
Surface Reconstruction

Eliana Maŕıa Vásquez Osorio

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA

DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS
MEDELLÍN

2003

Surface Reconstruction

Eliana Maŕıa Vásquez Osorio

Final project presented to obtain the B.Sc. Diploma in Computer Science

Adviser
Prof. Dr. Oscar E. Ruiz

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA

DEPARTAMENTO DE INFORMÁTICA Y SISTEMAS
MEDELLÍN

2003

Acceptation note

Jury: Dr. Georgios Sakas

Jury: Dr. Grigorios Karangelis

Adviser: Dr. Oscar Ruiz

Medelĺın, November 10th 2003

The journey of a thousand miles begins with one step.
Lao-Tse

iii

Acknowledgments

I would like to thank Dr. Oscar Ruiz for his guide and support during the
realization of this project and he has taught me a word of things during my
time at the CAD/CAM/CAE Laboratory. Besides than being my superviser,
he has been a model of discipline and hard work.

I am deeply indebted to Dr. Georgios Sakas and Dr. Grigorios Karangelis.
Dr. Georgios Sakas gave me the opportunity to be cooperating at Fraunhofer
Institute (FhG-IGD) in the years of 2000 and 2002. Dr. Grigorios Karangelis
offered me the support I needed, not only in the technical background, but
in the personal field. To both of you, my deepest thanks.

The members of the CAD/CAM/CAE Laboratory deserve a recognition
for their helpful contributions for this project and the good moments I shared
with them. They are Dr. Carlos Cadavid, Dr. Manuel Julio Garćıa, Miguel
Granados, Sebastián Peña, Carlos Toro, Juan Santiago Mej́ıa, Miguel Henao,
Mario Gómez, Leidy Suárez and Carolina Quintana.

I want to express special thanks to Mónica Henao Cálad. At the beginning
of my studies she brought me the opportunity to work as a research assistant
at her Laboratory. That was the best place and the best person to initiate
me into research.

I owe infinite gratitude to the person who has been always next to me
during all my life, and she is my mother Aracelly Osorio. Without her
support, guide and love, my life could not be as happy as it has, and surely,
I would never get enough strength to be here. My father, Bernardo Vásquez,
started the research interests in my life by teaching me how to disarm devices
when I was little. Thanks to him, now I have a north in my career. My whole
family, that is part of the kernel of my life, encourage me to keep moving up.
Thanks to all of them.

Last, but never least, I want to say Thank You to each one of my friends
who lent me a hand or made me laugh whenever I needed it. Thanks to

iv

v

Roberto, Jannis, Bibiana, Natalia, Angélica and Diana. I really appreciate
everything that comes from you!

Glossary

The source of some of the definitions included here is [33].

CCW: Stands for counter clock-wise sense with respect to the normal of the
plane where the points, polygon or contour lies.

CW: Stands for clock-wise sense with respect to the normal of the plane
where the points, polygon or contour lies.

Digilab: An environment and language for manipulation of 3D digitizations
developed in the CAD/CAM/CAE Laboratory in 1997 by Sebastian
Schrader as final degree project. It has been improved along these
years to allow more complex shapes to be reconstructed. ([34])

ISM: Abbreviation that stands for Implicit Surface Method. Refer to part
III of this document.

Manifold: Topological space which is locally Euclidean. Around every
point, there is a neighborhood which is topologically the same as the
open unit ball in Rn. Manifolds may be open or closed. Closed mani-
folds are known as compact manifolds without boundary. Open man-
ifolds may or may not contain its boundary and they are called non-
compact manifolds with or without boundary.

PSM: Abbreviation that stands for Polyhedral Surface Method. Refer to
part II of this document.

Surface: Two-dimensional manifold embedded in the three-dimensional Eu-
clidean space. Also defined as the locus of a point moving with 2 degrees
of freedom. See section 2.2.

vi

vii

Simple polygon: A polygon is said to be simple (or Jordan) if the only
points of the plane belonging to two polygon edges of the polygon are
the polygon vertices. Such a polygon has a well defined interior and
exterior. Simple polygons are topologically equivalent to a disk.

Specific to the Polyhedral Surface Method

2DSS: Abbreviation that stands for the 2D Shape Similarity algorithm
developed in the CAD/CAM/CAE Laboratory ([38], [39]). This al-
gorithm is used to match the contours on two adjacent levels. The
matched contours are used as input for the PSM. See section 3.

B+G method: Abbreviation that stands for the method on which the PSM
is based. B+G refers to Boissonnat and Geiger initials. See section 5.

Delone Triangulation: Triangulation of the convex hull of a set P of n
points in which every single triangle does not contain, not even in its
circumference, any other point in P , except its vertices. See section
4.2.

DEij: Delone edge related to points pi and pj ∈ P . See section 4.2.

DT: Stands for Delone triangulation. This symbol is used as the Delone
Triangulation defined over the set of points of the contours on a level.
See section 4.2.

DTijk: Delone triangle related to points pi, pj and pk ∈ P . See section 4.2.

DVi: Delone vertex related to point pi ∈ P . See section 4.2.

ER: Stands for External Region.

EVSi: External Voronoi skeleton related to leveli. See section 5.3.1.

External Region: Union of Delone triangles such that they are outside any
contour on a given level. See section 5.

External Voronoi skeleton: Voronoi skeleton such that all the Voronoi
edges that belong to it, are related to an internal Delone edge. An
internal Delone edge lies in the interior of any contour in the given
level. See section 5.3.1.

viii

IR: Stands for Internal Region.

Internal Region: Union of Delone triangles such that they stand inside any
contour on a given level. See section 5.

Internal Voronoi skeleton: Voronoi skeleton such that all the Voronoi
edges that belong to it, are related to an external Delone edge. An
external Delone edge lies outside all the contours in the given level.
See section 5.3.1.

IVSi: Internal Voronoi skeleton related to leveli. See section 5.3.1.

Joint Voronoi Diagram: Planar graph resulting from the intersection of
the orthogonal projections of two Voronoi diagrams (belonging to level 1
and level 2) on a common plane. There are three kinds of nodes: T1,
T2 and T12. A tetrahedron is related to every node in this graph. See
section 5.4.

Joint Voronoi T1 node: Node of the Joint Voronoi Diagram related to a
Voronoi vertex belonging to level 1. The base of its corresponding
tetrahedron lies on level 1. Its neighbors are Joint Voronoi T1 and T12

nodes. See section 5.4.

Joint Voronoi T12 node: Node of the Joint Voronoi Diagram related to
an intersection of two Voronoi edges, one of them belonging to level 1
and the other one to level 2. Its related tetrahedron is built using the
Delone edges corresponding to both Voronoi edges. It could be seen as
an inclined triangular-based pyramid. See section 5.4.

Joint Voronoi T2 node: Node of the Joint Voronoi Diagram related to a
Voronoi vertex belonging to level 2. The base of its corresponding
tetrahedron lies on level 2. Its neighbors are Joint Voronoi T2 and T12

nodes. See section 5.4.

Mapping group: It is a set of contours belonging to two adjacent levels
such that their shapes are similar and their projections over a common
plane overlap. See section 3.

Medial Axis: Set of points that are located at the same distance to two or
more points of a contour. !@ !@

ix

mg: stands for mapping group. See section 3.

MG: set of all the mapping groups created between two consecutive levels.
See section 3.

Non-solid region: The region that lies between contours placed in two ad-
jacent levels in a tree, such that outer-most contour correspond to a
internal wall. See section 3.1.

Polytope: Finite region of n-dimensional space enclosed by a finite number
of hyperplanes. Also may be defined as the convex hull of a finite set
of points. It is composed, then, by points, lines segments, in general
by i-faces, where i = 0..n− 1.

Simplex: A simplex represents the simplest possible polytope in any given
space. The boundary of a k-simplex in k-dimensional space, has k+1 0-
faces (vertices), k k+1

2
1-faces (edges), and

(
k+1
i+1

)
i-faces. The 1-simplex

is a line segment. The 2-simplex is a triangle. The 3-simplex is a
tetrahedron.

Solid regions: The region that lies between contours placed in two adja-
cent levels in a tree, such that the outer-most contour correspond to a
external wall. See section 3.1.

T1 node/tetrahedron: See Joint Voronoi T1 node

T12 node/tetrahedron: See Joint Voronoi T12 node

T2 node/tetrahedron: See Joint Voronoi T2 node

Tetrahedron: Simplest polyhedron in 3D, or 3-simplex. It is created with
four points, and it is composed by four triangular faces. In an intuitive
way, it could be seen as a triangular-based pyramid.

Triangulation: Triangulation is the division of a surface or a plane polygon
into a set of triangles.

Voronoi Diagram: The partitioning of a plane with n points into n convex
regions such that each region contains exactly one point and every point
in a given region is closer to its central point than to any other. See
section 4.1.

xii

VEij: Voronoi edge related to points pi and pj ∈ P . See section 4.1.2.

VVijk: Voronoi vertex related to points pi, pj and pk ∈ P . See section 4.1.3.

VRi: Voronoi region related to point pi ∈ P . See section 4.1.1.

Voronoi skeleton: Subset of Voronoi edges such that its related Delone
edge does not belong to any contour. There are two kinds of skeletons,
the internal Voronoi skeleton IVS and the external Voronoi skeleton
EVS. See section 5.3.1.

Specific to the Implicit Surface Method

Boundary constraint: Constraint whose h-value is set to zero. See section
9.1.

Constraint: A pair composed by a location point ci and its correspondent
h-value hi. See section 8.2.

External constraint: Constraint whose h-value is set to -1. See section
9.1.

Internal constraint: Constraint whose h-value is set to +1. See section
9.1.

LU-decomposition: A procedure to calculate a factorization of square ma-
trices. It calculates for a given matrix A, two matrices, L and U , such
that A = LU . L is a lower triangular matrix and U is an upper tri-
angular matrix. If A has any zero in the diagonal, then pivoting is
required.

RBF: stands for Radial Basis Functions.

Radial basis functions φ(x): Circularly symmetric functions centered at
a particular point. See section 8.2.

Thin-plate interpolation: Method used to solve the scattered data inter-
polation problem based on variational functions. See section 8.2.

xiii

Zero-set: Given a function f defined in a domain D, the zero set is a set
composed by all the points p ∈ D, such that f evaluated on p is zero.
zero set(f) = {p, p ∈ D|f(p) = 0}.

Contents

I Introduction and Common Background 1

1 Literature Review 4

2 Common Technical Background 6
2.1 Input data . 6
2.2 Surface Definition . 7
2.3 Surface Representation . 7

2.3.1 Boolean models . 8
2.3.2 Space-partitioning models 8
2.3.3 Boundary Representation 8

II Polyhedral Surface Method 10

3 Background. The 2DSS algorithm 12
3.1 Contour orientation and inclusion calculation 13
3.2 Calculation of 2D-similar solid and non-solid regions 15
3.3 Post-processing of mapping groups 16

3.3.1 Filter of mapping groups involving internal walls 16
3.3.2 Filter of redundant mapping groups 17

3.4 Skin construction . 17

4 Theoretical Basis for PSM 18
4.1 Voronoi Diagram . 18

4.1.1 Voronoi region . 20
4.1.2 Voronoi edge . 20
4.1.3 Voronoi vertex . 21

4.2 Delone Triangulation . 21

xiv

CONTENTS xv

4.3 Algorithms for Voronoi Diagram and Delone Triangulation
construction . 23
4.3.1 The Accumulative algorithm 23
4.3.2 The Divide and Conquer algorithm 23
4.3.3 The Flipping algorithm 23
4.3.4 The Incremental algorithm 24
4.3.5 The Random Incremental algorithm 24
4.3.6 The Random Incremental algorithm based on the De-

lone Tree . 25

5 Review of the B+G method 30
5.1 Addition of points to contour edges to guarantee condition 0/1 31
5.2 Addition of points to contour edges to guarantee condition 2 . 33
5.3 Insertion of internal points . 36

5.3.1 Voronoi Skeleton . 37
5.4 The Joint Voronoi Diagram 39
5.5 Elimination of tetrahedrons 40

6 The Polyhedral Surface Method 42
6.1 Satisfaction of conditions . 42
6.2 Lifting of internal points . 43
6.3 Special cases in the creation of the Joint Voronoi Diagram . . 43

6.3.1 Case 1: Voronoi Vertex vs. Voronoi Edge 44
6.3.2 Case 2: Voronoi vertex vs. Voronoi vertex 46

6.4 Elimination of tetrahedrons 55

7 Results for PSM 56
7.1 Skull . 56
7.2 Brain . 56

III Implicit Surface Method 61

8 Theoretical basis for ISM 63
8.1 Implicit Surfaces . 63
8.2 Thin-plate interpolation . 64
8.3 Determination of the interpolation function 65

CONTENTS xvi

9 The Implicit Surface Method 67
9.1 Definition of constraints . 67
9.2 Calculation of the implicit function 69
9.3 Extraction of the surface or parallel contours 69

9.3.1 Extraction of parallel contours 70

10 Results for ISM 72
10.1 Synthetic data . 72
10.2 Real Data . 73
10.3 Use of constraints . 73

IV Conclusions and Future Work 77

11 Conclusions 78
11.1 For the Implicit Surface Method 78
11.2 For the Polyhedral Surface Method 79

11.2.1 Incomplete surface . 79
11.2.2 No-manifold situations 80
11.2.3 Watertight surface . 81

12 Future Work 82
12.1 Implementation details in PSM 82
12.2 Support for internal holes or objects in ISM 82
12.3 Use of a different Radial Basis Function for ISM 83

BRep file Grammar 84

List of Figures

2.1 Creation of seven parallel levels from a simple object 6
2.2 B-Rep model of a pyramid . 9

3.1 Contours on a level: orientation of contours and forest. 14
3.2 Mapping groups of the contours on level i and j 15

4.1 The 2D Voronoi Diagram and the 2D Delone Triangulation
of 10 points in R2 . 19

4.2 Two possible Delone Triangulation for four co-circular points. 22
4.3 Initialization of the random incremental algorithm based on

Delone Tree . 25
4.4 Father and stepfather relations and circumcircles 27

5.1 Added points to ensure that all the contour edges appear in
the Delone Triangulation . 32

5.2 Added points to ensure that the angles in front of contour
edges are not obtuse . 35

5.3 Surface before and after adding internal points 37
5.4 Voronoi skeletons of the same polygon before and after the

satisfaction of Condition 2 . 37
5.5 The Joint Voronoi Diagram of two contours and its tetrahedrons 39

6.1 Special cases in the creation of the Joint Voronoi Diagram:
example of Voronoi vertex vs. Voronoi edge case 44

6.2 Special cases in the creation of the Joint Voronoi Diagram:
Solutions for Voronoi vertex vs. Voronoi edge case 45

6.3 Special cases in the creation of the Joint Voronoi Diagram:
Voronoi Vertex vs. Voronoi Vertex case 47

xvii

LIST OF FIGURES xviii

6.4 Special cases in the creation of the Joint Voronoi Diagram: A
solution for 1a2b3c sub-case, where DV3 was elected as apex
for the Ti tetrahedron related to VV123 50

6.5 Special cases in the creation of the Joint Voronoi Diagram:
Solutions for the 1ab23c sub-case 51

7.1 Detail of levels 29 and 30 of the set of contours “skull” 57
7.2 Set of contours and the reconstructed surface 58
7.3 Reconstructed surface in different materials 59
7.4 Set of contours and the reconstructed surface 59
7.5 Reconstructed surface in different materials 60

8.1 Radial basis functions used for 2D and 3D 65

9.1 Scheme of the algorithm to extract a contour on a level grid . 71

10.1 Synthetic data: A branching pipe 73
10.2 Synthetic data: A tamarind skin 74
10.3 Real data: A femur head . 75
10.4 Differences in the reconstructed surfaces using different sets of

constraints for a simple object 75
10.5 Differences in the reconstructed surfaces using different sets of

constraints for a complex object 76

11.1 No bounded interpolated surface 79
11.2 Differences between a simple surface reconstructed using a per-

turbation and solving the special cases 80
11.3 A non-manifold situation that may not be eliminated 81
11.4 Points added to a surface to ensure it is watertight 81

1 Surface represented by the example file 86

List of Algorithms

1 Localizing the affected simplices 27
2 Creating new simplices containing q that replace To 28
3 Add a new point q to a Delone Triangulation 29
4 Add points to the triangulation to satisfy condition 1 33
5 Add points to the triangulation to satisfy condition 2 34
6 Add internal points to contours on level i 38
7 Solving Voronoi vertex vs. Voronoi edge Case 46
8 Identifying Vertex vs. Vertex sub-cases 48
9 Voronoi vertex vs. Voronoi vertex 1a2b3c sub-case 49
10 Solving Vertex vs. Vertex 1ab23c sub-case 52
11 Finding the Lone edges for the 1ab23c sub-case 53
12 Finding the Full Regions for the 1ab23c sub-case 54
13 Definition of the set of constraints 68
14 Calculating the implicit function 70

xix

Part I

Introduction and Common
Background

1

Introduction

For this project, two methods to solve the surface reconstruction problem
were implemented. The target of both methods is to build a surface in 3D,
starting from a set of planar samples. These samples could come from diverse
sources, e.g. medical imaging, digitization of objects and GIS systems. The
final result of the methods is a set of triangular faces under a B-Rep model
representing the reconstructed surface.

The first method, the Polyhedral Surface Method or PSM is described
in part II of this document. It is based on Jean-Daniel Boissonnat ([5]) and
Bernhard Geiger’s ([19]) research, done for the PRISME project in 1993, at
INRIA, Sophia-Antipolis, France.

The second method, the Implicit Surface Method or ISM , described in
part III of the document, is based on Greg Turk and James F. O’Brien’s
research work at the Georgia Institute of Technology in 1999, and it was
originally used for shape transformation ([44]). It was developed as a tool
for the physicians to segment medical images in a virtual Simulator of Ra-
diotherapy Treatment Planning.

A reconstructed surface may represent a human organ, a tumor, a sculp-
ture to use as part of a virtual gallery, a topographic terrain, etc. The range
and variety of these representations and its applications constitute one of
the reasons of the popularization of the use of computerized representation
of 3D shapes in several areas, as diverse as manufacturing, virtual simulation,
scientific exploration, medicine, special effects, games, virtual worlds, and so
forth.

In medicine, one of the uses of the reconstructed surfaces is as support for
the creation of personalized-prosthesis. The surface of the prosthesis is made
based on the forms of the patient, leading to a prosthesis that fits almost
perfectly to the peculiarities of the patient. Another important application
in medicine, is the use of reconstructed organs and regions of patients as

2

3

complementary diagnostic aids.
Another important field where the computerized representation of sur-

faces is being widely used, is reverse engineering. The purpose is to create
CAD models from real existing objects. These CAD models may afterward,
be manufactured in series. This is useful when a part of an “old” machine
needs to be redone for replacing, or when a hand-made object is going to
be produced in series. In the hand-made objects case, collaborative design
may be done, and several sculptors, designers, artists and craftsmen may
cooperate to create a single object.

Chapter 1

Literature Review

Methods for surface reconstruction have existed since nearly 30 years. As
said, the target is to associate a polyhedral shape to the given input, that is
usually formed by points or contours.

The solutions have arised mainly from two fields: computational geom-
etry and computer graphics. The Polyhedral Surface Method is classified in
the computational geometry field and the Implicit Surface Method in the
computer graphics field.

Included in the computational geometry field, several methods have been
proposed. Much of them use geometric structures such as Voronoi Diagrams
and Delone Triangulation in 2 and 3 dimensions. The α-shapes, a classical
method developed by Edelsbrunner ([14]), is based on the Delone Triangu-
lation. The surface is a simplicial subcomplex of the Delone Triangulation,
where the parameter α is used to select the Delone simplices that are part
of the reconstructed surface. α is manually tuned and its optimum value
depends on the density of the sample. Barequet and Sharir ([3]) use a tech-
nique to match parts of the contours. The the no-matched parts, named
clefts, form 3D polygons that lie partially on one level and partially on the
other level. Those clefts are triangulated, and a heuristic based on the min-
imum spanning tree is used to interpolate between the no simply connected
regions. Amenta and Bern ([1]) developed a method based on the Voronoi
Diagram and the Delone Triangulation. Some Delone triangles are filtered
by a subset of Voronoi vertices, called Poles. A pole is the farthest Voronoi
vertex in the Voronoi region related to a Delone Vertex. A Delone trian-
gle whose circumsphere contains a pole is eliminated and the set of Delone
triangles remaining, form the final result that is a piecewise-linear surface.

4

CHAPTER 1. LITERATURE REVIEW 5

Respect to the second field, computer graphics, Hoppe ([23]) created the
first and most widely known method. It estimates a tangent plane at each
sample point using the k nearest sample points. Then it creates a signed
distance function that assigns to any point p in the space the distance be-
tween p and the plane of the closest sample point. After that, the marching
cubes algorithm is used to extract the zero set of the signed distance function
to, lastly, obtain a piecewise linear or polyhedral surface. Curless and Levoy
([11]) also propose the calculation of a signed distance function by calculat-
ing a weighted sum of contributions of the samples. The function is lastly
discretized on voxels in order to avoid the marching cubes step.

Nowadays, a new focus has became interesting, and it is based on the cal-
culation of a variational function that implicitly defines a surface. The first
approach was proposed by Savchenko et al. ([40]), who researched in the cre-
ation of implicit surfaces from measured data such as range data or contours.
This research work was later improved and applied to shape transformation
by Turk and O’Brien ([44]). They proposed the replacement of the signed
distance function for a variational implicit function, that allows the transfor-
mation to be performed in just one step. They also referenced the possible
application of variational implicit functions to surface reconstruction. In a
recent work ([45]), some algorithms to determine external, normal and in-
ternal constraints were formalized, and aspects of modeling and rendering of
implicit surfaces were included as part of the research. Some authors attack
critical points of this particular method and apply it to different fields. That
is, Carr et al. ([9]) who use the method to create surfaces from a noisy point-
cloud and automatically repair meshes. They use a representation based
on the Radial Basis Functions, and show advantages for mesh simplification
and remeshing applications. Also Morse et al. ([24]) worked on this method,
improving the time and space requirements, by changing the Radial Basis
Function by a Compactly-supported Radial Basis Function, while keeping
the optimum characteristics of the created implicit surface.

Chapter 2

Common Technical Background

2.1 Input data

The input data is a set of planar samples. These samples are closed simple
planar polygons, named in this document as contours. The contours are the
boundaries of the regions resulting from cutting the object to be sampled by
planes. The whole set of contours is organized by levels, where each level
corresponds to a cutting plane. For PSM , the contours must lie on parallel
levels, while ISM does not have a restriction for the global positioning of
them.

Figure 2.1: Creation of seven parallel levels from a simple object

In practical terms, these samples are obtained using different methods,
commonly classified into two groups: by-contact and by-remote. When data
is sampled using a by-remote method, the intensity of a determined property

6

CHAPTER 2. COMMON TECHNICAL BACKGROUND 7

present in the object is measured. It could be color, temperature, distance
from a given location, radiation, etc. In these cases, a value is assigned
to every spatial position sampled, and algorithms, depending on the sample
method used, are executed to transform the data as required. Medical images
(CT, MRI, X-Ray...), range images and level maps are examples of this kind
of sampling. An articulated arm is commonly used when the sampled data
is taken using a by-contact method. The sampled points are the result of
solving an equation system of the positions of the joints in the device at a
certain moment.

Respect to the density of the sample, there is the sampling theorem stated
by H. Nyquist situated in information theory and signal processing. It states
that the sampling frequency should be at least twice the highest frequency
contained in the signal ([33]). This concept in surface reconstruction terms,
states that the distance between the sampled points must be at least twice
the smallest detail that will be reconstructed. A set of points is said well-
sampled if the points accomplish the sampling theorem.

2.2 Surface Definition

A surface is mathematically defined as a 2-Manifold M embedded in R3,
where every ball B centered in any point p belonging to the surface, and
with a radius r tending to zero, intersects M in a region that is isomorphic
to a plane disc ([35]). In an intuitive way, it is a continuous set of points,
where the closest neighborhood around every point belonging to the surface,
approximates a plane. Some authors also define it as the locus of a point
moving with 2 degrees of freedom.

To deal with a consistent problem, the object from where the samples are
taken, must be a closed and bounded subset of R3, whose boundary is an
orientable and non-self-intersecting surface. This assumption is set by Ruiz
and Cadavid ([36] and [37]) based on Morse theory ([25]).

2.3 Surface Representation

To handle the complete set of points belonging to a surface is not feasible,
because this set is infinite. For this reason, an approximation of the original
surface is used and handled. Geometric modeling research area creates and

CHAPTER 2. COMMON TECHNICAL BACKGROUND 8

improves ways to represent and handle such surfaces ([26], [30]). Some of
the most used models are Boolean models, space-partitioning models, such
as octrees or quadtress, and boundary models.

2.3.1 Boolean models

The boolean model is a procedural or an unevaluated model. The only avail-
able information is how to operate simple shapes, called primitives, to create
the modeled object. Boolean operations, based on set theory, are used to
operate the primitives. The basic Boolean operations are union (∪), inter-
section (∩) and difference (−). The geometric and topological information
is only known when the whole model is computed.

2.3.2 Space-partitioning models

These models are also known as cell decomposition models. They decompose
the object to be modeled into separate pieces, so that each piece is easier to
describe than the original. This is a special case of Boolean models, whose
operations are limited to union. A wild-known space-partitioning model is
the spatial-occupancy enumeration, where cells are cubes and they are lo-
cated on a fixed grid. The resolution of the model depends on the cell size.
The octree encoding is a method commonly used for the spatial-occupancy
enumeration. This encoding is based on a recursive subdivision of the mod-
eling space in octants (8 cubical regions). For each octant, if it is completely
inside or outside the object, then it is marked as full or empty. If it is not
completely inside nor outside the object, it is divided into octants, and they
are recursively evaluated. The recursion stops when a octant is completely
full or empty, or when the deepest level in the recursion is reached. Then,
the cell is mark as full or empty.

2.3.3 Boundary Representation

The target of this models, also known as B-Rep models, is to represent the
complete object as an organized collection of surfaces. This model is sup-
ported on a graph, which emphasizes on the topological information, using
an structure made of data pointers linking the faces, edges and vertices of
the modeled object. The object is represented as a list of its faces and
their respective surface equation. The edges of these faces are represented

CHAPTER 2. COMMON TECHNICAL BACKGROUND 9

by a curve equation, and they have pointers to their vertices and neighbor
faces. A simplified B-Rep model is composed by a set of triangular faces and
straight edges connecting two vertices (figure 2.3.3), where through-holes are
not present. The described structure is used in the CAD/CAM/CAE Lab.
and it is also used in the implementation of both methods. A format for a
file was defined as part of this project. It is shown in appendix 12.3.

�������
�������
�������

�����
�����
�����

�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� �
� �
� �

d

a

b

c

(a) Pyramid

���������
���������
���������
���������

� � � �� � � �� � � �
� � �� � �� � �

a

b

c

d

(b) B-Rep model

Figure 2.2: B-Rep model of a pyramid

Part II

Polyhedral Surface Method

10

Introduction for PSM

The Polyhedral Surface Method or PSM, reconstructs a surface that is a flat-
faced polyhedron, from a set of contours that lie on parallel planes or levels.
The process is based on geometric closeness, supported over two geometric
structures, the 2D Delone Triangulation and the 2D Voronoi Diagram. There
is no limitation on the distance between the levels. Without loss of generality
the levels are considered as parallel to the XY plane.

The B+G method was developed by Jean-Daniel Boissonnat ([5]) at IN-
RIA and later improved by Bernhard Geiger ([19]). The basic idea of the
PSM is similar to the voxel-heuristic, where the interior of each contour on
each level is divided in small parts, and then, every part belonging to one
level is connected to the nearest part on the consecutive level. Notice that
in the interior of the contours a division is done when two adjacent parts
are matched to two different contours on the consecutive level, creating a
“natural” surface between the levels. The B+G uses the 2D Delone Trian-
gulation of the contour points on each level, and then, the corresponding
Delone triangles in the interior of each contour on each level are linked by
building tetrahedrons.

In the following chapters, a review of the 2D shape similarity algorithm is
given. After that, a technical background on the used structures and a review
of the B+G method is provide for the sake of completeness. The PSM is
then explained in detail including the changes done, and finally some results
of this method applied to some set of contours are shown.

11

Chapter 3

Background. The 2DSS
algorithm

The surface reconstruction problem starting from parallel contours has been
attacked in the CAD/CAM/CAE laboratory since 1996. In 1996 and 1997,
HormaCAD and Digilab were implemented; these applications were the first
attempt to solve the surface reconstruction problem for simple cases. The
2D shape similarity algorithm, named as 2DSS in this document, is the
result of years of experience and it was developed in the CAD/CAM/CAE
Laboratory ([38], [39]). An algorithm to create surfaces is required as last
step in the surface reconstruction process. A version of the method on which
the PSM is based, named as B+G in this document and implemented at
INRIA, was used for this purpose as a library in Digilab. This version gave
positive results. However, some defects were identified. The solution of those
defects and the implementation of a domestic surfacing algorithm constituted
the seed of the PSM.

The 2DSS, 2-D shape similarity, is an algorithm that seeks for a partition
of the original set of contours, such that subsets of contours belonging to
two different levels, with similar 2D shapes and whose projections over a
common plane overlap, are set together. These subsets of contours are known
as mapping groups mg, and they declare which subsets of contours optimally
match between them.

The input to this algorithm is a set of contours that lie on parallel planes.
Every contour is a simple, closed and planar polygon defined by at least
three different points. The contours are grouped in levels, where each level
corresponds to a plane, and the distance between the levels is usually constant

12

CHAPTER 3. BACKGROUND. THE 2DSS ALGORITHM 13

along the whole model. The contours that lie on a level may be nested, but
never intersect among them. If contours are nested, it means that the object
that is being reconstructed may contain fold or internal cavities. Under this
context, a contour may represent an internal or external wall. When two or
more contours are nested, they describe solid or non-solid regions. (section
3.1).

The complete surface reconstruction process is composed by five steps:

1. Contour orientation and inclusion calculation.

2. Calculation of 2D-similar composed shapes (mapping groups).

3. Post-processing of mapping groups.

4. Skin construction.

A brief description of the process steps is given here. The material in this
section is from a previous work done in the CAD/CAM/CAE Laboratory
([38] and [39]).

3.1 Contour orientation and inclusion calcu-

lation

Each level is preprocessed to ensure that the sense of its contours is correct.
The contours must be oriented, such that the interior of the model being
reconstructed lies to the right of the edges. It implies that contours repre-
senting external walls are oriented CCW, and contours representing internal
walls are CW. Based on this orientation, the area of every contour is signed
according to its sense, CCW implies a positive area and CW a negative one.

In this step a forest is built for each level, where a tree in a forest rep-
resents the hierarchical relation between the nested contours (figure 3.1).
Notice that contours set in an even level-in-a-tree have positive area and its
sense is CCW, because they represent external walls. The contours which
are set in an odd levels-in-a-tree have negative area, its sense is CW and
correspond to internal walls. The term level-in-a-tree refers to the the depth
of the contour in a tree.

Two kinds of regions are then identified between the contours on a level:

CHAPTER 3. BACKGROUND. THE 2DSS ALGORITHM 14

GD
E

C

A B

F F

A

SR

NSR

SR
2

0

1

level−in−tree

3

C

D E

G

B

(a) Orientation of the contours and forest of level i

7 8

54
6

321

7 8

SR

NSR

0

1

2

level−in−tree
1

2 3 64 5

(b) Orientation of the contours and forest of level j

Figure 3.1: Contours on a level: orientation of contours and forest.

Solid regions SR: 2D region that lies between contours, set in two adja-
cent levels-in-a-tree, such that the outer-most contour correspond to a
external wall. It represents a polygon with holes. The regions (A, B),
(C, D,E), (F, G), (1, 2, 3, 4, 5, 6), (7) and (8) that are presented in fig-
ure 3.1 are solid.

Non-solid regions NSR: 2D region that lies between contours, set in two
adjacent levels-in-a-tree, such that outer-most contour correspond to a
internal wall. The regions (E, F), (B), (D), (G), (4, 7), (5, 8), (2), (3)
and (6) that are shown in figure 3.1 are non-solid.

CHAPTER 3. BACKGROUND. THE 2DSS ALGORITHM 15

3.2 Calculation of 2D-similar solid and non-

solid regions

The 2DSS generates a list of non-repeated mapping-groups. In this step,
sets of regions (solid and non-solid) of a level are matched against similar
ones on the adjacent level, forming mapping groups mg. The set of all the
mapping groups, denoted as MG contains all the mapping groups created
for two consecutive levels. MG must be filtered before the creation of the
skin is done (section 3.3).

The criterion to determine if two regions create a matching group mg is
based on the percentage of overlap of the two regions. The hypothesis is
that the intersection of the projections of two regions belonging to adjacent
levels, which have a real relation and therefore must be linked by a surface,
represents a significant portion of the area of each region (figure 3.2). A
threshold is used to decide when the regions match or not. The tests done
over several data sets showed a great deal of stability of matches with respect
to the threshold used and a robust performance.

level j

level i

A
B

C D G
F

E

2
3

4
657

8
1 {(A B), (C D E)} vs. {(1 2 3 4 5 6), (8)}

{(F G)} vs. {(7)}
{(B)} vs. {(2), (3)}
{(D)} vs. {(Φ)}

{(E F)} vs. {(4 7), (5 8)}
{(G)} vs. {(Φ)}
{(Φ)} vs. {(6)}

Figure 3.2: Mapping groups of the contours on level i and j

Every contour in the levels being matched, level i and j in figure 3.2, must
appear in at least one mapping group. For this reason an empty region Φ is
defined. It is used when a region R is not related to any other in the adjacent
level, and the mapping group mg = {R} vs. {Φ} or mg = {Φ} vs. {R}
is created. For example, in figure 3.2, the mapping groups {(D)} vs. {(Φ)},
{(G)} vs. {(Φ)} and {(Φ)} vs. {(6)} were created using Φ.

The combinatorial algorithm of testing all possible regions on both levels
against each other to determine the mapping groups is too expensive. A linear
approximation to the solution was implemented in the CAD/CAM/CAE

CHAPTER 3. BACKGROUND. THE 2DSS ALGORITHM 16

Laboratory. See [38] and [39] for details.

3.3 Post-processing of mapping groups

A contour may appear in more than one mapping groups in MG. This
repetition must be filtered to avoid the creation of the same skin more than
once. In addition, mapping groups representing impossible topologies must
be also eliminated from MG.

3.3.1 Filter of mapping groups involving internal walls

A mapping group mg involving internal walls requires one of these actions:

1. If a contour B representing an internal wall is mapped to any contour
k, then k must be an internal wall, and their parents in the trees (of
each level) must be also mapped. If these conditions are not satisfied
by B, k or their parents, then this mapping group is considered invalid,
and it is discarded.

2. If a contour B representing an internal wall is mapped to Φ and

Area(B ∩ Q)

Area(B)
≥ (1− threshold),

for every contour Q that represents an external wall on the level op-
posite to B, then the contour is tiled. The contour G in the mapping
group {(G)} vs. {(Φ)}, shown in figure 3.2, is tiled.

3. If a contour B representing an internal wall is mapped to Φ, and

Area(B ∩ Q)

Area(B)
≤ threshold,

for every contour Q that represents an external wall on the level oppo-
site to B, then this mapping group is ignored, B is not discarded nor
tiled. The mapping groups {(D)} vs. {(Φ)} and {(Φ)} vs. {(6)} shown
in figure 3.2 require this action.

CHAPTER 3. BACKGROUND. THE 2DSS ALGORITHM 17

3.3.2 Filter of redundant mapping groups

The intersection of all the mapping groups in MG is not empty. The reason
is that a contour that represents an internal wall participates in a group
mapping solid regions and in another group mapping non-solid regions. This
redundancy must be eliminated. Some definitions are important before the
filter of redundant mapping groups:

Level of a mapping group level(mg): It is the lowest level-in-the-tree of
the contours belonging to such mapping group.

Ordering of mapping groups ≺: An ordering ≺ may be defined using
the level of a mapping group. A mapping group mgi is said lower than
other mgj if level(mgi) < level(mgj).

The mapping groups are processed in ascending order. First, the lowest
mapping group mglowest ∈ MG is removed from that set. Then, the inter-
section between mglowest and every mapping group mg remaining in MG is
removed from mg. After that, the new lowest mapping group mglowest ∈ MG
is identified and removed, and the procedure is repeated until MG becomes
empty. The set of processed mapping groups are not redundant.

3.4 Skin construction

A surfacing-algorithm is used to create the skin that joins the mapping groups
created in the previous step. There are several algorithms that have been
developed to create a polyhedral surface that joins different set of contours.
The B+G algorithm ([19] and [5]) was chosen and used as complement of
this approach, and it constitutes the seed of this project.

Chapter 4

Theoretical Basis for PSM

The PSM is based on the 2D Delone Triangulation and the 2D Voronoi Di-
agram. These structures are dual. This means that both diagrams represent
the same information in different ways. Both structures give a closeness
criterion, and establish a “neighborhood” relation between the given set of
points.

In the following sections a definition of both structures is given and some
algorithms to calculate them are referenced, emphasizing in the Random In-
cremental Delone Triangulation algorithm based on the Delone Tree. For
more information check a survey in Voronoi Diagrams and Delone Triangu-
lations ([16], [2]).

4.1 Voronoi Diagram

Let P be a set of n points p0, p1, . . . pn in R2, with n ≥ 3 and with no more
than three co-circular points. The Voronoi Diagram V or(P), also known as
the Dirichlet Tessellation, is the partition of the plane in n convex regions,
such that each region contains one point pi ∈ P and all the points in R2 that
are closer to pi than to any other point pj ∈ P . (Figure 4.1(a)).

The Voronoi Diagram has three kinds of elements: Voronoi regions VRi,
Voronoi edges VEij and Voronoi vertices VVijk, as shown in figure 4.1(a).
Each of these elements are related to one, two or three points in P respec-
tively.

18

CHAPTER 4. THEORETICAL BASIS FOR PSM 19

VV513

VE06

VR 8

p7

4p

p3
p1

p5
p9

p2

p0

p6

p8

(a) Voronoi Diagram

DV8

DE06

DT513

p7

4p

p3
p1

p5
p9

p2

p0

p6

p8

(b) Delone Triangulation

(c) Delone Triangulation
and Voronoi Diagram

Figure 4.1: The 2D Voronoi Diagram and the 2D Delone Triangulation of
10 points in R2

CHAPTER 4. THEORETICAL BASIS FOR PSM 20

4.1.1 Voronoi region

A voronoi region, VRi, is a convex area containing pi ∈ P , limited by two
or more Voronoi edges and composed by all the points in R2 that are closer
to pi than to any other pj ∈ P with pi 6= pj. There are closed and open
Voronoi regions; the open Voronoi regions are related to points that belong
to the boundary of the convex hull of P , and in a similar way, the closed
Voronoi regions are related to points that are in the interior of the convex
hull. A Voronoi region is defined in equation 4.1.

V Ri =
{
q, q ∈ R2|d(q, pi) < d(q, pj); pi 6= pj; pi, pj ∈ P

}
(4.1)

where d(q, pj) represents the Euclidean distance. Notice that points that
are at the same distance to more than one point pi ∈ P do not belongs to
a Voronoi region; implying that all the Voronoi regions are disjoint. The
union of all Voronoi regions for the set of points P is denoted by V (P)
(Equation 4.2).

V (P) = {q|q ∈ V Ri} (4.2)

where VRi is the Voronoi region related to the point pi ∈ P . The points that
do not belong to V (P) are Voronoi vertices or belong to a Voronoi edge.

4.1.2 Voronoi edge

A Voronoi edge VEij is placed between two adjacent Voronoi regions VRi and
VRj and is related to both regions. All the points belonging to VEij are at
the same distance from both points pi and pj ∈ P . It is possible to say that
two points pi and pj that are related to two adjacent Voronoi regions VRi and
VRj, and therefore are related to the Voronoi edge VEij, are neighbors. A
Voronoi edge is defined in equation 4.3. Note that there are infinite Voronoi
edges, related to open Voronoi regions.

V Eij = {q, q ∈ R2|d(q, pi) = d(q, pj); pi, pj ∈ P ;

∀pk ∈ P, pk 6= pi 6= pj, d(q, pi) < d(q, pk)} (4.3)

CHAPTER 4. THEORETICAL BASIS FOR PSM 21

4.1.3 Voronoi vertex

The point that is equidistant to three points pi, pj and pk ∈ P is known
as a Voronoi vertex VVijk, see equation 4.4. VVijk is related to pi, pj and
pk, and, therefore, to its corresponding Voronoi regions VRi, VRj and VRk.
A Voronoi vertex, also may be seen as the place where three Voronoi edges
converge, defining a relation between the Voronoi vertex VVijk and the three
converging edges VEij, VEjk and VEki. Notice that a point in R2 may be
equidistant to, at most, three points because of the assumption made of no
more than three co-circular points. This implies that only three Voronoi
edges and three Voronoi regions are related to a Voronoi vertex.

V Vijk =
{
q, q ∈ R2|d(q, pi) = d(q, pj) = d(q, pk); pi 6= pj 6= pk; pi, pj, pk ∈ P

}
(4.4)

4.2 Delone Triangulation

Triangulation is the division of a surface or plane polygon into a set of tri-
angles. The Delone Triangulation of a finite set of point P , known as DT , is
a triangulation of the convex hull of the n points p0, p1, . . ., pn ∈ P in which
every single triangle satisfies the “empty circle” condition (figure 4.1(b)).
The “empty circle” condition states that the circumcircle of every Delaunay
triangle does not contain, not even in its circumference, any other point in
P , except its vertices. For a given set of points P , the Delone Triangulation
is unique if there are no more than three co-circular points. The reason is
that for more than three co-circular points the Delone Triangulation becomes
ambiguous, because there is more than one set of triangles that satisfies the
“empty circle” condition (figure 4.2).

The Delone Triangulation has three kinds of elements: Delone vertices
DVi, Delone edges DEij and Delone triangles DTijk, as shown in fig 4.1(b).
Each of these elements uses one, two or three points in P respectively.

Each Delone Triangulation has associated a Voronoi Diagram and vice
versa, see figure 4.1(c). Each element from one of the graphs corresponds to
another one in the dual graph, as it is shown in table 4.1.

CHAPTER 4. THEORETICAL BASIS FOR PSM 22

p0

p2

p3

p1

p0

p2

p3

p1

Figure 4.2: Two possible Delone Triangulation for four co-circular points.

Delone Element Voronoi Element Related by
Delone triangle DTijk Voronoi vertex VVijk VVijk lies in the center of

the circumcircle of DTijk.
Delone edge DEij Voronoi edge VEij VEij is perpendicular to

DEij, and they are re-
lated even when they do
not intersect.

Delone vertex DVi Voronoi region VRi DVI lies on pi that is the
point that defines VRi.

Table 4.1: Relation between the Voronoi Diagram and the Delone Triangu-
lation

CHAPTER 4. THEORETICAL BASIS FOR PSM 23

4.3 Algorithms for Voronoi Diagram and De-

lone Triangulation construction

Several algorithms to build the Delone Triangulation and the Voronoi Dia-
gram exist. When one of these structures is created, the dual structure can
be built using the correspondence of elements between the Delone Triangu-
lation and the Voronoi Diagram in O(n). A lower bound of O(n log n) for
the time for computing a planar triangulation was analytically established by
Shamos ([42]). A brief survey of some algorithms for computing the Voronoi
Diagram is given in the following paragraphs and finally the algorithm chose
and implemented in this project is described.

4.3.1 The Accumulative algorithm

This algorithm is the most intuitive and also most time- and space-consuming
algorithm. It just takes every possible triad of points to check the empty circle
condition on them. If the three elected points satisfy the condition, then, a
Delone triangle is created and kept. This is O(n4) for the triad election and
checking of the empty circle condition.

4.3.2 The Divide and Conquer algorithm

It was the first worst-case optimal algorithm for Voronoi Diagrams in two
dimensions, developed by Shamos and Hoey approx. in 1975 ([41]). It divides
the set of points with a vertical line, into two subsets of approximately the
same size. Then, the Voronoi Diagram of each half is recursively computed,
and lastly, the Voronoi Diagrams are merged into one. The merge takes linear
time in the worst case, so the algorithm runs in O(n log n) for the worst-case.
A detailed description for this algorithm in terms of Delone Triangulation is
given by Guibas and Stolfi ([21]).

4.3.3 The Flipping algorithm

It is also simple. It starts with any triangulation of all the points in P ,
and begins to check every two opposite triangles abc and bcd, if they are
locally Delone. Two opposite triangles are locally Delone when the non-
common vertex of one of the triangles is not inside the circumcircle of the

CHAPTER 4. THEORETICAL BASIS FOR PSM 24

second triangle or vice versa. If the checked triangles are not locally Delone,
then the diagonal bd is flipped, implying that abc and bcd are replaced by
abd and bcd. All the triangles are checked, flipping some of them, and the
triangulation is checked again, until the complete set of triangles are Delone.
This algorithm runs in time O(n log n + f), where f is the number of flips
and n the edges in the triangulation. An upper bound for f of

(
n
2

)
is given

by Fortune ([16]). If the points are added in random order, and flips are
performed to keep all the triangles satisfying the “empty circle” condition,
then Guibas, Knuth and Sharir ([22]) show that the expected number of flips
is linear. This algorithm was extended to general dimension by Rajan ([32]),
Edelsbrunner and Shah ([15]).

4.3.4 The Incremental algorithm

It starts with an initial triangulation T of one or more triangles, and the
rest of points are added one by one. For the sake of simplicity, the initial
triangulation covers the whole space where the added points will lie. Given
a new point p, the set of triangles To whose circumcircles contain p is found
and replaced with a triangulation Tp, built with the edges of the triangles
in the border of To and p. In the worst case, all the triangles of T could be
affected by the insertion of p, so adding a single point could take linear time,
and adding all the points, under this condition, takes O(n2). In general,

this algorithm runs in d-dimensional space in O(n
d+1
2) and uses O(n

d
2) in

space. Edelsbrunner ([13]) gives more details of this algorithm, and also
some adaptations to minimize the time consumed by finding the affected
triangles may be found in ([8]) and ([29]).

4.3.5 The Random Incremental algorithm

It is a special case of the incremental algorithm, initially proposed by Clarkson
and Shor ([10]). In this algorithm, the points are inserted in random order

and takes, in the worst-case, O(n log n) in 2D and O(n
d
2) in a d-dimensional

space. This is better than the worst-case complexity of the Incremental
Algorithm. This algorithm requires a data structure to find the affected
triangles when a point is inserted. Several data structures have been proposed
([6], [28] and [27]). This algorithm, based on the Delone Tree developed by
Boissonnat and Teillaud ([7]) has been implemented for this project.

CHAPTER 4. THEORETICAL BASIS FOR PSM 25

4.3.6 The Random Incremental algorithm based on
the Delone Tree

The Delone tree data structure was developed by Boissonnat and Teillaud in
1986 ([6], [7]). The algorithm and the structure are defined for any dimension,
where a Delone Triangulation is composed by simplices, and they share facets
among them. The data structure is a rooted directed acyclic graph that stores
the history of the construction of the Delone Triangulation and saves relations
between the eliminated simplices with the ones that replaced them. These
relations are used to locate the simplices that are affected when a new point
is inserted. Much of the material in this section is from [7], but presented
just for two dimensions, where the finite simplices are triangles and the facets
are edges.

The algorithm starts with a triangulation of three points p0, p1 and p2.
Using these points, four simplices are created and set as sons of the root.
One of the created simplices, t012, is finite and the other three, t02∞, t10∞
and t21∞, are infinite. t012 represents the Delone triangle DT012, and is built
with p0, p1 and p2 in ccw-sense. See figure 4.3.

t012

p1

p2

p0

t02

t10

t21

t10 t02

t21

t012
root

Figure 4.3: Initialization of the random incremental algorithm based on De-
lone Tree

Any infinite simplex tij∞ is built using an edge eij shared with a finite
simplex and a point in ∞. The infinite version of eij divides the plane into
two half-planes. The third point used to create an infinite simplex lies in the
halfplane to the right of eij, or in the direction z⊗ eij, where z is the normal
vector of the plane where the set of points lie. The sense of eij is opposite

CHAPTER 4. THEORETICAL BASIS FOR PSM 26

to the edge eji in the finite simplex, and it is called the visible edge of tij∞.
The center of the circumcircle of tij∞ also lies in ∞, and the circumcircle is
deformed to a straight line that corresponds to the infinite version of eij.

When a new point q is inserted into the triangulation, the algorithm
follows two main steps:

1. Localization: It localizes the affected simplices To whose circumcircle
contains q.

2. Creation New Simplices : It replaces the affected simplices To for a set
of new simplices Tq built using q.

A simplex is affected by q when q falls inside its circumcircle. For an
infinite simplex tij∞ the “inside-the-circumcircle” test is simplified to a “side-
of-the-line” test, where the sense of eij will tell where the interior and exterior
of the circumcircle is placed.

The union of the affected simplices To is referred to as the affected region
AR(q). The boundary of AR(q) is a star-shaped polygon. This implies that
for any point p in AR(q), the segment qp is contained in AR(q).

After the insertion of q, the affected simplices To become dead and q is
declared as their killer. Let tijq ∈ Tq be a new simplex created using q and
an edge eij on the border of AR(q). The simplex tijk ∈ To that originally
contained eij is declared father of tijq through edge eij, and the simplex
tjil that contains eji is set as the stepfather of tijq through edge eji. It is
important to notice that the circumcircle of tijq stands inside the union of
the circumcircles of tijk and tjil. This implies that when tijq is affected, tijk
or tjil are also affected. See figure 4.4, where the new created simplex is t014.
t012 is father of t014 through e01 and t103 is stepfather of t014 through e10.

In formal terms, the Localize and Create New Simplices steps are shown
in algorithms 1 and 2 respectively. Algorithm 3 shows the whole process used
to add a new point to the Delone Triangulation.

CHAPTER 4. THEORETICAL BASIS FOR PSM 27

012t

t103 p3

p4

p2 p1

t014

p0

e01

e10

Figure 4.4: Father and stepfather relations and circumcircles

Algorithm 1 Localizing the affected simplices

To = localize(q, s)
Input: q: new added point

t: simplex to check
Output: To: List of simplices affected by q
Precondition: t is a valid simplex. It could be infinite or finite
Postcondition: the simplices in To would be affected by the inser-

tion of q

1: if t is not marked as visited and q lies inside the circumcircle of t then
2: mark t as visited
3: for every simplex s, that is stepson of t do
4: Tos = localize (q, s)
5: add Tos to To

6: end for
7: if t is dead then
8: for every simplex s, that is son of t do
9: Tos = localize(q, s)

10: add Tos to To

11: end for
12: else
13: mark t as killed by q
14: add t to To

15: end if
16: end if

CHAPTER 4. THEORETICAL BASIS FOR PSM 28

Algorithm 2 Creating new simplices containing q that replace To

createNewSimplices(q, To)
Input: q: new added point

To: List of simplices affected by q
Output:
Precondition: To contains at least one affected simplex
Postcondition: The Delone tree contains at least three new sim-

plices containing q
Comment: The Delone tree is implicitly updated by the cre-

ation of the relations between the new added sim-
plices and the old ones.

1: for every simplex to ∈ To do
2: for every simplex tn, neighbor of to through its edge eij do
3: if tn is not affected by q then
4: create simplex tq with eij and q
5: set to as the father of tq
6: set tq as the son of to through eij

7: set tn as the stepfather of tq
8: set tq as a stepson of tn through eji

9: set tq as neighbor of tn trough eij

10: set tn as neighbor of tq trough eji

11: add tq in Tq

12: end if
13: end for
14: end for
15: update adjacency relation between the created simplices.

CHAPTER 4. THEORETICAL BASIS FOR PSM 29

Algorithm 3 Add a new point q to a Delone Triangulation

dtree = addNewPoint(dtree, q)
Input: dtree: Delone tree containing a Delone Triangula-

tion
q: new added point

Output: dtree: Updated Delone tree containing q as a De-
lone vertex

Precondition: dtree has at least four simplices (after initializa-
tion)

Postcondition: dtree contains at least three new simplices
dtree contains q as a Delone vertex

1: set To as an empty list of simplices
2: for every simplex t, son of the root of dtree do
3: Tos = localize(q, t) (algorithm 1)
4: add Tos to To

5: end for
6: createNewSimplices(q, To) (algorithm 2)

Chapter 5

Review of the B+G method

A review of the method developed by Boissonnat ([5]) and improved by
Geiger ([19]) is given in this chapter. This method is refered as B+G in this
document. The basis of the material presented in this chapter is from [19],
enriched with additional elements, concepts, explanations and changes.

The B+G method processes each pair of adjacent levels, leveli and levelj
and creates a flat-faced polyhedral surface that joins the contours of both
levels. Notice that on leveli or on levelj, the given contours may be nested,
indicating that the objects to reconstruct may have internal cavities, possibly
holding inside solid regions.

The Delone Triangulation and the Voronoi Diagram are built using the
points of the contours on each level. A graph, named the Joint Voronoi Dia-
gram is then constructed by the intersection of the Voronoi Diagrams related
to leveli and levelj (section 5.4). After that, the Joint Voronoi Diagram is
translated to tetrahedrons (section 5.4), which are finally filtered (section
5.5) to isolate the faces that belong to the surface.

Before the construction of the Joint Voronoi Diagram, some conditions
must be fulfilled for the Delone Triangulation on each level:

Condition 0: Completeness of DT with respect to the contours The
triangulation should include all the edges which form the contours Ci.
In formal terms, condition 0 is defined in equation 5.1.

∀ edge e ∈ Ci : ∃DEij s.t. e = DEij (5.1)

Condition 1: Partition of DT by contours The classification of every
triangle in the Delone Triangulation as internal or external with respect

30

CHAPTER 5. REVIEW OF THE B+G METHOD 31

to the contours must be possible. Let the union of all the external
triangles be called External Region ER, and the union of all the internal
triangles be the Internal Region IR, then, condition 1 is formalized in
equation 5.2.

∀DTijk ∈ DT : (DTijk ⊂ IR) ∨ (DTijk ⊂ ER) (5.2)

Condition 2: Confinement of circumcenters The circumcenter of ev-
ery Delone triangle DTijk must lie inside the region to which DTijk

belongs. In formal terms, it is defined in equation 5.3.

∀DTijk ∈ DT :

{
if DTijk ⊂ IR ⇒ circumcenter(DTijk) ∈ IR

if DTijk ⊂ ER ⇒ circumcenter(DTijk) ∈ ER

(5.3)

Notice that the satisfaction of condition 0 leads to the satisfaction of
condition 1 and vice versa. When all the contour edges are included in
the triangulation (condition 0 is satisfied), the triangles may be classified
as internal or external triangles with respect to the contours on the level
(condition 1 is satisfied). Both conditions are equivalent, and they are both
kept for the sake of understandability (Condition 0 is not presented in the
original method). The term “condition 0/1” indifferent refers to condition
0 or condition 1. Also, it is important to note that condition 2 needs the
satisfaction of condition 1 to be guaranteed.

To accomplish these conditions, some operations must be performed over
the contours on each level leveli and levelj. In section 5.1 the addition of
points to the contour edges is done to guarantee condition 0, and therefore
condition 1. Section 5.2 explains the operations followed to accomplish con-
dition 2. After both conditions are satisfied, points in the interior of some
contours are added to the Delone Triangulation of each level (section 5.3).
Up to this point, the Delone Triangulation, and its related Voronoi Diagram
on each level, are considered adequate to create the Joint Voronoi Diagram.

5.1 Addition of points to contour edges to

guarantee condition 0/1

The Delone Triangulation of the vertices of the contours on a level may
result in a triangulation where some edges of the contours do not appear.

CHAPTER 5. REVIEW OF THE B+G METHOD 32

For example, in figure 5.1(a) there is a contour C defined by the ordered set
of points P = a, b, ...k. The edge defined by the vertices a and k does not
appear in the Delone Triangulation of P . Notice that DTagj and DTkjg may
not be classified as internal nor external triangles with respect to C. So, the
Delone Triangulation shown in that figure does not satisfies condition 0/1.

C

g

f

e

d

c

b i

k

j

h

a

(a) DTagj and DTkjg are not in-
side nor outside C

C

g

f

j

c

d

k

b

a
e

l

i

h

(b) White triangles are external
and colored triangles are internal
with respect to C

Figure 5.1: Added points to ensure that all the contour edges appear in the
Delone Triangulation

A simple procedure, described in algorithm 4, must be followed to create
a Delone Triangulation that satisfies condition 0/1. Each contour edge e
that does not appear in the triangulation is divided into two edges by adding
its midpoint to the contour (line 4). Then, the new vertices of the contour
are added to the Delone Triangulation (line 13) and the updated Delone
Triangulation is checked again. This operation is done untill all the edges
are included in the Delone Triangulation on the level (cycle repeat-until in
lines 1, 15). In this point, a different algorithm from the one presented by
Geiger ([19]) is given. In the original code, a recursive call is made. Even,
when the results do not differ from the ones obtained from the algorithm
given by Geiger, this presentation is more understandable and it follows the
style of the algorithms presented in this document.

Algorithm 4 converges in a Delone Triangulation containing all the con-
tours edges. This fact was proven by Boissonnat ([5]). Notice that the
contour shape does not change because the added vertices are included into

CHAPTER 5. REVIEW OF THE B+G METHOD 33

Algorithm 4 Add points to the triangulation to satisfy condition 1

dtree = addPointsToSatisfy01(dtree, C)
Input: dtree: Delone tree containing the Delone Triangu-

lation of the level
C: set of contours of the level

Output: dtree: Delone tree containing the updated Delone
Triangulation

Precondition: The Delone Triangulation hold in dtree contains
all the contour vertices

Postcondition: The Delone Triangulation hold in dtree contains
all the contour edges

1: repeat
2: points = []
3: for every contour ci in C do
4: for every edge ej belonging to ci do
5: if ej does not belong to any triangle in dtree then
6: pm = midpoint between the vertices of ej

7: add pm in points
8: add pm in contour ci in between the vertices of ej

9: end if
10: end for
11: end for
12: for every point p in points do
13: dtree = addNewPoint(dtree, p) (algorithm 3)
14: end for
15: until points is empty

the original contour edges. See figure 5.1(b) where all the contour edges are
part of the Delone Triangulation. In this case, the addition of l was enough
for the Delone Triangulation to accomplish condition 0/1 and the contour C
is then defined by the ordered set of points P = a, b, c, d, e, f, g, h, i, j, k, l.

5.2 Addition of points to contour edges to

guarantee condition 2

Notice that adjacent internal and external triangles share a contour edge.

CHAPTER 5. REVIEW OF THE B+G METHOD 34

Algorithm 5 Add points to the triangulation to satisfy condition 2

dtree = addPointsToSatisfy2(dtree, C)
Input: dtree: Delone tree containing the Delone Triangu-

lation of the level
C: set of contours of the level

Output: dtree: Delone tree containing the updated Delone
Triangulation

Precondition: The Delone Triangulation hold in dtree contains
all the contour edges

Postcondition: The angles in front of the contour edges are not
obtuse

1: repeat
2: dtree = addPointsToSatisfy01(dtree, C) (algorithm 4)
3: points = []
4: for every contour ci in C do
5: for every edge ej belonging to ci do
6: t0 = triangle to the left of ej if any.
7: t1 = triangle to the right of ej if any.
8: add point = FALSE
9: if angle in front of ej in t0 is OBTUSE then

10: pm = project the vertex opposite to ej in t0 on ej

11: add point = TRUE
12: else if angle in front of ej in t1 is OBTUSE then
13: pm = project the vertex opposite to ej in t1 on ej

14: add point = TRUE
15: end if
16: if add point is TRUE then
17: add pm in points
18: add pm in contour ci in between the vertices of ej

19: end if
20: end for
21: end for
22: for every point p in points do
23: dtree = addNewPoint(dtree, p) (algorithm 3)
24: end for
25: until points is empty

CHAPTER 5. REVIEW OF THE B+G METHOD 35

khi

bji
lkj

efg

ajb

d

f

c
C

j

k

i
b

g

a
l

h

e

(a) Triangulation that satisfies Condition 0/1
but not Condition 2

oki

pbc

d
e

f

g h

k

m

o
a

C

n

c

b

l

i

j
p

q

(b) First insertion of points

C i

k
f

e
d

c

b
o

ja

l
n

hg
m

p

q r

s

(c) Refined Triangulation

Figure 5.2: Added points to ensure that the angles in front of contour edges
are not obtuse

Any internal or external triangle whose circumcenter lies outside the region
to which the triangle belongs (IR or ER), (i) have an obtuse angle and
(ii) contain a contour edge. The circumcenter and also the contour edge
lie in front of the obtuse angle of the triangle. In figure 5.2(a) the Delone
triangles DTefg, DTkhi, DTlkj, DTajb and DTbji contain an obtuse angle, and
its circumcenters (denoted as ijk) lie out of its corresponding triangles.

CHAPTER 5. REVIEW OF THE B+G METHOD 36

Each triangle whose circumcenter lies outside the region to which it be-
longs, must be divided to accomplish condition 2. The process is implemented
in algorithm 5. Notice that each contour edge ej is contained in, at most, two
triangles (t0 and t1); so, two different triangles must be tested. The angles
opposite to the contour edge ej in both triangles are checked (lines 9 and 12).
If any of these angles is obtuse, then a new point at the normal projection of
the opposite vertex on the contour edge (lines 10 and 13) is added to divide
the contour edge (line 18). The Delone Triangulation is updated (line 23),
condition 0/1 is guaranteed (line 2) and condition 2 is checked again (cycle
repeat-until in lines 1, 25). See figure 5.2 where seven points were added
to the contour in two iterations and C is then defined by the ordered set of
points P = a, q, b, s, c, d, e, f, m, g, h, n, r, i, o, j, p, k, l.

Algorithm 5 differs from the one given by Geiger ([19]). In this algorithm
condition 0/1 is checked before the addition of points to satisfy condition 2
is done (line 2). It is important to notice that condition 0/1 (Completeness
of DT with respect to the contours/Partition of DT by contours) must be
fulfilled before condition 2 (Confinement of circumcenters) is checked. This
dependence between the conditions is not taken into account in the original
method. Refer to section 6.1 to obtain more details.

5.3 Insertion of internal points

Up to this point the Delone Triangulation and its dual Voronoi diagram
are considered apt to calculate the Joint Voronoi Diagram. Nevertheless,
using contours to reconstruct the surface as they are up to this point, a
surface like the one shown in figure 5.3(a) is created. Geiger ([19]) improved
the method developed by Boissonnat ([5]) by adding points in the interior of
some contours. The basic idea is to use the medial axis, internal and external,
of the contours on one level, to divide internal regions on the adjacent level,
and finally create a surface that links similar regions, even if those regions
are not completely bordered by contours (figure 5.3(b)).

Calculate the medial axes of a set of contours is not easy. Geiger proposed
to use a subset of edges of the Voronoi Diagram instead of the medial axes.
This subset of edges is named Voronoi Skeleton. When the contours on a
level have a big number of vertices, the Voronoi Skeletons tend toward the
medial axes of the contours.

CHAPTER 5. REVIEW OF THE B+G METHOD 37

levelj

leveli

(a) Reconstructed surface with
no internal points added on level
i

levelj

leveli

(b) Reconstructed surface with
internal points added on level i

Figure 5.3: Surface before and after adding internal points

5.3.1 Voronoi Skeleton

C

a

b

c

d
e

f

g h

i

j

kl

(a) Voronoi Skeletons of the con-
tour before Condition 2 is satisfied

C

k

c

d

f
m

g h

n

r

ib

o
j p
l

a
q

s

e

(b) Voronoi Skeletons of the con-
tour after the satisfaction of
Condition 2

Figure 5.4: Voronoi skeletons of the same polygon before and after the sat-
isfaction of Condition 2

A Voronoi Skeleton is a subset of edges of the Voronoi Diagram, such that
its related Delone edge does not belong to any contour. There are two kinds
of skeletons, the Internal Voronoi Skeleton IVS and the External Voronoi

CHAPTER 5. REVIEW OF THE B+G METHOD 38

Skeleton EVS. The Internal Voronoi Skeleton IV S is the subset of Voronoi
edges whose dual Delone edge is shared by two internal triangles. In the
same way, the External Voronoi Skeleton, EV S, is defined as the subset of
Voronoi edges whose dual Delone edge is shared by two external triangles.
The vertices belonging to the EV S are known as External Voronoi Vertices
and conversely the vertices belonging to the IV S are called Internal Voronoi
Vertices. See figure 5.4, where the Voronoi Skeletons of the Contour C are
shown, the Internal Voronoi Skeletons is represented by a solid line and the
External Voronoi Skeletons is represented by a dashed line.

If condition 2 is not satisfied by the contours on the level, as it is shown in
figure 5.4(a), the External Voronoi Skeleton may invade the internal region
IR. Likewise, any Internal Voronoi Skeleton may cross contour edges and
invade the external region ER.

Algorithm 6 Add internal points to contours on level i

dtreei = addInternalPoints (Ci, dtreei, EV Sj)
Input: Ci: set of contours on level i

dtreei: Delone tree containing the Delone Trian-
gulation of level i
EV Sj: External Voronoi skeleton on level j

Output: dtreei: Delone tree containing the updated Delone
Triangulation

Precondition: The Delone Triangulation hold in dtree contains
all the contour edges

Postcondition: zero or more points are added in the interior of the
contours in the triangulation.

1: points = []
2: for every Extern Voronoi vertex V V in EV Sj do
3: if V V falls inside any contour in Ci then
4: add V V to points
5: end if
6: end for
7: for every point p in points do
8: dtreei = addNewPoint(dtreei, p) (algorithm 3)
9: end for

10: dtreei = addPointsToSatisfy2(dtree, Ci)

The External Voronoi Vertices on level i whose projections fall inside any

CHAPTER 5. REVIEW OF THE B+G METHOD 39

contour on level j are added to the triangulation of level j and vice versa.
The addition of these points enables the separation of contours along an
approximated external medial axis, as it is shown in figure 5.3(b). Algorithm
6 implements the process of adding internal points to a level. This algorithm
must be called once per level.

5.4 The Joint Voronoi Diagram

Using the Voronoi Diagrams of both levels, the Joint Voronoi Diagram is
built. This graph is a planar graph that results from intersecting the orthog-
onal projections of two Voronoi Diagrams on a common plane. There are
three kinds of nodes in the graph: T1, T2 and T12. The Ti nodes correspond
to the Voronoi vertices belonging to the Voronoi Diagram on level i, with
i = 1, 2. The T12 nodes correspond to the intersection of two Voronoi edges.

DVA

VE12

DV2

DVB

VEBC
DV3

DVCVE31

DV1 VV123

VVABC

VEAB

VECA
VE23

(a) The Voronoi Diagrams
of two simple contours

T1

T12

T12

T2

(b) The Joint Voronoi Di-
agram for two simple con-
tours

(c) The corresponding tetra-
hedrons

Figure 5.5: The Joint Voronoi Diagram of two contours and its tetrahedrons

CHAPTER 5. REVIEW OF THE B+G METHOD 40

Every node in the graph corresponds to a tetrahedron, and the union of all
these tetrahedrons form the 3D Delone Triangulation of the contour points P
of both levels i and j. Because the tetrahedrons that are translated from the
graph are Delone tetrahedrons, they satisfy the “empty-sphere” condition,
that is, the sphere that circumscribes the tetrahedron does not contain any
other point in P except its vertices. The tetrahedron corresponding to a Ti

node, named Ti tetrahedron, is built using a Delone triangle on level i as
base and a Delone vertex on level j as apex. The base is the Delone triangle
DTklm, related to the Voronoi vertex VVklm on which the node lies. The apex
is the Delone vertex belonging to level j that is the closest vertex to the
circumcenter of DTklm. The tetrahedron corresponding to a T12 node, named
T12 tetrahedron, is built using the Delone edges related to both Voronoi edges
that intersect. See figure 5.5(c) where a T1, T2 and two T12 tetrahedrons are
translated from the Joint Voronoi Diagram in figure 5.5(b).

An edge on the Joint Voronoi Diagram connecting two nodes, may only
connect a Ti to a Ti or a T12 node. A T1 node is never directly connected to
a T2 node, nor vice versa. A T12 node must be in between those T1 and T2

nodes in order to be indirectly connected. Every Ti node is connected to, at
most, three nodes, and a T12 to four nodes.

Notice that every tetrahedron is created with four Delone vertices. When
more than four Delone vertices satisfy the “empty sphere” condition, the
creation of tetrahedrons and the definition of the Joint Voronoi Diagram be-
comes ambiguous, issue that is not addressed by Geiger and Boissonnat ([19]
and [5]). These cases are handle in an analytical way in section 6.3. In the
implementation proved in the CAD/CAM/CAE Laboratory, a perturbation
is applied when more than four points that shares the same empty sphere
are found.

5.5 Elimination of tetrahedrons

Some nodes, and their related tetrahedrons, must be eliminated from the
Joint Voronoi Diagram and only the tetrahedrons corresponding to the in-
terior of the reconstructed object are to be kept. The triangular faces that
are not shared by two tetrahedrons, compose the reconstructed surface that
is the target of all this process.

Two steps are performed on the set of nodes and tetrahedrons:

1. External tetrahedrons are eliminated.

CHAPTER 5. REVIEW OF THE B+G METHOD 41

2. Tetrahedrons contributing to non-solid connections are eliminated.

A tetrahedron is called external if any of its edges lies outside all the
contours. For a Ti node, if the Voronoi vertex on which the Ti is defined is
an External Voronoi vertex, then the Ti tetrahedron has at least one edge
outside of the contours and must be eliminated. If any of the Voronoi edges
that intersect and create a T12 node belongs to an External Voronoi Skeleton
EV S, then, its related Delone edge lies outside the contours, and the T12

must be erased.
The non-solid connections are a set of tetrahedrons that only have an

edge or one single point on one of the levels. If the Ti nodes related to the
Voronoi vertices of the Voronoi edges that intersect and create a T12 node
are eliminated, then the T12 tetrahedron is considered non-solid and must be
also eliminated. If a set of Ti nodes connected among them does not have
a connection to a T12, then the whole set of Ti must be eliminated. This
specific configuration of nodes is reflected in a set of Ti tetrahedrons that
shares the same apex and usually the apex belongs to a contour.

Chapter 6

The Polyhedral Surface Method

The PSM is based on the B+G method. The B+G method ([19]) recon-
structs incomplete surfaces and presents no-manifold situations. In the ver-
sion implemented as part of this project, the incomplete surface problem was
solved (section 6.4) and the no-manifold situations were minimized by taking
into account special cases when creating the jointVoronoi Diagram (section
6.3). Also minor changes, in implementation and conceptualization, were
done to reach better results.

6.1 Satisfaction of conditions

There are two conditions, (extended to three conditions in this document)
that must be fulfilled before the Joint Voronoi Diagram may be created (sec-
tion 5.1 and 5.2). These conditions are dependent between them, condition
0/1 must be fulfilled before condition 2 is checked. This detail is not consid-
ered on the original document, and some presented algorithms fails because of
this omission. Notice that the satisfaction of both conditions is not straight-
forward, because the addition of points to satisfy condition 2 may cause some
contour edges to disappear from the current Delone Triangulation. Also, the
addition of points to satisfy condition 1 may create obtuse triangles, mak-
ing the set of points do not satisfy condition 2. A cycle of “checking and
correcting” converges to a Delone Triangulation which accomplish both con-
ditions, since the Delone Triangulation maximizes the minimal angle in all
the Delone triangles (satisfying condition 2) and the contours edges would
eventually appear in the Delone Triangulation (satisfying condition 1 - [5]).

42

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 43

The satisfaction of both conditions must be tested every time a point is
inserted into the Delone Triangulation. It implies that algorithm 5.1 must
be called in algorithm 5 (as it is shown in line 2), and algorithm 5 must be
called after the addition of internal points, as it is shown in algorithm 6, line
10.

6.2 Lifting of internal points

As an improvement to the B+G method, the points that are inserted in
section 5.3 are orthogonally projected on a level between the processed levels
before the surface is finished. This projection allows getting the original
contours if the resulting surface is re-sampled using the same original planes.

6.3 Special cases in the creation of the Joint

Voronoi Diagram

The special cases are generated when more than four Delone vertices stand
on the surface of an empty sphere. In these situations, the construction of
the graph becomes ambiguous because there is more than one configuration
of nodes (and therefore, tetrahedrons) that could be generated, as it happens
in the construction of the Delone Triangulation when more than three co-
circular points exist (section 4.2). If nodes of different configurations are
kept together at the same time, the graph becomes inconsistent, because
the faces of the related tetrahedrons intersect among them and the number
of connections between the nodes exceed the limit. The problem is solved
when a valid configuration of nodes, defined as the set of nodes whose related
tetrahedrons properly share faces, is found and it is inserted into the graph.
These special cases are not considered in the original version of this method
([19]).

As an upper bound, at most six Delone vertices may share the same
empty sphere, because on each level the limit of co-circular vertices is three
and the graph generation involves just two levels.

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 44

6.3.1 Case 1: Voronoi Vertex vs. Voronoi Edge

This case is generated when five Delone vertices are co-spherical, leading to a
Voronoi vertex belonging to level i be projected on a Voronoi edge belonging
to level j, or vice versa. An example is shown in figure 6.3.1

DV
1

DV
2

DV
3

DV
B

DV
C

DV
D

DV
A

(a) Vertices DV1, DV2,
DV3, DVB and DVD are
co-spherical

DV1

DV3

DV2

DVA

DVC

DVD

DVB

VE31

VE12

VE23

VEAB
VEBC

VECDVEAD

(b) Projected case

Figure 6.1: Special cases in the creation of the Joint Voronoi Diagram: ex-
ample of Voronoi vertex vs. Voronoi edge case

Each pair of Voronoi edges that intersect each other, generate a T12 tetra-
hedron, as it is seen in section 5.4. In this case three intersections are found,
VE12 vs. VEBD, VE23 vs. VEBD and VE31 vs. VEBD. The creation of all
these T12 tetrahedrons is illegal, because their faces intersect and one face is
shared by more than two tetrahedrons.

The ambiguity is essentially shown when creating the Ti tetrahedron re-
lated to VV123. In this case, two different Delone vertices are found at the
same distance to VV123 and the distance is the minimum among all the points,
so, any of them could be used as the apex. These two found Delone vertices
are the ones related to the Voronoi edge on which VV123 is projected, in figure
6.3.1 they are DVB and DVD. Because there are two alternatives to choose
from, this situation allows two configurations as solutions.

The election of the apex for the Ti tetrahedron between these Delone
vertices, states that the distance from the elected vertex to VV123 is virtually
smaller than the distance from the non-elected vertex to VV123. It is equiva-

lent to move the level j in direction
−−−−−−−→
V V123Apex. The ambiguity is eliminated

as shown in figure 6.3.1.

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 45

VE31

VE12 VEBC

VV123

VEDA

VEAB

VVABD
VVBCDVEBD

VECD

VE23

(a) Delone vertex DVD elected as apex

VE12

VV123

VE31

VEDA

VVABD

VEAB VEBC

VVBCD

VECD
VE23

(b) Delone vertex DVB elected as apex

Figure 6.2: Special cases in the creation of the Joint Voronoi Diagram: So-
lutions for Voronoi vertex vs. Voronoi edge case

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 46

Identification of a valid configuration

Algorithm 7 Solving Voronoi vertex vs. Voronoi edge Case

[Ti, T12] = solveCaseVertexVsEdge(V V , V E)
Input: V V : Voronoi vertex

V E: Voronoi edge
Output: Ti tetrahedron related to V V

T12: set of at most two T12 tetrahedrons
Precondition: level of V V is not the same level of V E

the projection of V V lies inside V E
Postcondition: the tetrahedrons in Ti and T12 form a valid config-

uration

1: Apex = elect left or right vertex of V E
2: Ti = new Ti using the Delone triangle related to V V and Apex
3: for every Voronoi edge V Ek related to V V do
4: if half-plane of V Ek is not the same half-plane of Apex then
5: t12 = new T12 created with the Delone edges related to V Ek and V E
6: add t12 to T12

7: end if
8: end for

The complete sequence of steps is given in detail in algorithm 7. The
infinite version of the Voronoi edge on which the vertex is projected, VEBD

in figure 6.3.1, divides the plane into two half-planes, each of them containing
one of the Delone vertices related to the edge and one or two projected Delone
edges belonging to level i.

Due to the virtual displacement done by electing the apex (line 1), the
edges contained in the half-plane where the apex lies, do not longer intersect
VEBD but the edges in the second half-plane properly do it (line 4). This
“intersect and no-longer-intersect” status on each found intersection leads to
a proper creation of the nodes related to the T12 tetrahedrons that complete
a valid configuration (lines 3-7).

6.3.2 Case 2: Voronoi vertex vs. Voronoi vertex

This case is generated when six Delone vertices are co-spherical, leading to a
Voronoi vertex belonging to level i be projected on a Voronoi vertex belonging

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 47

to level j.

DV
1

DV
2

DV
3

DV
BDV

A

DV
C

VECA

DV1

VVABC

DVC

VE31

VEBC DV3

DVB

VE23

VVABC

DV2

VEAB

DVAVE12

(a) 1a2b3c sub-case

DV
1

DV
2

DV
3

DV
B

DV
CDV

A

DV2

DV3

DVB

DVCVE31

DV1

DVA

VE12

VE23

VV123

VEAB

VVABC

VEBC
VECA

(b) 1ab23c sub-case

Figure 6.3: Special cases in the creation of the Joint Voronoi Diagram:
Voronoi Vertex vs. Voronoi Vertex case

In this case nine intersections are identified, VE12 vs. VEAB, VE12 vs.
VEBC , VE12 vs. VECA, VE23 vs. VEAB, VE23 vs. VEBC , VE23 vs. VECA,
VE31 vs. VEAB, VE31 vs. VEBC , VE31 vs. VECA. As in the previous
case, the construction of these nine tetrahedrons, leads to an inconsistent
graph. The “election of apex” problem is also present, with the detail that
there are two Ti tetrahedrons to elect an apex, and three possible apices for
each tetrahedron. When an apex for any of the Ti tetrahedrons is chosen,
it restricts the election of the apex for the second Ti tetrahedron and the
creation of the complementary T12 tetrahedrons. Because of this, this case
allows three configurations as solutions.

As it happened in the previous case, the election of an apex could be
translated into a displacement of the levels and the elimination of the ambi-
guity by the assumption that the distance between the apex and the Voronoi

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 48

vertex is the smallest.

Algorithm 8 Identifying Vertex vs. Vertex sub-cases

subcase = identifyVertexVsVertexSubcase(V Vi, V Vj)
Input: V Vi: Voronoi vertex on level i

V Vj: Voronoi vertex on level j
Output: subcase: Flag indicating the sub-case type, its pos-

sible values are 1a2b3c or 1ab23c
Precondition: level of V Vi is not the same level of V Vj

the projection of V Vi lies on the projection of V Vj

Postcondition: A sub-case is identified

1: Edges[] = angular order of all edges related to V Vi and V Vj

2: Subcase = 1a2b3c
3: for every Voronoi edge V Ec in Edges do
4: set V En as the edge next to V Ec in Edges
5: if level of V Ec is level of V En then
6: Subcase = 1ab23c
7: end if
8: end for

Two different sub-cases are identified for this case, both keeping the same
characteristics described above. Algorithm 8 identifies the sub-cases. The
sub-cases are determined by the distribution of the edges on the “intersecting
star” created when all the edges are projected on the same plane (see figure
6.3.2). There are only two possible distributions, the edges are intercalated
or they are not. When two consecutive edges belong to the same level, the
sub-case is identified as the 1ab23c sub-case (lines 5-7). Otherwise, if there
are no two consecutive levels belonging to the same level, the sub-case is
identified as the 1a2b3c sub-case (the cycle in lines 3-9 never falls inside lines
5-7).

Identification of a valid configuration for the 1a2b3c sub-case

For this sub-case, each Voronoi region related to a Voronoi vertex contains
a Voronoi edge related to the other Voronoi vertex (figure 6.3(a)). The three
solutions for this sub-case are symmetric; the election of the apex for the first
Ti tetrahedron does not change the fact that two T12 and two Ti tetrahedrons

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 49

Algorithm 9 Voronoi vertex vs. Voronoi vertex 1a2b3c sub-case

[Ti, T12] = solveVertexVsVertex1a2b3c(V Vi, V Vj)
Input: V Vi: Voronoi vertex on level i

V Vj: Voronoi vertex on level j
Output: Ti: set of TWO Ti tetrahedrons related to V Vi and

V Vj

T12: set of TWO T12 tetrahedrons
Precondition: level of V Vi is not the same level of V Vj

the projection of V Vi lies on the projection of V Vj

Postcondition: the tetrahedrons in Ti and T12 form a valid config-
uration

For this sub-case, each Voronoi region related to a Voronoi vertex contains a
Voronoi edge related to the other Voronoi vertex (figure 6.3(a)). The three
solutions for this sub-case are symmetric; the election of the apex for the first
Ti tetrahedron does not change the fact that two T12 and two Ti tetrahedrons
are created. In figure 6.4 the joint Voronoi Diagram with no ambiguity is
shown, and also its physical tetrahedron representation.

1: Edgej = any Voronoi edge related to V Vj

2: Regionj = Voronoi region to the left of Edgej

3: Apex1 = Delone vertex related to Regionj

4: ti = new Ti using the Delone triangle related to V Vi and Apex1

5: add ti to Ti

6: Edgei = Voronoi edge whose projection lies inside Regionj

7: Regioni = Voronoi region not bounded by Edgei on the level of Edgei

8: Apex2 = Delone vertex related to Regioni

9: ti = new Ti using the Delone triangle related to V Vj and Apex2

10: add ti to Ti

11: DEi = Delone edge related to the Voronoi edge to the left of Regioni

12: DEj = Delone edge related to the Voronoi edge to the right of Regionj

13: t12 = new T12 using DEi and DEj

14: add t12 to T12

15: DEi = Delone edge related to the Voronoi edge to the right of Regioni

16: DEj = Delone edge related to the Voronoi edge to the left of Regionj

17: t12 = new T12 using DEi and DEj

18: add t12 to T12

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 50

VE12

VE23

VE31

VV123

VECA

VEAB

VVABC

VEBC

Figure 6.4: Special cases in the creation of the Joint Voronoi Diagram: A
solution for 1a2b3c sub-case, where DV3 was elected as apex for the Ti tetra-
hedron related to VV123

are created. In figure 6.4 the joint Voronoi Diagram with no ambiguity is
shown, and also its physical tetrahedron representation.

Algorithm 9 implements the solution for this sub-case. The election of the
apex for the first Ti is done in line 4. The vertex that lies in the region that
is opposite to the first elected apex in the consecutive level is chosen as apex
for the second Ti tetrahedron (line 6-8). The T12 tetrahedrons that complete
the valid solution are created using the edges that bound the corresponding
Voronoi regions of the elected apices (lines 11-13 and 15-17).

Identification of a valid configuration for the 1ab23c sub-case

For this sub-case, the solutions are not symmetric as they are in the previous
sub-case. The solutions are shown in figure 6.5.

The simplest solution is shown in figure 6.5(c), where just one T12 tetrahe-
dron is created. To construct that solution, some elements must be identified:
the Full Region and the Lone Edge.

Full Region: The Voronoi region that contains two Voronoi edges belonging
to the other level is named the Full Region. In figure 6.5(c), the Full
Region for level i is the Voronoi region VR1, bounded by VE12 and
VE31, and for level j it is the Voronoi region VRC , bounded by VEBC

and VECA. The identification of this region is done in algorithm 12.

Lone Edge: The Voronoi edge that is alone in a Voronoi region belonging
to the other level is called the Lone Edge. In figure 6.5(c), the Lone
Edge for level i is VE12, and for level j it is VEBD. The identification
of this edge is done in algorithm 11.

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 51

VE12

VV123

VE23VE31

VEAB

VECA

VEBC

VVABC

(a) Solution with three T12

VE12

VV123

VE23VE31

VECA

VEAB

VVABC

VEBC

(b) Solution with two T12

VE12

VE23VE31

VV123

VEAB

VVABC

VECA

VEBC

(c) Solution with just one
T12

(d) Tetrahedrons for
solution shown in (c)

Figure 6.5: Special cases in the creation of the Joint Voronoi Diagram: So-
lutions for the 1ab23c sub-case

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 52

Algorithm 10 formalizes the solution for this sub-case. The valid con-
struction is composed by the T12 tetrahedron related to the intersection of
both Lone Edges (line 15), and the Ti tetrahedrons created by each Delone
triangle related to a Voronoi vertex and the Delone vertex related to the Full
Region of the other level used as the apex (lines 7-11). In figure 6.5(d) the
tetrahedrons related to this solution are shown.

Algorithm 10 Solving Vertex vs. Vertex 1ab23c sub-case

[Ti, T12] = solveVertexVsVertex1ab23c(V Vi, V Vj)
Input: V Vi: Voronoi vertex on level i

V Vj: Voronoi vertex on level j
Output: Ti: set of TWO Ti tetrahedrons related to V Vi and

V Vj

T12: a T12 tetrahedron
Precondition: level of V Vi is not the same level of V Vj

the projection of V Vi lies on the projection of V Vj

Postcondition: the tetrahedrons in Ti and T12 form a valid config-
uration

1: Leveli = level of V Vi

2: Edges[] = angular order of all edges related to V Vi and V Vj

3: [Lone edgei, Lone edgej] = findLoneEdges(Edges, leveli) alg.11
4: [Full regioni, Full regionj] = findFullRegions(Edges, leveli) alg.12
5: base = Delone triangle related to V Vi

6: apex = Delone vertex related to Full regionj

7: ti = new Ti using base and apex
8: add ti to Ti

9: base = Delone triangle related to V Vj

10: apex = Delone vertex related to Full regioni

11: ti = new Ti using base and apex
12: add ti to Ti

13: DEi = Delone edge related to Lone edgei

14: DEj = Delone edge related to Lone edgej

15: T12 = new T12 using DEi and DEj

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 53

Algorithm 11 Finding the Lone edges for the 1ab23c sub-case

[Lone edgei, Lone edgej] = findLoneEdges(Edges, leveli)
Input: Edges[]: angular order of the edges

leveli: level used as reference
Output: Lone edgei: Lone edge in level i

Lone edgej: Lone edge in level j
Precondition: Edges contain all the edges related to the Voronoi

vertices
Edges form an intersecting-star.

Postcondition: Only two lone edges are found.

1: for every Voronoi edge V Ek in Edges do
2: set V Ep as the edge previous to V Ek in Edges
3: set V En as the edge next to V Ek in Edges
4: if level of V Ep is level of V En then
5: if level of V Ek is Leveli then
6: Lone edgei = V Ek

7: else
8: Lone edgej = V Ek

9: end if
10: end if
11: end for

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 54

Algorithm 12 Finding the Full Regions for the 1ab23c sub-case

[Full regioni, Full regionj] = findFullRegions(Edges, leveli)
Input: Edges[]: angular order of the edges

leveli: level used as reference
Output: Full regioni: Full region in level i

Full regionj: Full region in level j
Precondition: Edges contain all the edges related to the Voronoi

vertices
Edges form an intersecting-star.

Postcondition: Only two Full regions are found.

1: for every Voronoi edge V Ek in Edges do
2: set V Ep as the edge previous to V Ek in Edges
3: set V En as the edge next to V Ek in Edges
4: set V Enn as the edge next to V En in Edges
5: if level of V Ek is level of V En then
6: if level of V Ek is Leveli then
7: Full regionj = Region bounded by V Ep and V Enn

8: else
9: Full regioni = Region bounded by V Ep and V Enn

10: end if
11: end if
12: end for

CHAPTER 6. THE POLYHEDRAL SURFACE METHOD 55

6.4 Elimination of tetrahedrons

The elimination of all the faces of the Ti tetrahedrons belonging to a non-solid
connection leads to the creation of a incomplete surfaces. This defect is fixed
in the version implemented as part of this project. When a Ti tetrahedron
belonging to a non-solid connection is eliminated, a hole results in the place
where its base stood. To avoid such holes, the horizontal triangles (bases) of
the Ti tetrahedrons eliminated by non-solid connections are kept and included
into the reconstructed surface.

The rule of elimination of T12 tetrahedrons is changed. The T12 tetra-
hedrons that are kept are 1-solid and 2-solid at the same time.

Chapter 7

Results for PSM

The improved method was applied to diverse sets of contours, and two of
them, the most representative, are shown here.

7.1 Skull

The Skull is a set of 258 contours, placed on 63 planes parallel to the XZ
plane. The resulting surface is composed by 39.808 triangles. This set of
contours present wide m-n branches specially in the levels between the nose
and the eye holes. In figure 7.1 a detail of levels 29 and 30 is shown. In
figures 7.2 and 7.3 more details may be observed.

7.2 Brain

This set of contours is a complement given with the algorithm of the B+G
method1. It is composed by 15 parallel levels, with 105 contours. The recon-
structed surface has 13607 triangles. Figures 7.4 and 7.5 show more details.

1ftp://ftp-sop.inria.fr/prisme/NUAGES/Nuages/

56

CHAPTER 7. RESULTS FOR PSM 57

Figure 7.1: Detail of levels 29 and 30 of the set of contours “skull”

CHAPTER 7. RESULTS FOR PSM 58

(a) Set of contours (b) Wireframe of the skull

Figure 7.2: Set of contours and the reconstructed surface

CHAPTER 7. RESULTS FOR PSM 59

(a) Reconstructed surface in a trans-
parent material

(b) Reconstructed surface in con-
crete

Figure 7.3: Reconstructed surface in different materials

(a) Set of contours
(b) Wireframe of the brain

Figure 7.4: Set of contours and the reconstructed surface

CHAPTER 7. RESULTS FOR PSM 60

(a) Reconstructed surface in a
transparent material

(b) Reconstructed surface in con-
crete

Figure 7.5: Reconstructed surface in different materials

Part III

Implicit Surface Method

61

Introduction for ISM

The Implicit Surface Method, or ISM, interpolates a surface from a set of pla-
nar contours with no restrictions about their spatial positioning. The process
is based on the calculation of an implicit function and the extraction of the
surface from such function. The interpolated surface is a smooth surface,
that is convenient is some applications. The ISM is based on Greg Turk and
James F. O’Brien’s research work at the Georgia Institute of Technology in
1999 ([44]). It was originally used for shape transformation and it is being
applied in different fields.

The ISM was implemented and tested in the A7 division - Cognitive
Computing and medical imaging - of the Fraunhofer Institute for Computer
Graphics - FhG IGD - at Darmstadt2, during semester 2002-2 for a virtual
Simulator of Radiotherapy Treatment Planning. The implementation was
introduced as an auxiliary tool to be used by physicians to segment medical
images separating different regions and organs of interest. In the classic
approach, the physician must create a contour bordering the region or organ
of interest on each image where it appears. A large organ may take more
than 30 contours to be fully bordered. Using the ISM, an organ, such as the
prostate, may be defined by 3 or 4 contours or a femur head by 11 contours.
Because of the smooth results given, the resulting surfaces are much closer
to the anatomical forms.

2http://www.igd.fhg.de/igd-a7/

62

Chapter 8

Theoretical basis for ISM

The Implicit Surface Method interpolates a surface by calculating a function.
The interpolated surface is defined as the zero-set of an implicit function,
which is calculated using the thin-plate interpolation method.

In the following sections a definition of implicit surfaces is given (sec-
tion 8.1). Also, the thin-plate interpolation and the determination of the
interpolation function are discussed (sections 8.2 and 8.3).

8.1 Implicit Surfaces

Generally a surface may be defined in different ways, but basically a surface
is parametrically or implicitly defined. When the surface is defined by a
parametric equation, it is called a parametric surface, and may be directly
generated by solving such a function over a valid range, such as the upper
half of a unit sphere centered at the origin defined in the first column of
Table 8.1.

In the case of an implicit surface, it is not possible to directly calculate
the points that belongs to it. An implicit surface is is defined by an implicit
function and the points belonging to such surface must be tracked and se-
lected depending on their function value. For a given value t, the t-surface is
composed by all the points whose function value is t. In the second column
of Table 8.1, the upper half of an unit sphere centered at the origin is defined
as the 0-surface, or zero-set of f .

63

CHAPTER 8. THEORETICAL BASIS FOR ISM 64

Table 8.1: Upper half unit sphere parametrically and implicitly defined
Parametric Implicit

Function f(x, y) =
√

1− (x2 + y2) f(X) = |X|2 − 1
Range x, y ∈ R and (x2 + y2) ≤ 1 X ∈ R2xR+

Surface definition S = {X|X = [x, y, f(x, y)]} S = {X|f(X) = 0}

8.2 Thin-plate interpolation

The thin-plate interpolation is a method commonly used to solve the scat-
tered data interpolation problem ([44]), and it is widely used in the computer
graphics domain, with sparse surface constraints ([20] and [43]). The target
is to find a smooth function that matches a set of k locations {c0, c1, . . . ck}
with a set of k values {h0, h1, . . . hk}, and interpolates the space remaining
in a smooth way. A pair composed by a location ci and a value hi is called
constraint.

An energy function is used to measure the smoothness, and depending on
its definition, different solutions can be reached. In 2D, the energy function is
defined by Equation 8.1, which measures the aggregate curvature of f . Notice
that the scattered data interpolation problem may be generalized to higher
dimensions, using the appropriated energy function for each dimension.

E(f) =

∫
f 2

xx(x) + f 2
yy(x) + 2f 2

xy(x)dx (8.1)

where fxx(x) represents the second partial derivative in x direction, fyy(x)
in y direction and fxy(x) in x and y directions.

The scattered data interpolation problem is solved when a function f that
satisfies the constraints and has the minimum energy value is found. The
family of Radial Basis functions φ(x) naturally solves this problem. The
functions belonging to this family are circularly symmetric functions cen-
tered at a particular point. Duchon ([12]) proved that the biharmonic radial
basis function, shown in Figure 8.1(a), solves this problem in 2D and the
triharmonical radial basis function, shown in Figure 8.1(b), in 3D.

CHAPTER 8. THEORETICAL BASIS FOR ISM 65

−0.2
0

0.2
0.4
0.6
0.8

−0.5
−1

0
0.5

1

−1 −0.5 0 0.5 1

φ(x) = |x|2 lg(|x|)

(a) biharmonical radial basis function

−1 −0.5 0 0.5 1

0
0.5
1

1.5
2

2.5
3

−1
−0.5

0
0.5

1

φ(x) = |x|3

(b) triharmonical radial basis function

Figure 8.1: Radial basis functions used for 2D and 3D

8.3 Determination of the interpolation func-

tion

Using the appropriate radial basis function φ(x), the triharmonical radial
basis function in the case of 3D, the interpolation function may be written
as a weighted sum as it is shown in Equation 8.2.

f(x) =
k∑

j=1

wjφ(x− cj) + P (x) (8.2)

where cj represents the locations of the constraints, wj the weights, and P (x)
a degree one polynomial that accounts for the linear and constant portions of
f . Solving for the weights wj and the coefficients of P (x) subject to the given
set of constraints ci and hi, it produces a function that both interpolates the
constraints and minimizes the energy function.

To calculate the interpolation function, the constraint locations and val-
ues are used. It is known that each constraint location ci, will have hi set as
its function value, so, replacing this in equation 8.2, results in equation 8.3.

hi = f(ci) =
k∑

j=1

wjφ(ci − cj) + P (ci) (8.3)

The use of the whole set of constraints and adding some equations to

CHAPTER 8. THEORETICAL BASIS FOR ISM 66

assure that a solution may be found, leads to a kxk equation system. The
equation system, in matrix representation, is shown in equation 8.4, where
φij is φ(ci − cj).

φ11 φ12 . . . φ1k 1 c1x c1y c1z

φ21 φ22 . . . φ2k 1 c2x c2y c2z
...

...
. . .

...
...

...
...

...
φk1 φk2 . . . φkk 1 ckx cky ckz

1 1 . . . 1 0 0 0 0
c1x c2x . . . ckx 0 0 0 0
c1y c2y . . . cky 0 0 0 0
c1z c2z . . . ckz 0 0 0 0

w1

w2
...

wk

p0

p1

p2

p3

=

h1

h2
...

hk

0
0
0
0

(8.4)

Notice that φij and φji are equal and that only φii is zero, so, the matrix
to the left of the equation 8.4 is mostly polulated and symmetric. This
peculiarity needs to be taken into account when the equation system is being
solved.

Chapter 9

The Implicit Surface Method

The ISM is based on the calculation of an implicit surface. The surface is
defined as the zero-set of a calculated interpolation function.

The input is a set of planar contours, with no restrictions about their
spatial positioning between them. The contour points are used to calcu-
late an implicit function, whose zero-set contains the contour vertices and
interpolates a smooth surface.

The whole process is composed by three main steps. First, the extraction
of the constraints from the given contours is done. Then, the constraints are
used to calculate the implicit function and lastly, the contours are tracked or
the surface is extracted from the function.

9.1 Definition of constraints

The vertices of the given contours and some other complementary points are
used to define the constraint locations and its related hi values.

Notice that the determination of the interpolation function (section 8.3)
only requires a set of locations ci, and its related value hi. The input given
for this method is formed by a set of contours describing the surface. The
contour vertices will be in the zero-set of the interpolation function, implying
that its hi value is zero. If only these points are used to calculate the function,
then, there are no restrictions for the function to set the whole space as the
zero-set (f(x) = 0 for all x ∈ R3). In order to avoid such trivial function,
some complementary constraints locations must be found. Some external or
internal points, respect to the surface, must found and added.

67

CHAPTER 9. THE IMPLICIT SURFACE METHOD 68

Every vertex of the given contours, related with an hi value of 0, is used
to create the set of boundary constraints. To find internal and external
points respect to the surface, two margins (an outer and inner) are built.
The vertices of the inner margin are associated with an hi value of +1.
Those points form the internal constraints. In a similar way, the vertices
of the outer margin, related with an hi value of −1 compose the external
constraints (algorithm 13).

Algorithm 13 Definition of the set of constraints

[ci, hi] = contoursToConstraints(C)
Input: C: Set of contours
Output: ci: locations in the space of the constraints

hi: value of the constraint in the given location
Precondition: every contour in C is planar
Postcondition: every ci has a corresponding hi value

there are at least two different values in hi

1: for every contour c in C do
2: for every vertex v in c do
3: add v to ci

4: assign the related value hi of ci as BOUNDARY VALUE (0)
5: end for
6: set inner as the internal margin of c to a TINY distance
7: for every vertex v in inner do
8: add v to ci

9: assign the related value hi of ci as INTERNAL VALUE (+1)
10: end for
11: set outer as the external margin of c to a TINY distance
12: for every vertex v in outer do
13: add v to ci

14: assign the related value hi of ci as EXTERNAL VALUE (−1)
15: end for
16: end for

In some applications, the contours are manually created, for example,
they are drawn on perpendicular medial images. It occurs that in some “crit-
ical” places -like the plane intersections- the contour points are set really near
to each other, with no fixed position. It leads the process to create a surface

CHAPTER 9. THE IMPLICIT SURFACE METHOD 69

with abrupt changes of curvatures that do not abide to the wished result. To
avoid these kinds of artefacts, some constraints must be filtered. The filter
replaces such inconsistent points for their centroid. To identify these points,
the box that bounds all the contour points is found, and the points that fit
in a box of 5% of the size of the original bounding box are selected to be
replaced.

9.2 Calculation of the implicit function

Now, the attention is focused on the generation of the function that defines
the surface. The constraints that have been generated in the previous step,
locations ci and values hi, are set into the matrix in Equation 8.4 and the
equation system is solved using LU -decomposition. The calculation of the
coefficients is done in algorithm 14. It is important to note that, because
of the nature of this function, every constraint influences the whole inter-
polation, and a change on any of these represents a re-calculation of the
coefficients. It is not important in the current context, but for future work
or extensions, this condition could be critical and must be taken into account.
The coefficients that are calculated here, wi, P0, P1, P2 and P3, are used to
evaluate the function on any point later.

The LU-decomposition ([31]) is a method faster enough for the applica-
tion requirements. For systems with more than a few thousands of con-
straints, this method is unfeasible, because of the complexity of this methid
(O(n3)). There are some works that have tried and improved this fact,
([24]), where a compactly supported radial basis function is used, changing
the performance to O(n2), but making it impossible to use the third step of
the method described here.

9.3 Extraction of the surface or parallel con-

tours

As it was said before, the implicit surfaces can not be directly generated. It
must be extracted or tracked from the calculated implicit function.

In the case of surfaces, the Bloomenthal’s polygonizer ([4]) is used. It
gives good results and creates surfaces represented as a set of triangles.

CHAPTER 9. THE IMPLICIT SURFACE METHOD 70

Algorithm 14 Calculating the implicit function

coef = implFunctionCalculate(ci, hi)
Input: ci: locations in the space of the constraints

hi: value of the constraint in the given location
Output: coef : coefficient of the Implicit function, com-

posed by the weights wi and the polynomial co-
efficients.

Precondition: At least one external or internal constraint must
be defined

Postcondition: The coefficients defining an implicit function which
contains the implicit reconstructed surface.

1: M = matrix to the left in equation 8.4 using ci.
2: B = vector to the right in equation 8.4 using hi.
3: coef = solve equation system Mxcoef = B using LU-decomposition

9.3.1 Extraction of parallel contours

A routine has been designed to extract parallel contours from the implicit
function. This routine is applied level by level, to the levels where the con-
tours are to be extracted. It is based on the cell polygonization of Bloomen-
thal’s polygonizer ([4]). Before using this routine on each level, the steps
bellow must be followed:

1. Generation of a planar grid in the current level

2. Evaluation of the function at each corner of the grid

3. Contour extraction

The grid is generated as a regular spaced grid, where each corner is a
point [x, y, z] lying on the plane of the level being currently processed. Each
corner of the grid is then evaluated using the calculated implicit function,
as shown in equation 8.2. To extract a contour, any edge in the grid whose
end-points have set a function value with opposite sign (+ and −) must be
found. Because this function is continuous, the change of sign implies that
between the edge vertices there is a point, known as root, whose function
value is zero. Binary sectioning over the edge is used to localize the position
of the root. After finding the root, the direction along the edge to the positive

CHAPTER 9. THE IMPLICIT SURFACE METHOD 71

corner is selected and it keeps rotating on clockwise sense till another edge
with opposite signed end-points is found. This iterates until the contour is
closed or the limits of the grid are reached.

0 1 2 3 4 5 6
0

1

2

3

4

5

(a) Original contour and
the evaluated grid

0 1 2 3 4 5 6
0

1

2

3

4

5 b

j

a

c
d

e
f

g
h

i

k

l

m
n

op

q

r
s

t

(b) Tracked contour
defined by the points
{a, b, c, ...t}

Figure 9.1: Scheme of the algorithm to extract a contour on a level grid

Chapter 10

Results for ISM

The process described here was applied to several data sets, with positive
results. Here three examples are shown, two of them were created by hand
and the other one corresponds to real data. Every example presents the
contours used as input, a set of interpolated parallel contours extracted with
the contour tracker previously described and finally the surface extracted
with Bloomenthal’s poligonizer.

10.1 Synthetic data

The branching example, see Figure 10.1, describes a branching as it could be
found in veins. It is composed of a set of 9 planar contours placed on 4 parallel
planes with an interplane distance of 5. In total there are 92 contour points,
which are translated into 276 constraints (including boundary, internal and
external constraints). The interpolated parallel contours run in direction Z+

with a distance among them of 0.48.
The tamarind example, see Figure 10.2, could describe a tamarind skin.

It is composed of a set of 5 planar contours placed on five orthogonal planes,
three of them being parallel to the XY plane, one to the XZ plane and one
to the Y Z plane. In total there are 57 contour points, which are translated
into 171 constraints (including boundary, internal and external constraints).
The interpolated parallel contours run in direction Z+ with a distance among
them of 0.37.

72

CHAPTER 10. RESULTS FOR ISM 73

(a) Input data (b) Interpolated parallel
contours

(c) Interpolated surface

Figure 10.1: Synthetic data: A branching pipe

10.2 Real Data

The last example, see Figure 10.3, is a femur head. The contours were taken
from medial images, in EXOMIO, from a CT image. It is composed of a set
of eleven planar contours placed on eleven orthogonal planes, five of them
being parallel to XY plane, two to XZ plane and four to Y Z plane. In
total there are 136 contour points, which are translated into 408 constraints
(including boundary, internal and external constraints). Filtering is required
in this example. The interpolated parallel contours run in direction Z+ with
an interplane distance of 3.13. Every plane matches every level in the CT
image, creating a contour that segments the bone head in each image.

10.3 Use of constraints

In section 9.1, the external and internal contours were defined using margins.
As a testing, the internal constraints were not used, and the set of external
constraints was reduced to just eight points. Those points are the corners of
the bounding box of the given contours, and its hi value was given by the
distance of each corner to its closest vertex of the contours. The reduction
in the number of constraints is notable, from 3n with n as the number of
contours vertices, to n + 8. This reduction is appreciated when objects with

CHAPTER 10. RESULTS FOR ISM 74

(a) Input data (b) Interpolated parallel
contours

(c) Interpolated surface

Figure 10.2: Synthetic data: A tamarind skin

large number of contours vertices is processed.
The results of this test showed that the surface reconstructed with this

constraints differs from the surface using the whole set of constraints. For
simple objects the difference is not evident, and the surface still describes the
wished form (figure 10.4). For complex objects with sparse contours vertices,
like the femur head, the deformation may cause holes and big changes in the
surface which are not wished. (figure 10.5). This test is interesting, because
it opens a possible path to improve this method.

CHAPTER 10. RESULTS FOR ISM 75

(a) Input data (b) Interpolated parallel
contours

(c) Interpolated surface

Figure 10.3: Real data: A femur head

(a) Using the whole set of con-
straints

(b) Using only the corners of the
Bounding Box

Figure 10.4: Differences in the reconstructed surfaces using different sets of
constraints for a simple object

CHAPTER 10. RESULTS FOR ISM 76

(a) Using the whole set of con-
straints

(b) Using only the corners of the
Bounding Box

Figure 10.5: Differences in the reconstructed surfaces using different sets of
constraints for a complex object

Part IV

Conclusions and Future Work

77

Chapter 11

Conclusions

11.1 For the Implicit Surface Method

The reconstructed surface is smooth, as seen in 10. If this surface is cut using
the planes where the input contours were defined, the resulting contours will
really differ from the ones used as input. This change is not convenient when
the input contours must continue in the resulting surface, like applications
where different parts are individually produced to be latter assembled. How-
ever, when the input contours are just a raw description of the surface to
be reconstructed, such introduced changes to the contours and the surface
are really of use. For example when the reconstructed surface represents an
organ or any anatomical form, any aesthetic object or any kind of object
that must not contain any sharp edge, like toys for children.

The reconstructed surface is optimum to be manufactured by a CAM
machine, such as milling machines or a lathe, because the defining function
is infinitely derivable.

A drawback is the fewer control present from the user. At the moment,
the control of the surface may be done only by handling the points of the
contours.

The contraints are limited to a few thousands of them, because an equa-
tion system of n+4 by n+4 unknowns must be solved, where n is the number
of constraints.

The surface must be extracted from the calculated function, and an ad-
ditional step is required. For this project, the Bloomenthal’s polygonizer is
used to extract the surface.

78

CHAPTER 11. CONCLUSIONS 79

Sets of contours that naturally do not indicate a closing, results in a
surface that grows with no control (figure 11.1). To solve such problem, a
Bounding Box must be used to cut the reconstructed surface, but the time
consumed by the extraction of this surface is not recovered. In figure 11.1
the surface extracted for the branching example before bounding, originally
shown in figure 10.1, may be seen.

Figure 11.1: No bounded interpolated surface

11.2 For the Polyhedral Surface Method

11.2.1 Incomplete surface

In the original method, some horizontal triangles belonging to the recon-
structed surface are missing. This triangles are eliminated when the Ti tetra-
hedrons belonging to a non-solid connection are eliminated . To avoid such

CHAPTER 11. CONCLUSIONS 80

holes, the horizontal triangles corresponding to the Ti tetrahedrons that are
eliminated for the non-solid connections are kept and used as part of the
reconstructed surface. (section 5.5). Such holes creates a surface that is no
“watertight”. This means, that the reconstructed surface does not allow the
classification of the points in the space as internal or external respect to the
surface, or in graphical terms, it allows “water” pass in or out.

11.2.2 No-manifold situations

In section 6.3, special cases were considered when creating the Joint Voronoi
Diagram. These special cases are not considered in the original version of
this method ([19]) and when more than four co-spherical points are found, a
perturbation is applied to them. This perturbation leads, some times, to non-
wished surfaces, like the one shown in figure 11.2(a). The consideration of
the special cases does not leave the election of the tetrahedrons to a random
perturbation, and improves the reconstructed surfaces (figure 11.2(b)).

(a) Surface reconstructed using
the original method

(b) Surface reconstructed taking
into account the special cases

Figure 11.2: Differences between a simple surface reconstructed using a per-
turbation and solving the special cases

However, in some situations, this no-manifold situation may not be elimi-
nated, as the one show in figure 11.3. In these situations, one edge is matched
or mapped to more than one edges on the consecutive level, and more than
two faces share the same edge.

CHAPTER 11. CONCLUSIONS 81

Figure 11.3: A non-manifold situation that may not be eliminated

11.2.3 Watertight surface

Because the method processes each pair of levels at one time, the assembled
surface is not watertight, and a final step of homogenization of vertices must
be performed. Notice that a contour goes twice to the process, once as level
i and the next one as level j. On each of this iterations, different points
may have been added to the same contour, and the resulting triangles may
not share the same edges. This holes allow the “water to pass in”. So,
such triangles must be found and divided in two triangles, inserting the non-
common vertex in both reconstructions. See figure 11.4(a) and 11.4(b) for
details.

(a) No watertight surface (b) Watertight surface

Figure 11.4: Points added to a surface to ensure it is watertight

Chapter 12

Future Work

12.1 Implementation details in PSM

PSM method is based on Voronoi Diagrams and Delone Triangulations. It
creates a graph, named the Joint Voronoi Diagram, from the intersection
of two Voronoi Diagrams. This intersection is done intersecting every edge
belonging to one Voronoi Diagram with every edge in the other Voronoi
Diagram. Such procedure is time-consuming, and may be improved. Some
heuristic and methods exist and may be used, to speed this part of the
process.

12.2 Support for internal holes or objects in

ISM

The ISM has some limitations when a model with holes or nested objects
is reconstructed. Notice that the internal holes or objects are also surfaces,
and they may or may not be defined by the zero-set of the function. As seen,
the ISM is not strict in the definition of constraints, so, internal objects
or holes may be defined as a k-surface, where k indicates the value of the
function on the points of the surface. The value of k must be different for
each surface being reconstructed. This implies that the number of surfaces
to reconstruct must be known, and the relations between them must be also
known, to set a consistent numbering of the surfaces. If this focus is taken,
the terms ’external constraint and internal constraint ’ lose its meaning, and

82

CHAPTER 12. FUTURE WORK 83

the k value must be used as the hi value for each defined constraint. If the
internal holes or objects are defined as part of the zero-set of the calculated
implicit function, then, the external and internal constraints must be used.
Notice that an internal constraint lies inside the object, so, for a contour
that represents a hole, its internal constraints are defined as the vertices of
the external margin, instead of the internal margin. Notice that, in any case,
the relations of the contours, translated to the knowledge of which contours
belongs to an internal wall (or hole) and which to an external wall, must be
known. To determine this relation between contours that do not share the
same plane is also an issue to take into account when extending the ISM to
support internal holes or objects.

An important point to take into account is the extraction of the surfaces.
Actually, it is done using the Bloomenthal’s polygonizer and requires a seed
point to extract one surface. A set of seed points, one per surface to extract,
must exist, or the polygonizer must be changed to be able to find by itself
the surfaces to extract.

12.3 Use of a different Radial Basis Function

for ISM

In the case of using ISM for larger sets of data, some parts of the method
must be changed. The critical part lies in the calculation and evaluation of
the implicit function. The calculation of coefficients of the implicit function
is done using LU-decomposition, as it was seen in section 9.2. The equa-
tion system that is resolved in that step is based on the chosen Radial Basis
function. Using the triharmonical radial basis function, the matrix of coeffi-
cients of the equation system has only a small number of zero elements. If
a different Radial Basis function is used, such as the Compactly-supported
Radial Basis Function ([9]), the number of zero elements may grow enough
to create a sparse matrix, whose LU -decomposition may be computed in less
time. Nevertheless, the use of this radial basis will change the interpolation
function, and the Bloomenthal’s polygonizer may not be adequate to extract
the surface.

84

BREP FILE GRAMMAR 85

BRep file Grammar

brep file → NUM SHELL SETS cs pos int n0 cs shell sets EOF
shell sets → shell set (cs shell set)∗

shell set → BEGIN SHELL SET cs shell set cont cs END SHELL SET
shell set cont→ NUM SHELLS cs pos int n0 cs shells
shells → shell (cs shell)∗

shell → BEGIN SHELL cs shell cont cs END SHELL
shell cont → vertices part cs edges part cs faces part cs contours part
contour part→ CONTOURS cs pos integer cs contours
contours → contour (cs contour)∗

contour → left par pos integer right par (cs pos integer)+

faces part → FACES cs pos int n0 cs faces
faces → face (cs face)∗

face → edge partner cs edge partner cs edge partner
edge partner→ pos integer left par pos integer right par
edges part → EDGES cs pos int n0 cs edges
edges → edge (cs edge)∗

edge → pos integer cs pos integer
vertices part → VERTICES cs pos int n0 cs vertices
vertices → point3 (cs point3)∗

point3 → float number cs float number cs float number
cs → (space char∗ | tab∗ | end line∗ | comment∗)+

comment → # λ end line
tab → ’\t’
space char → ’ ’
end line → ’\n’
pos int n0 → +? 0∗ pos digit digit∗

pos integer → +? digit+

float number→ (op sign digit+ (.digit+)? (exp op sign digit+)?) | ((op sign
digit∗)? .digit+ (exp op sign digit+)?) | ((op sign digit∗)?

(.digit+)? exp op sign digit+))
exp → e|E
op sign → (+|-)?
right par →)
left par → (
digit → 0 | pos digit
pos digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

BREP FILE GRAMMAR 86

Conventions: ? → zero or one occurrence.
∗ → zero or more occurrences.
+ → one or more occurrences.
| → exclusive or (xor).
()→ grouping of a subexpression.
λ → Any possible character.
a → a is a keyword.
a → a is an expression defined later.

Example File

The example file represents the surfaces shown in figure 1.

Figure 1: Surface represented by the example file

BREP FILE GRAMMAR 87

NUM SHELL SETS 1 # just one shell set in this file
BEGIN SHELL SET
NUM SHELLS 2 # two shells for the shell set
BEGIN SHELL # shell number 1
VERTICES 8 # 8 vertices in shell 1
2.404294 -2.154735 10 .2404294e-1 -2.154735 0 2.404295 2.056687
10 -2.465704 -2.154735 0 -2.465704 -2.154735 10 -2.465704
2.056687 10 -2.465704 2.056687 0 2.404294 2.056687 0
EDGES 36 # 36 edges in shell 1. It is 3 times the number of
faces
0 1 1 2 2 0 1 0 0 3 3 1 4 3 3 0 0 4 5 4 4 0 0 5 0 2 2 5 5 0 6 5 5
2 2 6 2 7 7 6 6 2 7 2 2 1 1 7 7 1 1 3 3 7 3 6 6 7 7 3 5 6 6 3 3 5
3 4 4 5 5 3
FACES 12 # number of faces in shell 1
0(3) 1(22) 2(12) 3(0) 4(7) 5(25) 6(33) 7(4) 8(10) 9(34) 10(8)
11(14) 12(2) 13(16) 14(11) 15(30) 16(13) 17(20) 18(21) 19(28)
20(17) 21(18) 22(1) 23(24) 24(23) 25(5) 26(29) 27(31) 28(19)
29(26) 30(15) 31(27) 32(35) 33(6) 34(9) 35(32)
CONTOURS 0 # no contours in shell 1
END SHELL
a comment may be placed any where in the file
BEGIN SHELL # shell number 2
VERTICES 18 # number of vertices in shell 2
-8 6 10 -2 9 9.219544 -6 5 7.810250 -1 7 7.071068 2 8 8.246211
0 4 4 6 2 6.324555 7 3 7.615773 9 -3 9.486833 4 -2 4.472136 5 -6
7.810250 1 -5 5.099020 3 -8 8.544004 -5 -7 8.602325 -3 -4 5 -9 -1
9.055385 -4 0 4 -7 1 7.071068
EDGES 60 # 3 edges/face x 20 faces = 60 edges in shell 2
0 1 1 2 2 0 2 1 1 3 3 2 1 4 4 3 3 1 3 4 4 5 5 3 4 6 6 5 5 4 4 7 7
6 6 4 7 8 8 6 6 7 6 8 8 9 9 6 9 8 8 10 10 9 11 9 9 10 10 11 11 10
10 12 12 11 13 11 11 12 12 13 14 11 11 13 13 14 15 14 14 13 13 15
15 16 16 14 14 15 17 16 16 15 15 17 15 0 0 17 17 15 17 0 0 2 2 17
2 16 16 17 17 2 2 3 3 5 5 2
FACES 20 # 20 faces
0(6) 1(3) 2(52) 3(1) 4(8) 5(57) 6(15) 7(9) 8(4) 9(7) 10(14)
11(58) 12(17) 13(59) 14(10) 15(18) 16(20) 17(12) 18(25) 19(21)
20(16) 21(19) 22(24) 23(13) 24(22) 25(31) 26(28) 27(23) 28(26)
29(30) 30(29) 31(35) 32(34) 33(37) 34(32) 35(41) 36(27) 37(33)
38(40) 39(44) 40(38) 41(48) 42(46) 43(36) 44(39) 45(55) 46(42)
47(50) 48(0) 49(51) 50(47) 51(49) 52(2) 53(56) 54(43) 55(45)
56(53) 57(5) 58(11) 59(54)
CONTOURS 2 # the shell has two contours.
(9) 0 6 15 18 25 31 35 41 48
(7) 43 36 27 23 13 59 54
END SHELL
END SHELL SET

Bibliography

[1] N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. In
Symposium on Computational Geometry, pages 39–48, 1998.

[2] F. Aurenhammer and R. Klein. Voronoi diagrams. In J. R. Sack and
G. Urrutia, editors, Handbook of Computational Geometry, pages 201–
290. Elsevier Science Publishing, 2000.

[3] G. Barequet and M. Sharir. Piecewise-linear interpolation between
polygonal slices. Computer Vision and Image Understanding: CVIU,
63(2):251–272, 1996.

[4] Jules Bloomenthal. An implicit surface polygonizer. In Paul Heck-
bert, editor, Graphics Gems IV, pages 324–349. Academic Press, Boston,
1994.

[5] J. D. Boissonnat. Shape reconstruction from planar cross-sections. Com-
puter Vision, Graphics and Image Processing, pages 1–29, 1988.

[6] J. D. Boissonnat and M. Teillaud. A hierarchical representation of ob-
jects: the Delaunay Tree. In Second ACM Symposium on Computational
Geometry, pages 260–268, 1986.

[7] J. D. Boissonnat and M. Teillaud. On the randomized construction
of the Delaunay Tree. Theoretical Computer Science, 112(2):339–354,
1993.

[8] A. Bowyer. Computing dirichlet tessellations. The Computer Journal,
24(2):162–166, 1981.

[9] J.C. Carr, T.J. Mitchell, R. K. Beatson, J.B. Cherrie, W.R. Fright, B.C.
McCallum, and T.R. Evans. Reconstruction and representation of 3d

88

BIBLIOGRAPHY 89

objects with radial basis functions. In Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH 2001), pages 67–76, 2001.

[10] K. L. Clarkson and P. W. Shor. Applications of random sampling in
computational geometry, II. Discrete and Computational Geometry,
4(1):387–421, 1989.

[11] B. Curless and M. Levoy. A volumetric method for building complex
models from range images. In Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 1996), pages 303–312, 1996.

[12] J. Duchon. Splines minimizing rotation-invariant semi-norms in sobolev
spaces. In Constructive Theory of Functions of Several Variables, pages
85–100, 1977.

[13] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

[14] H. Edelsbrunner and E. P. Muecke. Three-dimensional alpha shapes.
ACM Transactions on Graphics, 13:43–72, 1994.

[15] H. Edelsbrunner and N. Shah. Incremental topological flipping works
for regular triangulations. In Proceedings of the 8th ACM Symposium
on Computational Geometry, pages 43–52, 1992.

[16] S. Fortune. Voronoi Diagrams and Delaunay Triangulations. In Ding-
Zhu Du and Frank Hwang, editors, Computing in Euclidean Geometry,
Lecture Notes Series on Computing, pages 193–223. World Scientific,
1992.

[17] G. K. Francis and J. R. Weeks. Conway’s zip proof. American Mathe-
matical Monthly, 106(1):393–399, May 1999.

[18] M. J. Garćıa, O. Ruiz, and C. Cadavid. Syntesis of 1- and 2-pl manifolds.
Research report, Universidad EAFIT, Medelĺın, Colombia, 2003.

[19] B. Geiger. Three dimensional modeling of human organs and its applica-
tion to diagnosis and surgical planning. Research Report 2105, INRIA,
Sophia-Antipolis, Valbonne, France, 1993.

[20] W. E. L. Grimson. Surface consistency constraints in vision. Computer
Vision, Graphics, and Image Processing, 24(1):28–51, october 1983.

BIBLIOGRAPHY 90

[21] L. Guibas and J. Stolfi. Primitives for the manipulation of general sub-
divisions and the computation of voronoi diagrams. ACM Transactions
on Graphics, 2(4):74–123, 1985.

[22] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremen-
tal construction of Delaunay and Voronoi diagrams. In G Goos and
J Hartrnarns, editors, ICALP 90 Proceedings, number 3 in Lecture Notes
in Computer Science, pages 414–431. Springer-Verlag, 1990.

[23] H. Hoppe. Surface Reconstruction from Unorganized Points. PhD thesis,
Computer and Engineering, U. of Washington (USA), 1994.

[24] B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Sub-
ramanian. Interpolating implicit surfaces from scattered surface data
using compactly supported radial basis functions. In Shape Modelling
International, pages 89–98, May 2001.

[25] M. Morse. The calculus of variations in the large. American Mathemat-
ical Society, 1934.

[26] M. Mortenson. Geometric Modeling. Wiley Computer Publishing, 2
edition, 1997.

[27] E. P. Muecke, I. Saias, and B. Zhu. Fast randomized point location
without preprocessing in two- and three-dimensional Delaunay triangu-
lations. In 12th Annual ACM Symposium on Computational Geometry,
pages 274–283, 1996.

[28] K. Mulmuley. Randomized multidimensional search trees: Dynamic
sampling. In 7th ACM Symposium on Computational Geometry, pages
121–131, 1991.

[29] T. Ohya, M. Iri, and K. Murota. A fast Voronoi-diagram with quater-
nary tree bucketing. Information Processing Letters, 18:227–231, 1984.

[30] F. Preparata and M. Shamos. Computational Geometry: an Introduc-
tion. Springer-Verlag, 1985.

[31] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical
Recipes in C: The art of scientific computing. Cambridge University
Press, 2 edition, 1992.

BIBLIOGRAPHY 91

[32] V. T. Rajan. Optimality of the Delaunay triangulation in rd. In 7th
Annual Symposium on Computational Geometry, pages 357–363, 1991.

[33] Wolfram Research. Eric Weisstein’s world of mathematics. Internet
Publication. Available from http://mathworld.wolfram.com/.

[34] O. Ruiz. Digitlab, an environment and language for manipulation of 3d
digitizations. In Proceedings of the Joint Conference: IDMME’2000 and
CSME FORUM 2000, May 2000.

[35] O. Ruiz. Understanding CAD / CAM / CG. American Society of
Mechanical Engineers ASME. Continuing Education Institute. Global
Training, 2002. ASME Code GT-006.

[36] O. Ruiz and C. Cadavid. Boolean 2d shape similarity for surface recon-
struction. In Visualization, Imaging and Image Processing (VIIP 2001),
september 2001.

[37] O. Ruiz, C. Cadavid, and M. Granados. Evaluation of 2D shape likeness
for surface reconstruction. In XIII International Congress on Graphics
Engineering, june 2001.

[38] O. Ruiz, C. Cadavid, M. Granados, S. Peña, and E. Vásquez. 2d shape
similarity as a complement for voronoi-delone methods in shape recon-
struction. Submitted to Computer and Graphics.

[39] O. Ruiz, C. Cadavid, M. Granados, S. Peña, and E. Vásquez. 2d
similarity-complemented voronoi-delone methods in shape reconstruc-
tion. Submitted to International Journal of Computer and Applications.

[40] Vladimir V. Savchenko, Alexander A. Pasko, Oleg G. Okunev, and
Tosiyasu L. Kunii. Function representation of solids reconstructed
from scattered surface points and contours. Computer Graphics Forum,
14(4):181–188, 1995.

[41] M. Shamos and D. Hoey. Closest-point problems. In 16th Annual IEEE
Symposium on Foundations of Computer Science, pages 151–162, 1975.

[42] M. I. Shamos. Computational Geometry. PhD thesis, Department of
Computer Science, Yale University (USA), 1978.

BIBLIOGRAPHY 92

[43] D. Terzopoulos. The computation of visible-surface representations.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(4):417–438, July 1988.

[44] Greg Turk and James F. O’Brien. Shape transformation using varia-
tional implicit functions. In Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH 99), pages 335–342, august 1999.

[45] Greg Turk and James F. O’Brien. Modelling with implicit surfaces that
interpolate. ACM Transactions on Graphics, 21(4):855–873, october
2002.

