, the calculation of the Jacobian matrix can be performed analytically or numeri-
cally. For parallel mechanisms the constraint kinematic function F is usually available
for the analytical (symbolic) calculation of the Jacobian matrix. A procedure for the
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numerical calculation of the Jacobian matrix is proposed in [104].

(b) Pose selection by active robot calibration algorithm. Given the Jacobian identification
matrix calculated in step (DC 1a) to select an optimal set of postures {R1,P1} for
the kinematic identification of the reference leg. We adopt the active calibration al-
gorithm developed by Sun and Hollerbach [96] to optimize the poses. The optimized
identification set of poses is determined by solving the problem:

max
{R1,P1}

O1,

subject to : R1 ⊂ R,P1 ⊂ P,
(3.16)

were O1 is an observability index of the identification matrix defined as follows,

O1(C1(ϕ1,R1,P1)) =
(s1 s2 · · · snϕ)1/nϕ

nϕ
, (3.17)

where nϕ is the number of parameters to be identified, and s2
i (i = 1, 2, . . . nϕ) are the

eigenvalues of the covariance matrix CTC. The effective criterion is the product of
all non-zero eigenvalues, being the determinant of CTC because nϕ is constant. This
allows to solve the optimization problem (Eq. (3.16)) by using a recursive (exchange -
add - exchange pose) determinant instead of eigenvalue calculation, thus reducing the
computation complexity and enabling the consideration of more candidate pose sets in
the optimal pose set search [96]. As rule of thumb, the number of identification poses
should be two or three times larger than the number of parameters to be estimated
[105].

(c) Symmetrical pose selection. Given the selected set of identification poses of the ref-
erence leg {R1,P1} and the observability symmetric group (GC), find the sets of
identification poses of the remaining (nlegs − 1) legs:

Rκ = λκ(R1) (κ = 2, . . . , nlegs),

Pκ = P1 (κ = 2, . . . , nlegs).
(3.18)

where the symmetry operation λ operates onto the end-effector workspace. Here the
end-effector workspace is defined as the volume within which the end-effector point
(i.e. the geometry center of the moving stage) can be reached [94]. The symmetry
operation does not operate onto the orientation of the end-effector.

DC2. Estimation of kinematic parameters. Given the optimized set {Rκ,Pκ} of identification
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Pose selection by Active Robot Calibration
Algorithm (Sun and Hollerbach, 2008)DC1b.

Calculation of the Jacobian identification matrix

 C1
R(φ1, R, P) = 

∂F1

∂φ1
T

DC1a.

Symmetrical pose selection
Rκ = λκ (R1),  Pκ = P1      (κ = 1, 2,..., nlegs)

DC1c.

Kinematic constraint equation of the 
reference leg, F1(g1). g1: φ1 × r →q1

Figure 3.3: Symmetrical pose selection procedure

poses obtained in (DC 1) and its corresponding sets (Q̂κ, {R̂κ, P̂κ}) of active-joint and
end-effector measurements, estimate the set of kinematic parameters (ϕκ) so that the opti-
mization problem defined by Eq. (3.9) is solved (κ = 1, 2, . . . , nlegs).

DC3. Kinematic model update. Given the identified sets of parameters obtained in (DC 2), update
the kinematic model of the parallel mechanism.

The DC identification protocol is used in the simulated kinematic identification of a 3RRR

symmetrical parallel mechanism in section 3.1.4. The calibration results are compared with a
traditional inverse kinematic calibration.
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3.1.4 Results

The kinematic identification of a 3RRR parallel mechanism is simulated to evaluate the perfor-
mance of the DC identification protocol. The mechanism consists of an equilateral moving plat-
form (b1b2b3) that is connected by three identical rotational - rotational - rotational kinematic
chains (AκCκbκ, κ = 1, 2, 3), to an equilateral fixed base (A1A2A3) (see Fig. 3.4(a)). The mech-
anism has three degrees of freedom actuated from three active-joints that are located on the fixed
base. To simulate the kinematic behavior of the mechanism, the nominal kinematic parameters are
disturbed by adding random errors following a normal distribution with a standard deviation of
σ = 5 · 10−5 m and σ = 5 · 10−5 rad for the longitudinal and angular dimensions respectively. The
following set of nominal parameters is assumed:

1. Dimensions of the links: A1A2 = A2A3 = A1A3 = 6.00 m, b1b2 = b2b3 = b1b3 = 1.50 m,
l = L = 1.50 m.

2. Configuration of the legs (dyads): [−1 − 1 − 1]. Each leg is considered as a dyad that can
be configured as +1 or −1 according to the convention described in Fig. 3.4(b).

3. Nominal gain of the active-joints: k1 = k2 = k3 = 1.
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k2ψ2

k3ψ3
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l

φκ=[lκ Lκ OAκ βκ obκ βbκ
 kκ γκ]

T  (κ = 1, 2, 3)

(a) Mechanism in symmetric pose
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Aκ bκ
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Configurations
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(b) Kinematic loop of the κth leg

Figure 3.4: 3RRR symmetrical parallel mechanism. Kinematic parameters and constraint loop

The end-effector measurements (R̂κ) are simulated from their corresponding active-joint mea-
surements (Q̂κ) through a forward kinematics model to which a normally distributed random dis-
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turbances have been added and were defined as follows:

σr = 5.00 · 10−6 m,

σρ = 5.00 · 10−6 rad,
(3.19)

where σr and σρ are the standard deviations in length and orientation measurements respectively.
Prior to the kinematic identification, a symmetry analysis and a declaration of symmetrically ob-
servable sets of leg parameters are performed in sections 3.1.4.1 and 3.1.4.2.

we assume that the origin of the fixed coordinate frame is located at the geometric center of
the fixed base A1A2A3 in order to carry out the kinematics modeling, symmetry analysis, and
kinematic identification. The X-axis points along the direction of A1A2, and the Y -axis is per-
pendicular to A1A2 (see Fig. 3.4(a)). A moving frame is attached to the geometric center of the
platform. The u-axis of the platform frame points along the line b1b2, and the v-axis is perpendicu-
lar to b1b2 (see Fig. 3.4(a)). The location of the moving platform is specified by the coordinates of
the platform center and the orientation angle of the moving frame with respect to the fixed frame:

r = [x y 0]T ,

ρ = φ.
(3.20)

3.1.4.1 Symmetry analysis

The 3RRR symmetrical parallel mechanism satisfies the workspace symmetry conditions (1) to
(4) of section 3.1.3:

1. The mechanism has three legs (dyads) and three corresponding degrees-of-freedom.

2. Each leg of the mechanism has an identical RRR pattern.

3. The kinematic constraint equation of each leg is expressed by a closed loop (see Fig. 3.4(b))
in the following manner:

‖r−Aκ‖ − ‖rCκAκ + rBCκ − rBκo‖ = 0 (κ = 1, 2, 3). (3.21)

4. The kinematic structure symmetric group (GM) is specified by inspection (Fig. 3.4(a)) and
defined as:

GM = {λ1, λ2, λ3, λ4, λ5, λ6} , (3.22)
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where the first three elements represent the following rotations about the Z-axis: 0 rad,
2π/3 rad, and 4π/3 rad. The last three elements denote reflections about OA1, OA2, and
OA3 respectively.

The actuation of GM on the end-effector workspace will cause the workspace to superimpose
on itself. The symmetrical workspace theorem for this mechanism is proved in [94, 101]. We
assume a linear active-joint model (Eq. (3.11) with nlegs = 3 legs). In consequence, to design a
symmetrical kinematic identification, it is also necessary to satisfy the condition (5) for active-joint
workspace symmetry (section 3.1.3):

5. Figure 3.4(a) presents the symmetrical pose of the 3RRR mechanism that determines the
symmetry of the active-joint workspace, with the active-joint variables being vector defined
as q = [ψ1, ψ2, ψ3]T . The pose is obtained by setting the active-joints measure systems in
the following manner:

γ1 = π/6 rad, γ2 = 5π/6 rad, γ3 = −π/2 rad. (3.23)

where nlegs equals 3 for the 3RRR mechanism, then the active joints symmetric group de-
fined by Eq. (3.4) is as follows:

GQ = {λ1, λ2, λ3} (3.24)

where the elements of GQ correspond to rotations of 0 rad, 2π/3 rad, and 4π/3 rad around
the axis ψ1 = ψ2 = ψ3.

The active-joint workspace symmetry is numerically validated by comparing a workspace obtained
by inverse kinematics with a workspace obtained by symmetrical operations λi (Eq. (3.24)) per-
formed onto 1/3 of the complete workspace. The maximal difference (obtained by comparing 33
000 corresponding active-joint configurations) is 1.2 · 10−14 rad, which can be interpreted as a
numerical zero. The active-joint workspace is presented in Fig. 3.5.
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Figure 3.5: 3RRR symmetrical parallel mechanism. Active-joint workspace obtained by symmet-
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3.1.4.2 Denotation of symmetrically observable sets of kinematic

parameters

Nominally, the set of kinematic parameters is defined by the position of base fixed points (Aκ),
the position of platform points (bκ), the leg lengths (lκ, Lκ), and the joint gain and offset (kκ

and ψκ) (κ = 1, 2, 3). Consequently with the conditions (1)–(7) of the symmetrical observability,
section 3.1.3.2, we express this set of parameters to be symmetrically observable: The base and
platform points are modeled as constrained on the mechanism plane and defined by the magnitude
of the OAκ and obκ segments and angles βκ and βbκ respectively (see Fig. 3.4). A linear model is
assumed for the active joints (Eq. (3.11)). In consequence, the set of parameters to be identified is:

ϕκ =
[
lκ Lκ OAκ βκ obκ βbκ kκ γκ

]T
(κ = 1, 2, 3). (3.25)

The symmetric observability group (GC ⊆ GM) is formed by the symmetrical operations that
allow the leg 1 to superimpose with the κth leg (κ = 1, 2, 3):

GC = {λ1, λ2, λ3} (GC ⊆ GM), (3.26)

where GM is the symmetric group of the mechanism kinematic structure (Eq. (3.22)).
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3.1.4.3 Symmetrical kinematic identification

We implement the DC protocol for kinematic identification (see section 3.1.3.3). The mechanisms
meets conditions (1) and (2) of section 3.1.3.3 that are required for symmetrical identification and
that are as follows:

1. The mechanism is symmetrical as proven in section 3.1.4.1.

2. The kinematic parameters of the mechanism are specified to obtain a symmetrical observ-
ability, and the corresponding symmetric observability group is specified (Eq. (3.25) – Eq.
(3.26), see section 3.1.4.2).

The execution of the DC identification protocol is summarized:

DC1. Symmetrical pose selection.

(a) Calculation of the identification matrix (CR
1 (ϕ1,R,P)) by means of Eq. (3.15). The

nominal set of parameters (ϕ1) is given by the set of conditions (1)–(3) of section
3.1.4, the constraint kinematic function (F1) is given by Eq. (3.21) with κ = 1, and
the useful workspace {R,P} is given by a set of 33 000 singularity-free poses of the
end-effector.

(b) Selection of optimal identification poses by robot calibration algorithm [96]. The al-
gorithm was executed 25 times using initial random sets of 8/33000 poses and by
performing the exchange - add - exchange pose strategy, resulting in the set {R1,P1}
(CR

1 ) (see Fig. 3.6) that minimizes the variance of the kinematic parameters of leg 1.
The algorithm performance is presented in Fig. 3.7.

(c) Symmetrical pose selection. The optimal sets of identification poses for the second
and third legs are dictated by symmetrical operations performed on the set of poses
{R1,P1}:

Rκ = λκ(R1) (κ = 2, 3),

Pκ = P1 (κ = 2, 3),
(3.27)

where the symmetrical operations (λκ) are defined by Eq. (3.26). In Fig. 3.8 the
symmetrical observability of the legs is verified by the calculation of the observability
index (Eq. (3.14)) for the sets of optimal poses.
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DC2. Estimation of kinematic parameters. A linearization of the inverse kinematics is used to
solve the non-linear optimization problem of each leg (Eq. (3.9)). The linearization is
defined in the following manner:

∆Qκ = Cκ(ϕκ,Rκ,Pκ)∆ϕκ (κ = 1, 2, 3), (3.28)

where ∆Qκ = Qκ(ϕκ, R̂κ, P̂κ)−Q̂κ is the error in the active joint variables and ∆ϕκ is the
error in the set of parameters to be estimated. All the unconstrained end-effector degrees of
freedom (x, y, φ, Eq. (3.20)) are measured. The estimation is achieved by a least-squares
solution of Eq. (3.28):

∆ϕκ = (CT
κCκ)

−1CT
κ ∆Qκ (κ = 1, 2, 3), (3.29)

where the estimation is iterated until the corrections ∆ϕκ to ϕκ are small enough (∆ϕ <

1 · 10−8[m − rad]).

DC3. Update the kinematic model. The kinematic model is corrected with the set of estimated
parameters (∆ϕκ):

ϕκ = ϕκ + ∆ϕκ (κ = 1, 2, 3), (3.30)

where ϕ is the set of corrected parameters and ϕ is the nominal one.
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The performance of the identification is evaluated after the kinematic calibration by calculating
the Root Mean Square Error (RMSE) between the commanded end-effector position and orienta-
tion {R,P} and their corresponding set of simulated measurements {R̂, P̂}. The set of measured
poses corresponds to the set of 33 000 singularity-free poses used to design the identification ex-
periments. An alternative traditional inverse kinematic calibration is performed by using 24 poses
optimized for the identification of the complete set of parameters of the mechanism. The set of
optimal poses is selected by means of the same active robot calibration algorithm as in the case
of the DC identification. The results are registered in Fig. 3.9 for local end-effector position er-
rors estimated on a constant orientation workspace (φ = 0.4 rad) and Figures 3.10 – 3.11 for
end-effector position and orientation RMSE estimated on the singularity-free workspace .

Concluding remarks of the DC kinematic identification protocol are presented in section 3.1.5.
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Figure 3.9: 3RRR calibrated symmetrical parallel mechanism. End-effector position error esti-
mated for constant orientation φ = 0.4 rad
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Figure 3.11: 3RRR symmetrical parallel mechanism. Estimated Root Mean Square Error of the
end-effector orientation for a singularity-free workspace

3.1.5 Conclusions

This article presents a new DC protocol for the identification of symmetrical parallel mechanisms.
The protocol exploits two characteristics of parallel mechanisms:

1. Independent solution of the inverse kinematics of each leg. It allows to propose a DC identi-
fication strategy (see section 3.1.3.1) used to optimize the identification planning of reduced
sets of parameters (the sets of parameters corresponding to each leg).
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2. Symmetrical kinematic structure. A set of necessary conditions to configure coordinate
systems that allows to express symmetrically observable sets of leg parameters is presented
in section 3.1.3.3. The symmetrical observability is the keystone to symmetrically designing
the identification experiments.

The proposed kinematic identification protocol has the following advantages compared to tra-
ditional inverse calibration methods, such as [4, 7, 100]:

1. Cost reduction in the design of identification experiments by the use of observability sym-
metries. The pose selection is carried out only for a reference leg and for the (nlegs − 1)

remaining legs the identification poses are calculated by symmetry operations performed on
the poses of the reference leg.

2. The improvement of the numerical efficiency of the protocol for the selection of optimal
identification poses by the adoption of the active robot calibration algorithm [96].

If a linear least-squares estimation of the kinematic parameters (Eq. (3.29)) is used to solve the
identification problem (Eq. (3.9)), then the computational cost of the matrix inversion (CTC)−1 is
reduced proportionally to the square of the number of legs of the mechanism (see Table 3.1).

Traditional kinematic Divide-and-conquer
identification identification

Regressor (CTC)nlegs·nϕ × nlegs·nϕ (CT
κCκ)nϕ×nϕ

Computational cost
(matrix inversion)

∝ nlegs
3 · nϕ3 ∝ nlegs · n3

ϕ

Measurement cost 2N · nlegs N · nlegs(nlegs + 1)
nϕ is the number of parameters to be identified corresponding to 1 leg.

Table 3.1: Computational and measurement cost of kinematic identification

As a result of 1 and 2, the kinematic identification performance is improved. The measurement
cost of the DC protocol is incremented compared to traditional methods (see Table 3.1), which
is required for the independent identification of the legs: different from traditional identification
each leg requires its own set of end-effector measurements. For the DC protocol, the measurement
cost is defined in the following manner: N measurements for each active-joint sensor added to N
measurements for each end-effector coordinate for each leg. This leads to N · nlegs(nlegs + 1) (see
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Table 3.1) because the number of legs equals the number of end-effector degrees of freedom on
symmetrical parallel mechanisms.

Real tests can be conducted to validate the DC protocol in a industrial context. Moreover, ad-
ditional case studies will enable the protocol to be validated for other kinds of parallel symmetrical
mechanisms.
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Abstract

This article presents an application of symmetric groups in symmetrical observability of kinematic
parameters of parallel mechanisms. The devised concepts are used in the domain of Kinematic
Identification. The investigation takes advantage of the mechanism structural symmetries and
presents the following contributions: (i) a conjecture that allows mapping the symmetries of the
mechanism into the active-joint workspace, (ii) the necessary conditions to express leg parameters
in coordinate systems which allow symmetrical observability, and (iii) a procedure for exploiting
symmetries in pose selection for KI that reduces the design-of-experiments cost to (1/nlegs) when
compared to a KI procedure in which each leg poses are selected independently. An application
of the symmetrical observability is presented through the simulated KI of a 3RRR symmetrical
parallel mechanism.

keywords: Symmetrical Observability, Parameter Identification, Kinematic Identification, Parallel
Mechanism, Robot Manipulator.
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Glossary
C Jacobian identification matrix
D2n Dihedral group of a n-vertices regular polygon
F Constraint kinematic equation
G Group
L, l Length of a link
N Number of identification poses
Q Column matrix of active-joints configurations
Q Q matrix of a QR decomposition
P Column matrix of parametric representations of the end-effector orientation
R Column matrix of end-effector position vectors
R R matrix of a QR decomposition
RRR Rotational - rotational - rotational kinematic structure
V Polygon
g Inverse kinematic equation
k Gain of an active-joint sensor
nDOF Number of degrees of freedom
nlegs Number of legs of a parallel mechanism
nϕ Number of parameters to be identified
q Active joint variable
q Vector of active joint variables
r Position vector
s Singular value

Greek symbols
Σ Symmetric group
α, β Planar angles
γ Offset of an active-joint sensor
ϕ Set of kinematic parameters of a parallel mechanism
λ Symmetric operation
θ Active-joint angle
ρ Parametric representation of the end-effector orientation, e.g. a set of Euler angles
σ Standard deviation
ψ Reading of an active-joint sensor
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Subscripts

C Symmetrical observability

M Mechanism

Q Active joints

W Workspace

i Indexing variable

κ κth leg of a parallel mechanism

Superscripts
T Transpose
j jth pose of the mechanism

3.2.1 Introduction

Parallel mechanisms are instances of closed-loop mechanisms typically formed by a moving plat-
form connected to a fixed base by several legs. Most parallel mechanisms are formed by a symmet-
rical structure. Symmetrical parallel mechanisms are defined in the following manner [94, 101]:

1. the number of legs equals the number of degrees of freedom of the mechanism,

2. each leg is controlled by one actuator,

3. each leg is formed by an identical kinematic chain, and

4. in at least one particular configuration the kinematic structure defines a symmetric group
GM .

Structural symmetries have been used for workspace and singularity analyses of symmetrical par-
allel mechanisms [94, 101–103]. In this article the use of structural symmetries is extended ad-
dressing the problem of expressing symmetrically observable sets of leg parameters. A set of
necessary conditions to express leg parameters in coordinate systems which allow symmetrical
observability is presented in section 3.2.5. A main condition is the workspace symmetry that was
proved for symmetrical parallel mechanisms in [94, 101]. If a linear model with joint gain and
offset is assumed for the active joints, then the active-joint workspace symmetry is required too.
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The proof of an active-joint symmetrical workspace theorem is analogous to the forward kinemat-
ics problem of parallel mechanisms that in general has only numerical solution [7]. Therefore, a
conjecture for the active-joint workspace symmetry is proposed in section 3.2.4.

A natural use of symmetrical observability would be a divide-and-conquer (DC) kinematic
identification (KI) in which the identification experiments are planed for a reference leg only and
extended to the remaining legs by symmetry operations. For KI the DC protocol by [10] was
updated with a symmetrical pose selection procedure in section 3.2.5.1.

The layout for the rest of the article is as follows: Section 3.2.2 presents literature review on the
application of symmetries in parallel mechanism analysis. Section 3.2.3 presents fundamentals of
symmetric group theory. A theorem on the symmetrical workspace of symmetrical parallel mecha-
nisms is extended on section 3.2.4, proposing a conjecture for symmetrical active-joint workspace.
The symmetrical observability of sets of leg parameters is proposed in section 3.2.5, and its appli-
cation in symmetrical pose selection for KI is presented in section 3.2.5.1. Results are presented
in section 3.2.6 through a 3RRR parallel mechanical manipulator case study in which an applica-
tion of symmetrical observability of sets of leg parameters is used in a simulated KI. Concluding
remarks are presented in section 3.2.7.

3.2.2 Literature Review

Structural symmetries are a common characteristic of most parallel mechanisms [94]. However,
the analysis of the symmetry characteristics of parallel mechanisms is a poorly studied problems.
The literature is restricted to workspace and singularity analyses.

Reference [101] presents a symmetry theorem on the workspace for symmetrical parallel mech-
anisms. The theorem reveals an analogous relationship between the workspace shape and the sym-
metry structure. This theorem is proposed to estimate geometry characteristics of the workspace
and to guide the conceptual design of spatial parallel manipulators. The theorem is limited to
mechanisms in which every identical kinematic chain (leg) remains always collinear. In [94], the
symmetrical workspace theorem is strengthened to include a general category of symmetrical par-
allel mechanisms in which the permanent collinearity of the legs is not required. Reference [102]
presents an application of the symmetrical workspace theorem that addresses the symmetrical
calculation of singularities of symmetrical parallel mechanisms. A common characteristic of ref-
erences [94, 102] is the use of symmetric group theory to prove the symmetry theorems. Different
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from [94, 101, 102], reference [103] presents a methodology based on a parametric representation
of the workspace orientation and singularity symmetrical analyses of spherical parallel mecha-
nisms.

This article extends the use of structural symmetries in parallel mechanisms, addressing the
problem of formulating symmetrically observable sets of leg parameters. Symmetrical observ-
ability has direct applications in kinematic identification by means of the symmetrical planning
of independent identification experiments for each leg. The DC protocol in [10] was equipped
with a symmetrical pose selection procedure. With respect to traditional identification methods
the protocol has reported the following advantages:

1. The identification poses are optimized for the identification of reduced sets of parameters
(the sets corresponding to each leg).

2. The independent identification of the set of parameters of each leg improves the numerical
efficiency of the identification algorithms.

3. By (1) and (2) calibrating the kinematic model, with the identified set of parameters, results
in a better end-effector accuracy with respect to calibrations by means of other traditional
KI methods.

The DC protocol was improved, replacing the independent leg pose selection procedure by a sym-
metrical pose selection procedure in section 3.2.5.1. The DC protocol is improved with an addi-
tional feature:

4. The cost reduction in the design of identification experiments by the use of observability
symmetries, e.g. the cost is reduced by 1/nlegs compared with a DC independent leg pose
selection .

Section 3.2.3 presents an introduction to symmetry groups theory, required for the symmet-
rical analysis of end-effector workspace, active-joint workspace and observability of kinematic
parameters.
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3.2.3 Fundamentals of Symmetry Groups

A group is a set G equipped with an internal binary operation � such that the operation is associa-
tive, has closure, and have both, a neutral and an inverse element in G [95].

Two instances of groups are used to describe symmetries of the structure, workspace and pa-
rameter observability of in parallel mechanisms: The symmetric group Σ, (section 3.2.3.1), and
the dihedral group D2n, (section 3.2.3.2).

3.2.3.1 Symmetric group Σ

Let V be a polygon in the plane. The symmetric group Σ(V ) consists of all the rigid motions λ for
which λ(V ) = V . That is, the symmetric group is formed by the operations that allow the polygon
to superimpose itself [94].

3.2.3.2 Dihedral group D2n

Let Vn denote a regular polygon with n vertices and center O. The vertices of Vn are denoted
by vi (i = 1, 2, . . . , n). The symmetric group Σ(Vn) is called the dihedral group of Vn with 2n

elements and denoted by D2n. The elements of the dihedral group depend on the parity of the
regular polygon. A complete description of the dihedral group can be found in [94].

As an example, consider the symmetries of the equilateral triangle shown in Fig. 3.12. These
symmetries can be expressed by the dihedral group D6 whose elements are permutations of the set
of vertices V = {v1, v2, v3}. In consequence, the symmetric group is defined by:

D6 = {λ1, λ2, λ3, λ4, λ5, λ6}, (3.31)

where λ1 = (1) denoting a 0-rotation about point O, λ2 = (123) denoting a 2π/3-rotation about
point O, λ3 = (132) denoting a 4π/3-rotation about point O, λ4 = (23) denoting a reflection
about the line Ov1, λ5 = (13) denoting a reflection about the line Ov2, and λ6 = (12) denoting a
reflection about the line Ov3 (see [102]).

Symmetric group theory is used by [94] to prove the symmetrical theorem of workspace for
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Figure 3.12: Reflection lines of an equilateral triangle [102]

symmetrical parallel mechanisms. The theorem is summarized in section 3.2.4.1.

3.2.4 Symmetrical Active-joint Workspace of
Symmetrical Parallel Mechanisms

The workspace of a parallel mechanism is defined as the total volume swept out by the end-effector
as the mechanism executes all its possible motions [106]. A symmetry theorem for the workspace
of symmetrical parallel mechanisms was proposed by [94] as follows:

3.2.4.1 Theorem. Symmetrical workspace of symmetrical parallel

mechanisms

If the symmetric group of the workspace of a mechanism is denoted byGW and the
symmetric group of the kinematic chain structure with the end-effector in a particular
configuration is denoted by GM , then GM must be a subgroup of GW . Namely, the
following relation always holds:

GM ⊆ GW . (3.32)

Thus, if the kinematic structure of a mechanism has an associated symmetric group GM , then
the end-effector workspace GW remains unaltered under the symmetry operations λ that are the
elements of GM . Proof of the workspace symmetry theorem is provided in [94] using symmetry
group theory.
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Workspace symmetry is a necessary condition to declare symmetrically observable sets of leg
parameters, section 3.2.5. If a linear model with gain and offset is assumed for the active joints,
then a symmetrical active-joint workspace is required too, section 3.2.5.

In section 3.2.4.2 the workspace symmetries are extended to the active-joint workspace of
symmetrical parallel mechanisms.

3.2.4.2 Conjecture. Symmetrical active-joint workspace of

symmetrical parallel mechanisms

In practice, most parallel mechanisms have a symmetrical structure and a corresponding sym-
metrical end-effector workspace [94, 101]. However, a symmetrical workspace is not a sufficient
condition to obtain a corresponding symmetrical active-joint workspace. Therefore, we propose
a symmetrical conjecture for the active-joint workspace of symmetrical parallel mechanisms as
follows:

If a symmetrical parallel mechanism has a symmetrical end-effector workspace
characterized by a symmetric group GW , then it is possible to define a reference sys-
tem for the active-joint variables that produces a symmetrical active-joint workspace
characterized by symmetric group GQ.

The conditions to configure a symmetrical parallel mechanism with symmetrical workspace are
summarized below:

1. The number of legs is equal to the number of degrees of freedom of the mechanism.

2. All the legs have an identical structure. That is, each leg has the same number of active and
passive joints and the joints are arranged in an identical pattern.

3. The constraint kinematic equation of each leg of the mechanism, Fκ, can be expressed in its
implicit form:

Fκ = gκ(ϕκ, r, ρ)− qκ = 0 (κ = 1, 2, · · · , nlegs) , (3.33)

where κ denotes the κth leg, gκ is an inverse kinematic function, ϕκ is the set of kinematic
parameters, r is the position vector of the end-effector, ρ is a parametric representation of
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the platform orientation (e.g. a set of Euler angles), and qκ is the active-joint variable. The
set of constraint equations for the complete mechanism is defined in the following manner:

F (q) =


F1(q1)

F2(q2)
...

Fnlegs(qnlegs)

 =


g1(ϕ1, r, ρ)− q1

g2(ϕ2, r, ρ)− q2

...
gnlegs(ϕnlegs , r, ρ)− qnlegs

 , (3.34)

where q = [q1 q2 · · · qnlegs ]T is the vector of active joint variables.

4. The kinematic structure of the mechanism has an associated symmetric group GM for a
particular configuration of the end-effector.

In addition to the conditions on the symmetrical mechanism and its symmetrical workspace, the
following condition to set a symmetrical active-joint workspace is assumed:

5. The active-joints reference system is defined such that in the particular configuration that
defines the symmetry group of the mechanism structure GM , the active-joint variables are
symmetrical too. The symmetric group of the active-joint variables is denoted as GQ.

If the active-joint workspace is symmetrical the following relation holds:

F (λi(q) = λi(F (q)) (i = 1, 2, · · · , nlegs) , (3.35)

where F is the set of constraint kinematic equations of the mechanisms, Eq. (3.34) and λi ∈ GQ

is a symmetrical operation of the active-joint workspace symmetric group.

The proof of Eq. (3.35) is analogous to the forward kinematics problem of parallel mech-
anisms: it requires the solution of the constraint kinematic equations given the vector of joint
variables. In general, it is not possible to express the forward kinematics of parallel mechanisms in
an analytical form [7]. Therefore, proof of the symmetry conjecture on the active-joint workspace
is not straightforward. An analytical proof of the conjecture is not provided here. However, in sec-
tion 3.2.6 the conjecture is validated through a numerical analysis of the workspace and active-joint
workspace of a three-degree-of-freedom parallel mechanism whit rotational joints only.

In section 3.2.5 the workspace and active joint symmetries are used in the definition of symmet-
rical sets of leg parameters with an application in kinematic identification of symmetrical parallel
mechanisms.
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3.2.5 Symmetrical Observability of Kinematic
Parameters

If a parallel mechanism meets the conditions of the workspace symmetry theorem (see section
3.2.4.2 and references [94, 101]), then it is possible to define its set of kinematic parameters so as
to obtain a symmetrical observability of its legs. In consequence, the planning of the kinematic
identification (KI) experiments can be reduced according to the observability-symmetric group.

In order to formulate symmetrically observable sets of leg parameters the following conditions
are assumed:

1. The symmetries of the mechanism structure are described by the symmetric group GM .

2. The mechanism has a symmetrical workspace characterized by a symmetric group GW . The
workspace theorem for spatial parallel mechanisms is proposed in [94,101] and summarized
in section 3.2.4.1.

3. A geometric method is adopted for the kinematic modeling of the mechanism. An inde-
pendent vector-loop constraint kinematic equation is written for each leg in the form of Eq.
(3.33). Consistent with this, the following hypotheses are assumed as valid:

(a) each U-joint forming a leg is modeled as perfect,

(b) each spherical joint forming a leg is modeled as perfect,

(c) each prismatic joint is modeled as perfectly assembled with respect to its neighbor
joints (U-joints, spherical joints, rotational joints, etc.),

(d) the axis of each rotational joint is modeled as perfectly orientated,

(e) if the mechanism is planar, then all the links are modeled as constrained in the mecha-
nism plane.

The hypotheses (3a) to (3e) are consequent with realistic operation conditions in which the
influences of defects in the joints have a minor effect on pose accuracy compared with errors
in the location of the joints [97].

4. The position of each base fixed point Aκ (U-joint, spherical joint, etc.) is defined by three
parameters, Fig. 3.13:

(a) the magnitude of the OAκ segment (κ = 1, 2, . . . , nlegs),
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(b) the angle ακ of the OAκ segment with respect to the Z axis of the base reference
system, κ = 1, 2, . . . , nlegs,

(c) the angle βκ of the projection of the segment OAκ on plane XY with respect to the X

axis of the base reference system (κ = 1, 2, . . . , nlegs).

5. The position of each platform point bκ (U-joint, spherical joint, etc.) is described by three
parameters, defined analogously to the base fixed points, Fig. 3.13. The ouvw reference
system is analogous to the OXY Z. The three parameters are denoted as obκ, αbκ and βbκ

(κ = 1, 2, · · · , nlegs).

Aκ

O

X

Y

Z

OAκ

ακ

βκ

Figure 3.13: Position of fixed point Aκ

A linear model is used for the active joints of the mechanism (Eq. (3.36)). As a result, two
additional parameters must be estimated for each leg: the joint gain k, and the joint offset γ.
Therefore, additional symmetry conditions are required to allow a symmetrical observability:

6. Each active joint has the same nominal gain kκ (κ = 1, 2, . . . , nlegs).

7. The mechanism has configured a symmetrical active-joint workspace characterized by sym-
metric group GQ. The conditions to set a symmetrical active-joint workspace are proposed
in section 3.2.4, conditions (1) to (5).

The linear active-joint model is defined in the following manner:

θκ = kκψκ + γκ (κ = 1, 2, · · · , nlegs) , (3.36)

where θ is the active joint angle, ψ is the sensor reading, k is the gain in the active-joint, and γ is
the offset of the sensor.
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Symmetrical observability implies that the observability of the ith kinematic parameter of the
κth leg in the jth configuration must be the same as the observability of the corresponding parame-
ter of a reference leg in its corresponding symmetrical pose. The symmetric group of observability,
GC , is defined by the symmetry operations that allow the superimposition of the reference leg with
the κth leg. Therefore, symmetric group GC can be derived from the symmetric group of the
mechanism GM : GC ⊆ GM , where

GC =
{
λ1, λ2, . . . , λnlegs

}
. (3.37)

When λκ is operated onto a point of the end-effector workspace, the transformed point remains the
same observability characteristics with respect to the κth leg that the original point has with respect
to the reference leg. The observability Jacobian matrix of each leg κ is calculated independently
to compute the observability. That is:

CT
κ =

[
(C1

κ)
T (C2

κ)
T · · · (CN

κ )T
]

(κ = 1, 2, . . . , nlegs),

Cj
κ(ϕκ, r

j, ρj) =
∂Fκ(ϕκ, r

j, ρj)

∂ϕTκ
(j = 1, 2, . . . , N),

(3.38)

where the Fκ function is the κth constraint kinematic equation of the set of Eqs. (3.34), r is the
end-effector position, and ρ is a parametric represention of the end-effector orientation (e.g. a set of
Euler angles). Each row of the Jacobian matrix Cκ corresponds to an identification configuration
of the mechanism. To evaluate the observability of the parameters, the QR decomposition of the
observability Jacobian matrix (Eq.(3.38)) presented in [6] is adopted :

QTCκ =

[
R

0

]
, (3.39)

where Q is aN×N orthogonal matrix, R is a nϕ×nϕ upper triangular matrix, 0 is a (N−nϕ)×nϕ
zero matrix, and nϕ is the cardinality of ϕκ. The observability of the ith parameter is estimated by
the value of its corresponding element on the diagonal of the R matrix. Therefore, the symmetrical
observability for a set of N end-effector poses {R,P} is stated as:

|Rκ
ii (Cκ(ϕκ,R,P))| =

∣∣R1
ii (C1 (ϕ1, λκ(R),P))

∣∣
(i = 1, 2, . . . , nϕ) (κ = 1, 2, . . . , nlegs), (3.40)

where, without loss of generality, the first leg is assumed as the reference, R and P are column
matrices ofN position vectors and parametric representations of the orientation of the end-effector
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respectively, and λκ is the κth symmetry operation ofGC that is applied individually over each end-
effector position in R. The parameters with magnitude close to zero are less observable, and the
non-observable parameters are those for which Rii = 0.

The natural use of the symmetrical observability is in KI. In section 3.2.5.1, a procedure is
proposed to symmetrically design the KI poses of parallel mechanisms taking advantage of the
symmetrical observability.

3.2.5.1 Symmetrical pose selection for kinematic identification

By the symmetrical planning of the KI of parallel mechanisms it is possible to reduce the optimal
posture selection to 1/nlegs of the original search. The pose selection procedure is proposed in the
following manner, Fig. 3.14:

PS1. Calculation of the observability Jacobian matrix. Given the nominal parameters of a ref-
erence leg, ϕ1, the correspondent constraint kinematic function, F1, and a representative
set of postures of a workspace without singularities, {R,P}, to calculate the observability
Jacobian matrix, CR

1 :

CR
1 (ϕ1,R,P) =

∂F1(ϕ1,R,P)

∂ϕT1
. (3.41)

here, the calculation of the Jacobian matrix can be performed analytically or numerically.
For parallel mechanisms the constraint kinematic function F is usually available for the
analytical (symbolic) calculation of the Jacobian matrix. A procedure for the numerical
calculation of the Jacobian matrix is proposed in [104].

PS2. Given the observability Jacobian matrix calculated in step (PS1) to select an optimal set of
postures {R1,P1}, for the KI of the reference leg. To select the poses, an active calibration
algorithm developed by [96] is adopted. The optimized identification set of postures is then
defined in the following manner:

max
{R1,P1}

O1,

subject to : R1 ⊂ R,P1 ⊂ P,
(3.42)
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Figure 3.14: Symmetrical pose selection for kinematic identification

where O1 is an observability index of the Jacobian matrix defined in the following manner,

O1(C1(ϕ1,R1,P1)) =
(s1 s2 · · · sn1)

1/nϕ

nϕ
, (3.43)

nϕ is the number of parameters to be estimated, and si (i = 1, 2, . . . nϕ) are the singular
values of the Jacobian matrix. As rule of thumb, the number of identification poses should
be two or three times larger than the number of parameters to be estimated [105].

PS3. Given the selected set of identification poses of the reference leg, {R1,P1}, calculated in
step (PS2) and the observability symmetric group, GC , to find the sets of identification poses

121



of the remaining (nlegs − 1) legs:

Rκ = λκ(R1) (κ = 2, . . . , nlegs),

Pκ = P1 (κ = 2, . . . , nlegs).
(3.44)

where the symmetry operation λ operates onto the end-effector workspace. Here the end-
effector workspace is defined as the volume within which the end-effector point (i.e. the
geometry center of the moving stage) can be reached [94]. The symmetry operation does not
operate onto the orientation of the end-effector.

In section 3.2.5.2, the DC identification protocol by [10] is equipped with the symmetrical pose
selection procedure.

3.2.5.2 Divide-and-conquer identification protocol

The protocol has three main steps that are summarized in the following manner, Fig. 3.15:

DC1. Symmetrical pose selection. Given the sets of nominal parameters, ϕκ, the inverse kine-
matic functions, gκ, and a representative set of postures of a workspace without singularities,
{R,P}, to find the independent sets of identification postures, {Rκ,Pκ} that maximizes the
observability of ϕκ (κ = 1, 2, . . . , nlegs). Compared to [10], a pose selection that takes ad-
vantage of the observability symmetries is proposed: the identification poses are optimized
for a reference leg and the remaining nlegs − 1 sets are calculated by symmetry operations.
The pose selection procedure is detailed in section 3.2.5.1.

DC2. Kinematic parameters identification. Given the optimized set, Rκ,Pκ, of identification
poses obtained in (DC1), the correspondent sets of active-joint measurements, Q̂κ =[
q̂1
κ · · · q̂Nκ

]T , and end-effector measurements, {R̂κ, P̂κ}, to solve the optimization prob-
lem defined in Eq. (3.45) for the estimation of the sets of kinematic parameters ϕκ

(κ = 1, 2, . . . , nlegs). The optimization problem is defined in the following manner:

min
ϕκ

N∑
j=1

(
gjκ(ϕκ, r̂

j, ρ̂j)− q̂jκ
)2

(κ = 1, 2, . . . , nlegs),

subject to : rj ∈ Rκ, ρ
j ∈ Pκ (j = 1, 2, . . . , N),

(3.45)
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j    Pκ   (j=1,2,...,N)
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Figure 3.15: Divide-and-conquer kinematic identification of parallel mechanisms protocol with
symmetrical pose selection

where {Rκ ⊂ R,Pκ ⊂ P}. {R,P} is a workspace without singularities constraining the
optimization problem.

DC3. Update of kinematic model. Given the identified sets of parameters obtained in (DC2) to
update the kinematic model of the parallel mechanism.

Section 3.2.6 presents the study of workspace, active-joint workspace and observability sym-
metries applied in the KI of a 3RRR symmetrical parallel mechanism.
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3.2.6 Results

The application of symmetries in the kinematic identification of symmetrical parallel mechanisms
is presented through a 3RRR parallel robot manipulator case study. The mechanism has three
degrees of freedom and is illustrated in Fig. 3.16. It consists of an equilateral moving platform,
b1b2b3, that is connected by three identical rotational - rotational - rotational (RRR) kinematic
chains (dyads), AκCκbκ (κ = 1, 2, 3), to an equilateral fixed base, A1A2A3, Fig. 3.16. Each
kinematic chain is actuated from an active-joint that is located on the fixed base. The following
nominal-parameters set is assumed:
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Figure 3.16: 3RRR symmetrical parallel mechanism. Symmetrical configuration and kinematic
parameters
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1. Dimensions of the links: A1A2 = A2A3 = A1A3 = 6.00 m, b1b2 = b2b3 = b1b3 = 1.50 m,
l = L = 1.50 m.

2. Configuration of the legs (dyads): [−1 − 1− 1]. Each leg is to be considered as a dyad that
can be configured +1 or −1 according to the convention described in Fig. 3.16.

3. Nominal gain in the active-joint sensors: k1 = k2 = k3 = 1.

For the kinematic modeling, symmetry analysis and kinematic identification (KI), the origin of the
fixed coordinate frame is located at the geometric center of the fixed base A1A2A3. The X-axis
points along the direction of A1A2 and the Y -axis is perpendicular to A1A2, Fig. 3.16. A moving
frame is attached to the geometric center of the platform. The u-axis of the platform frame points
along the line b1b2, and the v-axis is perpendicular to b1b2, Fig. 3.16. The location of the moving
platform is specified by the coordinates of the platform center and the orientation angle of the
moving frame with respect to the fixed frame in the following manner:

r = [x y 0]T ,

ρ = φ.
(3.46)

3.2.6.1 Workspace symmetry

The 3RRR symmetrical parallel mechanism satisfies the workspace symmetry conditions (1) to
(4), section 3.2.4:

1. The mechanism has three legs and three correspondent degrees-of-freedom.

2. Each leg of the mechanism has an identical RRR kinematic structure.

3. The constraint kinematic equation of each leg is expressed by a closed loop in the following
manner, Fig. 3.17 :

‖r−Aκ‖ − ‖rCκAκ + rBCκ − rBκo‖ = 0 (κ = 1, 2, 3). (3.47)

4. The mechanism structure symmetric group, GM , is stated by inspection, Fig. 3.16. The
symmetric group GM is defined in the following manner:

GM = {λ1, λ2, λ3, λ4, λ5, λ6} , (3.48)
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where the first three elements of GM represent rotations about the Z-axis: 0 rad, 2π/3 rad,
and 4π/3 rad, and the last three elements of GM denote reflections about OA1, OA2, and
OA3 respectively.

The actuation of the symmetrical group GM on the end-effector workspace will make the
workspace superimpose itself. The symmetrical workspace theorem for this mechanism is proved
in references [94, 101].

3.2.6.2 Active-joint workspace symmetry

For the 3RRR symmetrical parallel mechanism a linear active joints model (Eq. (3.36)) with
nlegs = 3 is considered. In consequence, to design a symmetrical KI it is also necessary to satisfy
the condition (5) of active-joint workspace symmetry, section 3.2.4. Figure 3.16 presents the
symmetrical configuration of the 3RRR mechanism that determines the symmetry of the active-
joint workspace, with the active-joint variables vector defined as q = [ψ1 ψ2 ψ3]T . The mechanism
is configured symmetrically positioning the active-joint measuring system in the following manner,
Fig. 3.16:

γ1 = π/6 rad, γ2 = 5π/6 rad, γ3 = −π/2 rad. (3.49)

A numerical calculation of the active-joint workspace is performed to validate the symmetrical
conjecture, Fig. 3.18a. Additionally, three constant orientation workspaces are evaluated: φ = 0

rad, φ = 0.4 rad, φ = 0.6 rad. The results are shown on Figs. 3.18b to 3.18d. The symmetric group
of the active-joint workspace corresponds to rotations of 0 rad, 2π/3 rad, and 4π/3 rad around the
axis ψ1 = ψ2 = ψ3, Fig. 3.18a

3.2.6.3 Formulation of symmetrically observable sets of leg

parameters

Nominally, the set of kinematic parameters is defined by the position of base fixed points, Aκ, the
position of platform points, bκ, the leg lengths, lκ and Lκ, and the joint gain and offset, kκ and
ψκ (κ = 1, 2, 3). Consequently with the conditions (1)–(7) of symmetrical observability, section
3.2.5, this set of parameters are expressed to be symmetrically observable: The base and platform
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Figure 3.18: 3RRR symmetrical parallel mechanism. Active-joint workspace obtained by symmet-
rical operations

points are modeled as constrained on the mechanism plane, the fixed base and platform points are
defined by the magnitude of the OAκ and obκ segments, and the angles βκ and βbκ respectively,
Fig. 3.17. A linear model is assumed for the active joints (Eq. (3.36)). Consequently, the set of
parameters to be identified is defined in the following manner, Fig. 3.16:

ϕκ =
[
lκ, Lκ, OAκ, βκ, obκ, βbκ , kκ, γκ

]T
(κ = 1, 2, 3). (3.50)
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The observability-symmetric group, GC ⊆ GM , corresponds to the symmetry operations that
allows the leg 1 to superimpose the κth leg (κ = 1, 2, 3):

GC = {λ1, λ2, λ3} (GC ⊆ GM), (3.51)

where GM is the symmetric group of the mechanism (Eq. (3.48)).

3.2.6.4 Symmetrical pose selection for kinematic identification

The mechanisms meets the required symmetry conditions:

1. The mechanism is symmetrical as is probed in sections 3.2.6.1 and 3.2.6.2.

2. The sets of leg parameters are declared in order to obtain a symmetrical observability and
the corresponding observability-symmetric group is defined (Eqs. (3.50)– (3.51)), section
3.2.6.3.

Prior to perform the KI, the symmetrical pose selection procedure (section 3.2.5.1) is applied:

PS1. Calculation of the identification matrix, CR
1 (ϕ1,R,P) (Eq. (3.41)). The nominal set of

parameters, ϕ1, is given by the set of conditions (1) – (3), section 3.2.6, the inverse kinematic
function, g1, is given by the Eq. (3.47) with κ = 1, and the useful workspace, {R,P}, is
given by a set of 30 000 singularity-free poses of the mechanism.

PS2. Selection of optimal identification poses. A set of 24 optimal identification poses,
{R1,P1}(CR

1 ) is selected using a robot calibration algorithm by [96]. The optimized iden-
tification poses are registered in Fig. 3.19.

PS3. Symmetrical pose selection. The optimal sets of identification poses for the second and third
legs are obtained by symmetry operations over the set {R1,P1}:

Rκ = λκ(R1) (κ = 2, 3),

Pκ = P1 (κ = 2, 3),
(3.52)

where the symmetry operations, λκ are defined by the Eq. (3.51). In Fig. 3.20 the symmet-
rical observability of the legs is verified by the calculation of the observability index (Eq.
(3.40)), for the sets of optimal poses.

128



−0.6
−0.3

0
0.3

0.6

−0.3
0

0.3
0.6

−0.54

−0.27

0

0.27

0.54

0.8

X [m]Y [m]

 [r
ad

]
o

−0.6 −0.45−0.3 −0.15 0 0.15 0.3 0.45 0.6

−0.3

−0.15

0

0.15

0.3

0.45

0.6

X [m]

Y 
[m

]

Optimal poses of leg1. Reference leg.
Optimal poses of leg2 are obtained
by symmetry operations
Optimal poses of leg3 are obtained
by symmetry operations
Boundary of constant orientation 
workspace

a. End-effector workspace. b. Proyected end-effector workspace.

X

Aκ

bκ
u

v

o

kκψκ
γκ

lκ

Lκ
O

 3RRR symmetrical parallel
mechanism. κ = 1, 2, 3. 

βκ

βbκ

Kinematic parameters: A1A2 = A2A3 = A1A3 = 6.00 m, b1b2 = b2b3 = b1b3 = 1.50 m
l = L= 1.50 m, k1 = k2 = k3 = 1.00 m. Dyads configuration = [-1 -1 -1]

Figure 3.19: 3RRR symmetrical parallel mechanism. Selected poses for kinematic identification

0

0.2

0.4

0.6

0.8

1

lκ Lκ OAκ βκ obκ βbκ kκ γκ

Kinematic parameter

O
bs

er
va

bi
lit

y 
in

de
x

Leg
1

Leg
2

Leg
3

κ = 1, 2, 3

X

Aκ

bκ
u

v

o

kκψκ
γκ

lκ

Lκ
O

o

 3RRR symmetrical parallel
mechanism. κ = 1, 2, 3. 

βκ

βbκ

Kinematic parameters: A1A2 = A2A3 = A1A3 = 6.00 m, b1b2 = b2b3 = b1b3 = 1.50 m
l = L= 1.50 m, k1 = k2 = k3 = 1.00 m. Dyads configuration = [-1 -1 -1]

Figure 3.20: 3RRR symmetrical parallel mechanism. Observability of kinematic parameters

Once the identification poses are selected, the kinematic identification is carried out.
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3.2.6.5 Kinematic identification

The KI is simulated to evaluate the performance of the improved DC identification protocol. The
nominal kinematic parameters of the mechanism are disturbed by adding random errors with nor-
mal distribution and standard deviation σ in order to simulate the kinematic errors to be identified.
The end-effector measurements, R̂κ, are simulated from its corresponding active-joint measure-
ments, Q̂κ, through a forward kinematics model added with normally distributed random dis-
turbances. For the simulations the standard deviations of the measurements were defined in the
following manner:

σr = 1.00 · 10−4 m,

σρ = 1.00 · 10−4 rad,
(3.53)

where σr and σρ are the standard deviations in length and orientation measurements respectively.
The identification procedure is as summarized:

DC1. Symmetrical pose selection. The symmetrical pose selection is detailed in section 3.2.6.4.

DC2. Kinematic parameters identification. A linearization of the inverse kinematics is used for
solve the non-linear optimization problem of each leg (Eq. (3.45)). The linearization is
defined in the following manner:

∆Qκ = Cκ(ϕκ,Rκ,Pκ)∆ϕκ (κ = 1, 2, 3), (3.54)

where ∆Qκ = Qκ(ϕκ, R̂κ, P̂κ) − Q̂κ is the error in the active joint variables and ∆ϕκ is
the set of parameters to be estimated. The estimation is achieved using a iterative linear
least-squares solution of Eq. (3.54):

∆ϕκ = (CT
κCκ)

−1CT
κ∆Qκ (κ = 1, 2, 3). (3.55)

DC3. Update the kinematic model with the set of estimated parameters ϕ = {ϕ1, ϕ2, ϕ3} where

ϕκ = ϕκ + ∆ϕκ (κ = 1, 2, 3). (3.56)

The performance of the identification is evaluated after the kinematic calibration by means the
calculation of the root mean square (RMSE) of the difference between the commanded end-effector
pose, {R,P}, and a correspondent set of simulated measurements, {R̂, P̂}. The set of measured
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Figure 3.21: 3RRR symmetrical parallel mechanism. Estimated end-effector pose root-mean-
square error for a singularity-free workspace

poses corresponds to the set of 30 000 poses used to design the identification experiments. An
alternative traditional inverse kinematic calibration is performed using 24 poses optimized for the
identification of the complete set of parameters of the mechanism. The set of optimal poses is se-
lected using the same active robot calibration algorithm, as in the case of the DC identification. The
results are registered in Fig. 3.21 for RMSE of the end-effector pose estimated for the workspace
without singularities before and after calibration, and Fig. 3.22 for local end-effector position er-
rors calculated for constant orientation workspaces (φ = 0.0 rad, φ = 0.4 rad, φ = 0.6 rad).

Concluding remarks of the use of observability symmetries in kinematic identification of par-
allel mechanisms are presented in section 3.2.7.

3.2.7 Conclusions

This article addresses the problem of declaring sets of leg parameters with symmetrical observabil-
ity for parallel symmetrical mechanisms. The necessary conditions for symmetrical observability
are proposed in section 3.2.5 and summarized in the following manner:

1. The mechanism has a symmetric structure and symmetrical workspace characterized by the
symmetric groups GM and GW respectively, conditions (1) – (2), section 3.2.5.
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Figure 3.22: 3RRR symmetrical parallel mechanism. Estimated end-effector position error on
constant orientation workspaces

2. The kinematic joints are modeled as perfectly assembled and in the case of planar mecha-
nisms the links are assumed to be constrained in the mechanism plane, condition (3), section
3.2.5.
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3. The base and platform joint parameters of each leg are defined in order to obtain a symmet-
rical observability with respect to the workspace, conditions (4) – (5), section 3.2.5.

4. If a linear model (Eq. (3.36)), is assumed for the active joints, then additional conditions are
required: each active-joint has the same nominal gain and the mechanism has configured a
symmetrical active-joint workspace GQ, conditions (6) – (7), section 3.2.5.

To prove the active-joint workspace symmetry results in a problem analogous to the forward kine-
matics of parallel mechanisms: it requires the solution of the constraint kinematic equations given
the vector of input joint variables (Eq. (3.35)). In general, it is not possible to formulate an ana-
lytical solution of the forward kinematics of parallel mechanisms [7]. Consequently, the mapping
of the structure symmetry to the active-joint workspace symmetry of parallel symmetrical mecha-
nisms is established as a conjecture, section 3.2.4.1.

A natural use for the symmetrical observability would be divide-and-conquer (DC) kinematic
identification in which the experiments are designed for a reference leg only and extended to
the remaining legs by symmetrical operations. The DC protocol by [10] is equipped with a new
symmetrical pose selection procedure based on the formulation of symmetrically observable sets of
leg parameters. Compared with [10], the symmetrical pose selection allows for reduction of design
of the experiment cost to 1/nlegs. The procedure is developed in section 3.2.5.1 and summarized
in the following manner:

PS1. Calculation of an observability Jacobian matrix of a singularity-free workspace.

PS2. Selection of set a of optimal identification poses of a reference leg. The pose selection is
calculated using an active robot calibration algorithm by [96] over the observability Jacobian
matrix.

PS3. Determination of the optimal poses for the remaining nlegs − 1 by the symmetrical observ-
ability operations over the reference set.

The updated DC kinematic identification protocol is presented in section 3.2.5.2. Compared to
traditional identification methods the improved protocol has the following advantages:

1. The cost reduction in the design of identification experiments, by the use of observability
symmetries

133



2. The improvement of the numerical efficiency of the procedure for the selection of optimal
identification poses, by the adoption an active robot calibration algorithm by [96].

3. The reduction of kinematic identification computational cost, by the identification of reduced
sets of parameters (the sets correspondent with each leg).

As a consequence of (1) – (3), the kinematic identification results are improved.
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Chapter 4

General Conclusion

This investigation has undertaken the problem of the accurate kinematic modeling of compliant
and parallel mechanisms. The impact of such accurate modeling is significant in both academic
and industrial contexts, in which precise motion is mandatory (e.g. micro mechanisms, medical
instruments and high precision machine tools).

Position and force analyses in compliant mechanisms are not independent, resulting in a force–

displacement model concept rather than a kinematic model. This dissertation has tackled the prob-
lem of force–displacement modeling of compliant mechanisms and two main contributions have
been presented:

1. A force-displacement model of flexure-based compliant mechanisms where the kinematic
and force analyses are solved through the decomposition of a rigid-equivalent mechanism
into Assur groups (chapter 1, article 1.1) is proposed. The model is based on a structural
decomposition routine (see section 1.1.4.1) and a convention for the equivalent joints loca-
tion is presented (see section 1.1.4.2). This allows an extended analysis capability in which
the force-displacement model of a wide variety of mechanisms can be assessed depending
on the amount of Assur groups available in a kinematic and force analysis solution library.
The large deflection analysis is solved using a non-linear Euler-Bernoulli beam model that
uses the kinematics and force analyses of the Assur groups as inputs, and updates the elas-
tic (deflected) configuration of the mechanism with an iterative strategy (see algorithm 1,
page 14). The model was implemented in the workspace analysis of a 3-DOF flexure-based
compliant mechanism (section 1.1.5), and compared with FEA obtaining a good match (see
figures 1.13 and 1.14).

2. A force-displacement model of compliant mechanisms based on Design of Computer Exper-
iments (see chapter 2). The model is aimed at obtaining an Input / Output transfer function
useful for developing real-time control. Although Design of Computer Experiments is not
intended to replace real-experiment-based Design of Experiments, it can be implemented to
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forecast / ignore possible interactions, and to fine-tune ranges; therefore reducing costs of
experimentation and model / product development. Unlike the contribution in 1, “Design
of Computer Experiments” can be applied to a wide variety of compliant mechanisms, e.g.
mechanisms with distributed flexibility, spatial movement, and complex geometry. A scaled
mechanism does not have the scaled transfer function of the original mechanism, due to the
non-linear relationship between the stiffness of the mechanism and its dimensions.

In the case study (the HexFlex 6 DOFs mechanism, section 2.1.5) a linear model was ob-
tained, adding to the applicability of the model. The resulting objective function is a poly-
nomial fitting around the operation point, guarantying the non-singularity of the model even
though the obtained model was not linear.

During the design of the kinematic and force models for the Assur groups implemented in the
force-displacement model of compliant mechanisms (see contribution 1), the following contribu-
tion was developed:

3. A solution for the kinetostatics of Assur groups dealing with the non-linear behavior of the
friction force acting on the kinematic pairs (chapter 1, article 1.2). The proposed methodol-
ogy is as versatile as a MBS program (generally used in commercial software, e.g. Working
Model R©and Symmechanics R©). However, our frictional force estimation stands for a more
accurate result, since in MBS the frictional force estimation typically corresponds to the
one calculated on the first iteration of our contribution. The analysis method is restricted to
cases in which the mechanism is near to self-locking, in such configurations the influence of
frictional forces is important and an approximated estimation leads to big calculation errors.

Chapter 3 presents a new Divide and Conquer protocol for the kinematic identification of par-
allel mechanisms with the following contributions when contrasted with traditional identification
methods:

4. A cost reduction in the design of identification experiments by the use of observability sym-
metries. The pose selection is carried out only for a reference leg, and symmetry operations
are performed in order to calculate the identification poses of the remaining (nlegs− 1) legs.

5. The improvement of the numerical efficiency of the protocol for the selection of optimal
identification poses, by the adoption of the active robot calibration algorithm [96].
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4.1 Recommendations for Future Research

Future work can be conducted in the field of accurate kinematic models concerning compliant and
parallel mechanisms by researching the following topics:

1. A more general force-displacement model based on Assur groups disaggregation in which
compliant mechanisms with distributed compliance can be analyzed. This could be accom-
plished by the implementation of an incremental solution of large deflection analysis.

2. An extension of the force-displacement model of compliant mechanisms in which inertial
effects are accounted for.

3. The implementation of graph theory into the analysis and synthesis of compliant mecha-
nisms. Graph theory has been traditionally applied to the rigid-body mechanisms science.
Therefore, it could be extended to the compliant mechanisms field.

4. The implementation of the Divide and Conquer identification protocol in the case of spher-
ical and spatial parallel mechanisms. Although the Divide and Conquer protocol was tested
in the identification of a complex planar parallel mechanism, the spherical and spatial cases
could provide new challenges and conclusions.

5. The use of symmetric groups theory for the dynamic parameters identification of parallel
mechanisms.

6. The development of modules for the analysis of high-class Assur groups (third-class and
over), and the inclusion of more refined models (e.g. a Dahl friction model) for the frictional
forces acting on the kinematic pairs.

The main difficulties that arose during the research are summarized as follows:

1. Evaluation of the forward kinematics of parallel mechanisms. It is not generally possible
to express the forward kinematics of parallel mechanisms in an analytical way [7]. This
kinematical problem has multiple solutions, i.e. a parallel mechanism can be assembled in
several ways given the actuated joint coordinates. We used numerical methods in which
allowable information of a former pose was used to properly select the forward kinematics
solution.
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2. Identification of active-joint parameters. Active-joint parameters have the lowest observabil-
ity among all parameters e.g. k and γ in Fig. 2. A solution to this problem was developed
carrying out a two ‘step’ identification. A set without active joint parameters was identified
and used to update the kinematic model on the first step, and the active-joint parameters were
identified using a set of poses designed to improve their observability on the second step (see
figure 4.1). The two step identification was not not implemented on the Divide and Conquer
protocol, because even though an improvement of the observability of the active-joint pa-
rameters was achieved, the global performance of the kinematic calibration (the end-effector
accuracy) did not reflect an improvement.

ACTIVE JOINT PARAMETERS
IDENTIFICATION PROTOCOL

End-effector usable 
workspace, WR

Nominal parameters,
Inverse kinematics equation
for the κth leg:

BASIC DIVIDE & CONQUER 
 IDENTIFICATION PROTOCOL

Identified parameters, 

Inverse kinematics 
equation for the κth leg:

End-effector usable 
workspace, WR

Identified parameters, *

Updated kinematic model

Update kinematic model

Figure 4.1: Two step identification protocol
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524 p.

[27] I.I. Artobolevski. Theory of mechanisms and machines. Nauka, Moscu, 1988. 640 p. (In
Russian).

[28] L.V. Assur. Investigation of plane hinged mechanisms with lower pairs from the point of
view of their structure and classification (in russian): Part i, ii. Bull. Petrograd Polytech.

Inst., 23, 1916.

[29] P. E. Nikravesh. Computer aided analysis of mechanical systems. Prentice Hall, New Jersey,
1988.

[30] W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody System

Dynamics, 1:149 – 188, 1997.

[31] P. Eberhard and W. Schiehlen. Hierarchical modeling in multibody dynamics. Archive of

Applied Mechanics, 68:237 – 246, 1998.

[32] R. Kubler and W. Schiehlen. Modular simulation in multibody system dynamics. Multibody

System Dynamics, 4:107 – 127, 2000.

[33] E. Pennestri, P.P. Valenti, and L. Vita. Multibody dynamics simulation of planar linkages
with dahl friction. Multibody System Dynamics, 17:321 – 347, 2007.

[34] E.D. Stoenescu and D.B. Marghitu. Dynamic analysis of a planar rigid-link mechanism
with rotating slider joint and clearance. Journal of Sound and Vibration, 266(2):394 – 404,
2003.

[35] E.D. Stoenescu and D.B. Marghitu. Effect of prismatic joint inertia on dynamics of kine-
matic chains. Mechanism and Machine Theory, 39(4):431 – 443, 2004.

141



[36] P. Larochelle and J.M. McCarthy. Static analysis of spherical nr chains with joint friction.
In Flexible Mechanisms, Dynamics and Analysis, volume DE-47, pages 173–177. ASME,
September 1992.

[37] M. Cavic, M. Kostic, and M. Zlokolica. Position analysis of the high class kinematic group
mechanisms. In 12 IFToMM World Congress, Besaçon, FR, 2007. IFToMM.
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