NON-OFFICIAL SUMMARY

Visual programming with invariant, pre- and post-conditions for
approximation of a 3D model with assorted 1.5D and 2.5D lattice
families

C. Builes-Roldan' © and J. Lalinde-Pulido?

and C. Echeverri-Cartagena3

and O. Ruiz-SalgueroTI

I Laboratory of CAD CAM CAE. U. EAFIT, Colombia
2 High Performance Computing Facility APOLO. U. EAFIT , Colombia
3 Machine Tool Laboratory. U.EAFIT, Colombia

Abstract

End User Programming (EUP) endows a non-programmer user with software tools (normally in icon form in Visual Program-
ming) to execute tasks in the domain of the user, by extending the capabilities of a given host software. This manuscript presents
the results of (a) lattice family creation and (b) 3D region population with lattice families, programmed by a non-programmer
Product Designer in a VP environment (i.e. Grasshopper). This non-programmer user is endowed with intuitive discussions
on Pre- and Post-conditions and Invariants from Contract-based Programming (CBP). The lattice individuals are built from
[EDGE + area] and [FACE + thickness] truss or frame structures. In spite of CBP being tailored for imperative programming
and Grasshopper being a flow-based system, the formal structure of Pre- and Post-conditions and Invariants of CBP provides
a successful frame for program correctness. Future work is required in non-affine deformations of the lattice individuals before

docking them in the sought 3D region.
(see https://www.acm.org/publications/class-2012)

CCS Concepts

o Computing methodologies — Volumetric models; o Software and its engineering — Visual languages; Correctness;
Theory of computation — Preconditioning; Computational geometry; e Social and professional topics — Computational

thinking;

1. Introduction
1.1. Research Target

This manuscript presents a development executed on Visual Pro-
graming tools (i.e. Grasshopper) which (a) defines lattice individ-
uals based on the limbs of types 1.5D [EDGE + area] and 2.5D
[FACE + thickness] due to their lower computing consumption, (b)
executes the approximation of a BODY (i.e. 3D region) enclosed by
a B-Rep M by an enumeration of the given lattice individuals, tuned
by using the usual thresholds in Exhaustive Enumerations. This de-
velopment is executed by a Designer who does not have previous
training in programing but is equipped with intuitive knowledge
of the Pre-condition, Invariant and post-condition formalisms for
Contract Based Programming [Gri81, WGC16].

1 corresponding author

submitted to CEIG - Spanish Computer Graphics Conference (2022)

1.2. Context. Programing for Non-programmers

Visual Programming is built as a tool for practitioners and ex-
perts in topics other than from the programing aspect. This tool
which would allow them to build / assemble applications based
on icons of pre-defined pre-compiled functions. Visual Programing
and in particular GrasshopperTM is a good starting tool for non-
programers to create scenario-driven, generative designs. However,
Grasshopper does not offer: (1) parametric design, because its ker-
nel (RhinocerosTM) does not have it, (2) iterative loops (for,
while, repeat).

Section 2 reviews the state of art of Topologic and Geometric
Modeling for lattices. Due to the special subject of this manuscript
(Visual Programing for Lattice Modeling and Object approxima-
tion), Section 3 discusses the Methodology used and simultane-
ously presents the results of the modeling. Section 4 concludes the
manuscript and indicates aspects for future work.

2 C. Builes-Roldan & J. Lalinde-Pulido & C. Echeverri-Cartagena & O. Ruiz-Salguero / Lattice Population with Visual Programming

2. Literature Review
2.1. Lattice Families and Properties

Ref. [PAHA18] evaluates 5 strategies (solid, intersected, graded,
scaled, uniform) to translate Solid Isotropic Material Penalisation
(SIMP) material densities for a cantilever load case into lattice pa-
rametes. Software used include Magics (Materialise Magics. Mate-
rialise N.V., Leuven, Belgium, 2014.), Autofab (Autofab Software,
Marcam Engineering, 2011), MSC Nastran, Grasshopper - Rhino
(no library specified), and others. No test is given to measure the
discrepancy, resiliency, processing effort, and in-process support
requirements.

Ref. [ABCP*17] addresses the tasks for generating the VoXel
Representation by a lattice individual set that approximates the in-
terior of a 3D body and joins the lattice set with a thick version
of the skin. The lattices are approximated by much smaller VoX-
els. The number of voxels exponentially increases with the body
size. The programming part was executed in MATLAB. No Finite
Element computation is presented in this manuscript.

Ref. [GKR*19] presents a Programed Lattice Editor (PLE),
based on a set of sequence parameters applied on one lattice
type. Its strongest point is the application of affine and non-affine
transformations of the basic rod-based individual to build a frame
with torsion and gradients. PLE produces the set of Constructive
Solid Geometry (CSG) instructions to build the full lattice domain.
Therefore, no geometric modeling is actually executed in PLE.
Neither are mechanics computations (FEA). PLE is embedded in
Mithril, an environment developed in C/C++ for rapid prototyping.
PLE is developed in CPython, C and C++.

IntraLattice [KTZ15] is a software running on Grasshopper,
whose functionality is the generation of graded lattice sets filling
up a solid region Q C R3, with and without 0, the boundary or
skin of Q. IntraLattice contains modules: (a) cell generation, (b)
affine transformations, (c) B-Rep generation (in mesh format) (d)
post-processing for Additive Manufacturing.

2.2. Text vs. Visual Programming. Grasshopper

Ref. [JC11] compares 3 systems for CAD Visual Computing. This
Ref. concludes that Node-based Visual programing (e.g. Houdini)
presents theses advantages: (a)- combines iteration and encapsula-
tion, (b)- supports both forward- and reverse- order modeling meth-
ods, (c)- has implicit iterative process, and, (d)- allows to define
more complex processes. On the other hand, List-based Visual Pro-
gramming (e.g. Grasshopper - Rhino, Generative Components CG
-Microstation) presents higher difficulty, specially originated in :
(1)- encapsulation not available or available by reversing the mod-
eling flow. (2)- non-available iterations.

Ref. [CV12] compares script vs. visual programming for Com-
puter Aided Architecture (generative) Design. Scripts and Visual
Programs are interpreted in the CAAD (as opposed to compiled).
Visual Programming (Grasshopper) has a gentler learning curve,
while Scripting (Visual Basic AutoCAD -VBA) is more convenient
for sophisticated algorithms. Both tested groups, however, encoun-
tered problems with more ambitious projects.

Ref. [ATC15] discusses End-user Programming (EUP) in which

1

2 {Pre: <initial program variables status>}

3 WHILE <conditions for execution>

4 {Inv: <invariant status of variables during Loop>}
5

6 ..

7 ENDWHILE

8 {Post: <final program variables status>}

9

Figure 1: Pre-Condition, Post-Condition and Invariants [Gri81].

non-programmer users create applications which expedite their
work in particular domains (in this case, robotics). In Flow-based
Programming (part of EUP): (a) box icons represent functions, (b)
connectors represent data. (c) no flow control tokens (while,
for, repeat) are available. (d) boxes are SIMO (Single Input
Multi Output) functions, (f) semantics are located in the boxes and
not in the connectors.

2.3. Pre-Condition, Post-Condition, Invariant. Contract-based
Programming.

Refs. [WGC16,Gri81,FL11] address Contract-based Programming
(CBP). CBP includes 1st-order logic predicates before, after or dur-
ing a loop execution (Pre-, Post- and Invariant respectively, Fig. 1).
Predicates are not instructions. They are statements about the mem-
ory status, which are True at the given lines (2,4,8 in Fig. 1). The
Pre-condition (line 2) and Post-condition (line 8) describe the val-
ues of the relevant variables before and after the loop, respectively.
The Invariant (line 4) depicts a typical un-finished state of variables
when the loop is executing. One value of the invariant is that Inv
A(=C) = Post. Therefore, the instructions in the loop (lines 5,6)
must work towards (—C) while keeping Inv true. This last consid-
eration dictates the instruction of the loop (lines 5,6).

Ref. [Seb19] addresses the absence of programming loops in
Grasshopper and possible (cumbersome) repairs for this deficiency.
In absence of loop instructions, the application of Pre- , Post-
condition and Invariant would be apparently impossible. Yet, our
project shows that the non-programer Product Designer was able to
enforce those logical predicates in Grasshopper and to obtain the
correct voxel enumeration for the 3D region (i.e. solid).

2.4. Conclusions of the Literature Review

The state of the art for Lattice Design indicates: (1) Regarding com-
puter environments, there are several reported. However, they re-
quire significant programing skills and professional code bases. (2)
Regarding Geometric Modeling paradigm, lattice modeling post-
pones full Boundary Representation as much as possible, due to
mechanics computation costs. Instead, Truss or Frame modeling is
executed. (3) Regarding Programing paradigms, Visual Program-
ming of Flow-based Programming appear as possibilities, in spite
of requiring trained programmers to model the lattices.

In response to this status, we report here a development with
this special set of circumstances: (a) the Product Designer with
no programming experience, (b) Visual or Flow-Programming, (b)
use of Pre-, Post-conditions and Invariants in spite of these being

NON-OFFICIAL SUMMARY

C. Builes-Roldan & J. Lalinde-Pulido & C. Echeverri-Cartagena & O. Ruiz-Salguero / Lattice Population with Visual Programming 3

planned for imperative script-based programming, (¢) [EDGE +
area] (1.5D) and [FACE + thickness] (2.5D) truss modeling for-
malism will be used for lattice modeling, postponing full B-Rep
for the manufacturing stage.

3. Methodology and Results

3.1. Application of [EDGE + area] and [FACE + thickness]
Limbs in Lattices

Fig. 2 displays how full 3D boundary Representations of a lat-
tice are avoided in favor of 1.5D [EDGE + area] and 2.5D [FACE
+ thickness] limbs. Figs. 2(a) and 2(b) show lattice individuals
whose medial axis are 1-dimensional and 2-dimensional, respec-
tively ([MZCRS19]). Fig. 2(a) shows a 3D cross built by conic
rods plus kinematic constraints. The EDGE is the medial axis C(u)
of the rod. The local rod cross section or area n.rz(u) is dependent
on the parameter u parameterizing the rod medial axis.

* &

THICKNESS
Hu,w)
i L
FACE |
S(uw) |

VD <

(a) (EDGE + area)
used to represent 3D
Conic Cross Lattice.

(b) (FACE + thick-
ness) used to rep-
resent Room Corner
Lattice.

(c) Cylindrical 3D
Cross individuals

(d) Room Corner
individuals

Figure 2: Lattice individuals by using [EDGE + area] and [FACE
+ thickness] limbs. Rectangular prismatic 3D region filled with
non-uniform Ny X Ny X N; lattices.

Fig. 2(b) shows lattices build with walls when the medial axis
of the lattice individual is a 2-dimensional set. The Room Corner
lattice individual is represented by 12 [FACE + thickness] elements
plus kinematic constraints. Each element contains a FACE S(u,w)
and a thickness map 7(u,w) (Fig. 2(b)). Figs. 2(d) and 2(c) present
prismatic domains with constant lattice ropology but variable ge-
ometry.

NON-OFFICIAL SUMMARY

Mesh

Bounding Box ()

(xmin, ymin, zmin, xmax, ymax, zmax)

deconstructBRep()

l (VERTEX} l(FACE) l(EDGE))

colision_one_many()

{infout) {infout) l infout)

—>
V_THRESHOLD [m:mu,mme,vemn] |mwszcs,m\enoLMesh u| [m\ersjoas,m(ew,Mesn |;|
{voxels} {voxels) l {voxels}

(cruzeiro, diamond) Populate Voxels)

(a) Workflow to determine Lattice occupancy
in a 3D domain.

(b) Circuit for Reflection and
FACE Boolean Union.

(c) Application of threshold to
turn off lattices whose number of
I VERTEXes is below the thresh-
old.

Figure 3: Example of Circuits for Lattice Construction and En-
forcement of Threshold for Lattice Inclusion in 3D Region (3D
Model).

3.2. 3D Region Lattice Occupancy

Fig. 3(a) displays the generic workflow for the construction of the
Lattice enumeration that fills a given B 3D domain representing a
solid, with boundary representation M (2-manifold mesh).

A given lattice is classified ([GHROS5, XS93]), regarding its po-
sition in the body region M, as: I= inside M, O= outside M, NIO=
neither inside or outside M.

Fig. 3 shows sample Grasshopper circuits for (a) building a lat-
tice (in this case of the type [FACE + thickness], Fig. 3(b)) using
operations such as reflections, boolean union, rotation, etc., (b) ap-
plying a Threshold value to decide whether the NIO lattices are
graded as I (e.g. a lattice is considered I if more than Threshold=5
of its VERTEXes are inside the solid region M, Fig. 3(c)) Results
of this lattice enumeration process are displayed in Figs. 4 and 5.

4. Conclusions and Future Work
Visual Programing for a non-programer Designer

The experiment of having a non-programer Product Designer to
program a lattice-based filling of a 3D region using a set of suit-
able lattice topologies with varying geometry had these circum-
stances: (a) no previous programing training, (b) independent learn-
ing (i.e. absence of programming tutors), (c) use of Visual Pro-
graming tools (i.e. Grasshopper), (d) informal seminars on Pre- and
Post-conditions and Invariants [Gri81].

In spite of Pre- and Post-conditions and Invariants being devised
for imperative languages, the Product Designer used Grasshopper,

4 C. Builes-Roldan & J. Lalinde-Pulido & C. Echeverri-Cartagena & O. Ruiz-Salguero / Lattice Population with Visual Programming

f (s 2
‘o rq :

(a) Lattice Enumeration for (de- (b) Lattice Enumeration for
manding) Vertex Threshold=8. Edge Threshold=5.

(c) 3D Asterisk. (d) Room Corner.

Figure 4: Whale data set. Lattice enumeration and assorted lattice
individuals

(a) Grid immersion (b) Trusses
of model. within Latices.

Figure 5: Cat data set. Results of visual Programing processing:
immersion of model in grid and lattice approximation.

adeclarative or flow-based programing language, with high profi-
ciency and technically correct results. It must be noticed however,
that it was not intention of the present research to compete against
professional lattice-based design tools.

Region Population with Lattice Individuals

This manuscript presents the geometric modeling of lattice-
approximated 3D regions (i.e., objects) using lattices whose inter-
nal limbs are slender (i.e. thin rods and/or thin plates). For the pur-
poses of computationally economic structural modeling, the rods
are modeled as [EDGE + area] (a.k.a. 1.5D) elements and the plates
are modeled as [FACE + thickness] (a.k.a. 2.5D) elements. These
elements are normally supplemented with kinematic constraints at
the computational mechanics stage.

Notice that a collection of lattices declared to approximate a 3D
solid can be filled with lattice individuals of (a) uniform topology
and diverse geometry (i.e. dimensions, thickness, area, etc.), or (b)
diverse families.

Future work is required in the application of non-affine geomet-
ric transformations to the lattice individuals before their docking in
the target 3D region. This extension would permit lattices whose

geometry contains straight-to-curve deformations, dictated by the
functionality of the Additive Manufacturing.

References

[ABCP*17] AREMU A., BRENNAN-CRADDOCK J., PANESAR A.,
ASHCROFT 1., HAGUE R. J., WILDMAN R. D., Tuck C.: A voxel-
based method of constructing and skinning conformal and functionally
graded lattice structures suitable for additive manufacturing. Additive
Manufacturing 13 (2017), 1-13. 2

[ATC15] ALEXANDROVA S., TATLOCK Z., CAKMAK M.: Roboflow:
A flow-based visual programming language for mobile manipulation
tasks. In 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA) (2015), pp. 5537-5544. doi:10.1109/ICRA.2015.
7139973.2

[CV12] CELANI G., VAZ C. E. V.: CAD scripting and visual pro-
gramming languages for implementing computational design concepts:
A comparison from a pedagogical point of view. International Journal
of Architectural Computing 10, 1 (2012), 121-137. doi:10.1260/1478-
0771.10.1.121, ISSN 1478-0771. 2

[FL11] FAHNDRICH M., L0G0zz0 F.: Static contract checking with
abstract interpretation. In Formal Verification of Object-Oriented Soft-
ware (Berlin, Heidelberg, 2011), Beckert B., Marché C., (Eds.), Springer
Berlin Heidelberg, pp. 10-30. 2

[GHRO5] GARCIA M. J., HENAO M. A., Ruiz O. E.: Fixed grid fi-
nite element analysis for 3D structural problems. International Journal
of Computational Methods 02, 04 (2005), 569-586. doi:10.1142/
50219876205000582. 3

[GKR*19] GUPTA A., KURZEJA K., ROSSIGNAC J., ALLEN G., KuU-
MAR P. S., MUSUVATHY S.: Programmed-lattice editor and acceler-
ated processing of parametric program-representations of steady lattices.
Computer-Aided Design 113 (2019), 35-47. 2

[Gri81] GRIES D.: The Science of Programming. Springer-Verlag
New York, 1981. ISBN 978-0-387-90641-6, eISBN 978-1-4612-5983-1.
Chapter Developing Loops from Invariants and Bounds. 1, 2, 3

[JC11] JANSSEN P., CHEN K.: Visual dataflow modelling: A compari-
son of three systems. In Design Futures 2011 - Proceedings of the 14th
International Conference on Computer Aided Architectural Design Fu-
tures (Liee, Belgium, 01 2011), pp. 801-816. 2

[KTZ15] KURTZ A., TANG Y., ZHAO F.: Intra lattice, 2015. Generative
Lattice Design with Grasshopper. McGillOs Additive Design and Man-
ufacturing Laboratory (ADML). URL: http://intralattice.
com. 2

[MZCRS19] MONTOYA-ZAPATA D., CORTES C., RUIZ-SALGUERO
O.: Fe-simulations with a simplified model for open-cell porous ma-
terials: A kelvin cell approach. Journal of Computational Methods in
Sciences and Engineering (2019), 1-12. In Press. Published online: 27
May 2019. doi:10.3233/JCM-193669. 3

[PAHA18] PANESAR A., ABDI M., HICKMAN D., ASHCROFT I.:
Strategies for functionally graded lattice structures derived using topol-
ogy optimisation for additive manufacturing. Additive Manufacturing 19
(2018), 81-94. do0i1:10.1016/j.addma.2017.11.008. 2

[Seb19] SEBESTYEN A.: Loops in grasshopper. In Bricks are Landing.
Algorithmic Design of a Brick Pavilion. T.U. Wien, 2019, pp. 15-24.
ISBN 978-3-9504464-1-82. 2

[WGC16] WANG B., GAo H., CHENG J.: Contract-based programming
for future computing with ada 2012. In 2016 International Conference
on Advanced Cloud and Big Data (CBD) (2016), pp. 322-327. doi:
10.1109/CBD.2016.062. 1,2

[XS93] XIE Y. M., STEVEN G.: A simple evolutionary procedure for
structural optimization. Computers and Structures 49, 5 (1993), 885—
896. 3

NON-OFFICIAL SUMMARY

